Properties

Label 960.2.bc.f.463.10
Level $960$
Weight $2$
Character 960.463
Analytic conductor $7.666$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [960,2,Mod(367,960)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(960, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("960.367"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 960.bc (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,8,0,4,0,-20,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.66563859404\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 3 x^{18} - 6 x^{17} + 2 x^{16} + 4 x^{14} + 20 x^{13} - 24 x^{12} + 40 x^{11} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{17} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 463.10
Root \(-1.09334 - 0.897004i\) of defining polynomial
Character \(\chi\) \(=\) 960.463
Dual form 960.2.bc.f.367.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +(2.23165 + 0.140415i) q^{5} +(2.83167 - 2.83167i) q^{7} -1.00000 q^{9} +(-4.36026 + 4.36026i) q^{11} +4.99276 q^{13} +(-0.140415 + 2.23165i) q^{15} +(2.27272 - 2.27272i) q^{17} +(1.45960 - 1.45960i) q^{19} +(2.83167 + 2.83167i) q^{21} +(-1.28911 - 1.28911i) q^{23} +(4.96057 + 0.626717i) q^{25} -1.00000i q^{27} +(0.965728 + 0.965728i) q^{29} +0.703997i q^{31} +(-4.36026 - 4.36026i) q^{33} +(6.71691 - 5.92169i) q^{35} -6.29736 q^{37} +4.99276i q^{39} -0.772367i q^{41} +4.84769 q^{43} +(-2.23165 - 0.140415i) q^{45} +(-0.450439 - 0.450439i) q^{47} -9.03668i q^{49} +(2.27272 + 2.27272i) q^{51} +4.17849i q^{53} +(-10.3428 + 9.11835i) q^{55} +(1.45960 + 1.45960i) q^{57} +(-2.23629 - 2.23629i) q^{59} +(0.794490 - 0.794490i) q^{61} +(-2.83167 + 2.83167i) q^{63} +(11.1421 + 0.701060i) q^{65} +13.2598 q^{67} +(1.28911 - 1.28911i) q^{69} +10.8523 q^{71} +(-10.3838 + 10.3838i) q^{73} +(-0.626717 + 4.96057i) q^{75} +24.6936i q^{77} -4.49087 q^{79} +1.00000 q^{81} +7.59721i q^{83} +(5.39105 - 4.75280i) q^{85} +(-0.965728 + 0.965728i) q^{87} -10.7447 q^{89} +(14.1378 - 14.1378i) q^{91} -0.703997 q^{93} +(3.46227 - 3.05237i) q^{95} +(-0.751384 + 0.751384i) q^{97} +(4.36026 - 4.36026i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 8 q^{5} + 4 q^{7} - 20 q^{9} - 8 q^{11} + 8 q^{13} + 12 q^{17} + 16 q^{19} + 4 q^{21} + 16 q^{23} - 4 q^{25} - 8 q^{33} + 12 q^{35} + 24 q^{37} + 8 q^{43} - 8 q^{45} + 12 q^{51} + 4 q^{55} + 16 q^{57}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 2.23165 + 0.140415i 0.998026 + 0.0627957i
\(6\) 0 0
\(7\) 2.83167 2.83167i 1.07027 1.07027i 0.0729328 0.997337i \(-0.476764\pi\)
0.997337 0.0729328i \(-0.0232359\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −4.36026 + 4.36026i −1.31467 + 1.31467i −0.396736 + 0.917933i \(0.629857\pi\)
−0.917933 + 0.396736i \(0.870143\pi\)
\(12\) 0 0
\(13\) 4.99276 1.38474 0.692371 0.721542i \(-0.256566\pi\)
0.692371 + 0.721542i \(0.256566\pi\)
\(14\) 0 0
\(15\) −0.140415 + 2.23165i −0.0362551 + 0.576211i
\(16\) 0 0
\(17\) 2.27272 2.27272i 0.551215 0.551215i −0.375576 0.926791i \(-0.622555\pi\)
0.926791 + 0.375576i \(0.122555\pi\)
\(18\) 0 0
\(19\) 1.45960 1.45960i 0.334855 0.334855i −0.519572 0.854427i \(-0.673909\pi\)
0.854427 + 0.519572i \(0.173909\pi\)
\(20\) 0 0
\(21\) 2.83167 + 2.83167i 0.617920 + 0.617920i
\(22\) 0 0
\(23\) −1.28911 1.28911i −0.268797 0.268797i 0.559818 0.828615i \(-0.310871\pi\)
−0.828615 + 0.559818i \(0.810871\pi\)
\(24\) 0 0
\(25\) 4.96057 + 0.626717i 0.992113 + 0.125343i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 0.965728 + 0.965728i 0.179331 + 0.179331i 0.791064 0.611733i \(-0.209527\pi\)
−0.611733 + 0.791064i \(0.709527\pi\)
\(30\) 0 0
\(31\) 0.703997i 0.126442i 0.998000 + 0.0632208i \(0.0201372\pi\)
−0.998000 + 0.0632208i \(0.979863\pi\)
\(32\) 0 0
\(33\) −4.36026 4.36026i −0.759024 0.759024i
\(34\) 0 0
\(35\) 6.71691 5.92169i 1.13537 1.00095i
\(36\) 0 0
\(37\) −6.29736 −1.03528 −0.517640 0.855599i \(-0.673189\pi\)
−0.517640 + 0.855599i \(0.673189\pi\)
\(38\) 0 0
\(39\) 4.99276i 0.799481i
\(40\) 0 0
\(41\) 0.772367i 0.120624i −0.998180 0.0603118i \(-0.980791\pi\)
0.998180 0.0603118i \(-0.0192095\pi\)
\(42\) 0 0
\(43\) 4.84769 0.739265 0.369633 0.929178i \(-0.379484\pi\)
0.369633 + 0.929178i \(0.379484\pi\)
\(44\) 0 0
\(45\) −2.23165 0.140415i −0.332675 0.0209319i
\(46\) 0 0
\(47\) −0.450439 0.450439i −0.0657033 0.0657033i 0.673492 0.739195i \(-0.264794\pi\)
−0.739195 + 0.673492i \(0.764794\pi\)
