Properties

Label 240.2.y.f.163.3
Level $240$
Weight $2$
Character 240.163
Analytic conductor $1.916$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [240,2,Mod(163,240)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(240, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("240.163"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 240.y (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.91640964851\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 3 x^{18} - 6 x^{17} + 2 x^{16} + 4 x^{14} + 20 x^{13} - 24 x^{12} + 40 x^{11} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 163.3
Root \(-1.09334 + 0.897004i\) of defining polynomial
Character \(\chi\) \(=\) 240.163
Dual form 240.2.y.f.187.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.897004 + 1.09334i) q^{2} -1.00000 q^{3} +(-0.390769 - 1.96145i) q^{4} +(0.140415 - 2.23165i) q^{5} +(0.897004 - 1.09334i) q^{6} +(-2.83167 + 2.83167i) q^{7} +(2.49505 + 1.33219i) q^{8} +1.00000 q^{9} +(2.31400 + 2.15532i) q^{10} +(4.36026 + 4.36026i) q^{11} +(0.390769 + 1.96145i) q^{12} +4.99276i q^{13} +(-0.555949 - 5.63598i) q^{14} +(-0.140415 + 2.23165i) q^{15} +(-3.69460 + 1.53295i) q^{16} +(2.27272 - 2.27272i) q^{17} +(-0.897004 + 1.09334i) q^{18} +(1.45960 + 1.45960i) q^{19} +(-4.43216 + 0.596643i) q^{20} +(2.83167 - 2.83167i) q^{21} +(-8.67841 + 0.856063i) q^{22} +(1.28911 + 1.28911i) q^{23} +(-2.49505 - 1.33219i) q^{24} +(-4.96057 - 0.626717i) q^{25} +(-5.45876 - 4.47852i) q^{26} -1.00000 q^{27} +(6.66071 + 4.44766i) q^{28} +(-0.965728 + 0.965728i) q^{29} +(-2.31400 - 2.15532i) q^{30} +0.703997i q^{31} +(1.63804 - 5.41450i) q^{32} +(-4.36026 - 4.36026i) q^{33} +(0.446209 + 4.52348i) q^{34} +(5.92169 + 6.71691i) q^{35} +(-0.390769 - 1.96145i) q^{36} +6.29736i q^{37} +(-2.90509 + 0.286567i) q^{38} -4.99276i q^{39} +(3.32333 - 5.38103i) q^{40} +0.772367i q^{41} +(0.555949 + 5.63598i) q^{42} -4.84769i q^{43} +(6.84860 - 10.2563i) q^{44} +(0.140415 - 2.23165i) q^{45} +(-2.56576 + 0.253094i) q^{46} +(-0.450439 - 0.450439i) q^{47} +(3.69460 - 1.53295i) q^{48} -9.03668i q^{49} +(5.13486 - 4.86140i) q^{50} +(-2.27272 + 2.27272i) q^{51} +(9.79306 - 1.95101i) q^{52} +4.17849 q^{53} +(0.897004 - 1.09334i) q^{54} +(10.3428 - 9.11835i) q^{55} +(-10.8375 + 3.29284i) q^{56} +(-1.45960 - 1.45960i) q^{57} +(-0.189604 - 1.92213i) q^{58} +(-2.23629 + 2.23629i) q^{59} +(4.43216 - 0.596643i) q^{60} +(0.794490 + 0.794490i) q^{61} +(-0.769706 - 0.631488i) q^{62} +(-2.83167 + 2.83167i) q^{63} +(4.45055 + 6.64775i) q^{64} +(11.1421 + 0.701060i) q^{65} +(8.67841 - 0.856063i) q^{66} +13.2598i q^{67} +(-5.34594 - 3.56972i) q^{68} +(-1.28911 - 1.28911i) q^{69} +(-12.6556 + 0.449308i) q^{70} -10.8523 q^{71} +(2.49505 + 1.33219i) q^{72} +(10.3838 - 10.3838i) q^{73} +(-6.88513 - 5.64875i) q^{74} +(4.96057 + 0.626717i) q^{75} +(2.29257 - 3.43330i) q^{76} -24.6936 q^{77} +(5.45876 + 4.47852i) q^{78} -4.49087 q^{79} +(2.90224 + 8.46032i) q^{80} +1.00000 q^{81} +(-0.844457 - 0.692816i) q^{82} -7.59721 q^{83} +(-6.66071 - 4.44766i) q^{84} +(-4.75280 - 5.39105i) q^{85} +(5.30015 + 4.34839i) q^{86} +(0.965728 - 0.965728i) q^{87} +(5.07038 + 16.6878i) q^{88} +10.7447 q^{89} +(2.31400 + 2.15532i) q^{90} +(-14.1378 - 14.1378i) q^{91} +(2.02478 - 3.03226i) q^{92} -0.703997i q^{93} +(0.896526 - 0.0884359i) q^{94} +(3.46227 - 3.05237i) q^{95} +(-1.63804 + 5.41450i) q^{96} +(-0.751384 + 0.751384i) q^{97} +(9.88013 + 8.10594i) q^{98} +(4.36026 + 4.36026i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 20 q^{3} + 2 q^{4} - 4 q^{7} + 6 q^{8} + 20 q^{9} + 8 q^{10} + 8 q^{11} - 2 q^{12} + 10 q^{14} + 26 q^{16} + 12 q^{17} + 16 q^{19} - 10 q^{20} + 4 q^{21} - 10 q^{22} - 16 q^{23} - 6 q^{24} + 4 q^{25}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.897004 + 1.09334i −0.634277 + 0.773106i
\(3\) −1.00000 −0.577350
\(4\) −0.390769 1.96145i −0.195385 0.980727i
\(5\) 0.140415 2.23165i 0.0627957 0.998026i
\(6\) 0.897004 1.09334i 0.366200 0.446353i
\(7\) −2.83167 + 2.83167i −1.07027 + 1.07027i −0.0729328 + 0.997337i \(0.523236\pi\)
−0.997337 + 0.0729328i \(0.976764\pi\)
\(8\) 2.49505 + 1.33219i 0.882133 + 0.471000i
\(9\) 1.00000 0.333333
\(10\) 2.31400 + 2.15532i 0.731750 + 0.681573i
\(11\) 4.36026 + 4.36026i 1.31467 + 1.31467i 0.917933 + 0.396736i \(0.129857\pi\)
0.396736 + 0.917933i \(0.370143\pi\)
\(12\) 0.390769 + 1.96145i 0.112805 + 0.566223i
\(13\) 4.99276i 1.38474i 0.721542 + 0.692371i \(0.243434\pi\)
−0.721542 + 0.692371i \(0.756566\pi\)
\(14\) −0.555949 5.63598i −0.148584 1.50628i
\(15\) −0.140415 + 2.23165i −0.0362551 + 0.576211i
\(16\) −3.69460 + 1.53295i −0.923650 + 0.383238i
\(17\) 2.27272 2.27272i 0.551215 0.551215i −0.375576 0.926791i \(-0.622555\pi\)
0.926791 + 0.375576i \(0.122555\pi\)
\(18\) −0.897004 + 1.09334i −0.211426 + 0.257702i
\(19\) 1.45960 + 1.45960i 0.334855 + 0.334855i 0.854427 0.519572i \(-0.173909\pi\)
−0.519572 + 0.854427i \(0.673909\pi\)
\(20\) −4.43216 + 0.596643i −0.991060 + 0.133414i
\(21\) 2.83167 2.83167i 0.617920 0.617920i
\(22\) −8.67841 + 0.856063i −1.85024 + 0.182513i
\(23\) 1.28911 + 1.28911i 0.268797 + 0.268797i 0.828615 0.559818i \(-0.189129\pi\)
−0.559818 + 0.828615i \(0.689129\pi\)
\(24\) −2.49505 1.33219i −0.509300 0.271932i
\(25\) −4.96057 0.626717i −0.992113 0.125343i
\(26\) −5.45876 4.47852i −1.07055 0.878310i
\(27\) −1.00000 −0.192450
\(28\) 6.66071 + 4.44766i 1.25876 + 0.840528i
\(29\) −0.965728 + 0.965728i −0.179331 + 0.179331i −0.791064 0.611733i \(-0.790473\pi\)
0.611733 + 0.791064i \(0.290473\pi\)
\(30\) −2.31400 2.15532i −0.422476 0.393506i
\(31\) 0.703997i 0.126442i 0.998000 + 0.0632208i \(0.0201372\pi\)
−0.998000 + 0.0632208i \(0.979863\pi\)
\(32\) 1.63804 5.41450i 0.289567 0.957158i
\(33\) −4.36026 4.36026i −0.759024 0.759024i
\(34\) 0.446209 + 4.52348i 0.0765242 + 0.775771i
\(35\) 5.92169 + 6.71691i 1.00095 + 1.13537i
\(36\) −0.390769 1.96145i −0.0651282 0.326909i
\(37\) 6.29736i 1.03528i 0.855599 + 0.517640i \(0.173189\pi\)
−0.855599 + 0.517640i \(0.826811\pi\)
\(38\) −2.90509 + 0.286567i −0.471269 + 0.0464873i
\(39\) 4.99276i 0.799481i
\(40\) 3.32333 5.38103i 0.525464 0.850816i
\(41\) 0.772367i 0.120624i 0.998180 + 0.0603118i \(0.0192095\pi\)
−0.998180 + 0.0603118i \(0.980791\pi\)
\(42\) 0.555949 + 5.63598i 0.0857848 + 0.869651i
\(43\) 4.84769i 0.739265i −0.929178 0.369633i \(-0.879484\pi\)
0.929178 0.369633i \(-0.120516\pi\)
\(44\) 6.84860 10.2563i 1.03246 1.54620i
\(45\) 0.140415 2.23165i 0.0209319 0.332675i
\(46\) −2.56576 + 0.253094i −0.378301 + 0.0373166i
\(47\) −0.450439 0.450439i −0.0657033 0.0657033i 0.673492 0.739195i \(-0.264794\pi\)
−0.739195 + 0.673492i \(0.764794\pi\)
\(48\) 3.69460 1.53295i 0.533269 0.221262i
\(49\) 9.03668i 1.29095i
\(50\) 5.13486 4.86140i 0.726179 0.687506i
\(51\) −2.27272 + 2.27272i −0.318244 + 0.318244i
\(52\) 9.79306 1.95101i 1.35805 0.270557i
\(53\) 4.17849 0.573959 0.286980 0.957937i \(-0.407349\pi\)
0.286980 + 0.957937i \(0.407349\pi\)
\(54\) 0.897004 1.09334i 0.122067 0.148784i
\(55\) 10.3428 9.11835i 1.39463 1.22952i
\(56\) −10.8375 + 3.29284i −1.44822 + 0.440024i
\(57\) −1.45960 1.45960i −0.193328 0.193328i
\(58\) −0.189604 1.92213i −0.0248962 0.252388i
\(59\) −2.23629 + 2.23629i −0.291140 + 0.291140i −0.837530 0.546391i \(-0.816001\pi\)
0.546391 + 0.837530i \(0.316001\pi\)
\(60\) 4.43216 0.596643i 0.572189 0.0770263i
\(61\) 0.794490 + 0.794490i 0.101724 + 0.101724i 0.756137 0.654413i \(-0.227084\pi\)
−0.654413 + 0.756137i \(0.727084\pi\)
\(62\) −0.769706 0.631488i −0.0977528 0.0801991i
\(63\) −2.83167 + 2.83167i −0.356757 + 0.356757i
\(64\) 4.45055 + 6.64775i 0.556318 + 0.830969i
