Properties

Label 720.2.bd.h.307.9
Level $720$
Weight $2$
Character 720.307
Analytic conductor $5.749$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [720,2,Mod(307,720)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("720.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(720, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 720.bd (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,-2,0,-2,-8,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.74922894553\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 3 x^{18} - 6 x^{17} + 2 x^{16} + 4 x^{14} + 20 x^{13} - 24 x^{12} + 40 x^{11} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.9
Root \(-1.09334 - 0.897004i\) of defining polynomial
Character \(\chi\) \(=\) 720.307
Dual form 720.2.bd.h.523.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.09334 + 0.897004i) q^{2} +(0.390769 + 1.96145i) q^{4} +(-2.23165 + 0.140415i) q^{5} +(-2.83167 - 2.83167i) q^{7} +(-1.33219 + 2.49505i) q^{8} +(-2.56590 - 1.84828i) q^{10} +(-4.36026 - 4.36026i) q^{11} +4.99276 q^{13} +(-0.555949 - 5.63598i) q^{14} +(-3.69460 + 1.53295i) q^{16} +(-2.27272 - 2.27272i) q^{17} +(-1.45960 - 1.45960i) q^{19} +(-1.14748 - 4.32242i) q^{20} +(-0.856063 - 8.67841i) q^{22} +(-1.28911 + 1.28911i) q^{23} +(4.96057 - 0.626717i) q^{25} +(5.45876 + 4.47852i) q^{26} +(4.44766 - 6.66071i) q^{28} +(-0.965728 + 0.965728i) q^{29} +0.703997i q^{31} +(-5.41450 - 1.63804i) q^{32} +(-0.446209 - 4.52348i) q^{34} +(6.71691 + 5.92169i) q^{35} -6.29736 q^{37} +(-0.286567 - 2.90509i) q^{38} +(2.62264 - 5.75515i) q^{40} -0.772367i q^{41} -4.84769 q^{43} +(6.84860 - 10.2563i) q^{44} +(-2.56576 + 0.253094i) q^{46} +(-0.450439 + 0.450439i) q^{47} +9.03668i q^{49} +(5.98574 + 3.76443i) q^{50} +(1.95101 + 9.79306i) q^{52} +4.17849i q^{53} +(10.3428 + 9.11835i) q^{55} +(10.8375 - 3.29284i) q^{56} +(-1.92213 + 0.189604i) q^{58} +(-2.23629 + 2.23629i) q^{59} +(0.794490 + 0.794490i) q^{61} +(-0.631488 + 0.769706i) q^{62} +(-4.45055 - 6.64775i) q^{64} +(-11.1421 + 0.701060i) q^{65} -13.2598 q^{67} +(3.56972 - 5.34594i) q^{68} +(2.03207 + 12.4995i) q^{70} +10.8523 q^{71} +(-10.3838 - 10.3838i) q^{73} +(-6.88513 - 5.64875i) q^{74} +(2.29257 - 3.43330i) q^{76} +24.6936i q^{77} +4.49087 q^{79} +(8.02982 - 3.93980i) q^{80} +(0.692816 - 0.844457i) q^{82} -7.59721i q^{83} +(5.39105 + 4.75280i) q^{85} +(-5.30015 - 4.34839i) q^{86} +(16.6878 - 5.07038i) q^{88} +10.7447 q^{89} +(-14.1378 - 14.1378i) q^{91} +(-3.03226 - 2.02478i) q^{92} +(-0.896526 + 0.0884359i) q^{94} +(3.46227 + 3.05237i) q^{95} +(-0.751384 - 0.751384i) q^{97} +(-8.10594 + 9.88013i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2 q^{2} - 2 q^{4} - 8 q^{5} - 4 q^{7} - 8 q^{8} - 4 q^{10} - 8 q^{11} + 8 q^{13} + 10 q^{14} + 26 q^{16} - 12 q^{17} - 16 q^{19} + 4 q^{20} + 6 q^{22} + 16 q^{23} - 4 q^{25} + 20 q^{26} + 22 q^{28}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.09334 + 0.897004i 0.773106 + 0.634277i
\(3\) 0 0
\(4\) 0.390769 + 1.96145i 0.195385 + 0.980727i
\(5\) −2.23165 + 0.140415i −0.998026 + 0.0627957i
\(6\) 0 0
\(7\) −2.83167 2.83167i −1.07027 1.07027i −0.997337 0.0729328i \(-0.976764\pi\)
−0.0729328 0.997337i \(-0.523236\pi\)
\(8\) −1.33219 + 2.49505i −0.471000 + 0.882133i
\(9\) 0 0
\(10\) −2.56590 1.84828i −0.811410 0.584478i
\(11\) −4.36026 4.36026i −1.31467 1.31467i −0.917933 0.396736i \(-0.870143\pi\)
−0.396736 0.917933i \(-0.629857\pi\)
\(12\) 0 0
\(13\) 4.99276 1.38474 0.692371 0.721542i \(-0.256566\pi\)
0.692371 + 0.721542i \(0.256566\pi\)
\(14\) −0.555949 5.63598i −0.148584 1.50628i
\(15\) 0 0
\(16\) −3.69460 + 1.53295i −0.923650 + 0.383238i
\(17\) −2.27272 2.27272i −0.551215 0.551215i 0.375576 0.926791i \(-0.377445\pi\)
−0.926791 + 0.375576i \(0.877445\pi\)
\(18\) 0 0
\(19\) −1.45960 1.45960i −0.334855 0.334855i 0.519572 0.854427i \(-0.326091\pi\)
−0.854427 + 0.519572i \(0.826091\pi\)
\(20\) −1.14748 4.32242i −0.256584 0.966522i
\(21\) 0 0
\(22\) −0.856063 8.67841i −0.182513 1.85024i
\(23\) −1.28911 + 1.28911i −0.268797 + 0.268797i −0.828615 0.559818i \(-0.810871\pi\)
0.559818 + 0.828615i \(0.310871\pi\)
\(24\) 0 0
\(25\) 4.96057 0.626717i 0.992113 0.125343i
\(26\) 5.45876 + 4.47852i 1.07055 + 0.878310i
\(27\) 0 0
\(28\) 4.44766 6.66071i 0.840528 1.25876i
\(29\) −0.965728 + 0.965728i −0.179331 + 0.179331i −0.791064 0.611733i \(-0.790473\pi\)
0.611733 + 0.791064i \(0.290473\pi\)
\(30\) 0 0
\(31\) 0.703997i 0.126442i 0.998000 + 0.0632208i \(0.0201372\pi\)
−0.998000 + 0.0632208i \(0.979863\pi\)
\(32\) −5.41450 1.63804i −0.957158 0.289567i
\(33\) 0 0
\(34\) −0.446209 4.52348i −0.0765242 0.775771i
\(35\) 6.71691 + 5.92169i 1.13537 + 1.00095i
\(36\) 0 0
\(37\) −6.29736 −1.03528 −0.517640 0.855599i \(-0.673189\pi\)
−0.517640 + 0.855599i \(0.673189\pi\)
\(38\) −0.286567 2.90509i −0.0464873 0.471269i
\(39\) 0 0
\(40\) 2.62264 5.75515i 0.414676 0.909969i
\(41\) 0.772367i 0.120624i −0.998180 0.0603118i \(-0.980791\pi\)
0.998180 0.0603118i \(-0.0192095\pi\)
\(42\) 0 0
\(43\) −4.84769 −0.739265 −0.369633 0.929178i \(-0.620516\pi\)
−0.369633 + 0.929178i \(0.620516\pi\)
\(44\) 6.84860 10.2563i 1.03246 1.54620i
\(45\) 0 0
\(46\) −2.56576 + 0.253094i −0.378301 + 0.0373166i
\(47\) −0.450439 + 0.450439i −0.0657033 + 0.0657033i −0.739195 0.673492i \(-0.764794\pi\)
0.673492 + 0.739195i \(0.264794\pi\)
\(48\) 0 0
\(49\) 9.03668i 1.29095i
\(50\) 5.98574 + 3.76443i 0.846511 + 0.532371i
\(51\) 0 0
\(52\) 1.95101 + 9.79306i 0.270557 + 1.35805i
\(53\) 4.17849i 0.573959i 0.957937 + 0.286980i \(0.0926512\pi\)
−0.957937 + 0.286980i \(0.907349\pi\)
\(54\) 0 0
\(55\) 10.3428 + 9.11835i 1.39463 + 1.22952i
\(56\) 10.8375 3.29284i 1.44822 0.440024i
\(57\) 0 0
\(58\) −1.92213 + 0.189604i −0.252388 + 0.0248962i
\(59\) −2.23629 + 2.23629i −0.291140 + 0.291140i −0.837530 0.546391i \(-0.816001\pi\)
0.546391 + 0.837530i \(0.316001\pi\)
\(60\) 0 0
\(61\) 0.794490 + 0.794490i 0.101724 + 0.101724i 0.756137 0.654413i \(-0.227084\pi\)
−0.654413 + 0.756137i \(0.727084\pi\)
\(62\) −0.631488 + 0.769706i −0.0801991 + 0.0977528i
\(63\) 0 0
\(64\) −4.45055 6.64775i −0.556318 0.830969i
\(65\) −11.1421 + 0.701060i −1.38201 + 0.0869558i
\(66\) 0 0