\(48\) 0 0
\(49\) 9.03668i 1.29095i
\(50\) 0 0
\(51\) 2.27272 + 2.27272i 0.318244 + 0.318244i
\(52\) 0 0
\(53\) 4.17849i 0.573959i 0.957937 + 0.286980i \(0.0926512\pi\)
−0.957937 + 0.286980i \(0.907349\pi\)
\(54\) 0 0
\(55\) −10.3428 + 9.11835i −1.39463 + 1.22952i
\(56\) 0 0
\(57\) 1.45960 + 1.45960i 0.193328 + 0.193328i
\(58\) 0 0
\(59\) −2.23629 2.23629i −0.291140 0.291140i 0.546391 0.837530i \(-0.316001\pi\)
−0.837530 + 0.546391i \(0.816001\pi\)
\(60\) 0 0
\(61\) 0.794490 0.794490i 0.101724 0.101724i −0.654413 0.756137i \(-0.727084\pi\)
0.756137 + 0.654413i \(0.227084\pi\)
\(62\) 0 0
\(63\) −2.83167 + 2.83167i −0.356757 + 0.356757i
\(64\) 0 0
\(65\) 11.1421 + 0.701060i 1.38201 + 0.0869558i
\(66\) 0 0
\(67\) 13.2598 1.61994 0.809971 0.586470i \(-0.199483\pi\)
0.809971 + 0.586470i \(0.199483\pi\)
\(68\) 0 0
\(69\) 1.28911 1.28911i 0.155190 0.155190i
\(70\) 0 0
\(71\) 10.8523 1.28793 0.643967 0.765053i \(-0.277287\pi\)
0.643967 + 0.765053i \(0.277287\pi\)
\(72\) 0 0
\(73\) −10.3838 + 10.3838i −1.21533 + 1.21533i −0.246083 + 0.969249i \(0.579143\pi\)
−0.969249 + 0.246083i \(0.920857\pi\)
\(74\) 0 0
\(75\) −0.626717 + 4.96057i −0.0723671 + 0.572797i
\(76\) 0 0
\(77\) 24.6936i 2.81410i
\(78\) 0 0
\(79\) −4.49087 −0.505262 −0.252631 0.967563i \(-0.581296\pi\)
−0.252631 + 0.967563i \(0.581296\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 7.59721i 0.833902i 0.908929 + 0.416951i \(0.136901\pi\)
−0.908929 + 0.416951i \(0.863099\pi\)
\(84\) 0 0
\(85\) 5.39105 4.75280i 0.584741 0.515513i
\(86\) 0 0
\(87\) −0.965728 + 0.965728i −0.103537 + 0.103537i
\(88\) 0 0
\(89\) −10.7447 −1.13893 −0.569467 0.822014i \(-0.692850\pi\)
−0.569467 + 0.822014i \(0.692850\pi\)
\(90\) 0 0
\(91\) 14.1378 14.1378i 1.48205 1.48205i
\(92\) 0 0
\(93\) −0.703997 −0.0730011
\(94\) 0 0
\(95\) 3.46227 3.05237i 0.355221 0.313166i
\(96\) 0 0
\(97\) −0.751384 + 0.751384i −0.0762915 + 0.0762915i −0.744223 0.667931i \(-0.767180\pi\)
0.667931 + 0.744223i \(0.267180\pi\)
\(98\) 0 0
\(99\) 4.36026 4.36026i 0.438223 0.438223i
\(100\) 0 0
\(101\) 5.30053 + 5.30053i 0.527423 + 0.527423i 0.919803 0.392380i \(-0.128348\pi\)
−0.392380 + 0.919803i \(0.628348\pi\)
\(102\) 0 0
\(103\) 5.38356 + 5.38356i 0.530458 + 0.530458i 0.920709 0.390250i \(-0.127612\pi\)
−0.390250 + 0.920709i \(0.627612\pi\)
\(104\) 0 0
\(105\) 5.92169 + 6.71691i 0.577898 + 0.655504i
\(106\) 0 0
\(107\) 11.9693i 1.15711i 0.815642 + 0.578557i \(0.196384\pi\)
−0.815642 + 0.578557i \(0.803616\pi\)
\(108\) 0 0
\(109\) 3.91485 + 3.91485i 0.374975 + 0.374975i 0.869285 0.494310i \(-0.164579\pi\)
−0.494310 + 0.869285i \(0.664579\pi\)
\(110\) 0 0
\(111\) 6.29736i 0.597719i
\(112\) 0 0
\(113\) −9.13854 9.13854i −0.859681 0.859681i 0.131619 0.991300i \(-0.457982\pi\)
−0.991300 + 0.131619i \(0.957982\pi\)
\(114\) 0 0
\(115\) −2.69583 3.05785i −0.251387 0.285146i
\(116\) 0 0
\(117\) −4.99276 −0.461580
\(118\) 0 0
\(119\) 12.8712i 1.17990i
\(120\) 0 0
\(121\) 27.0238i 2.45671i
\(122\) 0 0
\(123\) 0.772367 0.0696420
\(124\) 0 0
\(125\) 10.9823 + 2.09516i 0.982284 + 0.187397i
\(126\) 0 0
\(127\) −15.5561 15.5561i −1.38038 1.38038i −0.843931 0.536451i \(-0.819765\pi\)
−0.536451 0.843931i \(-0.680235\pi\)
\(128\) 0 0
\(129\) 4.84769i 0.426815i
\(130\) 0 0
\(131\) −14.4207 14.4207i −1.25994 1.25994i −0.951121 0.308818i \(-0.900067\pi\)
−0.308818 0.951121i \(-0.599933\pi\)
\(132\) 0 0
\(133\) 8.26619i 0.716769i
\(134\) 0 0
\(135\) 0.140415 2.23165i 0.0120850 0.192070i
\(136\) 0 0
\(137\) −3.54735 3.54735i −0.303071 0.303071i 0.539143 0.842214i \(-0.318748\pi\)
−0.842214 + 0.539143i \(0.818748\pi\)
\(138\) 0 0
\(139\) −4.17152 4.17152i −0.353824 0.353824i 0.507706 0.861530i \(-0.330494\pi\)
−0.861530 + 0.507706i \(0.830494\pi\)
\(140\) 0 0
\(141\) 0.450439 0.450439i 0.0379338 0.0379338i
\(142\) 0 0
\(143\) −21.7697 + 21.7697i −1.82048 + 1.82048i
\(144\) 0 0
\(145\) 2.01957 + 2.29077i 0.167716 + 0.190238i
\(146\) 0 0
\(147\) 9.03668 0.745333
\(148\) 0 0
\(149\) −8.42059 + 8.42059i −0.689842 + 0.689842i −0.962197 0.272355i \(-0.912197\pi\)
0.272355 + 0.962197i \(0.412197\pi\)
\(150\) 0 0
\(151\) −4.96999 −0.404452 −0.202226 0.979339i \(-0.564818\pi\)
−0.202226 + 0.979339i \(0.564818\pi\)
\(152\) 0 0
\(153\) −2.27272 + 2.27272i −0.183738 + 0.183738i
\(154\) 0 0
\(155\) −0.0988521 + 1.57108i −0.00793999 + 0.126192i
\(156\) 0 0
\(157\) 14.4628i 1.15426i −0.816653 0.577129i \(-0.804173\pi\)