\(65\) 11.1421 + 0.701060i 1.38201 + 0.0869558i
\(66\) 8.67841 0.856063i 1.06824 0.105374i
\(67\) 13.2598i 1.61994i 0.586470 + 0.809971i \(0.300517\pi\)
−0.586470 + 0.809971i \(0.699483\pi\)
\(68\) −5.34594 3.56972i −0.648290 0.432893i
\(69\) −1.28911 1.28911i −0.155190 0.155190i
\(70\) −12.6556 + 0.449308i −1.51264 + 0.0537026i
\(71\) −10.8523 −1.28793 −0.643967 0.765053i \(-0.722713\pi\)
−0.643967 + 0.765053i \(0.722713\pi\)
\(72\) 2.49505 + 1.33219i 0.294044 + 0.157000i
\(73\) 10.3838 10.3838i 1.21533 1.21533i 0.246083 0.969249i \(-0.420857\pi\)
0.969249 0.246083i \(-0.0791435\pi\)
\(74\) −6.88513 5.64875i −0.800380 0.656654i
\(75\) 4.96057 + 0.626717i 0.572797 + 0.0723671i
\(76\) 2.29257 3.43330i 0.262975 0.393826i
\(77\) −24.6936 −2.81410
\(78\) 5.45876 + 4.47852i 0.618083 + 0.507093i
\(79\) −4.49087 −0.505262 −0.252631 0.967563i \(-0.581296\pi\)
−0.252631 + 0.967563i \(0.581296\pi\)
\(80\) 2.90224 + 8.46032i 0.324480 + 0.945893i
\(81\) 1.00000 0.111111
\(82\) −0.844457 0.692816i −0.0932547 0.0765088i
\(83\) −7.59721 −0.833902 −0.416951 0.908929i \(-0.636901\pi\)
−0.416951 + 0.908929i \(0.636901\pi\)
\(84\) −6.66071 4.44766i −0.726743 0.485279i
\(85\) −4.75280 5.39105i −0.515513 0.584741i
\(86\) 5.30015 + 4.34839i 0.571530 + 0.468899i
\(87\) 0.965728 0.965728i 0.103537 0.103537i
\(88\) 5.07038 + 16.6878i 0.540504 + 1.77892i
\(89\) 10.7447 1.13893 0.569467 0.822014i \(-0.307150\pi\)
0.569467 + 0.822014i \(0.307150\pi\)
\(90\) 2.31400 + 2.15532i 0.243917 + 0.227191i
\(91\) −14.1378 14.1378i −1.48205 1.48205i
\(92\) 2.02478 3.03226i 0.211098 0.316135i
\(93\) 0.703997i 0.0730011i
\(94\) 0.896526 0.0884359i 0.0924696 0.00912147i
\(95\) 3.46227 3.05237i 0.355221 0.313166i
\(96\) −1.63804 + 5.41450i −0.167182 + 0.552615i
\(97\) −0.751384 + 0.751384i −0.0762915 + 0.0762915i −0.744223 0.667931i \(-0.767180\pi\)
0.667931 + 0.744223i \(0.267180\pi\)
\(98\) 9.88013 + 8.10594i 0.998044 + 0.818823i
\(99\) 4.36026 + 4.36026i 0.438223 + 0.438223i
\(100\) 0.709159 + 9.97482i 0.0709159 + 0.997482i
\(101\) 5.30053 5.30053i 0.527423 0.527423i −0.392380 0.919803i \(-0.628348\pi\)
0.919803 + 0.392380i \(0.128348\pi\)
\(102\) −0.446209 4.52348i −0.0441813 0.447892i
\(103\) −5.38356 5.38356i −0.530458 0.530458i 0.390250 0.920709i \(-0.372388\pi\)
−0.920709 + 0.390250i \(0.872388\pi\)
\(104\) −6.65129 + 12.4572i −0.652213 + 1.22153i
\(105\) −5.92169 6.71691i −0.577898 0.655504i
\(106\) −3.74812 + 4.56849i −0.364049 + 0.443731i
\(107\) 11.9693 1.15711 0.578557 0.815642i \(-0.303616\pi\)
0.578557 + 0.815642i \(0.303616\pi\)
\(108\) 0.390769 + 1.96145i 0.0376018 + 0.188741i
\(109\) −3.91485 + 3.91485i −0.374975 + 0.374975i −0.869285 0.494310i \(-0.835421\pi\)
0.494310 + 0.869285i \(0.335421\pi\)
\(110\) 0.691854 + 19.4874i 0.0659657 + 1.85805i
\(111\) 6.29736i 0.597719i
\(112\) 6.12107 14.8027i 0.578387 1.39872i
\(113\) −9.13854 9.13854i −0.859681 0.859681i 0.131619 0.991300i \(-0.457982\pi\)
−0.991300 + 0.131619i \(0.957982\pi\)
\(114\) 2.90509 0.286567i 0.272087 0.0268394i
\(115\) 3.05785 2.69583i 0.285146 0.251387i
\(116\) 2.27161 + 1.51685i 0.210913 + 0.140836i
\(117\) 4.99276i 0.461580i
\(118\) −0.439057 4.45097i −0.0404184 0.409745i
\(119\) 12.8712i 1.17990i
\(120\) −3.32333 + 5.38103i −0.303377 + 0.491219i
\(121\) 27.0238i 2.45671i
\(122\) −1.58130 + 0.155984i −0.143165 + 0.0141222i
\(123\) 0.772367i 0.0696420i
\(124\) 1.38086 0.275100i 0.124005 0.0247047i
\(125\) −2.09516 + 10.9823i −0.187397 + 0.982284i
\(126\) −0.555949 5.63598i −0.0495279 0.502093i
\(127\) −15.5561 15.5561i −1.38038 1.38038i −0.843931 0.536451i \(-0.819765\pi\)
−0.536451 0.843931i \(-0.680235\pi\)
\(128\) −11.2604 1.09712i −0.995287 0.0969723i
\(129\) 4.84769i 0.426815i
\(130\) −10.7610 + 11.5532i −0.943803 + 1.01328i
\(131\) 14.4207 14.4207i 1.25994 1.25994i 0.308818 0.951121i \(-0.400067\pi\)
0.951121 0.308818i \(-0.0999333\pi\)
\(132\) −6.84860 + 10.2563i −0.596094 + 0.892697i
\(133\) −8.26619 −0.716769
\(134\) −14.4974 11.8941i −1.25239 1.02749i
\(135\) −0.140415 + 2.23165i −0.0120850 + 0.192070i
\(136\) 8.69824 2.64286i 0.745868 0.226623i
\(137\) 3.54735 + 3.54735i 0.303071 + 0.303071i 0.842214 0.539143i \(-0.181252\pi\)
−0.539143 + 0.842214i \(0.681252\pi\)
\(138\) 2.56576 0.253094i 0.218412 0.0215448i
\(139\) −4.17152 + 4.17152i −0.353824 + 0.353824i −0.861530 0.507706i \(-0.830494\pi\)
0.507706 + 0.861530i \(0.330494\pi\)
\(140\) 10.8609 14.2399i 0.917914 1.20349i
\(141\) 0.450439 + 0.450439i 0.0379338 + 0.0379338i
\(142\) 9.73458 11.8652i 0.816908 0.995709i
\(143\) −21.7697 + 21.7697i −1.82048 + 1.82048i
\(144\) −3.69460 + 1.53295i −0.307883 + 0.127746i
\(145\) 2.01957 + 2.29077i 0.167716 + 0.190238i
\(146\) 2.03868 + 20.6673i 0.168722 + 1.71044i
\(147\) 9.03668i 0.745333i
\(148\) 12.3520 2.46081i 1.01533 0.202278i
\(149\) 8.42059 + 8.42059i 0.689842 + 0.689842i 0.962197 0.272355i \(-0.0878026\pi\)
−0.272355 + 0.962197i \(0.587803\pi\)
\(150\) −5.13486 + 4.86140i −0.419260 + 0.396932i
\(151\) 4.96999 0.404452 0.202226 0.979339i \(-0.435182\pi\)
0.202226 + 0.979339i \(0.435182\pi\)
\(152\) 1.69731 + 5.58623i 0.137670 + 0.453103i
\(153\) 2.27272 2.27272i 0.183738 0.183738i
\(154\) 22.1503 26.9984i 1.78492 2.17560i
\(155\) 1.57108 + 0.0988521i 0.126192 + 0.00793999i
\(156\) −9.79306 + 1.95101i −0.784072 + 0.156206i
\(157\) 14.4628 1.15426 0.577129 0.816653i \(-0.304173\pi\)
0.577129 + 0.816653i \(0.304173\pi\)
\(158\) 4.02833 4.91003i 0.320476 0.390621i
\(159\) −4.17849 −0.331376
\(160\) −11.8533 4.41582i −0.937085 0.349101i
\(161\) −7.30064 −0.575371
\(162\) −0.897004 + 1.09334i −0.0704753 + 0.0859006i
\(163\) 7.70573 0.603559 0.301779 0.953378i \(-0.402419\pi\)
0.301779 + 0.953378i \(0.402419\pi\)
\(164\) 1.51496 0.301817i 0.118299 0.0235680i
\(165\) −10.3428 + 9.11835i −0.805190 + 0.709863i
\(166\) 6.81472 8.30630i 0.528925 0.644694i
\(167\) 4.64125 4.64125i 0.359150 0.359150i −0.504349 0.863500i \(-0.668268\pi\)
0.863500 + 0.504349i \(0.168268\pi\)
\(168\) 10.8375 3.29284i 0.836129 0.254048i
\(169\) −11.9276 −0.917509
\(170\) 10.1575 0.360618i 0.779045 0.0276582i
\(171\) 1.45960 + 1.45960i 0.111618 + 0.111618i
\(172\) −9.50851 + 1.89433i −0.725017 + 0.144441i
\(173\) 23.9562i 1.82136i −0.413114 0.910679i \(-0.635559\pi\)
0.413114 0.910679i \(-0.364441\pi\)
\(174\) 0.189604 + 1.92213i 0.0143738 + 0.145716i
\(175\) 15.8213 12.2720i 1.19598 0.927678i
\(176\) −22.7935 9.42536i −1.71812 0.710463i
\(177\) 2.23629 2.23629i 0.168090 0.168090i
\(178\) −9.63802 + 11.7475i −0.722400 + 0.880516i
\(179\) 1.30724 + 1.30724i 0.0977080 + 0.0977080i 0.754271 0.656563i \(-0.227990\pi\)
−0.656563 + 0.754271i \(0.727990\pi\)
\(180\) −4.43216 + 0.596643i −0.330353 + 0.0444712i
\(181\) −6.95282 + 6.95282i −0.516799 + 0.516799i −0.916601 0.399802i \(-0.869079\pi\)
0.399802 + 0.916601i \(0.369079\pi\)
\(182\) 28.1391 2.77572i 2.08581 0.205750i
\(183\) −0.794490 0.794490i −0.0587304 0.0587304i
\(184\) 1.49905 + 4.93372i 0.110512 + 0.363718i
\(185\) 14.0535 + 0.884246i 1.03324 + 0.0650111i
\(186\) 0.769706 + 0.631488i 0.0564376 + 0.0463030i
\(187\) 19.8193 1.44933
\(188\) −0.707497 + 1.05953i −0.0515995 + 0.0772743i
\(189\) 2.83167 2.83167i 0.205973 0.205973i
\(190\) 0.231598 + 6.52341i 0.0168019 + 0.473258i
\(191\) 2.42666i 0.175587i 0.996139 + 0.0877936i \(0.0279816\pi\)
−0.996139 + 0.0877936i \(0.972018\pi\)
\(192\) −4.45055 6.64775i −0.321190 0.479760i
\(193\) −0.611510 0.611510i −0.0440175 0.0440175i 0.684755 0.728773i \(-0.259909\pi\)
−0.728773 + 0.684755i \(0.759909\pi\)
\(194\) −0.147521 1.49551i −0.0105914 0.107371i
\(195\) −11.1421 0.701060i −0.797903 0.0502039i
