Properties

Label 1920.2.y.k.223.5
Level $1920$
Weight $2$
Character 1920.223
Analytic conductor $15.331$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1920,2,Mod(223,1920)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1920, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1920.223"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.y (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,-20,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 3 x^{18} - 6 x^{17} + 2 x^{16} + 4 x^{14} + 20 x^{13} - 24 x^{12} + 40 x^{11} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{17} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 223.5
Root \(-1.09334 - 0.897004i\) of defining polynomial
Character \(\chi\) \(=\) 1920.223
Dual form 1920.2.y.k.1567.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +(-0.140415 + 2.23165i) q^{5} +(2.83167 - 2.83167i) q^{7} +1.00000 q^{9} +(4.36026 + 4.36026i) q^{11} -4.99276i q^{13} +(0.140415 - 2.23165i) q^{15} +(2.27272 - 2.27272i) q^{17} +(1.45960 + 1.45960i) q^{19} +(-2.83167 + 2.83167i) q^{21} +(-1.28911 - 1.28911i) q^{23} +(-4.96057 - 0.626717i) q^{25} -1.00000 q^{27} +(0.965728 - 0.965728i) q^{29} -0.703997i q^{31} +(-4.36026 - 4.36026i) q^{33} +(5.92169 + 6.71691i) q^{35} -6.29736i q^{37} +4.99276i q^{39} +0.772367i q^{41} -4.84769i q^{43} +(-0.140415 + 2.23165i) q^{45} +(0.450439 + 0.450439i) q^{47} -9.03668i q^{49} +(-2.27272 + 2.27272i) q^{51} -4.17849 q^{53} +(-10.3428 + 9.11835i) q^{55} +(-1.45960 - 1.45960i) q^{57} +(-2.23629 + 2.23629i) q^{59} +(-0.794490 - 0.794490i) q^{61} +(2.83167 - 2.83167i) q^{63} +(11.1421 + 0.701060i) q^{65} +13.2598i q^{67} +(1.28911 + 1.28911i) q^{69} +10.8523 q^{71} +(10.3838 - 10.3838i) q^{73} +(4.96057 + 0.626717i) q^{75} +24.6936 q^{77} +4.49087 q^{79} +1.00000 q^{81} -7.59721 q^{83} +(4.75280 + 5.39105i) q^{85} +(-0.965728 + 0.965728i) q^{87} +10.7447 q^{89} +(-14.1378 - 14.1378i) q^{91} +0.703997i q^{93} +(-3.46227 + 3.05237i) q^{95} +(-0.751384 + 0.751384i) q^{97} +(4.36026 + 4.36026i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 20 q^{3} + 4 q^{7} + 20 q^{9} + 8 q^{11} + 12 q^{17} + 16 q^{19} - 4 q^{21} + 16 q^{23} + 4 q^{25} - 20 q^{27} - 8 q^{33} - 28 q^{35} - 12 q^{51} - 8 q^{53} + 4 q^{55} - 16 q^{57} - 16 q^{59} + 12 q^{61}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) −0.140415 + 2.23165i −0.0627957 + 0.998026i
\(6\) 0 0
\(7\) 2.83167 2.83167i 1.07027 1.07027i 0.0729328 0.997337i \(-0.476764\pi\)
0.997337 0.0729328i \(-0.0232359\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 4.36026 + 4.36026i 1.31467 + 1.31467i 0.917933 + 0.396736i \(0.129857\pi\)
0.396736 + 0.917933i \(0.370143\pi\)
\(12\) 0 0
\(13\) 4.99276i 1.38474i −0.721542 0.692371i \(-0.756566\pi\)
0.721542 0.692371i \(-0.243434\pi\)
\(14\) 0 0
\(15\) 0.140415 2.23165i 0.0362551 0.576211i
\(16\) 0 0
\(17\) 2.27272 2.27272i 0.551215 0.551215i −0.375576 0.926791i \(-0.622555\pi\)
0.926791 + 0.375576i \(0.122555\pi\)
\(18\) 0 0
\(19\) 1.45960 + 1.45960i 0.334855 + 0.334855i 0.854427 0.519572i \(-0.173909\pi\)
−0.519572 + 0.854427i \(0.673909\pi\)
\(20\) 0 0
\(21\) −2.83167 + 2.83167i −0.617920 + 0.617920i
\(22\) 0 0
\(23\) −1.28911 1.28911i −0.268797 0.268797i 0.559818 0.828615i \(-0.310871\pi\)
−0.828615 + 0.559818i \(0.810871\pi\)
\(24\) 0 0
\(25\) −4.96057 0.626717i −0.992113 0.125343i
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 0.965728 0.965728i 0.179331 0.179331i −0.611733 0.791064i \(-0.709527\pi\)
0.791064 + 0.611733i \(0.209527\pi\)
\(30\) 0 0
\(31\) 0.703997i 0.126442i −0.998000 0.0632208i \(-0.979863\pi\)
0.998000 0.0632208i \(-0.0201372\pi\)
\(32\) 0 0
\(33\) −4.36026 4.36026i −0.759024 0.759024i
\(34\) 0 0
\(35\) 5.92169 + 6.71691i 1.00095 + 1.13537i
\(36\) 0 0
\(37\) 6.29736i 1.03528i −0.855599 0.517640i \(-0.826811\pi\)
0.855599 0.517640i \(-0.173189\pi\)
\(38\) 0 0
\(39\) 4.99276i 0.799481i
\(40\) 0 0
\(41\) 0.772367i 0.120624i 0.998180 + 0.0603118i \(0.0192095\pi\)
−0.998180 + 0.0603118i \(0.980791\pi\)
\(42\) 0 0
\(43\) 4.84769i 0.739265i −0.929178 0.369633i \(-0.879484\pi\)
0.929178 0.369633i \(-0.120516\pi\)
\(44\) 0 0
\(45\) −0.140415 + 2.23165i −0.0209319 + 0.332675i
\(46\) 0 0
\(47\) 0.450439 + 0.450439i 0.0657033 + 0.0657033i 0.739195 0.673492i \(-0.235206\pi\)
−0.673492 + 0.739195i \(0.735206\pi\)
\(48\) 0 0
\(49\) 9.03668i 1.29095i
\(50\) 0 0
\(51\) −2.27272 + 2.27272i −0.318244 + 0.318244i
\(52\) 0 0
\(53\) −4.17849 −0.573959 −0.286980 0.957937i \(-0.592651\pi\)
−0.286980 + 0.957937i \(0.592651\pi\)
\(54\) 0 0
\(55\) −10.3428 + 9.11835i −1.39463 + 1.22952i
\(56\) 0 0
\(57\) −1.45960 1.45960i −0.193328 0.193328i
\(58\) 0 0
\(59\) −2.23629 + 2.23629i −0.291140 + 0.291140i −0.837530 0.546391i \(-0.816001\pi\)
0.546391 + 0.837530i \(0.316001\pi\)
\(60\) 0 0
\(61\) −0.794490 0.794490i −0.101724 0.101724i 0.654413 0.756137i \(-0.272916\pi\)
−0.756137 + 0.654413i \(0.772916\pi\)
\(62\) 0 0
\(63\) 2.83167 2.83167i 0.356757 0.356757i
\(64\) 0 0
\(65\) 11.1421 + 0.701060i 1.38201 + 0.0869558i
\(66\) 0 0
\(67\) 13.2598i 1.61994i 0.586470 + 0.809971i \(0.300517\pi\)
−0.586470 + 0.809971i \(0.699483\pi\)
\(68\) 0 0
\(69\) 1.28911 + 1.28911i 0.155190 + 0.155190i