\(67\) −13.2598 −1.61994 −0.809971 0.586470i \(-0.800517\pi\)
−0.809971 + 0.586470i \(0.800517\pi\)
\(68\) 3.56972 5.34594i 0.432893 0.648290i
\(69\) 0 0
\(70\) 2.03207 + 12.4995i 0.242878 + 1.49398i
\(71\) 10.8523 1.28793 0.643967 0.765053i \(-0.277287\pi\)
0.643967 + 0.765053i \(0.277287\pi\)
\(72\) 0 0
\(73\) −10.3838 10.3838i −1.21533 1.21533i −0.969249 0.246083i \(-0.920857\pi\)
−0.246083 0.969249i \(-0.579143\pi\)
\(74\) −6.88513 5.64875i −0.800380 0.656654i
\(75\) 0 0
\(76\) 2.29257 3.43330i 0.262975 0.393826i
\(77\) 24.6936i 2.81410i
\(78\) 0 0
\(79\) 4.49087 0.505262 0.252631 0.967563i \(-0.418704\pi\)
0.252631 + 0.967563i \(0.418704\pi\)
\(80\) 8.02982 3.93980i 0.897761 0.440482i
\(81\) 0 0
\(82\) 0.692816 0.844457i 0.0765088 0.0932547i
\(83\) 7.59721i 0.833902i −0.908929 0.416951i \(-0.863099\pi\)
0.908929 0.416951i \(-0.136901\pi\)
\(84\) 0 0
\(85\) 5.39105 + 4.75280i 0.584741 + 0.515513i
\(86\) −5.30015 4.34839i −0.571530 0.468899i
\(87\) 0 0
\(88\) 16.6878 5.07038i 1.77892 0.540504i
\(89\) 10.7447 1.13893 0.569467 0.822014i \(-0.307150\pi\)
0.569467 + 0.822014i \(0.307150\pi\)
\(90\) 0 0
\(91\) −14.1378 14.1378i −1.48205 1.48205i
\(92\) −3.03226 2.02478i −0.316135 0.211098i
\(93\) 0 0
\(94\) −0.896526 + 0.0884359i −0.0924696 + 0.00912147i
\(95\) 3.46227 + 3.05237i 0.355221 + 0.313166i
\(96\) 0 0
\(97\) −0.751384 0.751384i −0.0762915 0.0762915i 0.667931 0.744223i \(-0.267180\pi\)
−0.744223 + 0.667931i \(0.767180\pi\)
\(98\) −8.10594 + 9.88013i −0.818823 + 0.998044i
\(99\) 0 0
\(100\) 3.16771 + 9.48502i 0.316771 + 0.948502i
\(101\) −5.30053 + 5.30053i −0.527423 + 0.527423i −0.919803 0.392380i \(-0.871652\pi\)
0.392380 + 0.919803i \(0.371652\pi\)
\(102\) 0 0
\(103\) −5.38356 + 5.38356i −0.530458 + 0.530458i −0.920709 0.390250i \(-0.872388\pi\)
0.390250 + 0.920709i \(0.372388\pi\)
\(104\) −6.65129 + 12.4572i −0.652213 + 1.22153i
\(105\) 0 0
\(106\) −3.74812 + 4.56849i −0.364049 + 0.443731i
\(107\) 11.9693i 1.15711i −0.815642 0.578557i \(-0.803616\pi\)
0.815642 0.578557i \(-0.196384\pi\)
\(108\) 0 0
\(109\) 3.91485 3.91485i 0.374975 0.374975i −0.494310 0.869285i \(-0.664579\pi\)
0.869285 + 0.494310i \(0.164579\pi\)
\(110\) 3.12902 + 19.2470i 0.298340 + 1.83513i
\(111\) 0 0
\(112\) 14.8027 + 6.12107i 1.39872 + 0.578387i
\(113\) 9.13854 9.13854i 0.859681 0.859681i −0.131619 0.991300i \(-0.542018\pi\)
0.991300 + 0.131619i \(0.0420176\pi\)
\(114\) 0 0
\(115\) 2.69583 3.05785i 0.251387 0.285146i
\(116\) −2.27161 1.51685i −0.210913 0.140836i
\(117\) 0 0
\(118\) −4.45097 + 0.439057i −0.409745 + 0.0404184i
\(119\) 12.8712i 1.17990i
\(120\) 0 0
\(121\) 27.0238i 2.45671i
\(122\) 0.155984 + 1.58130i 0.0141222 + 0.143165i
\(123\) 0 0
\(124\) −1.38086 + 0.275100i −0.124005 + 0.0247047i
\(125\) −10.9823 + 2.09516i −0.982284 + 0.187397i
\(126\) 0 0
\(127\) 15.5561 15.5561i 1.38038 1.38038i 0.536451 0.843931i \(-0.319765\pi\)
0.843931 0.536451i \(-0.180235\pi\)
\(128\) 1.09712 11.2604i 0.0969723 0.995287i
\(129\) 0 0
\(130\) −12.8109 9.22802i −1.12359 0.809351i
\(131\) −14.4207 + 14.4207i −1.25994 + 1.25994i −0.308818 + 0.951121i \(0.599933\pi\)
−0.951121 + 0.308818i \(0.900067\pi\)
\(132\) 0 0
\(133\) 8.26619i 0.716769i
\(134\) −14.4974 11.8941i −1.25239 1.02749i
\(135\) 0 0
\(136\) 8.69824 2.64286i 0.745868 0.226623i
\(137\) 3.54735 3.54735i 0.303071 0.303071i −0.539143 0.842214i \(-0.681252\pi\)
0.842214 + 0.539143i \(0.181252\pi\)
\(138\) 0 0
\(139\) 4.17152 4.17152i 0.353824 0.353824i −0.507706 0.861530i \(-0.669506\pi\)
0.861530 + 0.507706i \(0.169506\pi\)
\(140\) −8.99037 + 15.4889i −0.759825 + 1.30905i
\(141\) 0 0
\(142\) 11.8652 + 9.73458i 0.995709 + 0.816908i
\(143\) −21.7697 21.7697i −1.82048 1.82048i
\(144\) 0 0
\(145\) 2.01957 2.29077i 0.167716 0.190238i
\(146\) −2.03868 20.6673i −0.168722 1.71044i
\(147\) 0 0
\(148\) −2.46081 12.3520i −0.202278 1.01533i
\(149\) 8.42059 + 8.42059i 0.689842 + 0.689842i 0.962197 0.272355i \(-0.0878026\pi\)
−0.272355 + 0.962197i \(0.587803\pi\)
\(150\) 0 0
\(151\) 4.96999 0.404452 0.202226 0.979339i \(-0.435182\pi\)
0.202226 + 0.979339i \(0.435182\pi\)
\(152\) 5.58623 1.69731i 0.453103 0.137670i
\(153\) 0 0
\(154\) −22.1503 + 26.9984i −1.78492 + 2.17560i
\(155\) −0.0988521 1.57108i −0.00793999 0.126192i
\(156\) 0 0
\(157\) 14.4628i 1.15426i 0.816653 + 0.577129i \(0.195827\pi\)
−0.816653 + 0.577129i \(0.804173\pi\)
\(158\) 4.91003 + 4.02833i 0.390621 + 0.320476i
\(159\) 0 0
\(160\) 12.3133 + 2.89526i 0.973452 + 0.228890i
\(161\) 7.30064 0.575371
\(162\) 0 0
\(163\) 7.70573i 0.603559i −0.953378 0.301779i \(-0.902419\pi\)
0.953378 0.301779i \(-0.0975806\pi\)
\(164\) 1.51496 0.301817i 0.118299 0.0235680i
\(165\) 0 0
\(166\) 6.81472 8.30630i 0.528925 0.644694i
\(167\) −4.64125 4.64125i −0.359150 0.359150i 0.504349 0.863500i \(-0.331732\pi\)
−0.863500 + 0.504349i \(0.831732\pi\)
\(168\) 0 0
\(169\) 11.9276 0.917509
\(170\) 1.63095 + 10.0322i 0.125088 + 0.769434i
\(171\) 0 0
\(172\) −1.89433 9.50851i −0.144441 0.725017i
\(173\) 23.9562 1.82136 0.910679 0.413114i \(-0.135559\pi\)
0.910679 + 0.413114i \(0.135559\pi\)
\(174\) 0 0
\(175\) −15.8213 12.2720i −1.19598 0.927678i
\(176\) 22.7935 + 9.42536i 1.71812 + 0.710463i
\(177\) 0 0
\(178\) 11.7475 + 9.63802i 0.880516 + 0.722400i
\(179\) 1.30724 + 1.30724i 0.0977080 + 0.0977080i 0.754271 0.656563i \(-0.227990\pi\)
−0.656563 + 0.754271i \(0.727990\pi\)
\(180\) 0 0
\(181\) −6.95282 + 6.95282i −0.516799 + 0.516799i −0.916601 0.399802i \(-0.869079\pi\)
0.399802 + 0.916601i \(0.369079\pi\)
\(182\) −2.77572 28.1391i −0.205750 2.08581i
\(183\) 0 0
\(184\) −1.49905 4.93372i −0.110512 0.363718i
\(185\) 14.0535 0.884246i 1.03324 0.0650111i
\(186\) 0 0
\(187\) 19.8193i 1.44933i
\(188\) −1.05953 0.707497i −0.0772743 0.0515995i
\(189\) 0 0
\(190\) 1.04744 + 6.44293i 0.0759892 + 0.467419i
\(191\) 2.42666i 0.175587i −0.996139 0.0877936i \(-0.972018\pi\)
0.996139 0.0877936i \(-0.0279816\pi\)
\(192\) 0 0
\(193\) −0.611510 + 0.611510i −0.0440175 + 0.0440175i −0.728773 0.684755i \(-0.759909\pi\)
0.684755 + 0.728773i \(0.259909\pi\)
\(194\) −0.147521 1.49551i −0.0105914 0.107371i
\(195\) 0 0
\(196\) −17.7250 + 3.53125i −1.26607 + 0.252232i
\(197\) −12.6372 −0.900363 −0.450182 0.892937i \(-0.648641\pi\)