\(196\) −17.7250 + 3.53125i −1.26607 + 0.252232i
\(197\) 12.6372i 0.900363i −0.892937 0.450182i \(-0.851359\pi\)
0.892937 0.450182i \(-0.148641\pi\)
\(198\) −8.67841 + 0.856063i −0.616747 + 0.0608377i
\(199\) 10.0036i 0.709134i −0.935031 0.354567i \(-0.884628\pi\)
0.935031 0.354567i \(-0.115372\pi\)
\(200\) −11.5420 8.17210i −0.816139 0.577855i
\(201\) 13.2598i 0.935274i
\(202\) 1.04067 + 10.5499i 0.0732211 + 0.742285i
\(203\) 5.46924i 0.383865i
\(204\) 5.34594 + 3.56972i 0.374291 + 0.249931i
\(205\) 1.72366 + 0.108452i 0.120385 + 0.00757464i
\(206\) 10.7151 1.05697i 0.746558 0.0736426i
\(207\) 1.28911 + 1.28911i 0.0895991 + 0.0895991i
\(208\) −7.65365 18.4462i −0.530685 1.27902i
\(209\) 12.7285i 0.880446i
\(210\) 12.6556 0.449308i 0.873321 0.0310052i
\(211\) 9.66719 9.66719i 0.665517 0.665517i −0.291158 0.956675i \(-0.594041\pi\)
0.956675 + 0.291158i \(0.0940405\pi\)
\(212\) −1.63282 8.19591i −0.112143 0.562897i
\(213\) 10.8523 0.743589
\(214\) −10.7365 + 13.0865i −0.733932 + 0.894572i
\(215\) −10.8184 0.680690i −0.737806 0.0464227i
\(216\) −2.49505 1.33219i −0.169767 0.0906440i
\(217\) −1.99349 1.99349i −0.135327 0.135327i
\(218\) −0.768614 7.79189i −0.0520571 0.527734i
\(219\) −10.3838 + 10.3838i −0.701672 + 0.701672i
\(220\) −21.9269 16.7238i −1.47831 1.12752i
\(221\) 11.3471 + 11.3471i 0.763291 + 0.763291i
\(222\) 6.88513 + 5.64875i 0.462100 + 0.379120i
\(223\) 4.29237 4.29237i 0.287438 0.287438i −0.548628 0.836067i \(-0.684850\pi\)
0.836067 + 0.548628i \(0.184850\pi\)
\(224\) 10.6937 + 19.9704i 0.714502 + 1.33433i
\(225\) −4.96057 0.626717i −0.330704 0.0417812i
\(226\) 18.1888 1.79419i 1.20990 0.119348i
\(227\) 13.2703i 0.880778i −0.897807 0.440389i \(-0.854841\pi\)
0.897807 0.440389i \(-0.145159\pi\)
\(228\) −2.29257 + 3.43330i −0.151829 + 0.227376i
\(229\) 11.4064 + 11.4064i 0.753758 + 0.753758i 0.975178 0.221420i \(-0.0710692\pi\)
−0.221420 + 0.975178i \(0.571069\pi\)
\(230\) 0.204546 + 5.76143i 0.0134874 + 0.379897i
\(231\) 24.6936 1.62472
\(232\) −3.69607 + 1.12301i −0.242659 + 0.0737290i
\(233\) −8.19734 + 8.19734i −0.537026 + 0.537026i −0.922654 0.385629i \(-0.873985\pi\)
0.385629 + 0.922654i \(0.373985\pi\)
\(234\) −5.45876 4.47852i −0.356850 0.292770i
\(235\) −1.06847 + 0.941975i −0.0696995 + 0.0614477i
\(236\) 5.26025 + 3.51250i 0.342413 + 0.228644i
\(237\) 4.49087 0.291713
\(238\) −14.0725 11.5455i −0.912186 0.748382i
\(239\) 10.6504 0.688915 0.344458 0.938802i \(-0.388063\pi\)
0.344458 + 0.938802i \(0.388063\pi\)
\(240\) −2.90224 8.46032i −0.187339 0.546111i
\(241\) −1.22690 −0.0790315 −0.0395157 0.999219i \(-0.512582\pi\)
−0.0395157 + 0.999219i \(0.512582\pi\)
\(242\) −29.5461 24.2404i −1.89929 1.55823i
\(243\) −1.00000 −0.0641500
\(244\) 1.24789 1.86882i 0.0798881 0.119639i
\(245\) −20.1668 1.26889i −1.28841 0.0810664i
\(246\) 0.844457 + 0.692816i 0.0538406 + 0.0441724i
\(247\) −7.28741 + 7.28741i −0.463687 + 0.463687i
\(248\) −0.937857 + 1.75651i −0.0595540 + 0.111538i
\(249\) 7.59721 0.481453
\(250\) −10.1280 12.1419i −0.640548 0.767918i
\(251\) −11.5822 11.5822i −0.731061 0.731061i 0.239769 0.970830i \(-0.422928\pi\)
−0.970830 + 0.239769i \(0.922928\pi\)
\(252\) 6.66071 + 4.44766i 0.419585 + 0.280176i
\(253\) 11.2417i 0.706759i
\(254\) 30.9620 3.05418i 1.94273 0.191636i
\(255\) 4.75280 + 5.39105i 0.297632 + 0.337601i
\(256\) 11.3001 11.3273i 0.706258 0.707955i
\(257\) 5.72342 5.72342i 0.357017 0.357017i −0.505695 0.862712i \(-0.668764\pi\)
0.862712 + 0.505695i \(0.168764\pi\)
\(258\) −5.30015 4.34839i −0.329973 0.270719i
\(259\) −17.8320 17.8320i −1.10803 1.10803i
\(260\) −2.97889 22.1287i −0.184743 1.37236i
\(261\) −0.965728 + 0.965728i −0.0597771 + 0.0597771i
\(262\) 2.83125 + 28.7020i 0.174915 + 1.77322i
\(263\) 6.70033 + 6.70033i 0.413160 + 0.413160i 0.882838 0.469678i \(-0.155630\pi\)
−0.469678 + 0.882838i \(0.655630\pi\)
\(264\) −5.07038 16.6878i −0.312060 1.02706i
\(265\) 0.586724 9.32494i 0.0360422 0.572826i
\(266\) 7.41480 9.03772i 0.454631 0.554138i
\(267\) −10.7447 −0.657564
\(268\) 26.0085 5.18152i 1.58872 0.316512i
\(269\) 1.08527 1.08527i 0.0661699 0.0661699i −0.673247 0.739417i \(-0.735101\pi\)
0.739417 + 0.673247i \(0.235101\pi\)
\(270\) −2.31400 2.15532i −0.140825 0.131169i
\(271\) 3.21705i 0.195422i −0.995215 0.0977108i \(-0.968848\pi\)
0.995215 0.0977108i \(-0.0311520\pi\)
\(272\) −4.91282 + 11.8807i −0.297883 + 0.720376i
\(273\) 14.1378 + 14.1378i 0.855660 + 0.855660i
\(274\) −7.06044 + 0.696462i −0.426537 + 0.0420748i
\(275\) −18.8967 24.3620i −1.13952 1.46909i
\(276\) −2.02478 + 3.03226i −0.121877 + 0.182521i
\(277\) 28.2079i 1.69485i 0.530915 + 0.847425i \(0.321848\pi\)
−0.530915 + 0.847425i \(0.678152\pi\)
\(278\) −0.819007 8.30275i −0.0491208 0.497966i
\(279\) 0.703997i 0.0421472i
\(280\) 5.82672 + 24.6478i 0.348213 + 1.47299i
\(281\) 24.5928i 1.46709i 0.679643 + 0.733543i \(0.262135\pi\)
−0.679643 + 0.733543i \(0.737865\pi\)
\(282\) −0.896526 + 0.0884359i −0.0533874 + 0.00526628i
\(283\) 15.0862i 0.896779i 0.893838 + 0.448390i \(0.148002\pi\)
−0.893838 + 0.448390i \(0.851998\pi\)
\(284\) 4.24075 + 21.2863i 0.251642 + 1.26311i
\(285\) −3.46227 + 3.05237i −0.205087 + 0.180807i
\(286\) −4.27411 43.3292i −0.252734 2.56211i
\(287\) −2.18709 2.18709i −0.129100 0.129100i
\(288\) 1.63804 5.41450i 0.0965223 0.319053i
\(289\) 6.66950i 0.392324i
\(290\) −4.31615 + 0.153235i −0.253453 + 0.00899824i
\(291\) 0.751384 0.751384i 0.0440469 0.0440469i
\(292\) −24.4250 16.3097i −1.42936 0.954451i
\(293\) 3.49295 0.204060 0.102030 0.994781i \(-0.467466\pi\)
0.102030 + 0.994781i \(0.467466\pi\)
\(294\) −9.88013 8.10594i −0.576221 0.472748i
\(295\) 4.67661 + 5.30463i 0.272283 + 0.308848i
\(296\) −8.38927 + 15.7122i −0.487616 + 0.913254i
\(297\) −4.36026 4.36026i −0.253008 0.253008i
\(298\) −16.7598 + 1.65324i −0.970871 + 0.0957695i
\(299\) −6.43619 + 6.43619i −0.372215 + 0.372215i
\(300\) −0.709159 9.97482i −0.0409433 0.575897i
\(301\) 13.7270 + 13.7270i 0.791213 + 0.791213i
\(302\) −4.45810 + 5.43387i −0.256535 + 0.312684i
\(303\) −5.30053 + 5.30053i −0.304508 + 0.304508i
\(304\) −7.63012 3.15514i −0.437617 0.180959i
\(305\) 1.88458 1.66147i 0.107911 0.0951354i
\(306\) 0.446209 + 4.52348i 0.0255081 + 0.258590i
\(307\) 7.81653i 0.446113i 0.974806 + 0.223056i \(0.0716034\pi\)
−0.974806 + 0.223056i \(0.928397\pi\)
\(308\) 9.64950 + 48.4354i 0.549832 + 2.75986i
\(309\) 5.38356 + 5.38356i 0.306260 + 0.306260i
\(310\) −1.51734 + 1.62905i −0.0861792 + 0.0925237i
\(311\) −6.15295 −0.348902 −0.174451 0.984666i \(-0.555815\pi\)
−0.174451 + 0.984666i \(0.555815\pi\)
\(312\) 6.65129 12.4572i 0.376555 0.705249i
\(313\) −9.65621 + 9.65621i −0.545802 + 0.545802i −0.925224 0.379422i \(-0.876123\pi\)
0.379422 + 0.925224i \(0.376123\pi\)
\(314\) −12.9732 + 15.8127i −0.732119 + 0.892363i
\(315\) 5.92169 + 6.71691i 0.333650 + 0.378455i
\(316\) 1.75489 + 8.80863i 0.0987204 + 0.495524i
\(317\) −10.5517 −0.592642 −0.296321 0.955088i \(-0.595760\pi\)
−0.296321 + 0.955088i \(0.595760\pi\)
\(318\) 3.74812 4.56849i 0.210184 0.256188i
\(319\) −8.42165 −0.471522
\(320\) 15.4604 8.99864i 0.864264 0.503039i
\(321\) −11.9693 −0.668061
\(322\) 6.54870 7.98206i 0.364945 0.444823i
\(323\) 6.63451 0.369154
\(324\) −0.390769 1.96145i −0.0217094 0.108970i
\(325\) 3.12905 24.7669i 0.173568 1.37382i
\(326\) −6.91206 + 8.42495i −0.382824 + 0.466615i
\(327\) 3.91485 3.91485i 0.216492 0.216492i
\(328\) −1.02894 + 1.92710i −0.0568137 + 0.106406i
\(329\) 2.55099 0.140640
\(330\) −0.691854 19.4874i −0.0380853 1.07275i
\(331\) 0.447095 + 0.447095i 0.0245745 + 0.0245745i 0.719287 0.694713i \(-0.244469\pi\)
−0.694713 + 0.719287i \(0.744469\pi\)