\(70\) 0 0
\(71\) 10.8523 1.28793 0.643967 0.765053i \(-0.277287\pi\)
0.643967 + 0.765053i \(0.277287\pi\)
\(72\) 0 0
\(73\) 10.3838 10.3838i 1.21533 1.21533i 0.246083 0.969249i \(-0.420857\pi\)
0.969249 0.246083i \(-0.0791435\pi\)
\(74\) 0 0
\(75\) 4.96057 + 0.626717i 0.572797 + 0.0723671i
\(76\) 0 0
\(77\) 24.6936 2.81410
\(78\) 0 0
\(79\) 4.49087 0.505262 0.252631 0.967563i \(-0.418704\pi\)
0.252631 + 0.967563i \(0.418704\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −7.59721 −0.833902 −0.416951 0.908929i \(-0.636901\pi\)
−0.416951 + 0.908929i \(0.636901\pi\)
\(84\) 0 0
\(85\) 4.75280 + 5.39105i 0.515513 + 0.584741i
\(86\) 0 0
\(87\) −0.965728 + 0.965728i −0.103537 + 0.103537i
\(88\) 0 0
\(89\) 10.7447 1.13893 0.569467 0.822014i \(-0.307150\pi\)
0.569467 + 0.822014i \(0.307150\pi\)
\(90\) 0 0
\(91\) −14.1378 14.1378i −1.48205 1.48205i
\(92\) 0 0
\(93\) 0.703997i 0.0730011i
\(94\) 0 0
\(95\) −3.46227 + 3.05237i −0.355221 + 0.313166i
\(96\) 0 0
\(97\) −0.751384 + 0.751384i −0.0762915 + 0.0762915i −0.744223 0.667931i \(-0.767180\pi\)
0.667931 + 0.744223i \(0.267180\pi\)
\(98\) 0 0
\(99\) 4.36026 + 4.36026i 0.438223 + 0.438223i
\(100\) 0 0
\(101\) −5.30053 + 5.30053i −0.527423 + 0.527423i −0.919803 0.392380i \(-0.871652\pi\)
0.392380 + 0.919803i \(0.371652\pi\)
\(102\) 0 0
\(103\) 5.38356 + 5.38356i 0.530458 + 0.530458i 0.920709 0.390250i \(-0.127612\pi\)
−0.390250 + 0.920709i \(0.627612\pi\)
\(104\) 0 0
\(105\) −5.92169 6.71691i −0.577898 0.655504i
\(106\) 0 0
\(107\) 11.9693 1.15711 0.578557 0.815642i \(-0.303616\pi\)
0.578557 + 0.815642i \(0.303616\pi\)
\(108\) 0 0
\(109\) 3.91485 3.91485i 0.374975 0.374975i −0.494310 0.869285i \(-0.664579\pi\)
0.869285 + 0.494310i \(0.164579\pi\)
\(110\) 0 0
\(111\) 6.29736i 0.597719i
\(112\) 0 0
\(113\) −9.13854 9.13854i −0.859681 0.859681i 0.131619 0.991300i \(-0.457982\pi\)
−0.991300 + 0.131619i \(0.957982\pi\)
\(114\) 0 0
\(115\) 3.05785 2.69583i 0.285146 0.251387i
\(116\) 0 0
\(117\) 4.99276i 0.461580i
\(118\) 0 0
\(119\) 12.8712i 1.17990i
\(120\) 0 0
\(121\) 27.0238i 2.45671i
\(122\) 0 0
\(123\) 0.772367i 0.0696420i
\(124\) 0 0
\(125\) 2.09516 10.9823i 0.187397 0.982284i
\(126\) 0 0
\(127\) 15.5561 + 15.5561i 1.38038 + 1.38038i 0.843931 + 0.536451i \(0.180235\pi\)
0.536451 + 0.843931i \(0.319765\pi\)
\(128\) 0 0
\(129\) 4.84769i 0.426815i
\(130\) 0 0
\(131\) 14.4207 14.4207i 1.25994 1.25994i 0.308818 0.951121i \(-0.400067\pi\)
0.951121 0.308818i \(-0.0999333\pi\)
\(132\) 0 0
\(133\) 8.26619 0.716769
\(134\) 0 0
\(135\) 0.140415 2.23165i 0.0120850 0.192070i
\(136\) 0 0
\(137\) 3.54735 + 3.54735i 0.303071 + 0.303071i 0.842214 0.539143i \(-0.181252\pi\)
−0.539143 + 0.842214i \(0.681252\pi\)
\(138\) 0 0
\(139\) −4.17152 + 4.17152i −0.353824 + 0.353824i −0.861530 0.507706i \(-0.830494\pi\)
0.507706 + 0.861530i \(0.330494\pi\)
\(140\) 0 0
\(141\) −0.450439 0.450439i −0.0379338 0.0379338i
\(142\) 0 0
\(143\) 21.7697 21.7697i 1.82048 1.82048i
\(144\) 0 0
\(145\) 2.01957 + 2.29077i 0.167716 + 0.190238i
\(146\) 0 0
\(147\) 9.03668i 0.745333i
\(148\) 0 0
\(149\) −8.42059 8.42059i −0.689842 0.689842i 0.272355 0.962197i \(-0.412197\pi\)
−0.962197 + 0.272355i \(0.912197\pi\)
\(150\) 0 0
\(151\) −4.96999 −0.404452 −0.202226 0.979339i \(-0.564818\pi\)
−0.202226 + 0.979339i \(0.564818\pi\)
\(152\) 0 0
\(153\) 2.27272 2.27272i 0.183738 0.183738i
\(154\) 0 0
\(155\) 1.57108 + 0.0988521i 0.126192 + 0.00793999i
\(156\) 0 0
\(157\) −14.4628 −1.15426 −0.577129 0.816653i \(-0.695827\pi\)
−0.577129 + 0.816653i \(0.695827\pi\)
\(158\) 0 0
\(159\) 4.17849 0.331376
\(160\) 0 0
\(161\) −7.30064 −0.575371
\(162\) 0 0
\(163\) 7.70573 0.603559 0.301779 0.953378i \(-0.402419\pi\)
0.301779 + 0.953378i \(0.402419\pi\)
\(164\) 0 0
\(165\) 10.3428 9.11835i 0.805190 0.709863i
\(166\) 0 0
\(167\) −4.64125 + 4.64125i −0.359150 + 0.359150i −0.863500 0.504349i \(-0.831732\pi\)
0.504349 + 0.863500i \(0.331732\pi\)
\(168\) 0 0
\(169\) −11.9276 −0.917509
\(170\) 0 0
\(171\) 1.45960 + 1.45960i 0.111618 + 0.111618i
\(172\) 0 0
\(173\) 23.9562i 1.82136i 0.413114 + 0.910679i \(0.364441\pi\)
−0.413114 + 0.910679i \(0.635559\pi\)
\(174\) 0 0
\(175\) −15.8213 + 12.2720i −1.19598 + 0.927678i
\(176\) 0 0
\(177\) 2.23629 2.23629i 0.168090 0.168090i
\(178\) 0 0
\(179\) 1.30724 + 1.30724i 0.0977080 + 0.0977080i 0.754271 0.656563i \(-0.227990\pi\)
−0.656563 + 0.754271i \(0.727990\pi\)
\(180\) 0 0
\(181\) 6.95282 6.95282i 0.516799 0.516799i −0.399802 0.916601i \(-0.630921\pi\)
0.916601 + 0.399802i \(0.130921\pi\)
\(182\) 0 0
\(183\) 0.794490 + 0.794490i 0.0587304 + 0.0587304i
\(184\) 0 0
\(185\) 14.0535 + 0.884246i 1.03324 + 0.0650111i
\(186\) 0 0
\(187\) 19.8193 1.44933
\(188\) 0 0
\(189\) −2.83167 + 2.83167i −0.205973 + 0.205973i
\(190\) 0 0
\(191\) 2.42666i 0.175587i −0.996139 0.0877936i \(-0.972018\pi\)
0.996139 0.0877936i \(-0.0279816\pi\)
\(192\) 0 0
\(193\) −0.611510 0.611510i −0.0440175 0.0440175i 0.684755 0.728773i \(-0.259909\pi\)
−0.728773 + 0.684755i \(0.759909\pi\)
\(194\) 0 0
\(195\) −11.1421 0.701060i −0.797903 0.0502039i
\(196\) 0 0
\(197\) 12.6372i 0.900363i 0.892937 + 0.450182i \(0.148641\pi\)
−0.892937 + 0.450182i \(0.851359\pi\)
\(198\) 0 0