0.816653 0.577129i \(-0.195827\pi\)
\(158\) 0 0
\(159\) −4.17849 −0.331376
\(160\) 0 0
\(161\) −7.30064 −0.575371
\(162\) 0 0
\(163\) 7.70573i 0.603559i −0.953378 0.301779i \(-0.902419\pi\)
0.953378 0.301779i \(-0.0975806\pi\)
\(164\) 0 0
\(165\) −9.11835 10.3428i −0.709863 0.805190i
\(166\) 0 0
\(167\) −4.64125 + 4.64125i −0.359150 + 0.359150i −0.863500 0.504349i \(-0.831732\pi\)
0.504349 + 0.863500i \(0.331732\pi\)
\(168\) 0 0
\(169\) 11.9276 0.917509
\(170\) 0 0
\(171\) −1.45960 + 1.45960i −0.111618 + 0.111618i
\(172\) 0 0
\(173\) −23.9562 −1.82136 −0.910679 0.413114i \(-0.864441\pi\)
−0.910679 + 0.413114i \(0.864441\pi\)
\(174\) 0 0
\(175\) 15.8213 12.2720i 1.19598 0.927678i
\(176\) 0 0
\(177\) 2.23629 2.23629i 0.168090 0.168090i
\(178\) 0 0
\(179\) 1.30724 1.30724i 0.0977080 0.0977080i −0.656563 0.754271i \(-0.727990\pi\)
0.754271 + 0.656563i \(0.227990\pi\)
\(180\) 0 0
\(181\) −6.95282 6.95282i −0.516799 0.516799i 0.399802 0.916601i \(-0.369079\pi\)
−0.916601 + 0.399802i \(0.869079\pi\)
\(182\) 0 0
\(183\) 0.794490 + 0.794490i 0.0587304 + 0.0587304i
\(184\) 0 0
\(185\) −14.0535 0.884246i −1.03324 0.0650111i
\(186\) 0 0
\(187\) 19.8193i 1.44933i
\(188\) 0 0
\(189\) −2.83167 2.83167i −0.205973 0.205973i
\(190\) 0 0
\(191\) 2.42666i 0.175587i 0.996139 + 0.0877936i \(0.0279816\pi\)
−0.996139 + 0.0877936i \(0.972018\pi\)
\(192\) 0 0
\(193\) −0.611510 0.611510i −0.0440175 0.0440175i 0.684755 0.728773i \(-0.259909\pi\)
−0.728773 + 0.684755i \(0.759909\pi\)
\(194\) 0 0
\(195\) −0.701060 + 11.1421i −0.0502039 + 0.797903i
\(196\) 0 0
\(197\) 12.6372 0.900363 0.450182 0.892937i \(-0.351359\pi\)
0.450182 + 0.892937i \(0.351359\pi\)
\(198\) 0 0
\(199\) 10.0036i 0.709134i 0.935031 + 0.354567i \(0.115372\pi\)
−0.935031 + 0.354567i \(0.884628\pi\)
\(200\) 0 0
\(201\) 13.2598i 0.935274i
\(202\) 0 0
\(203\) 5.46924 0.383865
\(204\) 0 0
\(205\) 0.108452 1.72366i 0.00757464 0.120385i
\(206\) 0 0
\(207\) 1.28911 + 1.28911i 0.0895991 + 0.0895991i
\(208\) 0 0
\(209\) 12.7285i 0.880446i
\(210\) 0 0
\(211\) −9.66719 9.66719i −0.665517 0.665517i 0.291158 0.956675i \(-0.405959\pi\)
−0.956675 + 0.291158i \(0.905959\pi\)
\(212\) 0 0
\(213\) 10.8523i 0.743589i
\(214\) 0 0
\(215\) 10.8184 + 0.680690i 0.737806 + 0.0464227i
\(216\) 0 0
\(217\) 1.99349 + 1.99349i 0.135327 + 0.135327i
\(218\) 0 0
\(219\) −10.3838 10.3838i −0.701672 0.701672i
\(220\) 0 0
\(221\) 11.3471 11.3471i 0.763291 0.763291i
\(222\) 0 0
\(223\) 4.29237 4.29237i 0.287438 0.287438i −0.548628 0.836067i \(-0.684850\pi\)
0.836067 + 0.548628i \(0.184850\pi\)
\(224\) 0 0
\(225\) −4.96057 0.626717i −0.330704 0.0417812i
\(226\) 0 0
\(227\) −13.2703 −0.880778 −0.440389 0.897807i \(-0.645159\pi\)
−0.440389 + 0.897807i \(0.645159\pi\)
\(228\) 0 0
\(229\) −11.4064 + 11.4064i −0.753758 + 0.753758i −0.975178 0.221420i \(-0.928931\pi\)
0.221420 + 0.975178i \(0.428931\pi\)
\(230\) 0 0
\(231\) −24.6936 −1.62472
\(232\) 0 0
\(233\) 8.19734 8.19734i 0.537026 0.537026i −0.385629 0.922654i \(-0.626015\pi\)
0.922654 + 0.385629i \(0.126015\pi\)
\(234\) 0 0
\(235\) −0.941975 1.06847i −0.0614477 0.0696995i
\(236\) 0 0
\(237\) 4.49087i 0.291713i
\(238\) 0 0
\(239\) 10.6504 0.688915 0.344458 0.938802i \(-0.388063\pi\)
0.344458 + 0.938802i \(0.388063\pi\)
\(240\) 0 0
\(241\) −1.22690 −0.0790315 −0.0395157 0.999219i \(-0.512582\pi\)
−0.0395157 + 0.999219i \(0.512582\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 1.26889 20.1668i 0.0810664 1.28841i
\(246\) 0 0
\(247\) 7.28741 7.28741i 0.463687 0.463687i
\(248\) 0 0
\(249\) −7.59721 −0.481453
\(250\) 0 0
\(251\) 11.5822 11.5822i 0.731061 0.731061i −0.239769 0.970830i \(-0.577072\pi\)
0.970830 + 0.239769i \(0.0770717\pi\)
\(252\) 0 0
\(253\) 11.2417 0.706759
\(254\) 0 0
\(255\) 4.75280 + 5.39105i 0.297632 + 0.337601i
\(256\) 0 0
\(257\) 5.72342 5.72342i 0.357017 0.357017i −0.505695 0.862712i \(-0.668764\pi\)
0.862712 + 0.505695i \(0.168764\pi\)
\(258\) 0 0
\(259\) −17.8320 + 17.8320i −1.10803 + 1.10803i
\(260\) 0 0
\(261\) −0.965728 0.965728i −0.0597771 0.0597771i
\(262\) 0 0
\(263\) −6.70033 6.70033i −0.413160 0.413160i 0.469678 0.882838i \(-0.344370\pi\)
−0.882838 + 0.469678i \(0.844370\pi\)
\(264\) 0 0
\(265\) −0.586724 + 9.32494i −0.0360422 + 0.572826i
\(266\) 0 0
\(267\) 10.7447i 0.657564i
\(268\) 0 0
\(269\) −1.08527 1.08527i −0.0661699 0.0661699i 0.673247 0.739417i \(-0.264899\pi\)