−0.450182 + 0.892937i \(0.648641\pi\)
\(198\) 0 0
\(199\) 10.0036i 0.709134i 0.935031 + 0.354567i \(0.115372\pi\)
−0.935031 + 0.354567i \(0.884628\pi\)
\(200\) −5.04472 + 13.2118i −0.356716 + 0.934213i
\(201\) 0 0
\(202\) −10.5499 + 1.04067i −0.742285 + 0.0732211i
\(203\) 5.46924 0.383865
\(204\) 0 0
\(205\) 0.108452 + 1.72366i 0.00757464 + 0.120385i
\(206\) −10.7151 + 1.05697i −0.746558 + 0.0736426i
\(207\) 0 0
\(208\) −18.4462 + 7.65365i −1.27902 + 0.530685i
\(209\) 12.7285i 0.880446i
\(210\) 0 0
\(211\) 9.66719 9.66719i 0.665517 0.665517i −0.291158 0.956675i \(-0.594041\pi\)
0.956675 + 0.291158i \(0.0940405\pi\)
\(212\) −8.19591 + 1.63282i −0.562897 + 0.112143i
\(213\) 0 0
\(214\) 10.7365 13.0865i 0.733932 0.894572i
\(215\) 10.8184 0.680690i 0.737806 0.0464227i
\(216\) 0 0
\(217\) 1.99349 1.99349i 0.135327 0.135327i
\(218\) 7.79189 0.768614i 0.527734 0.0520571i
\(219\) 0 0
\(220\) −13.8436 + 23.8502i −0.933333 + 1.60798i
\(221\) −11.3471 11.3471i −0.763291 0.763291i
\(222\) 0 0
\(223\) −4.29237 4.29237i −0.287438 0.287438i 0.548628 0.836067i \(-0.315150\pi\)
−0.836067 + 0.548628i \(0.815150\pi\)
\(224\) 10.6937 + 19.9704i 0.714502 + 1.33433i
\(225\) 0 0
\(226\) 18.1888 1.79419i 1.20990 0.119348i
\(227\) −13.2703 −0.880778 −0.440389 0.897807i \(-0.645159\pi\)
−0.440389 + 0.897807i \(0.645159\pi\)
\(228\) 0 0
\(229\) −11.4064 11.4064i −0.753758 0.753758i 0.221420 0.975178i \(-0.428931\pi\)
−0.975178 + 0.221420i \(0.928931\pi\)
\(230\) 5.69035 0.925090i 0.375211 0.0609986i
\(231\) 0 0
\(232\) −1.12301 3.69607i −0.0737290 0.242659i
\(233\) −8.19734 8.19734i −0.537026 0.537026i 0.385629 0.922654i \(-0.373985\pi\)
−0.922654 + 0.385629i \(0.873985\pi\)
\(234\) 0 0
\(235\) 0.941975 1.06847i 0.0614477 0.0696995i
\(236\) −5.26025 3.51250i −0.342413 0.228644i
\(237\) 0 0
\(238\) −11.5455 + 14.0725i −0.748382 + 0.912186i
\(239\) 10.6504 0.688915 0.344458 0.938802i \(-0.388063\pi\)
0.344458 + 0.938802i \(0.388063\pi\)
\(240\) 0 0
\(241\) −1.22690 −0.0790315 −0.0395157 0.999219i \(-0.512582\pi\)
−0.0395157 + 0.999219i \(0.512582\pi\)
\(242\) −24.2404 + 29.5461i −1.55823 + 1.89929i
\(243\) 0 0
\(244\) −1.24789 + 1.86882i −0.0798881 + 0.119639i
\(245\) −1.26889 20.1668i −0.0810664 1.28841i
\(246\) 0 0
\(247\) −7.28741 7.28741i −0.463687 0.463687i
\(248\) −1.75651 0.937857i −0.111538 0.0595540i
\(249\) 0 0
\(250\) −13.8867 7.56043i −0.878271 0.478163i
\(251\) 11.5822 + 11.5822i 0.731061 + 0.731061i 0.970830 0.239769i \(-0.0770717\pi\)
−0.239769 + 0.970830i \(0.577072\pi\)
\(252\) 0 0
\(253\) 11.2417 0.706759
\(254\) 30.9620 3.05418i 1.94273 0.191636i
\(255\) 0 0
\(256\) 11.3001 11.3273i 0.706258 0.707955i
\(257\) −5.72342 5.72342i −0.357017 0.357017i 0.505695 0.862712i \(-0.331236\pi\)
−0.862712 + 0.505695i \(0.831236\pi\)
\(258\) 0 0
\(259\) 17.8320 + 17.8320i 1.10803 + 1.10803i
\(260\) −5.72909 21.5808i −0.355303 1.33838i
\(261\) 0 0
\(262\) −28.7020 + 2.83125i −1.77322 + 0.174915i
\(263\) −6.70033 + 6.70033i −0.413160 + 0.413160i −0.882838 0.469678i \(-0.844370\pi\)
0.469678 + 0.882838i \(0.344370\pi\)
\(264\) 0 0
\(265\) −0.586724 9.32494i −0.0360422 0.572826i
\(266\) −7.41480 + 9.03772i −0.454631 + 0.554138i
\(267\) 0 0
\(268\) −5.18152 26.0085i −0.316512 1.58872i
\(269\) 1.08527 1.08527i 0.0661699 0.0661699i −0.673247 0.739417i \(-0.735101\pi\)
0.739417 + 0.673247i \(0.235101\pi\)
\(270\) 0 0
\(271\) 3.21705i 0.195422i −0.995215 0.0977108i \(-0.968848\pi\)
0.995215 0.0977108i \(-0.0311520\pi\)
\(272\) 11.8807 + 4.91282i 0.720376 + 0.297883i
\(273\) 0 0
\(274\) 7.06044 0.696462i 0.426537 0.0420748i
\(275\) −24.3620 18.8967i −1.46909 1.13952i
\(276\) 0 0
\(277\) −28.2079 −1.69485 −0.847425 0.530915i \(-0.821848\pi\)
−0.847425 + 0.530915i \(0.821848\pi\)
\(278\) 8.30275 0.819007i 0.497966 0.0491208i
\(279\) 0 0
\(280\) −23.7231 + 8.87022i −1.41773 + 0.530097i
\(281\) 24.5928i 1.46709i −0.679643 0.733543i \(-0.737865\pi\)
0.679643 0.733543i \(-0.262135\pi\)
\(282\) 0 0
\(283\) 15.0862 0.896779 0.448390 0.893838i \(-0.351998\pi\)
0.448390 + 0.893838i \(0.351998\pi\)
\(284\) 4.24075 + 21.2863i 0.251642 + 1.26311i
\(285\) 0 0
\(286\) −4.27411 43.3292i −0.252734 2.56211i
\(287\) −2.18709 + 2.18709i −0.129100 + 0.129100i
\(288\) 0 0
\(289\) 6.66950i 0.392324i
\(290\) 4.26290 0.693027i 0.250326 0.0406959i
\(291\) 0 0
\(292\) 16.3097 24.4250i 0.954451 1.42936i
\(293\) 3.49295i 0.204060i 0.994781 + 0.102030i \(0.0325338\pi\)
−0.994781 + 0.102030i \(0.967466\pi\)
\(294\) 0 0
\(295\) 4.67661 5.30463i 0.272283 0.308848i
\(296\) 8.38927 15.7122i 0.487616 0.913254i
\(297\) 0 0
\(298\) 1.65324 + 16.7598i 0.0957695 + 0.970871i
\(299\) −6.43619 + 6.43619i −0.372215 + 0.372215i
\(300\) 0 0
\(301\) 13.7270 + 13.7270i 0.791213 + 0.791213i
\(302\) 5.43387 + 4.45810i 0.312684 + 0.256535i
\(303\) 0 0
\(304\) 7.63012 + 3.15514i 0.437617 + 0.180959i
\(305\) −1.88458 1.66147i −0.107911 0.0951354i
\(306\) 0 0
\(307\) −7.81653 −0.446113 −0.223056 0.974806i \(-0.571603\pi\)
−0.223056 + 0.974806i \(0.571603\pi\)
\(308\) −48.4354 + 9.64950i −2.75986 + 0.549832i
\(309\) 0 0
\(310\) 1.30119 1.80639i 0.0739023 0.102596i
\(311\) 6.15295 0.348902 0.174451 0.984666i \(-0.444185\pi\)
0.174451 + 0.984666i \(0.444185\pi\)
\(312\) 0 0
\(313\) 9.65621 + 9.65621i 0.545802 + 0.545802i 0.925224 0.379422i \(-0.123877\pi\)
−0.379422 + 0.925224i \(0.623877\pi\)
\(314\) −12.9732 + 15.8127i −0.732119 + 0.892363i
\(315\) 0 0
\(316\) 1.75489 + 8.80863i 0.0987204 + 0.495524i
\(317\) 10.5517i 0.592642i 0.955088 + 0.296321i \(0.0957599\pi\)
−0.955088 + 0.296321i \(0.904240\pi\)
\(318\) 0 0
\(319\) 8.42165 0.471522
\(320\) 10.8655 + 14.2106i 0.607402 + 0.794395i
\(321\) 0 0
\(322\) 7.98206 + 6.54870i 0.444823 + 0.364945i
\(323\) 6.63451i 0.369154i
\(324\) 0 0
\(325\) 24.7669 3.12905i 1.37382 0.173568i
\(326\) 6.91206 8.42495i 0.382824 0.466615i
\(327\) 0 0
\(328\) 1.92710 + 1.02894i 0.106406 + 0.0568137i
\(329\) 2.55099 0.140640
\(330\) 0 0
\(331\) 0.447095 + 0.447095i 0.0245745 + 0.0245745i 0.719287 0.694713i \(-0.244469\pi\)
−0.694713 + 0.719287i \(0.744469\pi\)
\(332\) 14.9016 2.96875i 0.817830 0.162931i
\(333\) 0 0
\(334\) −0.911229 9.23766i −0.0498602 0.505462i