\(199\) 10.0036i 0.709134i 0.935031 + 0.354567i \(0.115372\pi\)
−0.935031 + 0.354567i \(0.884628\pi\)
\(200\) 0 0
\(201\) 13.2598i 0.935274i
\(202\) 0 0
\(203\) 5.46924i 0.383865i
\(204\) 0 0
\(205\) −1.72366 0.108452i −0.120385 0.00757464i
\(206\) 0 0
\(207\) −1.28911 1.28911i −0.0895991 0.0895991i
\(208\) 0 0
\(209\) 12.7285i 0.880446i
\(210\) 0 0
\(211\) 9.66719 9.66719i 0.665517 0.665517i −0.291158 0.956675i \(-0.594041\pi\)
0.956675 + 0.291158i \(0.0940405\pi\)
\(212\) 0 0
\(213\) −10.8523 −0.743589
\(214\) 0 0
\(215\) 10.8184 + 0.680690i 0.737806 + 0.0464227i
\(216\) 0 0
\(217\) −1.99349 1.99349i −0.135327 0.135327i
\(218\) 0 0
\(219\) −10.3838 + 10.3838i −0.701672 + 0.701672i
\(220\) 0 0
\(221\) −11.3471 11.3471i −0.763291 0.763291i
\(222\) 0 0
\(223\) −4.29237 + 4.29237i −0.287438 + 0.287438i −0.836067 0.548628i \(-0.815150\pi\)
0.548628 + 0.836067i \(0.315150\pi\)
\(224\) 0 0
\(225\) −4.96057 0.626717i −0.330704 0.0417812i
\(226\) 0 0
\(227\) 13.2703i 0.880778i −0.897807 0.440389i \(-0.854841\pi\)
0.897807 0.440389i \(-0.145159\pi\)
\(228\) 0 0
\(229\) −11.4064 11.4064i −0.753758 0.753758i 0.221420 0.975178i \(-0.428931\pi\)
−0.975178 + 0.221420i \(0.928931\pi\)
\(230\) 0 0
\(231\) −24.6936 −1.62472
\(232\) 0 0
\(233\) −8.19734 + 8.19734i −0.537026 + 0.537026i −0.922654 0.385629i \(-0.873985\pi\)
0.385629 + 0.922654i \(0.373985\pi\)
\(234\) 0 0
\(235\) −1.06847 + 0.941975i −0.0696995 + 0.0614477i
\(236\) 0 0
\(237\) −4.49087 −0.291713
\(238\) 0 0
\(239\) −10.6504 −0.688915 −0.344458 0.938802i \(-0.611937\pi\)
−0.344458 + 0.938802i \(0.611937\pi\)
\(240\) 0 0
\(241\) −1.22690 −0.0790315 −0.0395157 0.999219i \(-0.512582\pi\)
−0.0395157 + 0.999219i \(0.512582\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 20.1668 + 1.26889i 1.28841 + 0.0810664i
\(246\) 0 0
\(247\) 7.28741 7.28741i 0.463687 0.463687i
\(248\) 0 0
\(249\) 7.59721 0.481453
\(250\) 0 0
\(251\) −11.5822 11.5822i −0.731061 0.731061i 0.239769 0.970830i \(-0.422928\pi\)
−0.970830 + 0.239769i \(0.922928\pi\)
\(252\) 0 0
\(253\) 11.2417i 0.706759i
\(254\) 0 0
\(255\) −4.75280 5.39105i −0.297632 0.337601i
\(256\) 0 0
\(257\) 5.72342 5.72342i 0.357017 0.357017i −0.505695 0.862712i \(-0.668764\pi\)
0.862712 + 0.505695i \(0.168764\pi\)
\(258\) 0 0
\(259\) −17.8320 17.8320i −1.10803 1.10803i
\(260\) 0 0
\(261\) 0.965728 0.965728i 0.0597771 0.0597771i
\(262\) 0 0
\(263\) −6.70033 6.70033i −0.413160 0.413160i 0.469678 0.882838i \(-0.344370\pi\)
−0.882838 + 0.469678i \(0.844370\pi\)
\(264\) 0 0
\(265\) 0.586724 9.32494i 0.0360422 0.572826i
\(266\) 0 0
\(267\) −10.7447 −0.657564
\(268\) 0 0
\(269\) −1.08527 + 1.08527i −0.0661699 + 0.0661699i −0.739417 0.673247i \(-0.764899\pi\)
0.673247 + 0.739417i \(0.264899\pi\)
\(270\) 0 0
\(271\) 3.21705i 0.195422i 0.995215 + 0.0977108i \(0.0311520\pi\)
−0.995215 + 0.0977108i \(0.968848\pi\)
\(272\) 0 0
\(273\) 14.1378 + 14.1378i 0.855660 + 0.855660i
\(274\) 0 0
\(275\) −18.8967 24.3620i −1.13952 1.46909i
\(276\) 0 0
\(277\) 28.2079i 1.69485i −0.530915 0.847425i \(-0.678152\pi\)
0.530915 0.847425i \(-0.321848\pi\)
\(278\) 0 0
\(279\) 0.703997i 0.0421472i
\(280\) 0 0
\(281\) 24.5928i 1.46709i 0.679643 + 0.733543i \(0.262135\pi\)
−0.679643 + 0.733543i \(0.737865\pi\)
\(282\) 0 0
\(283\) 15.0862i 0.896779i 0.893838 + 0.448390i \(0.148002\pi\)
−0.893838 + 0.448390i \(0.851998\pi\)
\(284\) 0 0
\(285\) 3.46227 3.05237i 0.205087 0.180807i
\(286\) 0 0
\(287\) 2.18709 + 2.18709i 0.129100 + 0.129100i
\(288\) 0 0
\(289\) 6.66950i 0.392324i
\(290\) 0 0
\(291\) 0.751384 0.751384i 0.0440469 0.0440469i
\(292\) 0 0
\(293\) −3.49295 −0.204060 −0.102030 0.994781i \(-0.532534\pi\)
−0.102030 + 0.994781i \(0.532534\pi\)
\(294\) 0 0
\(295\) −4.67661 5.30463i −0.272283 0.308848i
\(296\) 0 0
\(297\) −4.36026 4.36026i −0.253008 0.253008i
\(298\) 0 0
\(299\) −6.43619 + 6.43619i −0.372215 + 0.372215i
\(300\) 0 0
\(301\) −13.7270 13.7270i −0.791213 0.791213i
\(302\) 0 0
\(303\) 5.30053 5.30053i 0.304508 0.304508i
\(304\) 0 0
\(305\) 1.88458 1.66147i 0.107911 0.0951354i
\(306\) 0 0
\(307\) 7.81653i 0.446113i 0.974806 + 0.223056i \(0.0716034\pi\)
−0.974806 + 0.223056i \(0.928397\pi\)
\(308\) 0 0
\(309\) −5.38356 5.38356i −0.306260 0.306260i
\(310\) 0 0
\(311\) 6.15295 0.348902 0.174451 0.984666i \(-0.444185\pi\)
0.174451 + 0.984666i \(0.444185\pi\)
\(312\) 0 0
\(313\) −9.65621 + 9.65621i −0.545802 + 0.545802i −0.925224 0.379422i \(-0.876123\pi\)
0.379422 + 0.925224i \(0.376123\pi\)
\(314\) 0 0
\(315\) 5.92169 + 6.71691i 0.333650 + 0.378455i
\(316\) 0 0
\(317\) 10.5517 0.592642 0.296321 0.955088i \(-0.404240\pi\)
0.296321 + 0.955088i \(0.404240\pi\)
\(318\) 0 0
\(319\) 8.42165 0.471522
\(320\) 0 0
\(321\) −11.9693 −0.668061
\(322\) 0 0
\(323\) 6.63451 0.369154
\(324\) 0 0
\(325\) −3.12905 + 24.7669i −0.173568 + 1.37382i
\(326\) 0 0
\(327\) −3.91485 + 3.91485i −0.216492 + 0.216492i
\(328\) 0 0
\(329\) 2.55099 0.140640
\(330\) 0 0
\(331\) 0.447095 + 0.447095i 0.0245745 + 0.0245745i 0.719287 0.694713i \(-0.244469\pi\)
−0.694713 + 0.719287i \(0.744469\pi\)
\(332\) 0 0
\(333\) 6.29736i 0.345093i
\(334\) 0 0
\(335\) −29.5913 1.86188i −1.61675 0.101725i
\(336\) 0 0
\(337\) 4.17945 4.17945i 0.227669 0.227669i −0.584049 0.811718i \(-0.698532\pi\)