−0.739417 + 0.673247i \(0.764899\pi\)
\(270\) 0 0
\(271\) 3.21705i 0.195422i −0.995215 0.0977108i \(-0.968848\pi\)
0.995215 0.0977108i \(-0.0311520\pi\)
\(272\) 0 0
\(273\) 14.1378 + 14.1378i 0.855660 + 0.855660i
\(274\) 0 0
\(275\) −24.3620 + 18.8967i −1.46909 + 1.13952i
\(276\) 0 0
\(277\) −28.2079 −1.69485 −0.847425 0.530915i \(-0.821848\pi\)
−0.847425 + 0.530915i \(0.821848\pi\)
\(278\) 0 0
\(279\) 0.703997i 0.0421472i
\(280\) 0 0
\(281\) 24.5928i 1.46709i −0.679643 0.733543i \(-0.737865\pi\)
0.679643 0.733543i \(-0.262135\pi\)
\(282\) 0 0
\(283\) −15.0862 −0.896779 −0.448390 0.893838i \(-0.648002\pi\)
−0.448390 + 0.893838i \(0.648002\pi\)
\(284\) 0 0
\(285\) 3.05237 + 3.46227i 0.180807 + 0.205087i
\(286\) 0 0
\(287\) −2.18709 2.18709i −0.129100 0.129100i
\(288\) 0 0
\(289\) 6.66950i 0.392324i
\(290\) 0 0
\(291\) −0.751384 0.751384i −0.0440469 0.0440469i
\(292\) 0 0
\(293\) 3.49295i 0.204060i 0.994781 + 0.102030i \(0.0325338\pi\)
−0.994781 + 0.102030i \(0.967466\pi\)
\(294\) 0 0
\(295\) −4.67661 5.30463i −0.272283 0.308848i
\(296\) 0 0
\(297\) 4.36026 + 4.36026i 0.253008 + 0.253008i
\(298\) 0 0
\(299\) −6.43619 6.43619i −0.372215 0.372215i
\(300\) 0 0
\(301\) 13.7270 13.7270i 0.791213 0.791213i
\(302\) 0 0
\(303\) −5.30053 + 5.30053i −0.304508 + 0.304508i
\(304\) 0 0
\(305\) 1.88458 1.66147i 0.107911 0.0951354i
\(306\) 0 0
\(307\) 7.81653 0.446113 0.223056 0.974806i \(-0.428397\pi\)
0.223056 + 0.974806i \(0.428397\pi\)
\(308\) 0 0
\(309\) −5.38356 + 5.38356i −0.306260 + 0.306260i
\(310\) 0 0
\(311\) 6.15295 0.348902 0.174451 0.984666i \(-0.444185\pi\)
0.174451 + 0.984666i \(0.444185\pi\)
\(312\) 0 0
\(313\) 9.65621 9.65621i 0.545802 0.545802i −0.379422 0.925224i \(-0.623877\pi\)
0.925224 + 0.379422i \(0.123877\pi\)
\(314\) 0 0
\(315\) −6.71691 + 5.92169i −0.378455 + 0.333650i
\(316\) 0 0
\(317\) 10.5517i 0.592642i 0.955088 + 0.296321i \(0.0957599\pi\)
−0.955088 + 0.296321i \(0.904240\pi\)
\(318\) 0 0
\(319\) −8.42165 −0.471522
\(320\) 0 0
\(321\) −11.9693 −0.668061
\(322\) 0 0
\(323\) 6.63451i 0.369154i
\(324\) 0 0
\(325\) 24.7669 + 3.12905i 1.37382 + 0.173568i
\(326\) 0 0
\(327\) −3.91485 + 3.91485i −0.216492 + 0.216492i
\(328\) 0 0
\(329\) −2.55099 −0.140640
\(330\) 0 0
\(331\) −0.447095 + 0.447095i −0.0245745 + 0.0245745i −0.719287 0.694713i \(-0.755531\pi\)
0.694713 + 0.719287i \(0.255531\pi\)
\(332\) 0 0
\(333\) 6.29736 0.345093
\(334\) 0 0
\(335\) 29.5913 + 1.86188i 1.61675 + 0.101725i
\(336\) 0 0
\(337\) 4.17945 4.17945i 0.227669 0.227669i −0.584049 0.811718i \(-0.698532\pi\)
0.811718 + 0.584049i \(0.198532\pi\)
\(338\) 0 0
\(339\) 9.13854 9.13854i 0.496337 0.496337i
\(340\) 0 0
\(341\) −3.06961 3.06961i −0.166229 0.166229i
\(342\) 0 0
\(343\) −5.76720 5.76720i −0.311400 0.311400i
\(344\) 0 0
\(345\) 3.05785 2.69583i 0.164629 0.145139i
\(346\) 0 0
\(347\) 30.4793i 1.63622i 0.575064 + 0.818108i \(0.304977\pi\)
−0.575064 + 0.818108i \(0.695023\pi\)
\(348\) 0 0
\(349\) −24.1490 24.1490i −1.29267 1.29267i −0.933131 0.359535i \(-0.882935\pi\)
−0.359535 0.933131i \(-0.617065\pi\)
\(350\) 0 0
\(351\) 4.99276i 0.266494i
\(352\) 0 0
\(353\) −17.3084 17.3084i −0.921233 0.921233i 0.0758833 0.997117i \(-0.475822\pi\)
−0.997117 + 0.0758833i \(0.975822\pi\)
\(354\) 0 0
\(355\) 24.2186 + 1.52383i 1.28539 + 0.0808767i
\(356\) 0 0
\(357\) 12.8712 0.681214
\(358\) 0 0
\(359\) 29.4403i 1.55380i 0.629626 + 0.776899i \(0.283208\pi\)
−0.629626 + 0.776899i \(0.716792\pi\)
\(360\) 0 0
\(361\) 14.7392i 0.775745i
\(362\) 0 0
\(363\) 27.0238 1.41838
\(364\) 0 0
\(365\) −24.6311 + 21.7150i −1.28925 + 1.13662i
\(366\) 0 0
\(367\) 10.7678 + 10.7678i 0.562076 + 0.562076i 0.929897 0.367821i \(-0.119896\pi\)
−0.367821 + 0.929897i \(0.619896\pi\)
\(368\) 0 0
\(369\) 0.772367i 0.0402078i
\(370\) 0 0
\(371\) 11.8321 + 11.8321i 0.614291 + 0.614291i
\(372\) 0 0
\(373\) 32.1031i 1.66223i 0.556098 + 0.831117i \(0.312298\pi\)
−0.556098 + 0.831117i \(0.687702\pi\)
\(374\) 0 0
\(375\) −2.09516 + 10.9823i −0.108193 + 0.567122i
\(376\) 0 0
\(377\) 4.82164 + 4.82164i 0.248327 + 0.248327i
\(378\) 0 0
\(379\) −23.3329 23.3329i −1.19853 1.19853i −0.974607 0.223923i \(-0.928113\pi\)
−0.223923 0.974607i \(-0.571887\pi\)
\(380\) 0 0
\(381\) 15.5561 15.5561i 0.796964 0.796964i
\(382\) 0 0
\(383\) 7.02280 7.02280i 0.358848 0.358848i −0.504540 0.863388i \(-0.668338\pi\)
0.863388 + 0.504540i \(0.168338\pi\)
\(384\) 0 0