\(335\) 29.5913 1.86188i 1.61675 0.101725i
\(336\) 0 0
\(337\) 4.17945 + 4.17945i 0.227669 + 0.227669i 0.811718 0.584049i \(-0.198532\pi\)
−0.584049 + 0.811718i \(0.698532\pi\)
\(338\) 13.0409 + 10.6991i 0.709331 + 0.581955i
\(339\) 0 0
\(340\) −7.21574 + 12.4315i −0.391328 + 0.674195i
\(341\) 3.06961 3.06961i 0.166229 0.166229i
\(342\) 0 0
\(343\) 5.76720 5.76720i 0.311400 0.311400i
\(344\) 6.45804 12.0952i 0.348194 0.652131i
\(345\) 0 0
\(346\) 26.1922 + 21.4888i 1.40810 + 1.15525i
\(347\) 30.4793i 1.63622i −0.575064 0.818108i \(-0.695023\pi\)
0.575064 0.818108i \(-0.304977\pi\)
\(348\) 0 0
\(349\) −24.1490 + 24.1490i −1.29267 + 1.29267i −0.359535 + 0.933131i \(0.617065\pi\)
−0.933131 + 0.359535i \(0.882935\pi\)
\(350\) −6.28999 27.6092i −0.336214 1.47578i
\(351\) 0 0
\(352\) 16.4664 + 30.7509i 0.877661 + 1.63903i
\(353\) 17.3084 17.3084i 0.921233 0.921233i −0.0758833 0.997117i \(-0.524178\pi\)
0.997117 + 0.0758833i \(0.0241777\pi\)
\(354\) 0 0
\(355\) −24.2186 + 1.52383i −1.28539 + 0.0808767i
\(356\) 4.19869 + 21.0752i 0.222530 + 1.11698i
\(357\) 0 0
\(358\) 0.256655 + 2.60186i 0.0135646 + 0.137513i
\(359\) 29.4403i 1.55380i −0.629626 0.776899i \(-0.716792\pi\)
0.629626 0.776899i \(-0.283208\pi\)
\(360\) 0 0
\(361\) 14.7392i 0.775745i
\(362\) −13.8385 + 1.36507i −0.727335 + 0.0717463i
\(363\) 0 0
\(364\) 22.2061 33.2553i 1.16391 1.74305i
\(365\) 24.6311 + 21.7150i 1.28925 + 1.13662i
\(366\) 0 0
\(367\) −10.7678 + 10.7678i −0.562076 + 0.562076i −0.929897 0.367821i \(-0.880104\pi\)
0.367821 + 0.929897i \(0.380104\pi\)
\(368\) 2.78659 6.73887i 0.145261 0.351288i
\(369\) 0 0
\(370\) 16.1584 + 11.6393i 0.840036 + 0.605098i
\(371\) 11.8321 11.8321i 0.614291 0.614291i
\(372\) 0 0
\(373\) 32.1031i 1.66223i −0.556098 0.831117i \(-0.687702\pi\)
0.556098 0.831117i \(-0.312298\pi\)
\(374\) −17.7780 + 21.6692i −0.919278 + 1.12049i
\(375\) 0 0
\(376\) −0.523798 1.72394i −0.0270128 0.0889052i
\(377\) −4.82164 + 4.82164i −0.248327 + 0.248327i
\(378\) 0 0
\(379\) 23.3329 23.3329i 1.19853 1.19853i 0.223923 0.974607i \(-0.428113\pi\)
0.974607 0.223923i \(-0.0718865\pi\)
\(380\) −4.63413 + 7.98385i −0.237726 + 0.409563i
\(381\) 0 0
\(382\) 2.17673 2.65316i 0.111371 0.135747i
\(383\) 7.02280 + 7.02280i 0.358848 + 0.358848i 0.863388 0.504540i \(-0.168338\pi\)
−0.504540 + 0.863388i \(0.668338\pi\)
\(384\) 0 0
\(385\) −3.46737 55.1077i −0.176713 2.80855i
\(386\) −1.21711 + 0.120060i −0.0619495 + 0.00611087i
\(387\) 0 0
\(388\) 1.18019 1.76742i 0.0599149 0.0897273i
\(389\) −23.0035 23.0035i −1.16632 1.16632i −0.983065 0.183259i \(-0.941335\pi\)
−0.183259 0.983065i \(-0.558665\pi\)
\(390\) 0 0
\(391\) 5.85955 0.296330
\(392\) −22.5470 12.0386i −1.13879 0.608039i
\(393\) 0 0
\(394\) −13.8167 11.3356i −0.696076 0.571080i
\(395\) −10.0221 + 0.630587i −0.504265 + 0.0317283i
\(396\) 0 0
\(397\) 25.0560i 1.25753i −0.777597 0.628763i \(-0.783562\pi\)
0.777597 0.628763i \(-0.216438\pi\)
\(398\) −8.97323 + 10.9373i −0.449788 + 0.548235i
\(399\) 0 0
\(400\) −17.3666 + 9.91977i −0.868329 + 0.495989i
\(401\) −6.21757 −0.310491 −0.155245 0.987876i \(-0.549617\pi\)
−0.155245 + 0.987876i \(0.549617\pi\)
\(402\) 0 0
\(403\) 3.51489i 0.175089i
\(404\) −12.4680 8.32546i −0.620308 0.414207i
\(405\) 0 0
\(406\) 5.97972 + 4.90593i 0.296768 + 0.243477i
\(407\) 27.4581 + 27.4581i 1.36105 + 1.36105i
\(408\) 0 0
\(409\) −13.1629 −0.650865 −0.325432 0.945565i \(-0.605510\pi\)
−0.325432 + 0.945565i \(0.605510\pi\)
\(410\) −1.42755 + 1.98182i −0.0705018 + 0.0978751i
\(411\) 0 0
\(412\) −12.6633 8.45588i −0.623878 0.416591i
\(413\) 12.6648 0.623196
\(414\) 0 0
\(415\) 1.06676 + 16.9543i 0.0523654 + 0.832256i
\(416\) −27.0333 8.17833i −1.32542 0.400975i
\(417\) 0 0
\(418\) −11.4175 + 13.9165i −0.558447 + 0.680677i
\(419\) −14.7013 14.7013i −0.718208 0.718208i 0.250030 0.968238i \(-0.419559\pi\)
−0.968238 + 0.250030i \(0.919559\pi\)
\(420\) 0 0
\(421\) 17.0481 17.0481i 0.830872 0.830872i −0.156764 0.987636i \(-0.550106\pi\)
0.987636 + 0.156764i \(0.0501063\pi\)
\(422\) 19.2410 1.89799i 0.936637 0.0923926i
\(423\) 0 0
\(424\) −10.4255 5.56653i −0.506309 0.270335i
\(425\) −12.6983 9.84962i −0.615959 0.477777i
\(426\) 0 0
\(427\) 4.49946i 0.217744i
\(428\) 23.4772 4.67723i 1.13481 0.226082i
\(429\) 0 0
\(430\) 12.4387 + 8.95989i 0.599847 + 0.432084i
\(431\) 18.5363i 0.892864i 0.894818 + 0.446432i \(0.147306\pi\)
−0.894818 + 0.446432i \(0.852694\pi\)
\(432\) 0 0
\(433\) −9.47558 + 9.47558i −0.455368 + 0.455368i −0.897131 0.441764i \(-0.854353\pi\)
0.441764 + 0.897131i \(0.354353\pi\)
\(434\) 3.96772 0.391387i 0.190456 0.0187872i
\(435\) 0 0
\(436\) 9.20861 + 6.14900i 0.441012 + 0.294484i
\(437\) 3.76315 0.180016
\(438\) 0 0
\(439\) 21.7937i 1.04016i −0.854119 0.520078i \(-0.825903\pi\)
0.854119 0.520078i \(-0.174097\pi\)
\(440\) −36.5294 + 13.6586i −1.74147 + 0.651146i
\(441\) 0 0
\(442\) −2.22781 22.5846i −0.105966 1.07424i
\(443\) −26.2733 −1.24828 −0.624141 0.781312i \(-0.714551\pi\)
−0.624141 + 0.781312i \(0.714551\pi\)
\(444\) 0 0
\(445\) −23.9784 + 1.50872i −1.13669 + 0.0715201i
\(446\) −0.842733 8.54328i −0.0399046 0.404536i
\(447\) 0 0
\(448\) −6.22176 + 31.4267i −0.293951 + 1.48477i
\(449\) 29.2615i 1.38093i 0.723364 + 0.690467i \(0.242595\pi\)
−0.723364 + 0.690467i \(0.757405\pi\)
\(450\) 0 0
\(451\) −3.36772 + 3.36772i −0.158580 + 0.158580i
\(452\) 21.4959 + 14.3538i 1.01108 + 0.675144i
\(453\) 0 0
\(454\) −14.5088 11.9035i −0.680934 0.558657i
\(455\) 33.5359 + 29.5656i 1.57219 + 1.38606i
\(456\) 0 0
\(457\) 18.2488 18.2488i 0.853641 0.853641i −0.136938 0.990580i \(-0.543726\pi\)
0.990580 + 0.136938i \(0.0437262\pi\)
\(458\) −2.23946 22.7027i −0.104643 1.06083i
\(459\) 0 0
\(460\) 7.05128 + 4.09283i 0.328768 + 0.190829i
\(461\) −5.13473 5.13473i −0.239148 0.239148i 0.577349 0.816497i \(-0.304087\pi\)
−0.816497 + 0.577349i \(0.804087\pi\)
\(462\) 0 0
\(463\) −10.2040 10.2040i −0.474220 0.474220i 0.429057 0.903277i \(-0.358846\pi\)
−0.903277 + 0.429057i \(0.858846\pi\)
\(464\) 2.08756 5.04839i 0.0969127 0.234366i
\(465\) 0 0
\(466\) −1.60941 16.3155i −0.0745543 0.755801i
\(467\) −24.2696 −1.12306 −0.561532 0.827455i \(-0.689788\pi\)
−0.561532 + 0.827455i \(0.689788\pi\)