0.811718 + 0.584049i \(0.198532\pi\)
\(338\) 0 0
\(339\) 9.13854 + 9.13854i 0.496337 + 0.496337i
\(340\) 0 0
\(341\) 3.06961 3.06961i 0.166229 0.166229i
\(342\) 0 0
\(343\) −5.76720 5.76720i −0.311400 0.311400i
\(344\) 0 0
\(345\) −3.05785 + 2.69583i −0.164629 + 0.145139i
\(346\) 0 0
\(347\) 30.4793 1.63622 0.818108 0.575064i \(-0.195023\pi\)
0.818108 + 0.575064i \(0.195023\pi\)
\(348\) 0 0
\(349\) −24.1490 + 24.1490i −1.29267 + 1.29267i −0.359535 + 0.933131i \(0.617065\pi\)
−0.933131 + 0.359535i \(0.882935\pi\)
\(350\) 0 0
\(351\) 4.99276i 0.266494i
\(352\) 0 0
\(353\) −17.3084 17.3084i −0.921233 0.921233i 0.0758833 0.997117i \(-0.475822\pi\)
−0.997117 + 0.0758833i \(0.975822\pi\)
\(354\) 0 0
\(355\) −1.52383 + 24.2186i −0.0808767 + 1.28539i
\(356\) 0 0
\(357\) 12.8712i 0.681214i
\(358\) 0 0
\(359\) 29.4403i 1.55380i 0.629626 + 0.776899i \(0.283208\pi\)
−0.629626 + 0.776899i \(0.716792\pi\)
\(360\) 0 0
\(361\) 14.7392i 0.775745i
\(362\) 0 0
\(363\) 27.0238i 1.41838i
\(364\) 0 0
\(365\) 21.7150 + 24.6311i 1.13662 + 1.28925i
\(366\) 0 0
\(367\) −10.7678 10.7678i −0.562076 0.562076i 0.367821 0.929897i \(-0.380104\pi\)
−0.929897 + 0.367821i \(0.880104\pi\)
\(368\) 0 0
\(369\) 0.772367i 0.0402078i
\(370\) 0 0
\(371\) −11.8321 + 11.8321i −0.614291 + 0.614291i
\(372\) 0 0
\(373\) −32.1031 −1.66223 −0.831117 0.556098i \(-0.812298\pi\)
−0.831117 + 0.556098i \(0.812298\pi\)
\(374\) 0 0
\(375\) −2.09516 + 10.9823i −0.108193 + 0.567122i
\(376\) 0 0
\(377\) −4.82164 4.82164i −0.248327 0.248327i
\(378\) 0 0
\(379\) −23.3329 + 23.3329i −1.19853 + 1.19853i −0.223923 + 0.974607i \(0.571887\pi\)
−0.974607 + 0.223923i \(0.928113\pi\)
\(380\) 0 0
\(381\) −15.5561 15.5561i −0.796964 0.796964i
\(382\) 0 0
\(383\) −7.02280 + 7.02280i −0.358848 + 0.358848i −0.863388 0.504540i \(-0.831662\pi\)
0.504540 + 0.863388i \(0.331662\pi\)
\(384\) 0 0
\(385\) −3.46737 + 55.1077i −0.176713 + 2.80855i
\(386\) 0 0
\(387\) 4.84769i 0.246422i
\(388\) 0 0
\(389\) 23.0035 + 23.0035i 1.16632 + 1.16632i 0.983065 + 0.183259i \(0.0586647\pi\)
0.183259 + 0.983065i \(0.441335\pi\)
\(390\) 0 0
\(391\) −5.85955 −0.296330
\(392\) 0 0
\(393\) −14.4207 + 14.4207i −0.727426 + 0.727426i
\(394\) 0 0
\(395\) −0.630587 + 10.0221i −0.0317283 + 0.504265i
\(396\) 0 0
\(397\) 25.0560 1.25753 0.628763 0.777597i \(-0.283562\pi\)
0.628763 + 0.777597i \(0.283562\pi\)
\(398\) 0 0
\(399\) −8.26619 −0.413827
\(400\) 0 0
\(401\) 6.21757 0.310491 0.155245 0.987876i \(-0.450383\pi\)
0.155245 + 0.987876i \(0.450383\pi\)
\(402\) 0 0
\(403\) −3.51489 −0.175089
\(404\) 0 0
\(405\) −0.140415 + 2.23165i −0.00697730 + 0.110892i
\(406\) 0 0
\(407\) 27.4581 27.4581i 1.36105 1.36105i
\(408\) 0 0
\(409\) 13.1629 0.650865 0.325432 0.945565i \(-0.394490\pi\)
0.325432 + 0.945565i \(0.394490\pi\)
\(410\) 0 0
\(411\) −3.54735 3.54735i −0.174978 0.174978i
\(412\) 0 0
\(413\) 12.6648i 0.623196i
\(414\) 0 0
\(415\) 1.06676 16.9543i 0.0523654 0.832256i
\(416\) 0 0
\(417\) 4.17152 4.17152i 0.204280 0.204280i
\(418\) 0 0
\(419\) −14.7013 14.7013i −0.718208 0.718208i 0.250030 0.968238i \(-0.419559\pi\)
−0.968238 + 0.250030i \(0.919559\pi\)
\(420\) 0 0
\(421\) −17.0481 + 17.0481i −0.830872 + 0.830872i −0.987636 0.156764i \(-0.949894\pi\)
0.156764 + 0.987636i \(0.449894\pi\)
\(422\) 0 0
\(423\) 0.450439 + 0.450439i 0.0219011 + 0.0219011i
\(424\) 0 0
\(425\) −12.6983 + 9.84962i −0.615959 + 0.477777i
\(426\) 0 0
\(427\) −4.49946 −0.217744
\(428\) 0 0
\(429\) −21.7697 + 21.7697i −1.05105 + 1.05105i
\(430\) 0 0
\(431\) 18.5363i 0.892864i 0.894818 + 0.446432i \(0.147306\pi\)
−0.894818 + 0.446432i \(0.852694\pi\)
\(432\) 0 0
\(433\) −9.47558 9.47558i −0.455368 0.455368i 0.441764 0.897131i \(-0.354353\pi\)
−0.897131 + 0.441764i \(0.854353\pi\)
\(434\) 0 0
\(435\) −2.01957 2.29077i −0.0968309 0.109834i
\(436\) 0 0
\(437\) 3.76315i 0.180016i
\(438\) 0 0
\(439\) 21.7937i 1.04016i −0.854119 0.520078i \(-0.825903\pi\)
0.854119 0.520078i \(-0.174097\pi\)
\(440\) 0 0
\(441\) 9.03668i 0.430318i
\(442\) 0 0
\(443\) 26.2733i 1.24828i 0.781312 + 0.624141i \(0.214551\pi\)
−0.781312 + 0.624141i \(0.785449\pi\)
\(444\) 0 0
\(445\) −1.50872 + 23.9784i −0.0715201 + 1.13669i
\(446\) 0 0
\(447\) 8.42059 + 8.42059i 0.398280 + 0.398280i
\(448\) 0 0
\(449\) 29.2615i 1.38093i 0.723364 + 0.690467i \(0.242595\pi\)
−0.723364 + 0.690467i \(0.757405\pi\)
\(450\) 0 0
\(451\) −3.36772 + 3.36772i −0.158580 + 0.158580i
\(452\) 0 0
\(453\) 4.96999 0.233510
\(454\) 0 0
\(455\) 33.5359 29.5656i 1.57219 1.38606i
\(456\) 0 0
\(457\) −18.2488 18.2488i −0.853641 0.853641i 0.136938 0.990580i \(-0.456274\pi\)
−0.990580 + 0.136938i \(0.956274\pi\)
\(458\) 0 0
\(459\) −2.27272 + 2.27272i −0.106081 + 0.106081i
\(460\) 0 0
\(461\) −5.13473 5.13473i −0.239148 0.239148i 0.577349 0.816497i \(-0.304087\pi\)
−0.816497 + 0.577349i \(0.804087\pi\)
\(462\) 0 0
\(463\) −10.2040 + 10.2040i −0.474220 + 0.474220i −0.903277 0.429057i \(-0.858846\pi\)
0.429057 + 0.903277i \(0.358846\pi\)
\(464\) 0 0
\(465\) −1.57108 0.0988521i −0.0728571 0.00458416i
\(466\) 0 0
\(467\) 24.2696i 1.12306i −0.827455 0.561532i \(-0.810212\pi\)
0.827455 0.561532i \(-0.189788\pi\)
\(468\) 0 0
\(469\) 37.5473 + 37.5473i 1.73378 + 1.73378i