\(385\) −3.46737 + 55.1077i −0.176713 + 2.80855i
\(386\) 0 0
\(387\) −4.84769 −0.246422
\(388\) 0 0
\(389\) 23.0035 23.0035i 1.16632 1.16632i 0.183259 0.983065i \(-0.441335\pi\)
0.983065 0.183259i \(-0.0586647\pi\)
\(390\) 0 0
\(391\) −5.85955 −0.296330
\(392\) 0 0
\(393\) 14.4207 14.4207i 0.727426 0.727426i
\(394\) 0 0
\(395\) −10.0221 0.630587i −0.504265 0.0317283i
\(396\) 0 0
\(397\) 25.0560i 1.25753i 0.777597 + 0.628763i \(0.216438\pi\)
−0.777597 + 0.628763i \(0.783562\pi\)
\(398\) 0 0
\(399\) 8.26619 0.413827
\(400\) 0 0
\(401\) 6.21757 0.310491 0.155245 0.987876i \(-0.450383\pi\)
0.155245 + 0.987876i \(0.450383\pi\)
\(402\) 0 0
\(403\) 3.51489i 0.175089i
\(404\) 0 0
\(405\) 2.23165 + 0.140415i 0.110892 + 0.00697730i
\(406\) 0 0
\(407\) 27.4581 27.4581i 1.36105 1.36105i
\(408\) 0 0
\(409\) −13.1629 −0.650865 −0.325432 0.945565i \(-0.605510\pi\)
−0.325432 + 0.945565i \(0.605510\pi\)
\(410\) 0 0
\(411\) 3.54735 3.54735i 0.174978 0.174978i
\(412\) 0 0
\(413\) −12.6648 −0.623196
\(414\) 0 0
\(415\) −1.06676 + 16.9543i −0.0523654 + 0.832256i
\(416\) 0 0
\(417\) 4.17152 4.17152i 0.204280 0.204280i
\(418\) 0 0
\(419\) −14.7013 + 14.7013i −0.718208 + 0.718208i −0.968238 0.250030i \(-0.919559\pi\)
0.250030 + 0.968238i \(0.419559\pi\)
\(420\) 0 0
\(421\) 17.0481 + 17.0481i 0.830872 + 0.830872i 0.987636 0.156764i \(-0.0501063\pi\)
−0.156764 + 0.987636i \(0.550106\pi\)
\(422\) 0 0
\(423\) 0.450439 + 0.450439i 0.0219011 + 0.0219011i
\(424\) 0 0
\(425\) 12.6983 9.84962i 0.615959 0.477777i
\(426\) 0 0
\(427\) 4.49946i 0.217744i
\(428\) 0 0
\(429\) −21.7697 21.7697i −1.05105 1.05105i
\(430\) 0 0
\(431\) 18.5363i 0.892864i −0.894818 0.446432i \(-0.852694\pi\)
0.894818 0.446432i \(-0.147306\pi\)
\(432\) 0 0
\(433\) −9.47558 9.47558i −0.455368 0.455368i 0.441764 0.897131i \(-0.354353\pi\)
−0.897131 + 0.441764i \(0.854353\pi\)
\(434\) 0 0
\(435\) −2.29077 + 2.01957i −0.109834 + 0.0968309i
\(436\) 0 0
\(437\) −3.76315 −0.180016
\(438\) 0 0
\(439\) 21.7937i 1.04016i −0.854119 0.520078i \(-0.825903\pi\)
0.854119 0.520078i \(-0.174097\pi\)
\(440\) 0 0
\(441\) 9.03668i 0.430318i
\(442\) 0 0
\(443\) −26.2733 −1.24828 −0.624141 0.781312i \(-0.714551\pi\)
−0.624141 + 0.781312i \(0.714551\pi\)
\(444\) 0 0
\(445\) −23.9784 1.50872i −1.13669 0.0715201i
\(446\) 0 0
\(447\) −8.42059 8.42059i −0.398280 0.398280i
\(448\) 0 0
\(449\) 29.2615i 1.38093i 0.723364 + 0.690467i \(0.242595\pi\)
−0.723364 + 0.690467i \(0.757405\pi\)
\(450\) 0 0
\(451\) 3.36772 + 3.36772i 0.158580 + 0.158580i
\(452\) 0 0
\(453\) 4.96999i 0.233510i
\(454\) 0 0
\(455\) 33.5359 29.5656i 1.57219 1.38606i
\(456\) 0 0
\(457\) 18.2488 + 18.2488i 0.853641 + 0.853641i 0.990580 0.136938i \(-0.0437262\pi\)
−0.136938 + 0.990580i \(0.543726\pi\)
\(458\) 0 0
\(459\) −2.27272 2.27272i −0.106081 0.106081i
\(460\) 0 0
\(461\) 5.13473 5.13473i 0.239148 0.239148i −0.577349 0.816497i \(-0.695913\pi\)
0.816497 + 0.577349i \(0.195913\pi\)
\(462\) 0 0
\(463\) 10.2040 10.2040i 0.474220 0.474220i −0.429057 0.903277i \(-0.641154\pi\)
0.903277 + 0.429057i \(0.141154\pi\)
\(464\) 0 0
\(465\) −1.57108 0.0988521i −0.0728571 0.00458416i
\(466\) 0 0
\(467\) −24.2696 −1.12306 −0.561532 0.827455i \(-0.689788\pi\)
−0.561532 + 0.827455i \(0.689788\pi\)
\(468\) 0 0
\(469\) 37.5473 37.5473i 1.73378 1.73378i
\(470\) 0 0
\(471\) 14.4628 0.666411
\(472\) 0 0
\(473\) −21.1372 + 21.1372i −0.971889 + 0.971889i
\(474\) 0 0
\(475\) 8.15518 6.32567i 0.374186 0.290242i
\(476\) 0 0
\(477\) 4.17849i 0.191320i
\(478\) 0 0
\(479\) 25.0894 1.14636 0.573182 0.819428i \(-0.305709\pi\)
0.573182 + 0.819428i \(0.305709\pi\)
\(480\) 0 0
\(481\) −31.4412 −1.43359
\(482\) 0 0
\(483\) 7.30064i 0.332191i
\(484\) 0 0
\(485\) −1.78234 + 1.57132i −0.0809317 + 0.0713502i
\(486\) 0 0
\(487\) 0.369801 0.369801i 0.0167573 0.0167573i −0.698679 0.715436i \(-0.746228\pi\)
0.715436 + 0.698679i \(0.246228\pi\)
\(488\) 0 0
\(489\) 7.70573 0.348465
\(490\) 0 0
\(491\) 19.2802 19.2802i 0.870104 0.870104i −0.122379 0.992483i \(-0.539052\pi\)
0.992483 + 0.122379i \(0.0390524\pi\)
\(492\) 0 0
\(493\) 4.38966 0.197700
\(494\) 0 0
\(495\) 10.3428 9.11835i 0.464877 0.409840i
\(496\) 0 0
\(497\) 30.7302 30.7302i 1.37844 1.37844i
\(498\) 0 0
\(499\) −17.1262 + 17.1262i −0.766673 + 0.766673i −0.977519 0.210847i \(-0.932378\pi\)
0.210847 + 0.977519i \(0.432378\pi\)
\(500\) 0 0
\(501\) −4.64125 4.64125i −0.207356 0.207356i
\(502\) 0 0