\(468\) 0 0
\(469\) 37.5473 + 37.5473i 1.73378 + 1.73378i
\(470\) 1.98832 0.323245i 0.0917143 0.0149102i
\(471\) 0 0
\(472\) −2.60049 8.55881i −0.119697 0.393951i
\(473\) 21.1372 + 21.1372i 0.971889 + 0.971889i
\(474\) 0 0
\(475\) −8.15518 6.32567i −0.374186 0.290242i
\(476\) −25.2462 + 5.02965i −1.15716 + 0.230534i
\(477\) 0 0
\(478\) 11.6444 + 9.55342i 0.532604 + 0.436963i
\(479\) 25.0894 1.14636 0.573182 0.819428i \(-0.305709\pi\)
0.573182 + 0.819428i \(0.305709\pi\)
\(480\) 0 0
\(481\) −31.4412 −1.43359
\(482\) −1.34141 1.10053i −0.0610997 0.0501279i
\(483\) 0 0
\(484\) −53.0059 + 10.5601i −2.40936 + 0.480003i
\(485\) 1.78234 + 1.57132i 0.0809317 + 0.0713502i
\(486\) 0 0
\(487\) −0.369801 0.369801i −0.0167573 0.0167573i 0.698679 0.715436i \(-0.253772\pi\)
−0.715436 + 0.698679i \(0.753772\pi\)
\(488\) −3.04070 + 0.923881i −0.137646 + 0.0418221i
\(489\) 0 0
\(490\) 16.7023 23.1872i 0.754534 1.04749i
\(491\) 19.2802 + 19.2802i 0.870104 + 0.870104i 0.992483 0.122379i \(-0.0390524\pi\)
−0.122379 + 0.992483i \(0.539052\pi\)
\(492\) 0 0
\(493\) 4.38966 0.197700
\(494\) −1.43076 14.5044i −0.0643729 0.652585i
\(495\) 0 0
\(496\) −1.07919 2.60099i −0.0484572 0.116788i
\(497\) −30.7302 30.7302i −1.37844 1.37844i
\(498\) 0 0
\(499\) 17.1262 + 17.1262i 0.766673 + 0.766673i 0.977519 0.210847i \(-0.0676220\pi\)
−0.210847 + 0.977519i \(0.567622\pi\)
\(500\) −8.40109 20.7225i −0.375708 0.926738i
\(501\) 0 0
\(502\) 2.27396 + 23.0525i 0.101492 + 1.02888i
\(503\) −5.60127 + 5.60127i −0.249748 + 0.249748i −0.820867 0.571119i \(-0.806509\pi\)
0.571119 + 0.820867i \(0.306509\pi\)
\(504\) 0 0
\(505\) 11.0847 12.5732i 0.493262 0.559501i
\(506\) 12.2909 + 10.0838i 0.546399 + 0.448281i
\(507\) 0 0
\(508\) 36.5915 + 24.4338i 1.62348 + 1.08407i
\(509\) −0.0876457 + 0.0876457i −0.00388483 + 0.00388483i −0.709047 0.705162i \(-0.750874\pi\)
0.705162 + 0.709047i \(0.250874\pi\)
\(510\) 0 0
\(511\) 58.8069i 2.60146i
\(512\) 22.5154 2.24827i 0.995052 0.0993604i
\(513\) 0 0
\(514\) −1.12369 11.3915i −0.0495640 0.502459i
\(515\) 11.2583 12.7702i 0.496101 0.562722i
\(516\) 0 0
\(517\) 3.92806 0.172756
\(518\) 3.50101 + 35.4918i 0.153826 + 1.55942i
\(519\) 0 0
\(520\) 13.0942 28.7341i 0.574219 1.26007i
\(521\) 0.327549i 0.0143502i 0.999974 + 0.00717509i \(0.00228392\pi\)
−0.999974 + 0.00717509i \(0.997716\pi\)
\(522\) 0 0
\(523\) −21.8823 −0.956847 −0.478423 0.878129i \(-0.658792\pi\)
−0.478423 + 0.878129i \(0.658792\pi\)
\(524\) −33.9206 22.6503i −1.48183 0.989483i
\(525\) 0 0
\(526\) −13.3359 + 1.31549i −0.581474 + 0.0573582i
\(527\) 1.59999 1.59999i 0.0696966 0.0696966i
\(528\) 0 0
\(529\) 19.6764i 0.855496i
\(530\) 7.72302 10.7216i 0.335466 0.465716i
\(531\) 0 0
\(532\) −16.2137 + 3.23017i −0.702955 + 0.140046i
\(533\) 3.85624i 0.167032i
\(534\) 0 0
\(535\) 1.68067 + 26.7113i 0.0726618 + 1.15483i
\(536\) 17.6646 33.0839i 0.762993 1.42901i
\(537\) 0 0
\(538\) 2.16005 0.213073i 0.0931264 0.00918625i
\(539\) 39.4023 39.4023i 1.69718 1.69718i
\(540\) 0 0
\(541\) −21.9852 21.9852i −0.945217 0.945217i 0.0533584 0.998575i \(-0.483007\pi\)
−0.998575 + 0.0533584i \(0.983007\pi\)
\(542\) 2.88570 3.51731i 0.123951 0.151082i
\(543\) 0 0
\(544\) 8.58284 + 16.0284i 0.367986 + 0.687214i
\(545\) −8.18690 + 9.28631i −0.350688 + 0.397782i
\(546\) 0 0
\(547\) −28.9503 −1.23783 −0.618913 0.785459i \(-0.712427\pi\)
−0.618913 + 0.785459i \(0.712427\pi\)
\(548\) 8.34416 + 5.57177i 0.356445 + 0.238014i
\(549\) 0 0
\(550\) −9.68546 42.5133i −0.412990 1.81277i
\(551\) 2.81915 0.120100
\(552\) 0 0
\(553\) −12.7167 12.7167i −0.540767 0.540767i
\(554\) −30.8408 25.3026i −1.31030 1.07500i
\(555\) 0 0
\(556\) 9.81235 + 6.55215i 0.416136 + 0.277873i
\(557\) 8.55746i 0.362591i −0.983429 0.181296i \(-0.941971\pi\)
0.983429 0.181296i \(-0.0580291\pi\)
\(558\) 0 0
\(559\) −24.2033 −1.02369
\(560\) −33.8940 11.5816i −1.43228 0.489412i
\(561\) 0 0
\(562\) 22.0599 26.8883i 0.930540 1.13421i
\(563\) 19.8277i 0.835637i 0.908530 + 0.417819i \(0.137205\pi\)
−0.908530 + 0.417819i \(0.862795\pi\)
\(564\) 0 0
\(565\) −19.1109 + 21.6773i −0.804000 + 0.911969i
\(566\) 16.4942 + 13.5323i 0.693305 + 0.568807i
\(567\) 0 0
\(568\) −14.4573 + 27.0771i −0.606617 + 1.13613i
\(569\) −13.1834 −0.552677 −0.276339 0.961060i \(-0.589121\pi\)
−0.276339 + 0.961060i \(0.589121\pi\)
\(570\) 0 0
\(571\) −5.46465 5.46465i −0.228688 0.228688i 0.583456 0.812145i \(-0.301700\pi\)
−0.812145 + 0.583456i \(0.801700\pi\)
\(572\) 34.1934 51.2072i 1.42970 2.14108i
\(573\) 0 0
\(574\) −4.35305 + 0.429397i −0.181693 + 0.0179227i
\(575\) −5.58679 + 7.20260i −0.232985 + 0.300369i
\(576\) 0 0
\(577\) 11.0931 + 11.0931i 0.461811 + 0.461811i 0.899249 0.437438i \(-0.144114\pi\)
−0.437438 + 0.899249i \(0.644114\pi\)
\(578\) 5.98257 7.29201i 0.248842 0.303308i
\(579\) 0 0
\(580\) 5.28243 + 3.06613i 0.219341 + 0.127314i
\(581\) −21.5128 + 21.5128i −0.892500 + 0.892500i
\(582\) 0 0
\(583\) 18.2193 18.2193i 0.754566 0.754566i
\(584\) 39.7413 12.0749i 1.64451 0.499663i
\(585\) 0 0
\(586\) −3.13319 + 3.81897i −0.129431 + 0.157760i
\(587\) 0.0736360i 0.00303928i 0.999999 + 0.00151964i \(0.000483717\pi\)
−0.999999 + 0.00151964i \(0.999516\pi\)
\(588\) 0 0
\(589\) 1.02755 1.02755i 0.0423396 0.0423396i
\(590\) 9.87139 1.60481i 0.406399 0.0660689i
\(591\) 0 0
\(592\) 23.2662 9.65354i 0.956236 0.396758i
\(593\) −25.1041 + 25.1041i −1.03090 + 1.03090i −0.0313952 + 0.999507i \(0.509995\pi\)
−0.999507 + 0.0313952i \(0.990005\pi\)
\(594\) 0 0
\(595\) −1.80731 28.7240i −0.0740925 1.17757i
\(596\) −13.2261 + 19.8071i −0.541762 + 0.811330i
\(597\) 0 0
\(598\) −12.8102 + 1.26364i −0.523849 + 0.0516739i
\(599\) 16.3265i 0.667081i −0.942736 0.333541i \(-0.891757\pi\)
0.942736 0.333541i \(-0.108243\pi\)
\(600\) 0 0
\(601\) 22.5262i 0.918862i −0.888213 0.459431i \(-0.848053\pi\)
0.888213 0.459431i \(-0.151947\pi\)
\(602\) 2.69507 + 27.3215i 0.109843 + 1.11354i
\(603\) 0 0
\(604\) 1.94212 + 9.74840i 0.0790236 + 0.396657i
\(605\) −3.79456 60.3078i −0.154271 2.45186i
\(606\) 0 0
\(607\) −20.2440 + 20.2440i −0.821677 + 0.821677i −0.986348 0.164672i \(-0.947344\pi\)
0.164672 + 0.986348i \(0.447344\pi\)
\(608\) 5.51212 + 10.2939i 0.223546 + 0.417471i