\(470\) 0 0
\(471\) 14.4628 0.666411
\(472\) 0 0
\(473\) 21.1372 21.1372i 0.971889 0.971889i
\(474\) 0 0
\(475\) −6.32567 8.15518i −0.290242 0.374186i
\(476\) 0 0
\(477\) −4.17849 −0.191320
\(478\) 0 0
\(479\) −25.0894 −1.14636 −0.573182 0.819428i \(-0.694291\pi\)
−0.573182 + 0.819428i \(0.694291\pi\)
\(480\) 0 0
\(481\) −31.4412 −1.43359
\(482\) 0 0
\(483\) 7.30064 0.332191
\(484\) 0 0
\(485\) −1.57132 1.78234i −0.0713502 0.0809317i
\(486\) 0 0
\(487\) 0.369801 0.369801i 0.0167573 0.0167573i −0.698679 0.715436i \(-0.746228\pi\)
0.715436 + 0.698679i \(0.246228\pi\)
\(488\) 0 0
\(489\) −7.70573 −0.348465
\(490\) 0 0
\(491\) −19.2802 19.2802i −0.870104 0.870104i 0.122379 0.992483i \(-0.460948\pi\)
−0.992483 + 0.122379i \(0.960948\pi\)
\(492\) 0 0
\(493\) 4.38966i 0.197700i
\(494\) 0 0
\(495\) −10.3428 + 9.11835i −0.464877 + 0.409840i
\(496\) 0 0
\(497\) 30.7302 30.7302i 1.37844 1.37844i
\(498\) 0 0
\(499\) −17.1262 17.1262i −0.766673 0.766673i 0.210847 0.977519i \(-0.432378\pi\)
−0.977519 + 0.210847i \(0.932378\pi\)
\(500\) 0 0
\(501\) 4.64125 4.64125i 0.207356 0.207356i
\(502\) 0 0
\(503\) −5.60127 5.60127i −0.249748 0.249748i 0.571119 0.820867i \(-0.306509\pi\)
−0.820867 + 0.571119i \(0.806509\pi\)
\(504\) 0 0
\(505\) −11.0847 12.5732i −0.493262 0.559501i
\(506\) 0 0
\(507\) 11.9276 0.529724
\(508\) 0 0
\(509\) 0.0876457 0.0876457i 0.00388483 0.00388483i −0.705162 0.709047i \(-0.749126\pi\)
0.709047 + 0.705162i \(0.249126\pi\)
\(510\) 0 0
\(511\) 58.8069i 2.60146i
\(512\) 0 0
\(513\) −1.45960 1.45960i −0.0644428 0.0644428i
\(514\) 0 0
\(515\) −12.7702 + 11.2583i −0.562722 + 0.496101i
\(516\) 0 0
\(517\) 3.92806i 0.172756i
\(518\) 0 0
\(519\) 23.9562i 1.05156i
\(520\) 0 0
\(521\) 0.327549i 0.0143502i −0.999974 0.00717509i \(-0.997716\pi\)
0.999974 0.00717509i \(-0.00228392\pi\)
\(522\) 0 0
\(523\) 21.8823i 0.956847i −0.878129 0.478423i \(-0.841208\pi\)
0.878129 0.478423i \(-0.158792\pi\)
\(524\) 0 0
\(525\) 15.8213 12.2720i 0.690500 0.535595i
\(526\) 0 0
\(527\) −1.59999 1.59999i −0.0696966 0.0696966i
\(528\) 0 0
\(529\) 19.6764i 0.855496i
\(530\) 0 0
\(531\) −2.23629 + 2.23629i −0.0970466 + 0.0970466i
\(532\) 0 0
\(533\) 3.85624 0.167032
\(534\) 0 0
\(535\) −1.68067 + 26.7113i −0.0726618 + 1.15483i
\(536\) 0 0
\(537\) −1.30724 1.30724i −0.0564117 0.0564117i
\(538\) 0 0
\(539\) 39.4023 39.4023i 1.69718 1.69718i
\(540\) 0 0
\(541\) 21.9852 + 21.9852i 0.945217 + 0.945217i 0.998575 0.0533584i \(-0.0169926\pi\)
−0.0533584 + 0.998575i \(0.516993\pi\)
\(542\) 0 0
\(543\) −6.95282 + 6.95282i −0.298374 + 0.298374i
\(544\) 0 0
\(545\) 8.18690 + 9.28631i 0.350688 + 0.397782i
\(546\) 0 0
\(547\) 28.9503i 1.23783i 0.785459 + 0.618913i \(0.212427\pi\)
−0.785459 + 0.618913i \(0.787573\pi\)
\(548\) 0 0
\(549\) −0.794490 0.794490i −0.0339080 0.0339080i
\(550\) 0 0
\(551\) 2.81915 0.120100
\(552\) 0 0
\(553\) 12.7167 12.7167i 0.540767 0.540767i
\(554\) 0 0
\(555\) −14.0535 0.884246i −0.596539 0.0375342i
\(556\) 0 0
\(557\) −8.55746 −0.362591 −0.181296 0.983429i \(-0.558029\pi\)
−0.181296 + 0.983429i \(0.558029\pi\)
\(558\) 0 0
\(559\) −24.2033 −1.02369
\(560\) 0 0
\(561\) −19.8193 −0.836772
\(562\) 0 0
\(563\) 19.8277 0.835637 0.417819 0.908530i \(-0.362795\pi\)
0.417819 + 0.908530i \(0.362795\pi\)
\(564\) 0 0
\(565\) 21.6773 19.1109i 0.911969 0.804000i
\(566\) 0 0
\(567\) 2.83167 2.83167i 0.118919 0.118919i
\(568\) 0 0
\(569\) −13.1834 −0.552677 −0.276339 0.961060i \(-0.589121\pi\)
−0.276339 + 0.961060i \(0.589121\pi\)
\(570\) 0 0
\(571\) −5.46465 5.46465i −0.228688 0.228688i 0.583456 0.812145i \(-0.301700\pi\)
−0.812145 + 0.583456i \(0.801700\pi\)
\(572\) 0 0
\(573\) 2.42666i 0.101375i
\(574\) 0 0
\(575\) 5.58679 + 7.20260i 0.232985 + 0.300369i
\(576\) 0 0
\(577\) 11.0931 11.0931i 0.461811 0.461811i −0.437438 0.899249i \(-0.644114\pi\)
0.899249 + 0.437438i \(0.144114\pi\)
\(578\) 0 0
\(579\) 0.611510 + 0.611510i 0.0254135 + 0.0254135i
\(580\) 0 0
\(581\) −21.5128 + 21.5128i −0.892500 + 0.892500i
\(582\) 0 0
\(583\) −18.2193 18.2193i −0.754566 0.754566i
\(584\) 0 0
\(585\) 11.1421 + 0.701060i 0.460670 + 0.0289853i
\(586\) 0 0
\(587\) −0.0736360 −0.00303928 −0.00151964 0.999999i \(-0.500484\pi\)
−0.00151964 + 0.999999i \(0.500484\pi\)
\(588\) 0 0
\(589\) 1.02755 1.02755i 0.0423396 0.0423396i
\(590\) 0 0
\(591\) 12.6372i 0.519825i
\(592\) 0 0
\(593\) 25.1041 + 25.1041i 1.03090 + 1.03090i 0.999507 + 0.0313952i \(0.00999504\pi\)
0.0313952 + 0.999507i \(0.490005\pi\)
\(594\) 0 0
\(595\) 28.7240 + 1.80731i 1.17757 + 0.0740925i
\(596\) 0 0
\(597\) 10.0036i 0.409419i
\(598\) 0 0
\(599\) 16.3265i 0.667081i 0.942736 + 0.333541i \(0.108243\pi\)
−0.942736 + 0.333541i \(0.891757\pi\)
\(600\) 0 0
\(601\) 22.5262i 0.918862i −0.888213 0.459431i \(-0.848053\pi\)
0.888213 0.459431i \(-0.151947\pi\)
\(602\) 0 0
\(603\) 13.2598i 0.539981i
\(604\) 0 0
\(605\) −60.3078 3.79456i −2.45186 0.154271i
\(606\) 0 0
\(607\) −20.2440 20.2440i −0.821677 0.821677i 0.164672 0.986348i \(-0.447344\pi\)
−0.986348 + 0.164672i \(0.947344\pi\)
\(608\) 0 0
\(609\) 5.46924i 0.221625i
\(610\) 0 0
\(611\) 2.24893 2.24893i 0.0909820 0.0909820i
\(612\) 0 0
\(613\) −28.9848 −1.17069 −0.585343 0.810786i \(-0.699040\pi\)