\(503\) −5.60127 5.60127i −0.249748 0.249748i 0.571119 0.820867i \(-0.306509\pi\)
−0.820867 + 0.571119i \(0.806509\pi\)
\(504\) 0 0
\(505\) 11.0847 + 12.5732i 0.493262 + 0.559501i
\(506\) 0 0
\(507\) 11.9276i 0.529724i
\(508\) 0 0
\(509\) 0.0876457 + 0.0876457i 0.00388483 + 0.00388483i 0.709047 0.705162i \(-0.249126\pi\)
−0.705162 + 0.709047i \(0.749126\pi\)
\(510\) 0 0
\(511\) 58.8069i 2.60146i
\(512\) 0 0
\(513\) −1.45960 1.45960i −0.0644428 0.0644428i
\(514\) 0 0
\(515\) 11.2583 + 12.7702i 0.496101 + 0.562722i
\(516\) 0 0
\(517\) 3.92806 0.172756
\(518\) 0 0
\(519\) 23.9562i 1.05156i
\(520\) 0 0
\(521\) 0.327549i 0.0143502i 0.999974 + 0.00717509i \(0.00228392\pi\)
−0.999974 + 0.00717509i \(0.997716\pi\)
\(522\) 0 0
\(523\) 21.8823 0.956847 0.478423 0.878129i \(-0.341208\pi\)
0.478423 + 0.878129i \(0.341208\pi\)
\(524\) 0 0
\(525\) 12.2720 + 15.8213i 0.535595 + 0.690500i
\(526\) 0 0
\(527\) 1.59999 + 1.59999i 0.0696966 + 0.0696966i
\(528\) 0 0
\(529\) 19.6764i 0.855496i
\(530\) 0 0
\(531\) 2.23629 + 2.23629i 0.0970466 + 0.0970466i
\(532\) 0 0
\(533\) 3.85624i 0.167032i
\(534\) 0 0
\(535\) −1.68067 + 26.7113i −0.0726618 + 1.15483i
\(536\) 0 0
\(537\) 1.30724 + 1.30724i 0.0564117 + 0.0564117i
\(538\) 0 0
\(539\) 39.4023 + 39.4023i 1.69718 + 1.69718i
\(540\) 0 0
\(541\) −21.9852 + 21.9852i −0.945217 + 0.945217i −0.998575 0.0533584i \(-0.983007\pi\)
0.0533584 + 0.998575i \(0.483007\pi\)
\(542\) 0 0
\(543\) 6.95282 6.95282i 0.298374 0.298374i
\(544\) 0 0
\(545\) 8.18690 + 9.28631i 0.350688 + 0.397782i
\(546\) 0 0
\(547\) 28.9503 1.23783 0.618913 0.785459i \(-0.287573\pi\)
0.618913 + 0.785459i \(0.287573\pi\)
\(548\) 0 0
\(549\) −0.794490 + 0.794490i −0.0339080 + 0.0339080i
\(550\) 0 0
\(551\) 2.81915 0.120100
\(552\) 0 0
\(553\) −12.7167 + 12.7167i −0.540767 + 0.540767i
\(554\) 0 0
\(555\) 0.884246 14.0535i 0.0375342 0.596539i
\(556\) 0 0
\(557\) 8.55746i 0.362591i −0.983429 0.181296i \(-0.941971\pi\)
0.983429 0.181296i \(-0.0580291\pi\)
\(558\) 0 0
\(559\) 24.2033 1.02369
\(560\) 0 0
\(561\) −19.8193 −0.836772
\(562\) 0 0
\(563\) 19.8277i 0.835637i −0.908530 0.417819i \(-0.862795\pi\)
0.908530 0.417819i \(-0.137205\pi\)
\(564\) 0 0
\(565\) −19.1109 21.6773i −0.804000 0.911969i
\(566\) 0 0
\(567\) 2.83167 2.83167i 0.118919 0.118919i
\(568\) 0 0
\(569\) 13.1834 0.552677 0.276339 0.961060i \(-0.410879\pi\)
0.276339 + 0.961060i \(0.410879\pi\)
\(570\) 0 0
\(571\) 5.46465 5.46465i 0.228688 0.228688i −0.583456 0.812145i \(-0.698300\pi\)
0.812145 + 0.583456i \(0.198300\pi\)
\(572\) 0 0
\(573\) −2.42666 −0.101375
\(574\) 0 0
\(575\) −5.58679 7.20260i −0.232985 0.300369i
\(576\) 0 0
\(577\) 11.0931 11.0931i 0.461811 0.461811i −0.437438 0.899249i \(-0.644114\pi\)
0.899249 + 0.437438i \(0.144114\pi\)
\(578\) 0 0
\(579\) 0.611510 0.611510i 0.0254135 0.0254135i
\(580\) 0 0
\(581\) 21.5128 + 21.5128i 0.892500 + 0.892500i
\(582\) 0 0
\(583\) −18.2193 18.2193i −0.754566 0.754566i
\(584\) 0 0
\(585\) −11.1421 0.701060i −0.460670 0.0289853i
\(586\) 0 0
\(587\) 0.0736360i 0.00303928i −0.999999 0.00151964i \(-0.999516\pi\)
0.999999 0.00151964i \(-0.000483717\pi\)
\(588\) 0 0
\(589\) 1.02755 + 1.02755i 0.0423396 + 0.0423396i
\(590\) 0 0
\(591\) 12.6372i 0.519825i
\(592\) 0 0
\(593\) 25.1041 + 25.1041i 1.03090 + 1.03090i 0.999507 + 0.0313952i \(0.00999504\pi\)
0.0313952 + 0.999507i \(0.490005\pi\)
\(594\) 0 0
\(595\) 1.80731 28.7240i 0.0740925 1.17757i
\(596\) 0 0
\(597\) −10.0036 −0.409419
\(598\) 0 0
\(599\) 16.3265i 0.667081i 0.942736 + 0.333541i \(0.108243\pi\)
−0.942736 + 0.333541i \(0.891757\pi\)
\(600\) 0 0
\(601\) 22.5262i 0.918862i 0.888213 + 0.459431i \(0.151947\pi\)
−0.888213 + 0.459431i \(0.848053\pi\)
\(602\) 0 0
\(603\) −13.2598 −0.539981
\(604\) 0 0
\(605\) 3.79456 60.3078i 0.154271 2.45186i
\(606\) 0 0
\(607\) 20.2440 + 20.2440i 0.821677 + 0.821677i 0.986348 0.164672i \(-0.0526565\pi\)
−0.164672 + 0.986348i \(0.552656\pi\)
\(608\) 0 0
\(609\) 5.46924i 0.221625i
\(610\) 0 0
\(611\) −2.24893 2.24893i −0.0909820 0.0909820i
\(612\) 0 0
\(613\) 28.9848i 1.17069i 0.810786 + 0.585343i \(0.199040\pi\)
−0.810786 + 0.585343i \(0.800960\pi\)
\(614\) 0 0
\(615\) 1.72366 + 0.108452i 0.0695046 + 0.00437322i
\(616\) 0 0
\(617\) 18.0708 + 18.0708i 0.727503 + 0.727503i 0.970122 0.242619i \(-0.0780064\pi\)
−0.242619 + 0.970122i \(0.578006\pi\)
\(618\) 0 0
\(619\) 17.2226 + 17.2226i 0.692236 + 0.692236i 0.962723 0.270488i \(-0.0871849\pi\)