\(332\) 2.96875 + 14.9016i 0.162931 + 0.817830i
\(333\) 6.29736i 0.345093i
\(334\) 0.911229 + 9.23766i 0.0498602 + 0.505462i
\(335\) 29.5913 + 1.86188i 1.61675 + 0.101725i
\(336\) −6.12107 + 14.8027i −0.333932 + 0.807553i
\(337\) 4.17945 4.17945i 0.227669 0.227669i −0.584049 0.811718i \(-0.698532\pi\)
0.811718 + 0.584049i \(0.198532\pi\)
\(338\) 10.6991 13.0409i 0.581955 0.709331i
\(339\) 9.13854 + 9.13854i 0.496337 + 0.496337i
\(340\) −8.71704 + 11.4290i −0.472748 + 0.619827i
\(341\) −3.06961 + 3.06961i −0.166229 + 0.166229i
\(342\) −2.90509 + 0.286567i −0.157090 + 0.0154958i
\(343\) 5.76720 + 5.76720i 0.311400 + 0.311400i
\(344\) 6.45804 12.0952i 0.348194 0.652131i
\(345\) −3.05785 + 2.69583i −0.164629 + 0.145139i
\(346\) 26.1922 + 21.4888i 1.40810 + 1.15525i
\(347\) 30.4793 1.63622 0.818108 0.575064i \(-0.195023\pi\)
0.818108 + 0.575064i \(0.195023\pi\)
\(348\) −2.27161 1.51685i −0.121771 0.0813119i
\(349\) 24.1490 24.1490i 1.29267 1.29267i 0.359535 0.933131i \(-0.382935\pi\)
0.933131 0.359535i \(-0.117065\pi\)
\(350\) −0.774345 + 28.3061i −0.0413905 + 1.51302i
\(351\) 4.99276i 0.266494i
\(352\) 30.7509 16.4664i 1.63903 0.877661i
\(353\) −17.3084 17.3084i −0.921233 0.921233i 0.0758833 0.997117i \(-0.475822\pi\)
−0.997117 + 0.0758833i \(0.975822\pi\)
\(354\) 0.439057 + 4.45097i 0.0233356 + 0.236567i
\(355\) −1.52383 + 24.2186i −0.0808767 + 1.28539i
\(356\) −4.19869 21.0752i −0.222530 1.11698i
\(357\) 12.8712i 0.681214i
\(358\) −2.60186 + 0.256655i −0.137513 + 0.0135646i
\(359\) 29.4403i 1.55380i −0.629626 0.776899i \(-0.716792\pi\)
0.629626 0.776899i \(-0.283208\pi\)
\(360\) 3.32333 5.38103i 0.175155 0.283605i
\(361\) 14.7392i 0.775745i
\(362\) −1.36507 13.8385i −0.0717463 0.727335i
\(363\) 27.0238i 1.41838i
\(364\) −22.2061 + 33.2553i −1.16391 + 1.74305i
\(365\) −21.7150 24.6311i −1.13662 1.28925i
\(366\) 1.58130 0.155984i 0.0826561 0.00815343i
\(367\) 10.7678 + 10.7678i 0.562076 + 0.562076i 0.929897 0.367821i \(-0.119896\pi\)
−0.367821 + 0.929897i \(0.619896\pi\)
\(368\) −6.73887 2.78659i −0.351288 0.145261i
\(369\) 0.772367i 0.0402078i
\(370\) −13.5728 + 14.5721i −0.705619 + 0.757566i
\(371\) −11.8321 + 11.8321i −0.614291 + 0.614291i
\(372\) −1.38086 + 0.275100i −0.0715942 + 0.0142633i
\(373\) 32.1031 1.66223 0.831117 0.556098i \(-0.187702\pi\)
0.831117 + 0.556098i \(0.187702\pi\)
\(374\) −17.7780 + 21.6692i −0.919278 + 1.12049i
\(375\) 2.09516 10.9823i 0.108193 0.567122i
\(376\) −0.523798 1.72394i −0.0270128 0.0889052i
\(377\) −4.82164 4.82164i −0.248327 0.248327i
\(378\) 0.555949 + 5.63598i 0.0285949 + 0.289884i
\(379\) −23.3329 + 23.3329i −1.19853 + 1.19853i −0.223923 + 0.974607i \(0.571887\pi\)
−0.974607 + 0.223923i \(0.928113\pi\)
\(380\) −7.34002 5.59830i −0.376535 0.287187i
\(381\) 15.5561 + 15.5561i 0.796964 + 0.796964i
\(382\) −2.65316 2.17673i −0.135747 0.111371i
\(383\) 7.02280 7.02280i 0.358848 0.358848i −0.504540 0.863388i \(-0.668338\pi\)
0.863388 + 0.504540i \(0.168338\pi\)
\(384\) 11.2604 + 1.09712i 0.574629 + 0.0559870i
\(385\) −3.46737 + 55.1077i −0.176713 + 2.80855i
\(386\) 1.21711 0.120060i 0.0619495 0.00611087i
\(387\) 4.84769i 0.246422i
\(388\) 1.76742 + 1.18019i 0.0897273 + 0.0599149i
\(389\) −23.0035 23.0035i −1.16632 1.16632i −0.983065 0.183259i \(-0.941335\pi\)
−0.183259 0.983065i \(-0.558665\pi\)
\(390\) 10.7610 11.5532i 0.544905 0.585020i
\(391\) 5.85955 0.296330
\(392\) 12.0386 22.5470i 0.608039 1.13879i
\(393\) −14.4207 + 14.4207i −0.727426 + 0.727426i
\(394\) 13.8167 + 11.3356i 0.696076 + 0.571080i
\(395\) −0.630587 + 10.0221i −0.0317283 + 0.504265i
\(396\) 6.84860 10.2563i 0.344155 0.515399i
\(397\) −25.0560 −1.25753 −0.628763 0.777597i \(-0.716438\pi\)
−0.628763 + 0.777597i \(0.716438\pi\)
\(398\) 10.9373 + 8.97323i 0.548235 + 0.449788i
\(399\) 8.26619 0.413827
\(400\) 19.2880 5.28883i 0.964402 0.264442i
\(401\) 6.21757 0.310491 0.155245 0.987876i \(-0.450383\pi\)
0.155245 + 0.987876i \(0.450383\pi\)
\(402\) 14.4974 + 11.8941i 0.723066 + 0.593223i
\(403\) −3.51489 −0.175089
\(404\) −12.4680 8.32546i −0.620308 0.414207i
\(405\) 0.140415 2.23165i 0.00697730 0.110892i
\(406\) 5.97972 + 4.90593i 0.296768 + 0.243477i
\(407\) −27.4581 + 27.4581i −1.36105 + 1.36105i
\(408\) −8.69824 + 2.64286i −0.430627 + 0.130841i
\(409\) 13.1629 0.650865 0.325432 0.945565i \(-0.394490\pi\)
0.325432 + 0.945565i \(0.394490\pi\)
\(410\) −1.66470 + 1.78726i −0.0822138 + 0.0882663i
\(411\) −3.54735 3.54735i −0.174978 0.174978i
\(412\) −8.45588 + 12.6633i −0.416591 + 0.623878i
\(413\) 12.6648i 0.623196i
\(414\) −2.56576 + 0.253094i −0.126100 + 0.0124389i
\(415\) −1.06676 + 16.9543i −0.0523654 + 0.832256i
\(416\) 27.0333 + 8.17833i 1.32542 + 0.400975i
\(417\) 4.17152 4.17152i 0.204280 0.204280i
\(418\) −13.9165 11.4175i −0.680677 0.558447i
\(419\) −14.7013 14.7013i −0.718208 0.718208i 0.250030 0.968238i \(-0.419559\pi\)
−0.968238 + 0.250030i \(0.919559\pi\)
\(420\) −10.8609 + 14.2399i −0.529958 + 0.694835i
\(421\) 17.0481 17.0481i 0.830872 0.830872i −0.156764 0.987636i \(-0.550106\pi\)
0.987636 + 0.156764i \(0.0501063\pi\)
\(422\) 1.89799 + 19.2410i 0.0923926 + 0.936637i
\(423\) −0.450439 0.450439i −0.0219011 0.0219011i
\(424\) 10.4255 + 5.56653i 0.506309 + 0.270335i
\(425\) −12.6983 + 9.84962i −0.615959 + 0.477777i
\(426\) −9.73458 + 11.8652i −0.471642 + 0.574873i
\(427\) −4.49946 −0.217744
\(428\) −4.67723 23.4772i −0.226082 1.13481i
\(429\) 21.7697 21.7697i 1.05105 1.05105i
\(430\) 10.4483 11.2175i 0.503864 0.540957i
\(431\) 18.5363i 0.892864i −0.894818 0.446432i \(-0.852694\pi\)
0.894818 0.446432i \(-0.147306\pi\)
\(432\) 3.69460 1.53295i 0.177756 0.0737541i
\(433\) −9.47558 9.47558i −0.455368 0.455368i 0.441764 0.897131i \(-0.354353\pi\)
−0.897131 + 0.441764i \(0.854353\pi\)
\(434\) 3.96772 0.391387i 0.190456 0.0187872i
\(435\) −2.01957 2.29077i −0.0968309 0.109834i
\(436\) 9.20861 + 6.14900i 0.441012 + 0.294484i
\(437\) 3.76315i 0.180016i
\(438\) −2.03868 20.6673i −0.0974119 0.987521i
\(439\) 21.7937i 1.04016i 0.854119 + 0.520078i \(0.174097\pi\)
−0.854119 + 0.520078i \(0.825903\pi\)
\(440\) 37.9533 8.97212i 1.80935 0.427729i
\(441\) 9.03668i 0.430318i
\(442\) −22.5846 + 2.22781i −1.07424 + 0.105966i
\(443\) 26.2733i 1.24828i 0.781312 + 0.624141i \(0.214551\pi\)
−0.781312 + 0.624141i \(0.785449\pi\)
\(444\) −12.3520 + 2.46081i −0.586199 + 0.116785i
\(445\) 1.50872 23.9784i 0.0715201 1.13669i
\(446\) 0.842733 + 8.54328i 0.0399046 + 0.404536i
\(447\) −8.42059 8.42059i −0.398280 0.398280i
\(448\) −31.4267 6.22176i −1.48477 0.293951i
\(449\) 29.2615i 1.38093i 0.723364 + 0.690467i \(0.242595\pi\)
−0.723364 + 0.690467i \(0.757405\pi\)
\(450\) 5.13486 4.86140i 0.242060 0.229169i
\(451\) −3.36772 + 3.36772i −0.158580 + 0.158580i
\(452\) −14.3538 + 21.4959i −0.675144 + 1.01108i
\(453\) −4.96999 −0.233510
\(454\) 14.5088 + 11.9035i 0.680934 + 0.558657i
\(455\) −33.5359 + 29.5656i −1.57219 + 1.38606i
\(456\) −1.69731 5.58623i −0.0794837 0.261599i
\(457\) −18.2488 18.2488i −0.853641 0.853641i 0.136938 0.990580i \(-0.456274\pi\)
−0.990580 + 0.136938i \(0.956274\pi\)
\(458\) −22.7027 + 2.23946i −1.06083 + 0.104643i
\(459\) −2.27272 + 2.27272i −0.106081 + 0.106081i
\(460\) −6.48266 4.94438i −0.302255 0.230533i
\(461\) 5.13473 + 5.13473i 0.239148 + 0.239148i 0.816497 0.577349i \(-0.195913\pi\)
−0.577349 + 0.816497i \(0.695913\pi\)
\(462\) −22.1503 + 26.9984i −1.03052 + 1.25608i
\(463\) 10.2040 10.2040i 0.474220 0.474220i −0.429057 0.903277i \(-0.641154\pi\)
0.903277 + 0.429057i \(0.141154\pi\)
\(464\) 2.08756 5.04839i 0.0969127 0.234366i
\(465\) −1.57108 0.0988521i −0.0728571 0.00458416i