−0.585343 + 0.810786i \(0.699040\pi\)
\(614\) 0 0
\(615\) 1.72366 + 0.108452i 0.0695046 + 0.00437322i
\(616\) 0 0
\(617\) −18.0708 18.0708i −0.727503 0.727503i 0.242619 0.970122i \(-0.421994\pi\)
−0.970122 + 0.242619i \(0.921994\pi\)
\(618\) 0 0
\(619\) 17.2226 17.2226i 0.692236 0.692236i −0.270488 0.962723i \(-0.587185\pi\)
0.962723 + 0.270488i \(0.0871849\pi\)
\(620\) 0 0
\(621\) 1.28911 + 1.28911i 0.0517300 + 0.0517300i
\(622\) 0 0
\(623\) 30.4254 30.4254i 1.21897 1.21897i
\(624\) 0 0
\(625\) 24.2145 + 6.21775i 0.968578 + 0.248710i
\(626\) 0 0
\(627\) 12.7285i 0.508325i
\(628\) 0 0
\(629\) −14.3121 14.3121i −0.570662 0.570662i
\(630\) 0 0
\(631\) 15.2007 0.605131 0.302565 0.953129i \(-0.402157\pi\)
0.302565 + 0.953129i \(0.402157\pi\)
\(632\) 0 0
\(633\) −9.66719 + 9.66719i −0.384236 + 0.384236i
\(634\) 0 0
\(635\) −36.9002 + 32.5316i −1.46434 + 1.29098i
\(636\) 0 0
\(637\) −45.1179 −1.78764
\(638\) 0 0
\(639\) 10.8523 0.429311
\(640\) 0 0
\(641\) −13.9100 −0.549414 −0.274707 0.961528i \(-0.588581\pi\)
−0.274707 + 0.961528i \(0.588581\pi\)
\(642\) 0 0
\(643\) −50.3060 −1.98387 −0.991937 0.126735i \(-0.959550\pi\)
−0.991937 + 0.126735i \(0.959550\pi\)
\(644\) 0 0
\(645\) −10.8184 0.680690i −0.425973 0.0268021i
\(646\) 0 0
\(647\) −15.4702 + 15.4702i −0.608197 + 0.608197i −0.942475 0.334278i \(-0.891508\pi\)
0.334278 + 0.942475i \(0.391508\pi\)
\(648\) 0 0
\(649\) −19.5016 −0.765505
\(650\) 0 0
\(651\) 1.99349 + 1.99349i 0.0781309 + 0.0781309i
\(652\) 0 0
\(653\) 25.9406i 1.01514i −0.861612 0.507568i \(-0.830545\pi\)
0.861612 0.507568i \(-0.169455\pi\)
\(654\) 0 0
\(655\) 30.1571 + 34.2068i 1.17833 + 1.33657i
\(656\) 0 0
\(657\) 10.3838 10.3838i 0.405110 0.405110i
\(658\) 0 0
\(659\) 12.5270 + 12.5270i 0.487981 + 0.487981i 0.907669 0.419687i \(-0.137860\pi\)
−0.419687 + 0.907669i \(0.637860\pi\)
\(660\) 0 0
\(661\) 26.5534 26.5534i 1.03281 1.03281i 0.0333644 0.999443i \(-0.489378\pi\)
0.999443 0.0333644i \(-0.0106222\pi\)
\(662\) 0 0
\(663\) 11.3471 + 11.3471i 0.440686 + 0.440686i
\(664\) 0 0
\(665\) −1.16070 + 18.4473i −0.0450100 + 0.715355i
\(666\) 0 0
\(667\) −2.48985 −0.0964074
\(668\) 0 0
\(669\) 4.29237 4.29237i 0.165953 0.165953i
\(670\) 0 0
\(671\) 6.92837i 0.267467i
\(672\) 0 0
\(673\) 10.4724 + 10.4724i 0.403681 + 0.403681i 0.879528 0.475847i \(-0.157858\pi\)
−0.475847 + 0.879528i \(0.657858\pi\)
\(674\) 0 0
\(675\) 4.96057 + 0.626717i 0.190932 + 0.0241224i
\(676\) 0 0
\(677\) 23.5614i 0.905539i −0.891628 0.452769i \(-0.850436\pi\)
0.891628 0.452769i \(-0.149564\pi\)
\(678\) 0 0
\(679\) 4.25534i 0.163305i
\(680\) 0 0
\(681\) 13.2703i 0.508517i
\(682\) 0 0
\(683\) 30.7873i 1.17804i 0.808117 + 0.589021i \(0.200487\pi\)
−0.808117 + 0.589021i \(0.799513\pi\)
\(684\) 0 0
\(685\) −8.41457 + 7.41837i −0.321504 + 0.283441i
\(686\) 0 0
\(687\) 11.4064 + 11.4064i 0.435183 + 0.435183i
\(688\) 0 0
\(689\) 20.8622i 0.794785i
\(690\) 0 0
\(691\) 16.3289 16.3289i 0.621182 0.621182i −0.324652 0.945834i \(-0.605247\pi\)
0.945834 + 0.324652i \(0.105247\pi\)
\(692\) 0 0
\(693\) 24.6936 0.938033
\(694\) 0 0
\(695\) −8.72365 9.89515i −0.330907 0.375344i
\(696\) 0 0
\(697\) 1.75537 + 1.75537i 0.0664895 + 0.0664895i
\(698\) 0 0
\(699\) 8.19734 8.19734i 0.310052 0.310052i
\(700\) 0 0
\(701\) 15.1215 + 15.1215i 0.571130 + 0.571130i 0.932444 0.361314i \(-0.117672\pi\)
−0.361314 + 0.932444i \(0.617672\pi\)
\(702\) 0 0
\(703\) 9.19161 9.19161i 0.346668 0.346668i
\(704\) 0 0
\(705\) 1.06847 0.941975i 0.0402410 0.0354768i
\(706\) 0 0
\(707\) 30.0187i 1.12897i
\(708\) 0 0
\(709\) 20.5244 + 20.5244i 0.770812 + 0.770812i 0.978248 0.207437i \(-0.0665122\pi\)
−0.207437 + 0.978248i \(0.566512\pi\)
\(710\) 0 0
\(711\) 4.49087 0.168421
\(712\) 0 0
\(713\) −0.907527 + 0.907527i −0.0339872 + 0.0339872i
\(714\) 0 0
\(715\) 45.5257 + 51.6393i 1.70257 + 1.93120i
\(716\) 0 0
\(717\) 10.6504 0.397745
\(718\) 0 0
\(719\) 13.6873 0.510451 0.255225 0.966882i \(-0.417850\pi\)
0.255225 + 0.966882i \(0.417850\pi\)
\(720\) 0 0
\(721\) 30.4889 1.13547
\(722\) 0 0
\(723\) 1.22690 0.0456288
\(724\) 0 0
\(725\) −5.39580 + 4.18532i −0.200395 + 0.155439i
\(726\) 0 0
\(727\) −29.3029 + 29.3029i −1.08678 + 1.08678i −0.0909272 + 0.995858i \(0.528983\pi\)
−0.995858 + 0.0909272i \(0.971017\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −11.0174 11.0174i −0.407494 0.407494i
\(732\) 0 0
\(733\) 47.2879i 1.74662i −0.487166 0.873309i \(-0.661969\pi\)
0.487166 0.873309i \(-0.338031\pi\)
\(734\) 0 0
\(735\) −20.1668 1.26889i −0.743862 0.0468037i
\(736\) 0 0
\(737\) −57.8162 + 57.8162i −2.12969 + 2.12969i
\(738\) 0 0
\(739\) −15.3480 15.3480i −0.564587 0.564587i 0.366020 0.930607i \(-0.380720\pi\)
−0.930607 + 0.366020i \(0.880720\pi\)
\(740\) 0 0
\(741\) −7.28741 + 7.28741i −0.267710 + 0.267710i
\(742\) 0 0
\(743\) −16.7906 16.7906i −0.615987 0.615987i 0.328513 0.944500i \(-0.393453\pi\)
−0.944500 + 0.328513i \(0.893453\pi\)
\(744\) 0 0
\(745\) 19.9742 17.6095i 0.731799 0.645161i
\(746\) 0 0
\(747\) −7.59721 −0.277967
\(748\) 0 0
\(749\) 33.8930 33.8930i 1.23842 1.23842i
\(750\) 0 0
\(751\) 37.3096i 1.36145i −0.732540 0.680724i \(-0.761665\pi\)
0.732540 0.680724i \(-0.238335\pi\)
\(752\) 0 0