\(609\) 0 0
\(610\) −0.570143 3.50702i −0.0230844 0.141995i
\(611\) −2.24893 + 2.24893i −0.0909820 + 0.0909820i
\(612\) 0 0
\(613\) 28.9848i 1.17069i −0.810786 0.585343i \(-0.800960\pi\)
0.810786 0.585343i \(-0.199040\pi\)
\(614\) −8.54609 7.01145i −0.344892 0.282959i
\(615\) 0 0
\(616\) −61.6118 32.8966i −2.48241 1.32544i
\(617\) −18.0708 + 18.0708i −0.727503 + 0.727503i −0.970122 0.242619i \(-0.921994\pi\)
0.242619 + 0.970122i \(0.421994\pi\)
\(618\) 0 0
\(619\) −17.2226 + 17.2226i −0.692236 + 0.692236i −0.962723 0.270488i \(-0.912815\pi\)
0.270488 + 0.962723i \(0.412815\pi\)
\(620\) 3.04297 0.807823i 0.122209 0.0324429i
\(621\) 0 0
\(622\) 6.72724 + 5.51922i 0.269738 + 0.221300i
\(623\) −30.4254 30.4254i −1.21897 1.21897i
\(624\) 0 0
\(625\) 24.2145 6.21775i 0.968578 0.248710i
\(626\) 1.89583 + 19.2192i 0.0757727 + 0.768152i
\(627\) 0 0
\(628\) −28.3681 + 5.65161i −1.13201 + 0.225524i
\(629\) 14.3121 + 14.3121i 0.570662 + 0.570662i
\(630\) 0 0
\(631\) −15.2007 −0.605131 −0.302565 0.953129i \(-0.597843\pi\)
−0.302565 + 0.953129i \(0.597843\pi\)
\(632\) −5.98269 + 11.2049i −0.237979 + 0.445709i
\(633\) 0 0
\(634\) −9.46491 + 11.5366i −0.375900 + 0.458175i
\(635\) −32.5316 + 36.9002i −1.29098 + 1.46434i
\(636\) 0 0
\(637\) 45.1179i 1.78764i
\(638\) 9.20770 + 7.55425i 0.364536 + 0.299076i
\(639\) 0 0
\(640\) −0.867252 + 25.2834i −0.0342812 + 0.999412i
\(641\) 13.9100 0.549414 0.274707 0.961528i \(-0.411419\pi\)
0.274707 + 0.961528i \(0.411419\pi\)
\(642\) 0 0
\(643\) 50.3060i 1.98387i 0.126735 + 0.991937i \(0.459550\pi\)
−0.126735 + 0.991937i \(0.540450\pi\)
\(644\) 2.85286 + 14.3199i 0.112419 + 0.564282i
\(645\) 0 0
\(646\) −5.95118 + 7.25375i −0.234146 + 0.285395i
\(647\) −15.4702 15.4702i −0.608197 0.608197i 0.334278 0.942475i \(-0.391508\pi\)
−0.942475 + 0.334278i \(0.891508\pi\)
\(648\) 0 0
\(649\) 19.5016 0.765505
\(650\) 29.8853 + 18.7949i 1.17220 + 0.737197i
\(651\) 0 0
\(652\) 15.1144 3.01116i 0.591926 0.117926i
\(653\) −25.9406 −1.01514 −0.507568 0.861612i \(-0.669455\pi\)
−0.507568 + 0.861612i \(0.669455\pi\)
\(654\) 0 0
\(655\) 30.1571 34.2068i 1.17833 1.33657i
\(656\) 1.18400 + 2.85359i 0.0462275 + 0.111414i
\(657\) 0 0
\(658\) 2.78909 + 2.28824i 0.108730 + 0.0892050i
\(659\) 12.5270 + 12.5270i 0.487981 + 0.487981i 0.907669 0.419687i \(-0.137860\pi\)
−0.419687 + 0.907669i \(0.637860\pi\)
\(660\) 0 0
\(661\) −26.5534 + 26.5534i −1.03281 + 1.03281i −0.0333644 + 0.999443i \(0.510622\pi\)
−0.999443 + 0.0333644i \(0.989378\pi\)
\(662\) 0.0877793 + 0.889870i 0.00341164 + 0.0345858i
\(663\) 0 0
\(664\) 18.9554 + 10.1209i 0.735612 + 0.392768i
\(665\) −1.16070 18.4473i −0.0450100 0.715355i
\(666\) 0 0
\(667\) 2.48985i 0.0964074i
\(668\) 7.28993 10.9172i 0.282056 0.422401i
\(669\) 0 0
\(670\) 34.0234 + 24.5078i 1.31444 + 0.946820i
\(671\) 6.92837i 0.267467i
\(672\) 0 0
\(673\) 10.4724 10.4724i 0.403681 0.403681i −0.475847 0.879528i \(-0.657858\pi\)
0.879528 + 0.475847i \(0.157858\pi\)
\(674\) 0.820564 + 8.31853i 0.0316069 + 0.320418i
\(675\) 0 0
\(676\) 4.66094 + 23.3955i 0.179267 + 0.899826i
\(677\) 23.5614 0.905539 0.452769 0.891628i \(-0.350436\pi\)
0.452769 + 0.891628i \(0.350436\pi\)
\(678\) 0 0
\(679\) 4.25534i 0.163305i
\(680\) −19.0404 + 7.11931i −0.730165 + 0.273013i
\(681\) 0 0
\(682\) 6.10957 0.602666i 0.233948 0.0230773i
\(683\) −30.7873 −1.17804 −0.589021 0.808117i \(-0.700487\pi\)
−0.589021 + 0.808117i \(0.700487\pi\)
\(684\) 0 0
\(685\) −7.41837 + 8.41457i −0.283441 + 0.321504i
\(686\) 11.4787 1.13229i 0.438259 0.0432311i
\(687\) 0 0
\(688\) 17.9103 7.43127i 0.682822 0.283314i
\(689\) 20.8622i 0.794785i
\(690\) 0 0
\(691\) 16.3289 16.3289i 0.621182 0.621182i −0.324652 0.945834i \(-0.605247\pi\)
0.945834 + 0.324652i \(0.105247\pi\)
\(692\) 9.36135 + 46.9890i 0.355865 + 1.78626i
\(693\) 0 0
\(694\) 27.3401 33.3242i 1.03781 1.26497i
\(695\) −8.72365 + 9.89515i −0.330907 + 0.375344i
\(696\) 0 0
\(697\) −1.75537 + 1.75537i −0.0664895 + 0.0664895i
\(698\) −48.0647 + 4.74124i −1.81928 + 0.179459i
\(699\) 0 0
\(700\) 17.8885 35.8283i 0.676122 1.35418i
\(701\) 15.1215 + 15.1215i 0.571130 + 0.571130i 0.932444 0.361314i \(-0.117672\pi\)
−0.361314 + 0.932444i \(0.617672\pi\)
\(702\) 0 0
\(703\) 9.19161 + 9.19161i 0.346668 + 0.346668i
\(704\) −9.58041 + 48.3915i −0.361075 + 1.82382i
\(705\) 0 0
\(706\) 34.4496 3.39821i 1.29653 0.127893i
\(707\) 30.0187 1.12897
\(708\) 0 0
\(709\) 20.5244 + 20.5244i 0.770812 + 0.770812i 0.978248 0.207437i \(-0.0665122\pi\)
−0.207437 + 0.978248i \(0.566512\pi\)
\(710\) −27.8460 20.0582i −1.04504 0.752769i
\(711\) 0 0
\(712\) −14.3139 + 26.8085i −0.536438 + 1.00469i
\(713\) −0.907527 0.907527i −0.0339872 0.0339872i
\(714\) 0 0
\(715\) 51.6393 + 45.5257i 1.93120 + 1.70257i
\(716\) −2.05327 + 3.07493i −0.0767342 + 0.114915i
\(717\) 0 0
\(718\) 26.4080 32.1881i 0.985539 1.20125i
\(719\) −13.6873 −0.510451 −0.255225 0.966882i \(-0.582150\pi\)
−0.255225 + 0.966882i \(0.582150\pi\)
\(720\) 0 0
\(721\) 30.4889 1.13547
\(722\) 13.2211 16.1149i 0.492037 0.599733i
\(723\) 0 0
\(724\) −16.3546 10.9207i −0.607813 0.405864i
\(725\) −4.18532 + 5.39580i −0.155439 + 0.200395i
\(726\) 0 0
\(727\) 29.3029 + 29.3029i 1.08678 + 1.08678i 0.995858 + 0.0909272i \(0.0289831\pi\)
0.0909272 + 0.995858i \(0.471017\pi\)
\(728\) 54.1088 16.4403i 2.00541 0.609319i
\(729\) 0 0
\(730\) 7.45164 + 45.8360i 0.275797 + 1.69647i
\(731\) 11.0174 + 11.0174i 0.407494 + 0.407494i
\(732\) 0 0
\(733\) 47.2879 1.74662 0.873309 0.487166i \(-0.161969\pi\)
0.873309 + 0.487166i \(0.161969\pi\)
\(734\) −21.4316 + 2.11408i −0.791056 + 0.0780320i
\(735\) 0 0
\(736\) 9.09147 4.86826i 0.335116 0.179447i
\(737\) 57.8162 + 57.8162i 2.12969 + 2.12969i
\(738\) 0 0
\(739\) 15.3480 + 15.3480i 0.564587 + 0.564587i 0.930607 0.366020i \(-0.119280\pi\)
−0.366020 + 0.930607i \(0.619280\pi\)
\(740\) 7.22609 + 27.2198i 0.265636 + 1.00062i
\(741\) 0 0
\(742\) 23.5499 2.32303i 0.864543 0.0852810i
\(743\) −16.7906 + 16.7906i −0.615987 + 0.615987i −0.944500 0.328513i \(-0.893453\pi\)
0.328513 + 0.944500i \(0.393453\pi\)
\(744\) 0 0
\(745\) −19.9742 17.6095i −0.731799 0.645161i
\(746\) 28.7966 35.0995i 1.05432 1.28508i
\(747\) 0 0