\(466\) −1.60941 16.3155i −0.0745543 0.755801i
\(467\) 24.2696i 1.12306i −0.827455 0.561532i \(-0.810212\pi\)
0.827455 0.561532i \(-0.189788\pi\)
\(468\) 9.79306 1.95101i 0.452684 0.0901857i
\(469\) −37.5473 37.5473i −1.73378 1.73378i
\(470\) −0.0714723 2.01316i −0.00329677 0.0928599i
\(471\) −14.4628 −0.666411
\(472\) −8.55881 + 2.60049i −0.393951 + 0.119697i
\(473\) 21.1372 21.1372i 0.971889 0.971889i
\(474\) −4.02833 + 4.91003i −0.185027 + 0.225525i
\(475\) −6.32567 8.15518i −0.290242 0.374186i
\(476\) 25.2462 5.02965i 1.15716 0.230534i
\(477\) 4.17849 0.191320
\(478\) −9.55342 + 11.6444i −0.436963 + 0.532604i
\(479\) 25.0894 1.14636 0.573182 0.819428i \(-0.305709\pi\)
0.573182 + 0.819428i \(0.305709\pi\)
\(480\) 11.8533 + 4.41582i 0.541026 + 0.201553i
\(481\) −31.4412 −1.43359
\(482\) 1.10053 1.34141i 0.0501279 0.0610997i
\(483\) 7.30064 0.332191
\(484\) 53.0059 10.5601i 2.40936 0.480003i
\(485\) 1.57132 + 1.78234i 0.0713502 + 0.0809317i
\(486\) 0.897004 1.09334i 0.0406889 0.0495947i
\(487\) −0.369801 + 0.369801i −0.0167573 + 0.0167573i −0.715436 0.698679i \(-0.753772\pi\)
0.698679 + 0.715436i \(0.253772\pi\)
\(488\) 0.923881 + 3.04070i 0.0418221 + 0.137646i
\(489\) −7.70573 −0.348465
\(490\) 19.4770 20.9108i 0.879880 0.944656i
\(491\) −19.2802 19.2802i −0.870104 0.870104i 0.122379 0.992483i \(-0.460948\pi\)
−0.992483 + 0.122379i \(0.960948\pi\)
\(492\) −1.51496 + 0.301817i −0.0682998 + 0.0136070i
\(493\) 4.38966i 0.197700i
\(494\) −1.43076 14.5044i −0.0643729 0.652585i
\(495\) 10.3428 9.11835i 0.464877 0.409840i
\(496\) −1.07919 2.60099i −0.0484572 0.116788i
\(497\) 30.7302 30.7302i 1.37844 1.37844i
\(498\) −6.81472 + 8.30630i −0.305375 + 0.372214i
\(499\) −17.1262 17.1262i −0.766673 0.766673i 0.210847 0.977519i \(-0.432378\pi\)
−0.977519 + 0.210847i \(0.932378\pi\)
\(500\) 22.3599 0.181979i 0.999967 0.00813834i
\(501\) −4.64125 + 4.64125i −0.207356 + 0.207356i
\(502\) 23.0525 2.27396i 1.02888 0.101492i
\(503\) 5.60127 + 5.60127i 0.249748 + 0.249748i 0.820867 0.571119i \(-0.193491\pi\)
−0.571119 + 0.820867i \(0.693491\pi\)
\(504\) −10.8375 + 3.29284i −0.482739 + 0.146675i
\(505\) −11.0847 12.5732i −0.493262 0.559501i
\(506\) −12.2909 10.0838i −0.546399 0.448281i
\(507\) 11.9276 0.529724
\(508\) −24.4338 + 36.5915i −1.08407 + 1.62348i
\(509\) −0.0876457 + 0.0876457i −0.00388483 + 0.00388483i −0.709047 0.705162i \(-0.750874\pi\)
0.705162 + 0.709047i \(0.250874\pi\)
\(510\) −10.1575 + 0.360618i −0.449782 + 0.0159684i
\(511\) 58.8069i 2.60146i
\(512\) 2.24827 + 22.5154i 0.0993604 + 0.995052i
\(513\) −1.45960 1.45960i −0.0644428 0.0644428i
\(514\) 1.12369 + 11.3915i 0.0495640 + 0.502459i
\(515\) −12.7702 + 11.2583i −0.562722 + 0.496101i
\(516\) 9.50851 1.89433i 0.418589 0.0833931i
\(517\) 3.92806i 0.172756i
\(518\) 35.4918 3.50101i 1.55942 0.153826i
\(519\) 23.9562i 1.05156i
\(520\) 26.8662 + 16.5926i 1.17816 + 0.727632i
\(521\) 0.327549i 0.0143502i −0.999974 0.00717509i \(-0.997716\pi\)
0.999974 0.00717509i \(-0.00228392\pi\)
\(522\) −0.189604 1.92213i −0.00829874 0.0841292i
\(523\) 21.8823i 0.956847i −0.878129 0.478423i \(-0.841208\pi\)
0.878129 0.478423i \(-0.158792\pi\)
\(524\) −33.9206 22.6503i −1.48183 0.989483i
\(525\) −15.8213 + 12.2720i −0.690500 + 0.535595i
\(526\) −13.3359 + 1.31549i −0.581474 + 0.0573582i
\(527\) 1.59999 + 1.59999i 0.0696966 + 0.0696966i
\(528\) 22.7935 + 9.42536i 0.991959 + 0.410186i
\(529\) 19.6764i 0.855496i
\(530\) 9.66900 + 9.00599i 0.419995 + 0.391195i
\(531\) −2.23629 + 2.23629i −0.0970466 + 0.0970466i
\(532\) 3.23017 + 16.2137i 0.140046 + 0.702955i
\(533\) −3.85624 −0.167032
\(534\) 9.63802 11.7475i 0.417078 0.508366i
\(535\) 1.68067 26.7113i 0.0726618 1.15483i
\(536\) −17.6646 + 33.0839i −0.762993 + 1.42901i
\(537\) −1.30724 1.30724i −0.0564117 0.0564117i
\(538\) 0.213073 + 2.16005i 0.00918625 + 0.0931264i
\(539\) 39.4023 39.4023i 1.69718 1.69718i
\(540\) 4.43216 0.596643i 0.190730 0.0256754i
\(541\) −21.9852 21.9852i −0.945217 0.945217i 0.0533584 0.998575i \(-0.483007\pi\)
−0.998575 + 0.0533584i \(0.983007\pi\)
\(542\) 3.51731 + 2.88570i 0.151082 + 0.123951i
\(543\) 6.95282 6.95282i 0.298374 0.298374i
\(544\) −8.58284 16.0284i −0.367986 0.687214i
\(545\) 8.18690 + 9.28631i 0.350688 + 0.397782i
\(546\) −28.1391 + 2.77572i −1.20424 + 0.118790i
\(547\) 28.9503i 1.23783i 0.785459 + 0.618913i \(0.212427\pi\)
−0.785459 + 0.618913i \(0.787573\pi\)
\(548\) 5.57177 8.34416i 0.238014 0.356445i
\(549\) 0.794490 + 0.794490i 0.0339080 + 0.0339080i
\(550\) 43.5863 + 1.19235i 1.85853 + 0.0508421i
\(551\) −2.81915 −0.120100
\(552\) −1.49905 4.93372i −0.0638039 0.209993i
\(553\) 12.7167 12.7167i 0.540767 0.540767i
\(554\) −30.8408 25.3026i −1.31030 1.07500i
\(555\) −14.0535 0.884246i −0.596539 0.0375342i
\(556\) 9.81235 + 6.55215i 0.416136 + 0.277873i
\(557\) 8.55746 0.362591 0.181296 0.983429i \(-0.441971\pi\)
0.181296 + 0.983429i \(0.441971\pi\)
\(558\) −0.769706 0.631488i −0.0325843 0.0267330i
\(559\) 24.2033 1.02369
\(560\) −32.1750 15.7386i −1.35964 0.665079i
\(561\) −19.8193 −0.836772
\(562\) −26.8883 22.0599i −1.13421 0.930540i
\(563\) 19.8277 0.835637 0.417819 0.908530i \(-0.362795\pi\)
0.417819 + 0.908530i \(0.362795\pi\)
\(564\) 0.707497 1.05953i 0.0297910 0.0446144i
\(565\) −21.6773 + 19.1109i −0.911969 + 0.804000i
\(566\) −16.4942 13.5323i −0.693305 0.568807i
\(567\) −2.83167 + 2.83167i −0.118919 + 0.118919i
\(568\) −27.0771 14.4573i −1.13613 0.606617i
\(569\) −13.1834 −0.552677 −0.276339 0.961060i \(-0.589121\pi\)
−0.276339 + 0.961060i \(0.589121\pi\)
\(570\) −0.231598 6.52341i −0.00970058 0.273235i
\(571\) −5.46465 5.46465i −0.228688 0.228688i 0.583456 0.812145i \(-0.301700\pi\)
−0.812145 + 0.583456i \(0.801700\pi\)
\(572\) 51.2072 + 34.1934i 2.14108 + 1.42970i
\(573\) 2.42666i 0.101375i
\(574\) 4.35305 0.429397i 0.181693 0.0179227i
\(575\) −5.58679 7.20260i −0.232985 0.300369i
\(576\) 4.45055 + 6.64775i 0.185439 + 0.276990i
\(577\) 11.0931 11.0931i 0.461811 0.461811i −0.437438 0.899249i \(-0.644114\pi\)
0.899249 + 0.437438i \(0.144114\pi\)
\(578\) −7.29201 5.98257i −0.303308 0.248842i
\(579\) 0.611510 + 0.611510i 0.0254135 + 0.0254135i
\(580\) 3.70406 4.85645i 0.153803 0.201653i
\(581\) 21.5128 21.5128i 0.892500 0.892500i
\(582\) 0.147521 + 1.49551i 0.00611496 + 0.0619909i
\(583\) 18.2193 + 18.2193i 0.754566 + 0.754566i
\(584\) 39.7413 12.0749i 1.64451 0.499663i
\(585\) 11.1421 + 0.701060i 0.460670 + 0.0289853i
\(586\) −3.13319 + 3.81897i −0.129431 + 0.157760i
\(587\) −0.0736360 −0.00303928 −0.00151964 0.999999i \(-0.500484\pi\)
−0.00151964 + 0.999999i \(0.500484\pi\)
\(588\) 17.7250 3.53125i 0.730968 0.145626i
\(589\) −1.02755 + 1.02755i −0.0423396 + 0.0423396i
\(590\) −9.99469 + 0.354838i −0.411475 + 0.0146084i
\(591\) 12.6372i 0.519825i
\(592\) −9.65354 23.2662i −0.396758 0.956236i
\(593\) 25.1041 + 25.1041i 1.03090 + 1.03090i 0.999507 + 0.0313952i \(0.00999504\pi\)
0.0313952 + 0.999507i \(0.490005\pi\)
\(594\) 8.67841 0.856063i 0.356079 0.0351247i
\(595\) 28.7240 + 1.80731i 1.17757 + 0.0740925i
\(596\) 13.2261 19.8071i 0.541762 0.811330i
\(597\) 10.0036i 0.409419i
\(598\) −1.26364 12.8102i −0.0516739 0.523849i
\(599\) 16.3265i 0.667081i −0.942736 0.333541i \(-0.891757\pi\)
0.942736 0.333541i \(-0.108243\pi\)
\(600\) 11.5420 + 8.17210i 0.471198 + 0.333625i
\(601\) 22.5262i 0.918862i −0.888213 0.459431i \(-0.848053\pi\)
0.888213 0.459431i \(-0.151947\pi\)
\(602\) −27.3215 + 2.69507i −1.11354 + 0.109843i
\(603\) 13.2598i 0.539981i
\(604\) −1.94212 9.74840i −0.0790236 0.396657i
\(605\) 60.3078 + 3.79456i 2.45186 + 0.154271i
\(606\) −1.04067 10.5499i −0.0422742 0.428559i