\(753\) 11.5822 + 11.5822i 0.422078 + 0.422078i
\(754\) 0 0
\(755\) 0.697863 11.0913i 0.0253978 0.403654i
\(756\) 0 0
\(757\) 2.73045i 0.0992397i −0.998768 0.0496199i \(-0.984199\pi\)
0.998768 0.0496199i \(-0.0158010\pi\)
\(758\) 0 0
\(759\) 11.2417i 0.408047i
\(760\) 0 0
\(761\) 43.2111i 1.56640i 0.621768 + 0.783201i \(0.286415\pi\)
−0.621768 + 0.783201i \(0.713585\pi\)
\(762\) 0 0
\(763\) 22.1711i 0.802649i
\(764\) 0 0
\(765\) 4.75280 + 5.39105i 0.171838 + 0.194914i
\(766\) 0 0
\(767\) 11.1652 + 11.1652i 0.403154 + 0.403154i
\(768\) 0 0
\(769\) 41.3520i 1.49119i −0.666398 0.745596i \(-0.732165\pi\)
0.666398 0.745596i \(-0.267835\pi\)
\(770\) 0 0
\(771\) −5.72342 + 5.72342i −0.206124 + 0.206124i
\(772\) 0 0
\(773\) −10.4113 −0.374469 −0.187234 0.982315i \(-0.559952\pi\)
−0.187234 + 0.982315i \(0.559952\pi\)
\(774\) 0 0
\(775\) −0.441207 + 3.49223i −0.0158486 + 0.125444i
\(776\) 0 0
\(777\) 17.8320 + 17.8320i 0.639720 + 0.639720i
\(778\) 0 0
\(779\) −1.12735 + 1.12735i −0.0403913 + 0.0403913i
\(780\) 0 0
\(781\) 47.3190 + 47.3190i 1.69321 + 1.69321i
\(782\) 0 0
\(783\) −0.965728 + 0.965728i −0.0345123 + 0.0345123i
\(784\) 0 0
\(785\) 2.03080 32.2760i 0.0724824 1.15198i
\(786\) 0 0
\(787\) 9.84332i 0.350877i 0.984490 + 0.175438i \(0.0561342\pi\)
−0.984490 + 0.175438i \(0.943866\pi\)
\(788\) 0 0
\(789\) 6.70033 + 6.70033i 0.238538 + 0.238538i
\(790\) 0 0
\(791\) −51.7546 −1.84018
\(792\) 0 0
\(793\) −3.96669 + 3.96669i −0.140861 + 0.140861i
\(794\) 0 0
\(795\) −0.586724 + 9.32494i −0.0208090 + 0.330722i
\(796\) 0 0
\(797\) 13.2854 0.470592 0.235296 0.971924i \(-0.424394\pi\)
0.235296 + 0.971924i \(0.424394\pi\)
\(798\) 0 0
\(799\) 2.04744 0.0724333
\(800\) 0 0
\(801\) 10.7447 0.379645
\(802\) 0 0
\(803\) 90.5522 3.19552
\(804\) 0 0
\(805\) 1.02512 16.2925i 0.0361308 0.574235i
\(806\) 0 0
\(807\) 1.08527 1.08527i 0.0382032 0.0382032i
\(808\) 0 0
\(809\) 7.77887 0.273490 0.136745 0.990606i \(-0.456336\pi\)
0.136745 + 0.990606i \(0.456336\pi\)
\(810\) 0 0
\(811\) 33.4895 + 33.4895i 1.17598 + 1.17598i 0.980760 + 0.195215i \(0.0625405\pi\)
0.195215 + 0.980760i \(0.437459\pi\)
\(812\) 0 0
\(813\) 3.21705i 0.112827i
\(814\) 0 0
\(815\) −1.08200 + 17.1965i −0.0379009 + 0.602368i
\(816\) 0 0
\(817\) 7.07567 7.07567i 0.247546 0.247546i
\(818\) 0 0
\(819\) −14.1378 14.1378i −0.494016 0.494016i
\(820\) 0 0
\(821\) −22.0992 + 22.0992i −0.771267 + 0.771267i −0.978328 0.207061i \(-0.933610\pi\)
0.207061 + 0.978328i \(0.433610\pi\)
\(822\) 0 0
\(823\) −6.47786 6.47786i −0.225804 0.225804i 0.585133 0.810937i \(-0.301042\pi\)
−0.810937 + 0.585133i \(0.801042\pi\)
\(824\) 0 0
\(825\) 18.8967 + 24.3620i 0.657899 + 0.848177i
\(826\) 0 0
\(827\) −0.819945 −0.0285123 −0.0142561 0.999898i \(-0.504538\pi\)
−0.0142561 + 0.999898i \(0.504538\pi\)
\(828\) 0 0
\(829\) 27.4647 27.4647i 0.953888 0.953888i −0.0450945 0.998983i \(-0.514359\pi\)
0.998983 + 0.0450945i \(0.0143589\pi\)
\(830\) 0 0
\(831\) 28.2079i 0.978522i
\(832\) 0 0
\(833\) −20.5378 20.5378i −0.711594 0.711594i
\(834\) 0 0
\(835\) −9.70595 11.0094i −0.335888 0.380995i
\(836\) 0 0
\(837\) 0.703997i 0.0243337i
\(838\) 0 0
\(839\) 25.9917i 0.897335i −0.893699 0.448667i \(-0.851899\pi\)
0.893699 0.448667i \(-0.148101\pi\)
\(840\) 0 0
\(841\) 27.1347i 0.935681i
\(842\) 0 0
\(843\) 24.5928i 0.847023i
\(844\) 0 0
\(845\) 1.67482 26.6183i 0.0576156 0.915698i
\(846\) 0 0
\(847\) 76.5224 + 76.5224i 2.62934 + 2.62934i
\(848\) 0 0
\(849\) 15.0862i 0.517756i
\(850\) 0 0
\(851\) −8.11796 + 8.11796i −0.278280 + 0.278280i
\(852\) 0 0
\(853\) −13.8457 −0.474069 −0.237034 0.971501i \(-0.576175\pi\)
−0.237034 + 0.971501i \(0.576175\pi\)
\(854\) 0 0
\(855\) −3.46227 + 3.05237i −0.118407 + 0.104389i
\(856\) 0 0
\(857\) 27.4340 + 27.4340i 0.937127 + 0.937127i 0.998137 0.0610099i \(-0.0194321\pi\)
−0.0610099 + 0.998137i \(0.519432\pi\)
\(858\) 0 0
\(859\) 3.11480 3.11480i 0.106276 0.106276i −0.651969 0.758245i \(-0.726057\pi\)
0.758245 + 0.651969i \(0.226057\pi\)
\(860\) 0 0
\(861\) −2.18709 2.18709i −0.0745357 0.0745357i
\(862\) 0 0
\(863\) −18.7075 + 18.7075i −0.636810 + 0.636810i −0.949767 0.312957i \(-0.898680\pi\)
0.312957 + 0.949767i \(0.398680\pi\)
\(864\) 0 0
\(865\) −53.4620 3.36382i −1.81776 0.114373i
\(866\) 0 0
\(867\) 6.66950i 0.226508i
\(868\) 0 0
\(869\) 19.5814 + 19.5814i 0.664253 + 0.664253i
\(870\) 0 0
\(871\) 66.2029 2.24320
\(872\) 0 0
\(873\) −0.751384 + 0.751384i −0.0254305 + 0.0254305i
\(874\) 0 0
\(875\) −25.1654 37.0309i −0.850744 1.25187i
\(876\) 0 0
\(877\) 20.1135 0.679184 0.339592 0.940573i \(-0.389711\pi\)
0.339592 + 0.940573i \(0.389711\pi\)
\(878\) 0 0
\(879\) 3.49295 0.117814
\(880\) 0 0
\(881\) 8.65598 0.291628 0.145814 0.989312i \(-0.453420\pi\)
0.145814 + 0.989312i \(0.453420\pi\)
\(882\) 0 0
\(883\) −15.9095 −0.535399 −0.267699 0.963502i \(-0.586263\pi\)
−0.267699 + 0.963502i \(0.586263\pi\)
\(884\) 0 0
\(885\) 4.67661 + 5.30463i 0.157203 + 0.178313i
\(886\) 0 0
\(887\) −19.2454 + 19.2454i −0.646197 + 0.646197i −0.952072 0.305875i \(-0.901051\pi\)
0.305875 + 0.952072i \(0.401051\pi\)
\(888\) 0 0
\(889\) 88.0995 2.95476
\(890\) 0 0
\(891\) 4.36026 + 4.36026i 0.146074 + 0.146074i
\(892\) 0 0
\(893\) 1.31492i 0.0440021i
\(894\) 0 0