\(748\) −38.8746 + 7.74477i −1.42140 + 0.283177i
\(749\) −33.8930 + 33.8930i −1.23842 + 1.23842i
\(750\) 0 0
\(751\) 37.3096i 1.36145i 0.732540 + 0.680724i \(0.238335\pi\)
−0.732540 + 0.680724i \(0.761665\pi\)
\(752\) 0.973690 2.35469i 0.0355068 0.0858668i
\(753\) 0 0
\(754\) −9.59671 + 0.946647i −0.349492 + 0.0344748i
\(755\) −11.0913 + 0.697863i −0.403654 + 0.0253978i
\(756\) 0 0
\(757\) −2.73045 −0.0992397 −0.0496199 0.998768i \(-0.515801\pi\)
−0.0496199 + 0.998768i \(0.515801\pi\)
\(758\) 46.4404 4.58101i 1.68679 0.166390i
\(759\) 0 0
\(760\) −12.2282 + 4.57220i −0.443563 + 0.165851i
\(761\) 43.2111i 1.56640i −0.621768 0.783201i \(-0.713585\pi\)
0.621768 0.783201i \(-0.286415\pi\)
\(762\) 0 0
\(763\) −22.1711 −0.802649
\(764\) 4.75979 0.948265i 0.172203 0.0343070i
\(765\) 0 0
\(766\) 1.37881 + 13.9778i 0.0498183 + 0.505037i
\(767\) −11.1652 + 11.1652i −0.403154 + 0.403154i
\(768\) 0 0
\(769\) 41.3520i 1.49119i 0.666398 + 0.745596i \(0.267835\pi\)
−0.666398 + 0.745596i \(0.732165\pi\)
\(770\) 45.6408 63.3614i 1.64478 2.28339i
\(771\) 0 0
\(772\) −1.43841 0.960490i −0.0517695 0.0345688i
\(773\) 10.4113i 0.374469i 0.982315 + 0.187234i \(0.0599523\pi\)
−0.982315 + 0.187234i \(0.940048\pi\)
\(774\) 0 0
\(775\) 0.441207 + 3.49223i 0.0158486 + 0.125444i
\(776\) 2.87573 0.873755i 0.103233 0.0313660i
\(777\) 0 0
\(778\) −4.51634 45.7848i −0.161919 1.64146i
\(779\) −1.12735 + 1.12735i −0.0403913 + 0.0403913i
\(780\) 0 0
\(781\) −47.3190 47.3190i −1.69321 1.69321i
\(782\) 6.40646 + 5.25604i 0.229095 + 0.187956i
\(783\) 0 0
\(784\) −13.8528 33.3869i −0.494742 1.19239i
\(785\) −2.03080 32.2760i −0.0724824 1.15198i
\(786\) 0 0
\(787\) −9.84332 −0.350877 −0.175438 0.984490i \(-0.556134\pi\)
−0.175438 + 0.984490i \(0.556134\pi\)
\(788\) −4.93823 24.7873i −0.175917 0.883010i
\(789\) 0 0
\(790\) −11.5231 8.30039i −0.409975 0.295315i
\(791\) −51.7546 −1.84018
\(792\) 0 0
\(793\) 3.96669 + 3.96669i 0.140861 + 0.140861i
\(794\) 22.4753 27.3947i 0.797620 0.972200i
\(795\) 0 0
\(796\) −19.6215 + 3.90908i −0.695467 + 0.138554i
\(797\) 13.2854i 0.470592i 0.971924 + 0.235296i \(0.0756060\pi\)
−0.971924 + 0.235296i \(0.924394\pi\)
\(798\) 0 0
\(799\) 2.04744 0.0724333
\(800\) −27.8856 4.73224i −0.985904 0.167310i
\(801\) 0 0
\(802\) −6.79790 5.57719i −0.240042 0.196937i
\(803\) 90.5522i 3.19552i
\(804\) 0 0
\(805\) −16.2925 + 1.02512i −0.574235 + 0.0361308i
\(806\) −3.15287 + 3.84295i −0.111055 + 0.135362i
\(807\) 0 0
\(808\) −6.16378 20.2864i −0.216841 0.713673i
\(809\) 7.77887 0.273490 0.136745 0.990606i \(-0.456336\pi\)
0.136745 + 0.990606i \(0.456336\pi\)
\(810\) 0 0
\(811\) 33.4895 + 33.4895i 1.17598 + 1.17598i 0.980760 + 0.195215i \(0.0625405\pi\)
0.195215 + 0.980760i \(0.437459\pi\)
\(812\) 2.13721 + 10.7277i 0.0750014 + 0.376467i
\(813\) 0 0
\(814\) 5.39093 + 54.6510i 0.188952 + 1.91552i
\(815\) 1.08200 + 17.1965i 0.0379009 + 0.602368i
\(816\) 0 0
\(817\) 7.07567 + 7.07567i 0.247546 + 0.247546i
\(818\) −14.3915 11.8072i −0.503187 0.412829i
\(819\) 0 0
\(820\) −3.33849 + 0.886276i −0.116585 + 0.0309501i
\(821\) −22.0992 + 22.0992i −0.771267 + 0.771267i −0.978328 0.207061i \(-0.933610\pi\)
0.207061 + 0.978328i \(0.433610\pi\)
\(822\) 0 0
\(823\) 6.47786 6.47786i 0.225804 0.225804i −0.585133 0.810937i \(-0.698958\pi\)
0.810937 + 0.585133i \(0.198958\pi\)
\(824\) −6.26034 20.6042i −0.218089 0.717781i
\(825\) 0 0
\(826\) 13.8469 + 11.3604i 0.481797 + 0.395279i
\(827\) 0.819945i 0.0285123i 0.999898 + 0.0142561i \(0.00453803\pi\)
−0.999898 + 0.0142561i \(0.995462\pi\)
\(828\) 0 0
\(829\) 27.4647 27.4647i 0.953888 0.953888i −0.0450945 0.998983i \(-0.514359\pi\)
0.998983 + 0.0450945i \(0.0143589\pi\)
\(830\) −14.0418 + 19.4937i −0.487397 + 0.676636i
\(831\) 0 0
\(832\) −22.2205 33.1906i −0.770357 1.15068i
\(833\) 20.5378 20.5378i 0.711594 0.711594i
\(834\) 0 0
\(835\) 11.0094 + 9.70595i 0.380995 + 0.335888i
\(836\) −24.9663 + 4.97389i −0.863476 + 0.172025i
\(837\) 0 0
\(838\) −2.88636 29.2607i −0.0997075 1.01079i
\(839\) 25.9917i 0.897335i 0.893699 + 0.448667i \(0.148101\pi\)
−0.893699 + 0.448667i \(0.851899\pi\)
\(840\) 0 0
\(841\) 27.1347i 0.935681i
\(842\) 33.9314 3.34709i 1.16935 0.115348i
\(843\) 0 0
\(844\) 22.7394 + 15.1841i 0.782722 + 0.522659i
\(845\) −26.6183 + 1.67482i −0.915698 + 0.0576156i
\(846\) 0 0
\(847\) 76.5224 76.5224i 2.62934 2.62934i
\(848\) −6.40541 15.4378i −0.219963 0.530137i
\(849\) 0 0
\(850\) −5.04840 22.1594i −0.173159 0.760061i
\(851\) 8.11796 8.11796i 0.278280 0.278280i
\(852\) 0 0
\(853\) 13.8457i 0.474069i −0.971501 0.237034i \(-0.923825\pi\)
0.971501 0.237034i \(-0.0761754\pi\)
\(854\) 4.03603 4.91942i 0.138110 0.168339i
\(855\) 0 0
\(856\) 29.8640 + 15.9454i 1.02073 + 0.545001i
\(857\) 27.4340 27.4340i 0.937127 0.937127i −0.0610099 0.998137i \(-0.519432\pi\)
0.998137 + 0.0610099i \(0.0194321\pi\)
\(858\) 0 0
\(859\) −3.11480 + 3.11480i −0.106276 + 0.106276i −0.758245 0.651969i \(-0.773943\pi\)
0.651969 + 0.758245i \(0.273943\pi\)
\(860\) 5.56262 + 20.9537i 0.189684 + 0.714516i
\(861\) 0 0
\(862\) −16.6272 + 20.2665i −0.566323 + 0.690278i
\(863\) 18.7075 + 18.7075i 0.636810 + 0.636810i 0.949767 0.312957i \(-0.101320\pi\)
−0.312957 + 0.949767i \(0.601320\pi\)
\(864\) 0 0
\(865\) −53.4620 + 3.36382i −1.81776 + 0.114373i
\(866\) −18.8596 + 1.86037i −0.640877 + 0.0632179i
\(867\) 0 0
\(868\) 4.68912 + 3.13114i 0.159159 + 0.106278i
\(869\) −19.5814 19.5814i −0.664253 0.664253i
\(870\) 0 0
\(871\) −66.2029 −2.24320
\(872\) 4.55243 + 14.9831i 0.154165 + 0.507391i
\(873\) 0 0
\(874\) 4.11439 + 3.37556i 0.139171 + 0.114180i
\(875\) 37.0309 + 25.1654i 1.25187 + 0.850744i
\(876\) 0 0
\(877\) 20.1135i 0.679184i −0.940573 0.339592i \(-0.889711\pi\)
0.940573 0.339592i \(-0.110289\pi\)
\(878\) 19.5490 23.8278i 0.659747 0.804150i
\(879\) 0 0
\(880\) −52.1907 17.8336i −1.75935 0.601170i
\(881\) −8.65598 −0.291628 −0.145814 0.989312i \(-0.546580\pi\)
−0.145814 + 0.989312i \(0.546580\pi\)
\(882\) 0 0
\(883\) 15.9095i 0.535399i 0.963502 + 0.267699i \(0.0862634\pi\)
−0.963502 + 0.267699i \(0.913737\pi\)
\(884\) 17.8228 26.6910i 0.599444 0.897715i
\(885\) 0 0
\(886\) −28.7256 23.5673i −0.965054 0.791757i
\(887\) −19.2454 19.2454i −0.646197 0.646197i 0.305875 0.952072i \(-0.401051\pi\)