\(607\) 20.2440 + 20.2440i 0.821677 + 0.821677i 0.986348 0.164672i \(-0.0526565\pi\)
−0.164672 + 0.986348i \(0.552656\pi\)
\(608\) 10.2939 5.51212i 0.417471 0.223546i
\(609\) 5.46924i 0.221625i
\(610\) 0.126064 + 3.55083i 0.00510417 + 0.143769i
\(611\) 2.24893 2.24893i 0.0909820 0.0909820i
\(612\) −5.34594 3.56972i −0.216097 0.144298i
\(613\) 28.9848 1.17069 0.585343 0.810786i \(-0.300960\pi\)
0.585343 + 0.810786i \(0.300960\pi\)
\(614\) −8.54609 7.01145i −0.344892 0.282959i
\(615\) −1.72366 0.108452i −0.0695046 0.00437322i
\(616\) −61.6118 32.8966i −2.48241 1.32544i
\(617\) −18.0708 18.0708i −0.727503 0.727503i 0.242619 0.970122i \(-0.421994\pi\)
−0.970122 + 0.242619i \(0.921994\pi\)
\(618\) −10.7151 + 1.05697i −0.431025 + 0.0425176i
\(619\) 17.2226 17.2226i 0.692236 0.692236i −0.270488 0.962723i \(-0.587185\pi\)
0.962723 + 0.270488i \(0.0871849\pi\)
\(620\) −0.420035 3.12023i −0.0168690 0.125311i
\(621\) −1.28911 1.28911i −0.0517300 0.0517300i
\(622\) 5.51922 6.72724i 0.221300 0.269738i
\(623\) −30.4254 + 30.4254i −1.21897 + 1.21897i
\(624\) 7.65365 + 18.4462i 0.306391 + 0.738440i
\(625\) 24.2145 + 6.21775i 0.968578 + 0.248710i
\(626\) −1.89583 19.2192i −0.0757727 0.768152i
\(627\) 12.7285i 0.508325i
\(628\) −5.65161 28.3681i −0.225524 1.13201i
\(629\) 14.3121 + 14.3121i 0.570662 + 0.570662i
\(630\) −12.6556 + 0.449308i −0.504212 + 0.0179009i
\(631\) −15.2007 −0.605131 −0.302565 0.953129i \(-0.597843\pi\)
−0.302565 + 0.953129i \(0.597843\pi\)
\(632\) −11.2049 5.98269i −0.445709 0.237979i
\(633\) −9.66719 + 9.66719i −0.384236 + 0.384236i
\(634\) 9.46491 11.5366i 0.375900 0.458175i
\(635\) −36.9002 + 32.5316i −1.46434 + 1.29098i
\(636\) 1.63282 + 8.19591i 0.0647456 + 0.324989i
\(637\) 45.1179 1.78764
\(638\) 7.55425 9.20770i 0.299076 0.364536i
\(639\) −10.8523 −0.429311
\(640\) −4.02952 + 24.9752i −0.159281 + 0.987233i
\(641\) −13.9100 −0.549414 −0.274707 0.961528i \(-0.588581\pi\)
−0.274707 + 0.961528i \(0.588581\pi\)
\(642\) 10.7365 13.0865i 0.423736 0.516481i
\(643\) −50.3060 −1.98387 −0.991937 0.126735i \(-0.959550\pi\)
−0.991937 + 0.126735i \(0.959550\pi\)
\(644\) 2.85286 + 14.3199i 0.112419 + 0.564282i
\(645\) 10.8184 + 0.680690i 0.425973 + 0.0268021i
\(646\) −5.95118 + 7.25375i −0.234146 + 0.285395i
\(647\) 15.4702 15.4702i 0.608197 0.608197i −0.334278 0.942475i \(-0.608492\pi\)
0.942475 + 0.334278i \(0.108492\pi\)
\(648\) 2.49505 + 1.33219i 0.0980148 + 0.0523333i
\(649\) −19.5016 −0.765505
\(650\) 24.2718 + 25.6371i 0.952018 + 1.00557i
\(651\) 1.99349 + 1.99349i 0.0781309 + 0.0781309i
\(652\) −3.01116 15.1144i −0.117926 0.591926i
\(653\) 25.9406i 1.01514i 0.861612 + 0.507568i \(0.169455\pi\)
−0.861612 + 0.507568i \(0.830545\pi\)
\(654\) 0.768614 + 7.79189i 0.0300552 + 0.304687i
\(655\) −30.1571 34.2068i −1.17833 1.33657i
\(656\) −1.18400 2.85359i −0.0462275 0.111414i
\(657\) 10.3838 10.3838i 0.405110 0.405110i
\(658\) −2.28824 + 2.78909i −0.0892050 + 0.108730i
\(659\) 12.5270 + 12.5270i 0.487981 + 0.487981i 0.907669 0.419687i \(-0.137860\pi\)
−0.419687 + 0.907669i \(0.637860\pi\)
\(660\) 21.9269 + 16.7238i 0.853503 + 0.650975i
\(661\) −26.5534 + 26.5534i −1.03281 + 1.03281i −0.0333644 + 0.999443i \(0.510622\pi\)
−0.999443 + 0.0333644i \(0.989378\pi\)
\(662\) −0.889870 + 0.0877793i −0.0345858 + 0.00341164i
\(663\) −11.3471 11.3471i −0.440686 0.440686i
\(664\) −18.9554 10.1209i −0.735612 0.392768i
\(665\) −1.16070 + 18.4473i −0.0450100 + 0.715355i
\(666\) −6.88513 5.64875i −0.266793 0.218885i
\(667\) −2.48985 −0.0964074
\(668\) −10.9172 7.28993i −0.422401 0.282056i
\(669\) −4.29237 + 4.29237i −0.165953 + 0.165953i
\(670\) −28.5792 + 30.6831i −1.10411 + 1.18539i
\(671\) 6.92837i 0.267467i
\(672\) −10.6937 19.9704i −0.412518 0.770377i
\(673\) 10.4724 + 10.4724i 0.403681 + 0.403681i 0.879528 0.475847i \(-0.157858\pi\)
−0.475847 + 0.879528i \(0.657858\pi\)
\(674\) 0.820564 + 8.31853i 0.0316069 + 0.320418i
\(675\) 4.96057 + 0.626717i 0.190932 + 0.0241224i
\(676\) 4.66094 + 23.3955i 0.179267 + 0.899826i
\(677\) 23.5614i 0.905539i 0.891628 + 0.452769i \(0.149564\pi\)
−0.891628 + 0.452769i \(0.850436\pi\)
\(678\) −18.1888 + 1.79419i −0.698537 + 0.0689056i
\(679\) 4.25534i 0.163305i
\(680\) −4.67658 19.7826i −0.179338 0.758626i
\(681\) 13.2703i 0.508517i
\(682\) −0.602666 6.10957i −0.0230773 0.233948i
\(683\) 30.7873i 1.17804i 0.808117 + 0.589021i \(0.200487\pi\)
−0.808117 + 0.589021i \(0.799513\pi\)
\(684\) 2.29257 3.43330i 0.0876585 0.131275i
\(685\) 8.41457 7.41837i 0.321504 0.283441i
\(686\) −11.4787 + 1.13229i −0.438259 + 0.0432311i
\(687\) −11.4064 11.4064i −0.435183 0.435183i
\(688\) 7.43127 + 17.9103i 0.283314 + 0.682822i
\(689\) 20.8622i 0.794785i
\(690\) −0.204546 5.76143i −0.00778693 0.219334i
\(691\) 16.3289 16.3289i 0.621182 0.621182i −0.324652 0.945834i \(-0.605247\pi\)
0.945834 + 0.324652i \(0.105247\pi\)
\(692\) −46.9890 + 9.36135i −1.78626 + 0.355865i
\(693\) −24.6936 −0.938033
\(694\) −27.3401 + 33.3242i −1.03781 + 1.26497i
\(695\) 8.72365 + 9.89515i 0.330907 + 0.375344i
\(696\) 3.69607 1.12301i 0.140099 0.0425675i
\(697\) 1.75537 + 1.75537i 0.0664895 + 0.0664895i
\(698\) 4.74124 + 48.0647i 0.179459 + 1.81928i
\(699\) 8.19734 8.19734i 0.310052 0.310052i
\(700\) −30.2535 26.2373i −1.14347 0.991676i
\(701\) −15.1215 15.1215i −0.571130 0.571130i 0.361314 0.932444i \(-0.382328\pi\)
−0.932444 + 0.361314i \(0.882328\pi\)
\(702\) 5.45876 + 4.47852i 0.206028 + 0.169031i
\(703\) −9.19161 + 9.19161i −0.346668 + 0.346668i
\(704\) −9.58041 + 48.3915i −0.361075 + 1.82382i
\(705\) 1.06847 0.941975i 0.0402410 0.0354768i
\(706\) 34.4496 3.39821i 1.29653 0.127893i
\(707\) 30.0187i 1.12897i
\(708\) −5.26025 3.51250i −0.197692 0.132008i
\(709\) −20.5244 20.5244i −0.770812 0.770812i 0.207437 0.978248i \(-0.433488\pi\)
−0.978248 + 0.207437i \(0.933488\pi\)
\(710\) −25.1122 23.3903i −0.942446 0.877822i
\(711\) −4.49087 −0.168421
\(712\) 26.8085 + 14.3139i 1.00469 + 0.536438i
\(713\) −0.907527 + 0.907527i −0.0339872 + 0.0339872i
\(714\) 14.0725 + 11.5455i 0.526651 + 0.432079i
\(715\) 45.5257 + 51.6393i 1.70257 + 1.93120i
\(716\) 2.05327 3.07493i 0.0767342 0.114915i
\(717\) −10.6504 −0.397745
\(718\) 32.1881 + 26.4080i 1.20125 + 0.985539i
\(719\) −13.6873 −0.510451 −0.255225 0.966882i \(-0.582150\pi\)
−0.255225 + 0.966882i \(0.582150\pi\)
\(720\) 2.90224 + 8.46032i 0.108160 + 0.315298i
\(721\) 30.4889 1.13547
\(722\) 16.1149 + 13.2211i 0.599733 + 0.492037i
\(723\) 1.22690 0.0456288
\(724\) 16.3546 + 10.9207i 0.607813 + 0.405864i
\(725\) 5.39580 4.18532i 0.200395 0.155439i
\(726\) 29.5461 + 24.2404i 1.09656 + 0.899647i
\(727\) 29.3029 29.3029i 1.08678 1.08678i 0.0909272 0.995858i \(-0.471017\pi\)
0.995858 0.0909272i \(-0.0289831\pi\)
\(728\) −16.4403 54.1088i −0.609319 2.00541i
\(729\) 1.00000 0.0370370
\(730\) 46.4085 1.64762i 1.71766 0.0609813i
\(731\) −11.0174 11.0174i −0.407494 0.407494i
\(732\) −1.24789 + 1.86882i −0.0461234 + 0.0690734i
\(733\) 47.2879i 1.74662i 0.487166 + 0.873309i \(0.338031\pi\)
−0.487166 + 0.873309i \(0.661969\pi\)
\(734\) −21.4316 + 2.11408i −0.791056 + 0.0780320i
\(735\) 20.1668 + 1.26889i 0.743862 + 0.0468037i
\(736\) 9.09147 4.86826i 0.335116 0.179447i
\(737\) −57.8162 + 57.8162i −2.12969 + 2.12969i
\(738\) −0.844457 0.692816i −0.0310849 0.0255029i
\(739\) −15.3480 15.3480i −0.564587 0.564587i 0.366020 0.930607i \(-0.380720\pi\)
−0.930607 + 0.366020i \(0.880720\pi\)
\(740\) −3.75728 27.9109i −0.138120 1.02602i
\(741\) 7.28741 7.28741i 0.267710 0.267710i
\(742\) −2.32303 23.5499i −0.0852810 0.864543i
\(743\) 16.7906 + 16.7906i 0.615987 + 0.615987i 0.944500 0.328513i \(-0.106547\pi\)
−0.328513 + 0.944500i \(0.606547\pi\)