−0.270488 + 0.962723i \(0.587185\pi\)
\(620\) 0 0
\(621\) −1.28911 + 1.28911i −0.0517300 + 0.0517300i
\(622\) 0 0
\(623\) −30.4254 + 30.4254i −1.21897 + 1.21897i
\(624\) 0 0
\(625\) 24.2145 + 6.21775i 0.968578 + 0.248710i
\(626\) 0 0
\(627\) −12.7285 −0.508325
\(628\) 0 0
\(629\) −14.3121 + 14.3121i −0.570662 + 0.570662i
\(630\) 0 0
\(631\) 15.2007 0.605131 0.302565 0.953129i \(-0.402157\pi\)
0.302565 + 0.953129i \(0.402157\pi\)
\(632\) 0 0
\(633\) 9.66719 9.66719i 0.384236 0.384236i
\(634\) 0 0
\(635\) −32.5316 36.9002i −1.29098 1.46434i
\(636\) 0 0
\(637\) 45.1179i 1.78764i
\(638\) 0 0
\(639\) −10.8523 −0.429311
\(640\) 0 0
\(641\) −13.9100 −0.549414 −0.274707 0.961528i \(-0.588581\pi\)
−0.274707 + 0.961528i \(0.588581\pi\)
\(642\) 0 0
\(643\) 50.3060i 1.98387i 0.126735 + 0.991937i \(0.459550\pi\)
−0.126735 + 0.991937i \(0.540450\pi\)
\(644\) 0 0
\(645\) −0.680690 + 10.8184i −0.0268021 + 0.425973i
\(646\) 0 0
\(647\) −15.4702 + 15.4702i −0.608197 + 0.608197i −0.942475 0.334278i \(-0.891508\pi\)
0.334278 + 0.942475i \(0.391508\pi\)
\(648\) 0 0
\(649\) 19.5016 0.765505
\(650\) 0 0
\(651\) −1.99349 + 1.99349i −0.0781309 + 0.0781309i
\(652\) 0 0
\(653\) 25.9406 1.01514 0.507568 0.861612i \(-0.330545\pi\)
0.507568 + 0.861612i \(0.330545\pi\)
\(654\) 0 0
\(655\) −30.1571 34.2068i −1.17833 1.33657i
\(656\) 0 0
\(657\) 10.3838 10.3838i 0.405110 0.405110i
\(658\) 0 0
\(659\) 12.5270 12.5270i 0.487981 0.487981i −0.419687 0.907669i \(-0.637860\pi\)
0.907669 + 0.419687i \(0.137860\pi\)
\(660\) 0 0
\(661\) −26.5534 26.5534i −1.03281 1.03281i −0.999443 0.0333644i \(-0.989378\pi\)
−0.0333644 0.999443i \(-0.510622\pi\)
\(662\) 0 0
\(663\) 11.3471 + 11.3471i 0.440686 + 0.440686i
\(664\) 0 0
\(665\) 1.16070 18.4473i 0.0450100 0.715355i
\(666\) 0 0
\(667\) 2.48985i 0.0964074i
\(668\) 0 0
\(669\) 4.29237 + 4.29237i 0.165953 + 0.165953i
\(670\) 0 0
\(671\) 6.92837i 0.267467i
\(672\) 0 0
\(673\) 10.4724 + 10.4724i 0.403681 + 0.403681i 0.879528 0.475847i \(-0.157858\pi\)
−0.475847 + 0.879528i \(0.657858\pi\)
\(674\) 0 0
\(675\) 0.626717 4.96057i 0.0241224 0.190932i
\(676\) 0 0
\(677\) −23.5614 −0.905539 −0.452769 0.891628i \(-0.649564\pi\)
−0.452769 + 0.891628i \(0.649564\pi\)
\(678\) 0 0
\(679\) 4.25534i 0.163305i
\(680\) 0 0
\(681\) 13.2703i 0.508517i
\(682\) 0 0
\(683\) −30.7873 −1.17804 −0.589021 0.808117i \(-0.700487\pi\)
−0.589021 + 0.808117i \(0.700487\pi\)
\(684\) 0 0
\(685\) −7.41837 8.41457i −0.283441 0.321504i
\(686\) 0 0
\(687\) −11.4064 11.4064i −0.435183 0.435183i
\(688\) 0 0
\(689\) 20.8622i 0.794785i
\(690\) 0 0
\(691\) −16.3289 16.3289i −0.621182 0.621182i 0.324652 0.945834i \(-0.394753\pi\)
−0.945834 + 0.324652i \(0.894753\pi\)
\(692\) 0 0
\(693\) 24.6936i 0.938033i
\(694\) 0 0
\(695\) −8.72365 9.89515i −0.330907 0.375344i
\(696\) 0 0
\(697\) −1.75537 1.75537i −0.0664895 0.0664895i
\(698\) 0 0
\(699\) 8.19734 + 8.19734i 0.310052 + 0.310052i
\(700\) 0 0
\(701\) −15.1215 + 15.1215i −0.571130 + 0.571130i −0.932444 0.361314i \(-0.882328\pi\)
0.361314 + 0.932444i \(0.382328\pi\)
\(702\) 0 0
\(703\) −9.19161 + 9.19161i −0.346668 + 0.346668i
\(704\) 0 0
\(705\) 1.06847 0.941975i 0.0402410 0.0354768i
\(706\) 0 0
\(707\) 30.0187 1.12897
\(708\) 0 0
\(709\) 20.5244 20.5244i 0.770812 0.770812i −0.207437 0.978248i \(-0.566512\pi\)
0.978248 + 0.207437i \(0.0665122\pi\)
\(710\) 0 0
\(711\) 4.49087 0.168421
\(712\) 0 0
\(713\) 0.907527 0.907527i 0.0339872 0.0339872i
\(714\) 0 0
\(715\) −51.6393 + 45.5257i −1.93120 + 1.70257i
\(716\) 0 0
\(717\) 10.6504i 0.397745i
\(718\) 0 0
\(719\) −13.6873 −0.510451 −0.255225 0.966882i \(-0.582150\pi\)
−0.255225 + 0.966882i \(0.582150\pi\)
\(720\) 0 0
\(721\) 30.4889 1.13547
\(722\) 0 0
\(723\) 1.22690i 0.0456288i
\(724\) 0 0
\(725\) 4.18532 + 5.39580i 0.155439 + 0.200395i
\(726\) 0 0
\(727\) −29.3029 + 29.3029i −1.08678 + 1.08678i −0.0909272 + 0.995858i \(0.528983\pi\)
−0.995858 + 0.0909272i \(0.971017\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 11.0174 11.0174i 0.407494 0.407494i
\(732\) 0 0
\(733\) 47.2879 1.74662 0.873309 0.487166i \(-0.161969\pi\)
0.873309 + 0.487166i \(0.161969\pi\)
\(734\) 0 0
\(735\) 20.1668 + 1.26889i 0.743862 + 0.0468037i
\(736\) 0 0
\(737\) −57.8162 + 57.8162i −2.12969 + 2.12969i
\(738\) 0 0
\(739\) −15.3480 + 15.3480i −0.564587 + 0.564587i −0.930607 0.366020i \(-0.880720\pi\)
0.366020 + 0.930607i \(0.380720\pi\)