−0.952072 + 0.305875i \(0.901051\pi\)
\(888\) 0 0
\(889\) −88.0995 −2.95476
\(890\) −27.5698 19.8592i −0.924142 0.665681i
\(891\) 0 0
\(892\) 6.74196 10.0966i 0.225738 0.338060i
\(893\) 1.31492 0.0440021
\(894\) 0 0
\(895\) −3.10087 2.73376i −0.103651 0.0913795i
\(896\) −34.9923 + 28.7790i −1.16901 + 0.961439i
\(897\) 0 0
\(898\) −26.2476 + 31.9926i −0.875895 + 1.06761i
\(899\) −0.679870 0.679870i −0.0226749 0.0226749i
\(900\) 0 0
\(901\) 9.49652 9.49652i 0.316375 0.316375i
\(902\) −6.70292 + 0.661195i −0.223183 + 0.0220154i
\(903\) 0 0
\(904\) 10.6268 + 34.9754i 0.353444 + 1.16326i
\(905\) 14.5400 16.4926i 0.483327 0.548232i
\(906\) 0 0
\(907\) 13.9176i 0.462128i −0.972939 0.231064i \(-0.925779\pi\)
0.972939 0.231064i \(-0.0742206\pi\)
\(908\) −5.18560 26.0290i −0.172090 0.863802i
\(909\) 0 0
\(910\) 10.1456 + 62.4070i 0.336324 + 2.06877i
\(911\) 3.79155i 0.125620i 0.998026 + 0.0628098i \(0.0200062\pi\)
−0.998026 + 0.0628098i \(0.979994\pi\)
\(912\) 0 0
\(913\) −33.1258 + 33.1258i −1.09630 + 1.09630i
\(914\) 36.3212 3.58283i 1.20140 0.118510i
\(915\) 0 0
\(916\) 17.9159 26.8305i 0.591958 0.886504i
\(917\) 81.6690 2.69695
\(918\) 0 0
\(919\) 12.6465i 0.417169i −0.978004 0.208584i \(-0.933114\pi\)
0.978004 0.208584i \(-0.0668856\pi\)
\(920\) 4.03813 + 10.7999i 0.133133 + 0.356061i
\(921\) 0 0
\(922\) −1.00812 10.2199i −0.0332005 0.336573i
\(923\) 54.1830 1.78346
\(924\) 0 0
\(925\) −31.2385 + 3.94666i −1.02711 + 0.129766i
\(926\) −2.00338 20.3094i −0.0658352 0.667409i
\(927\) 0 0
\(928\) 6.81083 3.64704i 0.223577 0.119720i
\(929\) 52.7686i 1.73128i −0.500665 0.865641i \(-0.666911\pi\)
0.500665 0.865641i \(-0.333089\pi\)
\(930\) 0 0
\(931\) 13.1899 13.1899i 0.432282 0.432282i
\(932\) 12.8754 19.2820i 0.421749 0.631602i
\(933\) 0 0
\(934\) −26.5349 21.7700i −0.868248 0.712335i
\(935\) −2.78294 44.2298i −0.0910117 1.44647i
\(936\) 0 0
\(937\) −12.0351 + 12.0351i −0.393168 + 0.393168i −0.875815 0.482647i \(-0.839676\pi\)
0.482647 + 0.875815i \(0.339676\pi\)
\(938\) 7.37177 + 74.7320i 0.240697 + 2.44009i
\(939\) 0 0
\(940\) 2.46385 + 1.43011i 0.0803621 + 0.0466452i
\(941\) −43.1823 43.1823i −1.40770 1.40770i −0.771626 0.636076i \(-0.780556\pi\)
−0.636076 0.771626i \(-0.719444\pi\)
\(942\) 0 0
\(943\) 0.995664 + 0.995664i 0.0324233 + 0.0324233i
\(944\) 4.83407 11.6903i 0.157336 0.380487i
\(945\) 0 0
\(946\) 4.14992 + 42.0702i 0.134926 + 1.36782i
\(947\) 34.2870 1.11418 0.557089 0.830453i \(-0.311918\pi\)
0.557089 + 0.830453i \(0.311918\pi\)
\(948\) 0 0
\(949\) −51.8438 51.8438i −1.68292 1.68292i
\(950\) −3.24221 14.2313i −0.105191 0.461725i
\(951\) 0 0
\(952\) −32.1142 17.1468i −1.04083 0.555732i
\(953\) −8.81942 8.81942i −0.285689 0.285689i 0.549684 0.835373i \(-0.314748\pi\)
−0.835373 + 0.549684i \(0.814748\pi\)
\(954\) 0 0
\(955\) 0.340741 + 5.41547i 0.0110261 + 0.175241i
\(956\) 4.16184 + 20.8902i 0.134603 + 0.675638i
\(957\) 0 0
\(958\) 27.4311 + 22.5053i 0.886260 + 0.727112i
\(959\) −20.0898 −0.648735
\(960\) 0 0
\(961\) 30.5044 0.984013
\(962\) −34.3758 28.2029i −1.10832 0.909296i
\(963\) 0 0
\(964\) −0.479434 2.40650i −0.0154415 0.0775083i
\(965\) 1.27881 1.45055i 0.0411665 0.0466947i
\(966\) 0 0
\(967\) 1.93099 + 1.93099i 0.0620964 + 0.0620964i 0.737473 0.675377i \(-0.236019\pi\)
−0.675377 + 0.737473i \(0.736019\pi\)
\(968\) −67.4257 36.0008i −2.16714 1.15711i
\(969\) 0 0
\(970\) 0.539209 + 3.31675i 0.0173130 + 0.106494i
\(971\) −6.98427 6.98427i −0.224136 0.224136i 0.586102 0.810238i \(-0.300662\pi\)
−0.810238 + 0.586102i \(0.800662\pi\)
\(972\) 0 0
\(973\) −23.6247 −0.757374
\(974\) −0.0726040 0.736029i −0.00232638 0.0235839i
\(975\) 0 0
\(976\) −4.15323 1.71741i −0.132942 0.0549729i
\(977\) −28.9284 28.9284i −0.925502 0.925502i 0.0719094 0.997411i \(-0.477091\pi\)
−0.997411 + 0.0719094i \(0.977091\pi\)
\(978\) 0 0
\(979\) −46.8496 46.8496i −1.49732 1.49732i
\(980\) 39.0603 10.3694i 1.24774 0.331239i
\(981\) 0 0
\(982\) 3.78534 + 38.3742i 0.120795 + 1.22457i
\(983\) 23.8805 23.8805i 0.761669 0.761669i −0.214955 0.976624i \(-0.568961\pi\)
0.976624 + 0.214955i \(0.0689606\pi\)
\(984\) 0 0
\(985\) 28.2019 1.77446i 0.898586 0.0565389i
\(986\) 4.79937 + 3.93754i 0.152843 + 0.125397i
\(987\) 0 0
\(988\) 11.4462 17.1416i 0.364153 0.545347i
\(989\) 6.24918 6.24918i 0.198712 0.198712i
\(990\) 0 0
\(991\) 29.1750i 0.926774i 0.886156 + 0.463387i \(0.153366\pi\)
−0.886156 + 0.463387i \(0.846634\pi\)
\(992\) 1.15317 3.81180i 0.0366133 0.121025i
\(993\) 0 0
\(994\) −6.03334 61.1635i −0.191366 1.93999i
\(995\) −1.40465 22.3245i −0.0445305 0.707734i
\(996\) 0 0
\(997\) 42.5940 1.34896 0.674482 0.738291i \(-0.264367\pi\)
0.674482 + 0.738291i \(0.264367\pi\)
\(998\) 3.36243 + 34.0869i 0.106436 + 1.07900i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.2.bd.h.307.9 20
3.2 odd 2 240.2.bc.f.67.2 yes 20
5.3 odd 4 720.2.z.h.163.8 20
12.11 even 2 960.2.bc.f.367.10 20
15.8 even 4 240.2.y.f.163.3 20
16.11 odd 4 720.2.z.h.667.8 20
24.5 odd 2 1920.2.bc.k.607.1 20
24.11 even 2 1920.2.bc.l.607.1 20
48.5 odd 4 960.2.y.f.847.6 20
48.11 even 4 240.2.y.f.187.3 yes 20
48.29 odd 4 1920.2.y.k.1567.5 20
48.35 even 4 1920.2.y.l.1567.5 20
60.23 odd 4 960.2.y.f.943.6 20
80.43 even 4 inner 720.2.bd.h.523.9 20
120.53 even 4 1920.2.y.l.223.5 20
120.83 odd 4 1920.2.y.k.223.5 20
240.53 even 4 960.2.bc.f.463.10 20
240.83 odd 4 1920.2.bc.k.1183.1 20
240.173 even 4 1920.2.bc.l.1183.1 20
240.203 odd 4 240.2.bc.f.43.2 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.f.163.3 20 15.8 even 4
240.2.y.f.187.3 yes 20 48.11 even 4
240.2.bc.f.43.2 yes 20 240.203 odd 4
240.2.bc.f.67.2 yes 20 3.2 odd 2
720.2.z.h.163.8 20 5.3 odd 4
720.2.z.h.667.8 20 16.11 odd 4
720.2.bd.h.307.9 20 1.1 even 1 trivial
720.2.bd.h.523.9 20 80.43 even 4 inner
960.2.y.f.847.6 20 48.5 odd 4
960.2.y.f.943.6 20 60.23 odd 4
960.2.bc.f.367.10 20 12.11 even 2
960.2.bc.f.463.10 20 240.53 even 4
1920.2.y.k.223.5 20 120.83 odd 4
1920.2.y.k.1567.5 20 48.29 odd 4
1920.2.y.l.223.5 20 120.53 even 4
1920.2.y.l.1567.5 20 48.35 even 4
1920.2.bc.k.607.1 20 24.5 odd 2
1920.2.bc.k.1183.1 20 240.83 odd 4
1920.2.bc.l.607.1 20 24.11 even 2
1920.2.bc.l.1183.1 20 240.173 even 4