Properties

Label 720.2
Level 720
Weight 2
Dimension 5522
Nonzero newspaces 28
Newform subspaces 120
Sturm bound 55296
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 28 \)
Newform subspaces: \( 120 \)
Sturm bound: \(55296\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(720))\).

Total New Old
Modular forms 14720 5764 8956
Cusp forms 12929 5522 7407
Eisenstein series 1791 242 1549

Trace form

\( 5522 q - 12 q^{2} - 12 q^{3} - 16 q^{4} - 25 q^{5} - 48 q^{6} - 20 q^{7} - 24 q^{8} - 12 q^{9} - 56 q^{10} - 54 q^{11} - 16 q^{12} - 36 q^{13} + 24 q^{14} - 21 q^{15} + 8 q^{16} - 18 q^{17} + 24 q^{18}+ \cdots - 78 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(720))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
720.2.a \(\chi_{720}(1, \cdot)\) 720.2.a.a 1 1
720.2.a.b 1
720.2.a.c 1
720.2.a.d 1
720.2.a.e 1
720.2.a.f 1
720.2.a.g 1
720.2.a.h 1
720.2.a.i 1
720.2.a.j 1
720.2.b \(\chi_{720}(71, \cdot)\) None 0 1
720.2.d \(\chi_{720}(649, \cdot)\) None 0 1
720.2.f \(\chi_{720}(289, \cdot)\) 720.2.f.a 2 1
720.2.f.b 2
720.2.f.c 2
720.2.f.d 2
720.2.f.e 2
720.2.f.f 2
720.2.f.g 2
720.2.h \(\chi_{720}(431, \cdot)\) 720.2.h.a 8 1
720.2.k \(\chi_{720}(361, \cdot)\) None 0 1
720.2.m \(\chi_{720}(359, \cdot)\) None 0 1
720.2.o \(\chi_{720}(719, \cdot)\) 720.2.o.a 4 1
720.2.o.b 8
720.2.q \(\chi_{720}(241, \cdot)\) 720.2.q.a 2 2
720.2.q.b 2
720.2.q.c 2
720.2.q.d 2
720.2.q.e 2
720.2.q.f 4
720.2.q.g 4
720.2.q.h 4
720.2.q.i 6
720.2.q.j 6
720.2.q.k 6
720.2.q.l 8
720.2.t \(\chi_{720}(181, \cdot)\) 720.2.t.a 4 2
720.2.t.b 8
720.2.t.c 16
720.2.t.d 20
720.2.t.e 32
720.2.u \(\chi_{720}(179, \cdot)\) 720.2.u.a 96 2
720.2.w \(\chi_{720}(17, \cdot)\) 720.2.w.a 4 2
720.2.w.b 4
720.2.w.c 4
720.2.w.d 4
720.2.w.e 8
720.2.x \(\chi_{720}(127, \cdot)\) 720.2.x.a 2 2
720.2.x.b 2
720.2.x.c 2
720.2.x.d 4
720.2.x.e 4
720.2.x.f 8
720.2.x.g 8
720.2.z \(\chi_{720}(163, \cdot)\) 720.2.z.a 2 2
720.2.z.b 2
720.2.z.c 2
720.2.z.d 2
720.2.z.e 6
720.2.z.f 16
720.2.z.g 18
720.2.z.h 20
720.2.z.i 48
720.2.bc \(\chi_{720}(197, \cdot)\) 720.2.bc.a 96 2
720.2.bd \(\chi_{720}(307, \cdot)\) 720.2.bd.a 2 2
720.2.bd.b 2
720.2.bd.c 2
720.2.bd.d 2
720.2.bd.e 6
720.2.bd.f 16
720.2.bd.g 18
720.2.bd.h 20
720.2.bd.i 48
720.2.bg \(\chi_{720}(53, \cdot)\) 720.2.bg.a 96 2
720.2.bi \(\chi_{720}(343, \cdot)\) None 0 2
720.2.bj \(\chi_{720}(233, \cdot)\) None 0 2
720.2.bl \(\chi_{720}(251, \cdot)\) 720.2.bl.a 8 2
720.2.bl.b 24
720.2.bl.c 32
720.2.bm \(\chi_{720}(109, \cdot)\) 720.2.bm.a 2 2
720.2.bm.b 2
720.2.bm.c 4
720.2.bm.d 4
720.2.bm.e 8
720.2.bm.f 16
720.2.bm.g 32
720.2.bm.h 48
720.2.br \(\chi_{720}(239, \cdot)\) 720.2.br.a 8 2
720.2.br.b 16
720.2.br.c 24
720.2.br.d 24
720.2.bt \(\chi_{720}(119, \cdot)\) None 0 2
720.2.bv \(\chi_{720}(121, \cdot)\) None 0 2
720.2.bw \(\chi_{720}(191, \cdot)\) 720.2.bw.a 16 2
720.2.bw.b 16
720.2.bw.c 16
720.2.by \(\chi_{720}(49, \cdot)\) 720.2.by.a 4 2
720.2.by.b 4
720.2.by.c 8
720.2.by.d 8
720.2.by.e 12
720.2.by.f 32
720.2.ca \(\chi_{720}(169, \cdot)\) None 0 2
720.2.cc \(\chi_{720}(311, \cdot)\) None 0 2
720.2.ce \(\chi_{720}(229, \cdot)\) 720.2.ce.a 560 4
720.2.cf \(\chi_{720}(11, \cdot)\) 720.2.cf.a 384 4
720.2.ci \(\chi_{720}(7, \cdot)\) None 0 4
720.2.cl \(\chi_{720}(137, \cdot)\) None 0 4
720.2.cm \(\chi_{720}(77, \cdot)\) 720.2.cm.a 560 4
720.2.cp \(\chi_{720}(43, \cdot)\) 720.2.cp.a 4 4
720.2.cp.b 4
720.2.cp.c 552
720.2.cq \(\chi_{720}(173, \cdot)\) 720.2.cq.a 560 4
720.2.ct \(\chi_{720}(187, \cdot)\) 720.2.ct.a 4 4
720.2.ct.b 4
720.2.ct.c 552
720.2.cu \(\chi_{720}(113, \cdot)\) 720.2.cu.a 8 4
720.2.cu.b 16
720.2.cu.c 16
720.2.cu.d 24
720.2.cu.e 72
720.2.cx \(\chi_{720}(223, \cdot)\) 720.2.cx.a 8 4
720.2.cx.b 8
720.2.cx.c 40
720.2.cx.d 40
720.2.cx.e 48
720.2.da \(\chi_{720}(59, \cdot)\) 720.2.da.a 4 4
720.2.da.b 4
720.2.da.c 4
720.2.da.d 4
720.2.da.e 544
720.2.db \(\chi_{720}(61, \cdot)\) 720.2.db.a 384 4

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(720))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(720)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 30}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 15}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(90))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(120))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(144))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(180))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(240))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(360))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(720))\)\(^{\oplus 1}\)