\(744\) 0.937857 1.75651i 0.0343835 0.0643967i
\(745\) 19.9742 17.6095i 0.731799 0.645161i
\(746\) −28.7966 + 35.0995i −1.05432 + 1.28508i
\(747\) −7.59721 −0.277967
\(748\) −7.74477 38.8746i −0.283177 1.42140i
\(749\) −33.8930 + 33.8930i −1.23842 + 1.23842i
\(750\) 10.1280 + 12.1419i 0.369821 + 0.443358i
\(751\) 37.3096i 1.36145i 0.732540 + 0.680724i \(0.238335\pi\)
−0.732540 + 0.680724i \(0.761665\pi\)
\(752\) 2.35469 + 0.973690i 0.0858668 + 0.0355068i
\(753\) 11.5822 + 11.5822i 0.422078 + 0.422078i
\(754\) 9.59671 0.946647i 0.349492 0.0344748i
\(755\) 0.697863 11.0913i 0.0253978 0.403654i
\(756\) −6.66071 4.44766i −0.242248 0.161760i
\(757\) 2.73045i 0.0992397i 0.998768 + 0.0496199i \(0.0158010\pi\)
−0.998768 + 0.0496199i \(0.984199\pi\)
\(758\) −4.58101 46.4404i −0.166390 1.68679i
\(759\) 11.2417i 0.408047i
\(760\) 12.7049 3.00341i 0.460854 0.108945i
\(761\) 43.2111i 1.56640i 0.621768 + 0.783201i \(0.286415\pi\)
−0.621768 + 0.783201i \(0.713585\pi\)
\(762\) −30.9620 + 3.05418i −1.12163 + 0.110641i
\(763\) 22.1711i 0.802649i
\(764\) 4.75979 0.948265i 0.172203 0.0343070i
\(765\) −4.75280 5.39105i −0.171838 0.194914i
\(766\) 1.37881 + 13.9778i 0.0498183 + 0.505037i
\(767\) −11.1652 11.1652i −0.403154 0.403154i
\(768\) −11.3001 + 11.3273i −0.407758 + 0.408738i
\(769\) 41.3520i 1.49119i −0.666398 0.745596i \(-0.732165\pi\)
0.666398 0.745596i \(-0.267835\pi\)
\(770\) −57.1410 53.2228i −2.05922 1.91802i
\(771\) −5.72342 + 5.72342i −0.206124 + 0.206124i
\(772\) −0.960490 + 1.43841i −0.0345688 + 0.0517695i
\(773\) 10.4113 0.374469 0.187234 0.982315i \(-0.440048\pi\)
0.187234 + 0.982315i \(0.440048\pi\)
\(774\) 5.30015 + 4.34839i 0.190510 + 0.156300i
\(775\) 0.441207 3.49223i 0.0158486 0.125444i
\(776\) −2.87573 + 0.873755i −0.103233 + 0.0313660i
\(777\) 17.8320 + 17.8320i 0.639720 + 0.639720i
\(778\) 45.7848 4.51634i 1.64146 0.161919i
\(779\) −1.12735 + 1.12735i −0.0403913 + 0.0403913i
\(780\) 2.97889 + 22.1287i 0.106662 + 0.792334i
\(781\) −47.3190 47.3190i −1.69321 1.69321i
\(782\) −5.25604 + 6.40646i −0.187956 + 0.229095i
\(783\) 0.965728 0.965728i 0.0345123 0.0345123i
\(784\) 13.8528 + 33.3869i 0.494742 + 1.19239i
\(785\) 2.03080 32.2760i 0.0724824 1.15198i
\(786\) −2.83125 28.7020i −0.100987 1.02377i
\(787\) 9.84332i 0.350877i 0.984490 + 0.175438i \(0.0561342\pi\)
−0.984490 + 0.175438i \(0.943866\pi\)
\(788\) −24.7873 + 4.93823i −0.883010 + 0.175917i
\(789\) −6.70033 6.70033i −0.238538 0.238538i
\(790\) −10.3919 9.67928i −0.369726 0.344373i
\(791\) 51.7546 1.84018
\(792\) 5.07038 + 16.6878i 0.180168 + 0.592974i
\(793\) −3.96669 + 3.96669i −0.140861 + 0.140861i
\(794\) 22.4753 27.3947i 0.797620 0.972200i
\(795\) −0.586724 + 9.32494i −0.0208090 + 0.330722i
\(796\) −19.6215 + 3.90908i −0.695467 + 0.138554i
\(797\) −13.2854 −0.470592 −0.235296 0.971924i \(-0.575606\pi\)
−0.235296 + 0.971924i \(0.575606\pi\)
\(798\) −7.41480 + 9.03772i −0.262481 + 0.319932i
\(799\) −2.04744 −0.0724333
\(800\) −11.5190 + 25.8324i −0.407257 + 0.913314i
\(801\) 10.7447 0.379645
\(802\) −5.57719 + 6.79790i −0.196937 + 0.240042i
\(803\) 90.5522 3.19552
\(804\) −26.0085 + 5.18152i −0.917248 + 0.182738i
\(805\) −1.02512 + 16.2925i −0.0361308 + 0.574235i
\(806\) 3.15287 3.84295i 0.111055 0.135362i
\(807\) −1.08527 + 1.08527i −0.0382032 + 0.0382032i
\(808\) 20.2864 6.16378i 0.713673 0.216841i
\(809\) 7.77887 0.273490 0.136745 0.990606i \(-0.456336\pi\)
0.136745 + 0.990606i \(0.456336\pi\)
\(810\) 2.31400 + 2.15532i 0.0813055 + 0.0757304i
\(811\) 33.4895 + 33.4895i 1.17598 + 1.17598i 0.980760 + 0.195215i \(0.0625405\pi\)
0.195215 + 0.980760i \(0.437459\pi\)
\(812\) −10.7277 + 2.13721i −0.376467 + 0.0750014i
\(813\) 3.21705i 0.112827i
\(814\) −5.39093 54.6510i −0.188952 1.91552i
\(815\) 1.08200 17.1965i 0.0379009 0.602368i
\(816\) 4.91282 11.8807i 0.171983 0.415909i
\(817\) 7.07567 7.07567i 0.247546 0.247546i
\(818\) −11.8072 + 14.3915i −0.412829 + 0.503187i
\(819\) −14.1378 14.1378i −0.494016 0.494016i
\(820\) −0.460828 3.42325i −0.0160928 0.119545i
\(821\) 22.0992 22.0992i 0.771267 0.771267i −0.207061 0.978328i \(-0.566390\pi\)
0.978328 + 0.207061i \(0.0663898\pi\)
\(822\) 7.06044 0.696462i 0.246261 0.0242919i
\(823\) 6.47786 + 6.47786i 0.225804 + 0.225804i 0.810937 0.585133i \(-0.198958\pi\)
−0.585133 + 0.810937i \(0.698958\pi\)
\(824\) −6.26034 20.6042i −0.218089 0.717781i
\(825\) 18.8967 + 24.3620i 0.657899 + 0.848177i
\(826\) 13.8469 + 11.3604i 0.481797 + 0.395279i
\(827\) −0.819945 −0.0285123 −0.0142561 0.999898i \(-0.504538\pi\)
−0.0142561 + 0.999898i \(0.504538\pi\)
\(828\) 2.02478 3.03226i 0.0703659 0.105378i
\(829\) −27.4647 + 27.4647i −0.953888 + 0.953888i −0.998983 0.0450945i \(-0.985641\pi\)
0.0450945 + 0.998983i \(0.485641\pi\)
\(830\) −17.5799 16.3744i −0.610207 0.568365i
\(831\) 28.2079i 0.978522i
\(832\) −33.1906 + 22.2205i −1.15068 + 0.770357i
\(833\) −20.5378 20.5378i −0.711594 0.711594i
\(834\) 0.819007 + 8.30275i 0.0283599 + 0.287501i
\(835\) −9.70595 11.0094i −0.335888 0.380995i
\(836\) 24.9663 4.97389i 0.863476 0.172025i
\(837\) 0.703997i 0.0243337i
\(838\) 29.2607 2.88636i 1.01079 0.0997075i
\(839\) 25.9917i 0.897335i 0.893699 + 0.448667i \(0.148101\pi\)
−0.893699 + 0.448667i \(0.851899\pi\)
\(840\) −5.82672 24.6478i −0.201041 0.850432i
\(841\) 27.1347i 0.935681i
\(842\) 3.34709 + 33.9314i 0.115348 + 1.16935i
\(843\) 24.5928i 0.847023i
\(844\) −22.7394 15.1841i −0.782722 0.522659i
\(845\) −1.67482 + 26.6183i −0.0576156 + 0.915698i
\(846\) 0.896526 0.0884359i 0.0308232 0.00304049i
\(847\) −76.5224 76.5224i −2.62934 2.62934i
\(848\) −15.4378 + 6.40541i −0.530137 + 0.219963i
\(849\) 15.0862i 0.517756i
\(850\) 0.621495 22.7187i 0.0213171 0.779245i
\(851\) −8.11796 + 8.11796i −0.278280 + 0.278280i
\(852\) −4.24075 21.2863i −0.145286 0.729258i
\(853\) 13.8457 0.474069 0.237034 0.971501i \(-0.423825\pi\)
0.237034 + 0.971501i \(0.423825\pi\)
\(854\) 4.03603 4.91942i 0.138110 0.168339i
\(855\) 3.46227 3.05237i 0.118407 0.104389i
\(856\) 29.8640 + 15.9454i 1.02073 + 0.545001i
\(857\) 27.4340 + 27.4340i 0.937127 + 0.937127i 0.998137 0.0610099i \(-0.0194321\pi\)
−0.0610099 + 0.998137i \(0.519432\pi\)
\(858\) 4.27411 + 43.3292i 0.145916 + 1.47923i
\(859\) 3.11480 3.11480i 0.106276 0.106276i −0.651969 0.758245i \(-0.726057\pi\)
0.758245 + 0.651969i \(0.226057\pi\)
\(860\) 2.89234 + 21.4857i 0.0986280 + 0.732657i
\(861\) 2.18709 + 2.18709i 0.0745357 + 0.0745357i
\(862\) 20.2665 + 16.6272i 0.690278 + 0.566323i
\(863\) 18.7075 18.7075i 0.636810 0.636810i −0.312957 0.949767i \(-0.601320\pi\)
0.949767 + 0.312957i \(0.101320\pi\)
\(864\) −1.63804 + 5.41450i −0.0557272 + 0.184205i
\(865\) −53.4620 3.36382i −1.81776 0.114373i
\(866\) 18.8596 1.86037i 0.640877 0.0632179i
\(867\) 6.66950i 0.226508i
\(868\) −3.13114 + 4.68912i −0.106278 + 0.159159i
\(869\) −19.5814 19.5814i −0.664253 0.664253i
\(870\) 4.31615 0.153235i 0.146331 0.00519514i
\(871\) −66.2029 −2.24320
\(872\) −14.9831 + 4.55243i −0.507391 + 0.154165i
\(873\) −0.751384 + 0.751384i −0.0254305 + 0.0254305i
\(874\) −4.11439 3.37556i −0.139171 0.114180i
\(875\) −25.1654 37.0309i −0.850744 1.25187i
\(876\) 24.4250 + 16.3097i 0.825244 + 0.551053i
\(877\) −20.1135 −0.679184 −0.339592 0.940573i \(-0.610289\pi\)
−0.339592 + 0.940573i \(0.610289\pi\)
\(878\) −23.8278 19.5490i −0.804150 0.659747i
\(879\) −3.49295 −0.117814
\(880\) −24.2347 + 49.5437i −0.816952 + 1.67012i
\(881\) 8.65598 0.291628 0.145814 0.989312i \(-0.453420\pi\)
0.145814 + 0.989312i \(0.453420\pi\)
\(882\) 9.88013 + 8.10594i 0.332681 + 0.272941i
\(883\) −15.9095 −0.535399 −0.267699 0.963502i \(-0.586263\pi\)