\(895\) −3.10087 + 2.73376i −0.103651 + 0.0913795i
\(896\) 0 0
\(897\) 6.43619 6.43619i 0.214898 0.214898i
\(898\) 0 0
\(899\) −0.679870 0.679870i −0.0226749 0.0226749i
\(900\) 0 0
\(901\) −9.49652 + 9.49652i −0.316375 + 0.316375i
\(902\) 0 0
\(903\) 13.7270 + 13.7270i 0.456807 + 0.456807i
\(904\) 0 0
\(905\) 14.5400 + 16.4926i 0.483327 + 0.548232i
\(906\) 0 0
\(907\) −13.9176 −0.462128 −0.231064 0.972939i \(-0.574221\pi\)
−0.231064 + 0.972939i \(0.574221\pi\)
\(908\) 0 0
\(909\) −5.30053 + 5.30053i −0.175808 + 0.175808i
\(910\) 0 0
\(911\) 3.79155i 0.125620i 0.998026 + 0.0628098i \(0.0200062\pi\)
−0.998026 + 0.0628098i \(0.979994\pi\)
\(912\) 0 0
\(913\) −33.1258 33.1258i −1.09630 1.09630i
\(914\) 0 0
\(915\) −1.88458 + 1.66147i −0.0623025 + 0.0549264i
\(916\) 0 0
\(917\) 81.6690i 2.69695i
\(918\) 0 0
\(919\) 12.6465i 0.417169i −0.978004 0.208584i \(-0.933114\pi\)
0.978004 0.208584i \(-0.0668856\pi\)
\(920\) 0 0
\(921\) 7.81653i 0.257563i
\(922\) 0 0
\(923\) 54.1830i 1.78346i
\(924\) 0 0
\(925\) −3.94666 + 31.2385i −0.129766 + 1.02711i
\(926\) 0 0
\(927\) 5.38356 + 5.38356i 0.176819 + 0.176819i
\(928\) 0 0
\(929\) 52.7686i 1.73128i −0.500665 0.865641i \(-0.666911\pi\)
0.500665 0.865641i \(-0.333089\pi\)
\(930\) 0 0
\(931\) 13.1899 13.1899i 0.432282 0.432282i
\(932\) 0 0
\(933\) −6.15295 −0.201438
\(934\) 0 0
\(935\) −2.78294 + 44.2298i −0.0910117 + 1.44647i
\(936\) 0 0
\(937\) 12.0351 + 12.0351i 0.393168 + 0.393168i 0.875815 0.482647i \(-0.160324\pi\)
−0.482647 + 0.875815i \(0.660324\pi\)
\(938\) 0 0
\(939\) 9.65621 9.65621i 0.315119 0.315119i
\(940\) 0 0
\(941\) −43.1823 43.1823i −1.40770 1.40770i −0.771626 0.636076i \(-0.780556\pi\)
−0.636076 0.771626i \(-0.719444\pi\)
\(942\) 0 0
\(943\) 0.995664 0.995664i 0.0324233 0.0324233i
\(944\) 0 0
\(945\) −5.92169 6.71691i −0.192633 0.218501i
\(946\) 0 0
\(947\) 34.2870i 1.11418i 0.830453 + 0.557089i \(0.188082\pi\)
−0.830453 + 0.557089i \(0.811918\pi\)
\(948\) 0 0
\(949\) −51.8438 51.8438i −1.68292 1.68292i
\(950\) 0 0
\(951\) −10.5517 −0.342162
\(952\) 0 0
\(953\) −8.81942 + 8.81942i −0.285689 + 0.285689i −0.835373 0.549684i \(-0.814748\pi\)
0.549684 + 0.835373i \(0.314748\pi\)
\(954\) 0 0
\(955\) 5.41547 + 0.340741i 0.175241 + 0.0110261i
\(956\) 0 0
\(957\) −8.42165 −0.272233
\(958\) 0 0
\(959\) 20.0898 0.648735
\(960\) 0 0
\(961\) 30.5044 0.984013
\(962\) 0 0
\(963\) 11.9693 0.385705
\(964\) 0 0
\(965\) 1.45055 1.27881i 0.0466947 0.0411665i
\(966\) 0 0
\(967\) −1.93099 + 1.93099i −0.0620964 + 0.0620964i −0.737473 0.675377i \(-0.763981\pi\)
0.675377 + 0.737473i \(0.263981\pi\)
\(968\) 0 0
\(969\) −6.63451 −0.213131
\(970\) 0 0
\(971\) 6.98427 + 6.98427i 0.224136 + 0.224136i 0.810238 0.586102i \(-0.199338\pi\)
−0.586102 + 0.810238i \(0.699338\pi\)
\(972\) 0 0
\(973\) 23.6247i 0.757374i
\(974\) 0 0
\(975\) 3.12905 24.7669i 0.100210 0.793176i
\(976\) 0 0
\(977\) 28.9284 28.9284i 0.925502 0.925502i −0.0719094 0.997411i \(-0.522909\pi\)
0.997411 + 0.0719094i \(0.0229092\pi\)
\(978\) 0 0
\(979\) 46.8496 + 46.8496i 1.49732 + 1.49732i
\(980\) 0 0
\(981\) 3.91485 3.91485i 0.124992 0.124992i
\(982\) 0 0
\(983\) 23.8805 + 23.8805i 0.761669 + 0.761669i 0.976624 0.214955i \(-0.0689606\pi\)
−0.214955 + 0.976624i \(0.568961\pi\)
\(984\) 0 0
\(985\) −28.2019 1.77446i −0.898586 0.0565389i
\(986\) 0 0
\(987\) −2.55099 −0.0811988
\(988\) 0 0
\(989\) −6.24918 + 6.24918i −0.198712 + 0.198712i
\(990\) 0 0
\(991\) 29.1750i 0.926774i −0.886156 0.463387i \(-0.846634\pi\)
0.886156 0.463387i \(-0.153366\pi\)
\(992\) 0 0
\(993\) −0.447095 0.447095i −0.0141881 0.0141881i
\(994\) 0 0
\(995\) −22.3245 1.40465i −0.707734 0.0445305i
\(996\) 0 0
\(997\) 42.5940i 1.34896i 0.738291 + 0.674482i \(0.235633\pi\)
−0.738291 + 0.674482i \(0.764367\pi\)
\(998\) 0 0
\(999\) 6.29736i 0.199240i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.y.k.223.5 20
4.3 odd 2 1920.2.y.l.223.5 20
5.2 odd 4 1920.2.bc.l.607.1 20
8.3 odd 2 240.2.y.f.163.3 20
8.5 even 2 960.2.y.f.943.6 20
16.3 odd 4 960.2.bc.f.463.10 20
16.5 even 4 1920.2.bc.k.1183.1 20
16.11 odd 4 1920.2.bc.l.1183.1 20
16.13 even 4 240.2.bc.f.43.2 yes 20
20.7 even 4 1920.2.bc.k.607.1 20
24.11 even 2 720.2.z.h.163.8 20
40.27 even 4 240.2.bc.f.67.2 yes 20
40.37 odd 4 960.2.bc.f.367.10 20
48.29 odd 4 720.2.bd.h.523.9 20
80.27 even 4 inner 1920.2.y.k.1567.5 20
80.37 odd 4 1920.2.y.l.1567.5 20
80.67 even 4 960.2.y.f.847.6 20
80.77 odd 4 240.2.y.f.187.3 yes 20
120.107 odd 4 720.2.bd.h.307.9 20
240.77 even 4 720.2.z.h.667.8 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.f.163.3 20 8.3 odd 2
240.2.y.f.187.3 yes 20 80.77 odd 4
240.2.bc.f.43.2 yes 20 16.13 even 4
240.2.bc.f.67.2 yes 20 40.27 even 4
720.2.z.h.163.8 20 24.11 even 2
720.2.z.h.667.8 20 240.77 even 4
720.2.bd.h.307.9 20 120.107 odd 4
720.2.bd.h.523.9 20 48.29 odd 4
960.2.y.f.847.6 20 80.67 even 4
960.2.y.f.943.6 20 8.5 even 2
960.2.bc.f.367.10 20 40.37 odd 4
960.2.bc.f.463.10 20 16.3 odd 4
1920.2.y.k.223.5 20 1.1 even 1 trivial
1920.2.y.k.1567.5 20 80.27 even 4 inner
1920.2.y.l.223.5 20 4.3 odd 2
1920.2.y.l.1567.5 20 80.37 odd 4
1920.2.bc.k.607.1 20 20.7 even 4
1920.2.bc.k.1183.1 20 16.5 even 4
1920.2.bc.l.607.1 20 5.2 odd 4
1920.2.bc.l.1183.1 20 16.11 odd 4