−0.267699 + 0.963502i \(0.586263\pi\)
\(884\) 17.8228 26.6910i 0.599444 0.897715i
\(885\) −4.67661 5.30463i −0.157203 0.178313i
\(886\) −28.7256 23.5673i −0.965054 0.791757i
\(887\) 19.2454 19.2454i 0.646197 0.646197i −0.305875 0.952072i \(-0.598949\pi\)
0.952072 + 0.305875i \(0.0989489\pi\)
\(888\) 8.38927 15.7122i 0.281526 0.527268i
\(889\) 88.0995 2.95476
\(890\) 24.8631 + 23.1583i 0.833415 + 0.776267i
\(891\) 4.36026 + 4.36026i 0.146074 + 0.146074i
\(892\) −10.0966 6.74196i −0.338060 0.225738i
\(893\) 1.31492i 0.0440021i
\(894\) 16.7598 1.65324i 0.560533 0.0552925i
\(895\) 3.10087 2.73376i 0.103651 0.0913795i
\(896\) 34.9923 28.7790i 1.16901 0.961439i
\(897\) 6.43619 6.43619i 0.214898 0.214898i
\(898\) −31.9926 26.2476i −1.06761 0.875895i
\(899\) −0.679870 0.679870i −0.0226749 0.0226749i
\(900\) 0.709159 + 9.97482i 0.0236386 + 0.332494i
\(901\) 9.49652 9.49652i 0.316375 0.316375i
\(902\) −0.661195 6.70292i −0.0220154 0.223183i
\(903\) −13.7270 13.7270i −0.456807 0.456807i
\(904\) −10.6268 34.9754i −0.353444 1.16326i
\(905\) 14.5400 + 16.4926i 0.483327 + 0.548232i
\(906\) 4.45810 5.43387i 0.148110 0.180528i
\(907\) −13.9176 −0.462128 −0.231064 0.972939i \(-0.574221\pi\)
−0.231064 + 0.972939i \(0.574221\pi\)
\(908\) −26.0290 + 5.18560i −0.863802 + 0.172090i
\(909\) 5.30053 5.30053i 0.175808 0.175808i
\(910\) −2.24329 63.1865i −0.0743642 2.09461i
\(911\) 3.79155i 0.125620i −0.998026 0.0628098i \(-0.979994\pi\)
0.998026 0.0628098i \(-0.0200062\pi\)
\(912\) 7.63012 + 3.15514i 0.252658 + 0.104477i
\(913\) −33.1258 33.1258i −1.09630 1.09630i
\(914\) 36.3212 3.58283i 1.20140 0.118510i
\(915\) −1.88458 + 1.66147i −0.0623025 + 0.0549264i
\(916\) 17.9159 26.8305i 0.591958 0.886504i
\(917\) 81.6690i 2.69695i
\(918\) −0.446209 4.52348i −0.0147271 0.149297i
\(919\) 12.6465i 0.417169i 0.978004 + 0.208584i \(0.0668856\pi\)
−0.978004 + 0.208584i \(0.933114\pi\)
\(920\) 11.2208 2.65259i 0.369940 0.0874535i
\(921\) 7.81653i 0.257563i
\(922\) −10.2199 + 1.00812i −0.336573 + 0.0332005i
\(923\) 54.1830i 1.78346i
\(924\) −9.64950 48.4354i −0.317445 1.59341i
\(925\) 3.94666 31.2385i 0.129766 1.02711i
\(926\) 2.00338 + 20.3094i 0.0658352 + 0.667409i
\(927\) −5.38356 5.38356i −0.176819 0.176819i
\(928\) 3.64704 + 6.81083i 0.119720 + 0.223577i
\(929\) 52.7686i 1.73128i −0.500665 0.865641i \(-0.666911\pi\)
0.500665 0.865641i \(-0.333089\pi\)
\(930\) 1.51734 1.62905i 0.0497556 0.0534186i
\(931\) 13.1899 13.1899i 0.432282 0.432282i
\(932\) 19.2820 + 12.8754i 0.631602 + 0.421749i
\(933\) 6.15295 0.201438
\(934\) 26.5349 + 21.7700i 0.868248 + 0.712335i
\(935\) 2.78294 44.2298i 0.0910117 1.44647i
\(936\) −6.65129 + 12.4572i −0.217404 + 0.407176i
\(937\) 12.0351 + 12.0351i 0.393168 + 0.393168i 0.875815 0.482647i \(-0.160324\pi\)
−0.482647 + 0.875815i \(0.660324\pi\)
\(938\) 74.7320 7.37177i 2.44009 0.240697i
\(939\) 9.65621 9.65621i 0.315119 0.315119i
\(940\) 2.26517 + 1.72766i 0.0738816 + 0.0563502i
\(941\) 43.1823 + 43.1823i 1.40770 + 1.40770i 0.771626 + 0.636076i \(0.219444\pi\)
0.636076 + 0.771626i \(0.280556\pi\)
\(942\) 12.9732 15.8127i 0.422689 0.515206i
\(943\) −0.995664 + 0.995664i −0.0324233 + 0.0324233i
\(944\) 4.83407 11.6903i 0.157336 0.380487i
\(945\) −5.92169 6.71691i −0.192633 0.218501i
\(946\) 4.14992 + 42.0702i 0.134926 + 1.36782i
\(947\) 34.2870i 1.11418i 0.830453 + 0.557089i \(0.188082\pi\)
−0.830453 + 0.557089i \(0.811918\pi\)
\(948\) −1.75489 8.80863i −0.0569963 0.286091i
\(949\) 51.8438 + 51.8438i 1.68292 + 1.68292i
\(950\) 14.5905 + 0.399140i 0.473379 + 0.0129498i
\(951\) 10.5517 0.342162
\(952\) −17.1468 + 32.1142i −0.555732 + 1.04083i
\(953\) −8.81942 + 8.81942i −0.285689 + 0.285689i −0.835373 0.549684i \(-0.814748\pi\)
0.549684 + 0.835373i \(0.314748\pi\)
\(954\) −3.74812 + 4.56849i −0.121350 + 0.147910i
\(955\) 5.41547 + 0.340741i 0.175241 + 0.0110261i
\(956\) −4.16184 20.8902i −0.134603 0.675638i
\(957\) 8.42165 0.272233
\(958\) −22.5053 + 27.4311i −0.727112 + 0.886260i
\(959\) −20.0898 −0.648735
\(960\) −15.4604 + 8.99864i −0.498983 + 0.290430i
\(961\) 30.5044 0.984013
\(962\) 28.2029 34.3758i 0.909296 1.10832i
\(963\) 11.9693 0.385705
\(964\) 0.479434 + 2.40650i 0.0154415 + 0.0775083i
\(965\) −1.45055 + 1.27881i −0.0466947 + 0.0411665i
\(966\) −6.54870 + 7.98206i −0.210701 + 0.256818i
\(967\) 1.93099 1.93099i 0.0620964 0.0620964i −0.675377 0.737473i \(-0.736019\pi\)
0.737473 + 0.675377i \(0.236019\pi\)
\(968\) −36.0008 + 67.4257i −1.15711 + 2.16714i
\(969\) −6.63451 −0.213131
\(970\) −3.35818 + 0.119224i −0.107825 + 0.00382806i
\(971\) 6.98427 + 6.98427i 0.224136 + 0.224136i 0.810238 0.586102i \(-0.199338\pi\)
−0.586102 + 0.810238i \(0.699338\pi\)
\(972\) 0.390769 + 1.96145i 0.0125339 + 0.0629136i
\(973\) 23.6247i 0.757374i
\(974\) −0.0726040 0.736029i −0.00232638 0.0235839i
\(975\) −3.12905 + 24.7669i −0.100210 + 0.793176i
\(976\) −4.15323 1.71741i −0.132942 0.0549729i
\(977\) 28.9284 28.9284i 0.925502 0.925502i −0.0719094 0.997411i \(-0.522909\pi\)
0.997411 + 0.0719094i \(0.0229092\pi\)
\(978\) 6.91206 8.42495i 0.221023 0.269400i
\(979\) 46.8496 + 46.8496i 1.49732 + 1.49732i
\(980\) 5.39168 + 40.0520i 0.172231 + 1.27941i
\(981\) −3.91485 + 3.91485i −0.124992 + 0.124992i
\(982\) 38.3742 3.78534i 1.22457 0.120795i
\(983\) −23.8805 23.8805i −0.761669 0.761669i 0.214955 0.976624i \(-0.431039\pi\)
−0.976624 + 0.214955i \(0.931039\pi\)
\(984\) 1.02894 1.92710i 0.0328014 0.0614335i
\(985\) −28.2019 1.77446i −0.898586 0.0565389i
\(986\) −4.79937 3.93754i −0.152843 0.125397i
\(987\) −2.55099 −0.0811988
\(988\) 17.1416 + 11.4462i 0.545347 + 0.364153i
\(989\) 6.24918 6.24918i 0.198712 0.198712i
\(990\) 0.691854 + 19.4874i 0.0219886 + 0.619351i
\(991\) 29.1750i 0.926774i 0.886156 + 0.463387i \(0.153366\pi\)
−0.886156 + 0.463387i \(0.846634\pi\)
\(992\) 3.81180 + 1.15317i 0.121025 + 0.0366133i
\(993\) −0.447095 0.447095i −0.0141881 0.0141881i
\(994\) 6.03334 + 61.1635i 0.191366 + 1.93999i
\(995\) −22.3245 1.40465i −0.707734 0.0445305i
\(996\) −2.96875 14.9016i −0.0940685 0.472174i
\(997\) 42.5940i 1.34896i −0.738291 0.674482i \(-0.764367\pi\)
0.738291 0.674482i \(-0.235633\pi\)
\(998\) 34.0869 3.36243i 1.07900 0.106436i
\(999\) 6.29736i 0.199240i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.2.y.f.163.3 20
3.2 odd 2 720.2.z.h.163.8 20
4.3 odd 2 960.2.y.f.943.6 20
5.2 odd 4 240.2.bc.f.67.2 yes 20
8.3 odd 2 1920.2.y.k.223.5 20
8.5 even 2 1920.2.y.l.223.5 20
15.2 even 4 720.2.bd.h.307.9 20
16.3 odd 4 1920.2.bc.k.1183.1 20
16.5 even 4 960.2.bc.f.463.10 20
16.11 odd 4 240.2.bc.f.43.2 yes 20
16.13 even 4 1920.2.bc.l.1183.1 20
20.7 even 4 960.2.bc.f.367.10 20
40.27 even 4 1920.2.bc.l.607.1 20
40.37 odd 4 1920.2.bc.k.607.1 20
48.11 even 4 720.2.bd.h.523.9 20
80.27 even 4 inner 240.2.y.f.187.3 yes 20
80.37 odd 4 960.2.y.f.847.6 20
80.67 even 4 1920.2.y.l.1567.5 20
80.77 odd 4 1920.2.y.k.1567.5 20
240.107 odd 4 720.2.z.h.667.8 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.f.163.3 20 1.1 even 1 trivial
240.2.y.f.187.3 yes 20 80.27 even 4 inner
240.2.bc.f.43.2 yes 20 16.11 odd 4
240.2.bc.f.67.2 yes 20 5.2 odd 4
720.2.z.h.163.8 20 3.2 odd 2
720.2.z.h.667.8 20 240.107 odd 4
720.2.bd.h.307.9 20 15.2 even 4
720.2.bd.h.523.9 20 48.11 even 4
960.2.y.f.847.6 20 80.37 odd 4
960.2.y.f.943.6 20 4.3 odd 2
960.2.bc.f.367.10 20 20.7 even 4
960.2.bc.f.463.10 20 16.5 even 4
1920.2.y.k.223.5 20 8.3 odd 2
1920.2.y.k.1567.5 20 80.77 odd 4
1920.2.y.l.223.5 20 8.5 even 2
1920.2.y.l.1567.5 20 80.67 even 4
1920.2.bc.k.607.1 20 40.37 odd 4
1920.2.bc.k.1183.1 20 16.3 odd 4
1920.2.bc.l.607.1 20 40.27 even 4
1920.2.bc.l.1183.1 20 16.13 even 4