\(740\) 0 0
\(741\) 7.28741 + 7.28741i 0.267710 + 0.267710i
\(742\) 0 0
\(743\) −16.7906 16.7906i −0.615987 0.615987i 0.328513 0.944500i \(-0.393453\pi\)
−0.944500 + 0.328513i \(0.893453\pi\)
\(744\) 0 0
\(745\) −19.9742 + 17.6095i −0.731799 + 0.645161i
\(746\) 0 0
\(747\) 7.59721i 0.277967i
\(748\) 0 0
\(749\) 33.8930 + 33.8930i 1.23842 + 1.23842i
\(750\) 0 0
\(751\) 37.3096i 1.36145i 0.732540 + 0.680724i \(0.238335\pi\)
−0.732540 + 0.680724i \(0.761665\pi\)
\(752\) 0 0
\(753\) 11.5822 + 11.5822i 0.422078 + 0.422078i
\(754\) 0 0
\(755\) −11.0913 0.697863i −0.403654 0.0253978i
\(756\) 0 0
\(757\) −2.73045 −0.0992397 −0.0496199 0.998768i \(-0.515801\pi\)
−0.0496199 + 0.998768i \(0.515801\pi\)
\(758\) 0 0
\(759\) 11.2417i 0.408047i
\(760\) 0 0
\(761\) 43.2111i 1.56640i −0.621768 0.783201i \(-0.713585\pi\)
0.621768 0.783201i \(-0.286415\pi\)
\(762\) 0 0
\(763\) 22.1711 0.802649
\(764\) 0 0
\(765\) −5.39105 + 4.75280i −0.194914 + 0.171838i
\(766\) 0 0
\(767\) −11.1652 11.1652i −0.403154 0.403154i
\(768\) 0 0
\(769\) 41.3520i 1.49119i −0.666398 0.745596i \(-0.732165\pi\)
0.666398 0.745596i \(-0.267835\pi\)
\(770\) 0 0
\(771\) 5.72342 + 5.72342i 0.206124 + 0.206124i
\(772\) 0 0
\(773\) 10.4113i 0.374469i 0.982315 + 0.187234i \(0.0599523\pi\)
−0.982315 + 0.187234i \(0.940048\pi\)
\(774\) 0 0
\(775\) −0.441207 + 3.49223i −0.0158486 + 0.125444i
\(776\) 0 0
\(777\) −17.8320 17.8320i −0.639720 0.639720i
\(778\) 0 0
\(779\) −1.12735 1.12735i −0.0403913 0.0403913i
\(780\) 0 0
\(781\) −47.3190 + 47.3190i −1.69321 + 1.69321i
\(782\) 0 0
\(783\) 0.965728 0.965728i 0.0345123 0.0345123i
\(784\) 0 0
\(785\) 2.03080 32.2760i 0.0724824 1.15198i
\(786\) 0 0
\(787\) 9.84332 0.350877 0.175438 0.984490i \(-0.443866\pi\)
0.175438 + 0.984490i \(0.443866\pi\)
\(788\) 0 0
\(789\) 6.70033 6.70033i 0.238538 0.238538i
\(790\) 0 0
\(791\) −51.7546 −1.84018
\(792\) 0 0
\(793\) 3.96669 3.96669i 0.140861 0.140861i
\(794\) 0 0
\(795\) −9.32494 0.586724i −0.330722 0.0208090i
\(796\) 0 0
\(797\) 13.2854i 0.470592i 0.971924 + 0.235296i \(0.0756060\pi\)
−0.971924 + 0.235296i \(0.924394\pi\)
\(798\) 0 0
\(799\) −2.04744 −0.0724333
\(800\) 0 0
\(801\) 10.7447 0.379645
\(802\) 0 0
\(803\) 90.5522i 3.19552i
\(804\) 0 0
\(805\) −16.2925 1.02512i −0.574235 0.0361308i
\(806\) 0 0
\(807\) 1.08527 1.08527i 0.0382032 0.0382032i
\(808\) 0 0
\(809\) −7.77887 −0.273490 −0.136745 0.990606i \(-0.543664\pi\)
−0.136745 + 0.990606i \(0.543664\pi\)
\(810\) 0 0
\(811\) −33.4895 + 33.4895i −1.17598 + 1.17598i −0.195215 + 0.980760i \(0.562541\pi\)
−0.980760 + 0.195215i \(0.937459\pi\)
\(812\) 0 0
\(813\) 3.21705 0.112827
\(814\) 0 0
\(815\) 1.08200 17.1965i 0.0379009 0.602368i
\(816\) 0 0
\(817\) 7.07567 7.07567i 0.247546 0.247546i
\(818\) 0 0
\(819\) −14.1378 + 14.1378i −0.494016 + 0.494016i
\(820\) 0 0
\(821\) 22.0992 + 22.0992i 0.771267 + 0.771267i 0.978328 0.207061i \(-0.0663898\pi\)
−0.207061 + 0.978328i \(0.566390\pi\)
\(822\) 0 0
\(823\) −6.47786 6.47786i −0.225804 0.225804i 0.585133 0.810937i \(-0.301042\pi\)
−0.810937 + 0.585133i \(0.801042\pi\)
\(824\) 0 0
\(825\) −18.8967 24.3620i −0.657899 0.848177i
\(826\) 0 0
\(827\) 0.819945i 0.0285123i −0.999898 0.0142561i \(-0.995462\pi\)
0.999898 0.0142561i \(-0.00453803\pi\)
\(828\) 0 0
\(829\) 27.4647 + 27.4647i 0.953888 + 0.953888i 0.998983 0.0450945i \(-0.0143589\pi\)
−0.0450945 + 0.998983i \(0.514359\pi\)
\(830\) 0 0
\(831\) 28.2079i 0.978522i
\(832\) 0 0
\(833\) −20.5378 20.5378i −0.711594 0.711594i
\(834\) 0 0
\(835\) −11.0094 + 9.70595i −0.380995 + 0.335888i
\(836\) 0 0
\(837\) 0.703997 0.0243337
\(838\) 0 0
\(839\) 25.9917i 0.897335i −0.893699 0.448667i \(-0.851899\pi\)
0.893699 0.448667i \(-0.148101\pi\)
\(840\) 0 0
\(841\) 27.1347i 0.935681i
\(842\) 0 0
\(843\) 24.5928 0.847023
\(844\) 0 0
\(845\) 26.6183 + 1.67482i 0.915698 + 0.0576156i
\(846\) 0 0
\(847\) −76.5224 76.5224i −2.62934 2.62934i
\(848\) 0 0
\(849\) 15.0862i 0.517756i
\(850\) 0 0
\(851\) 8.11796 + 8.11796i 0.278280 + 0.278280i
\(852\) 0 0
\(853\) 13.8457i 0.474069i 0.971501 + 0.237034i \(0.0761754\pi\)
−0.971501 + 0.237034i \(0.923825\pi\)
\(854\) 0 0
\(855\) −3.46227 + 3.05237i −0.118407 + 0.104389i
\(856\) 0 0
\(857\) −27.4340 27.4340i −0.937127 0.937127i 0.0610099 0.998137i \(-0.480568\pi\)
−0.998137 + 0.0610099i \(0.980568\pi\)
\(858\) 0 0
\(859\) 3.11480 + 3.11480i 0.106276 + 0.106276i 0.758245 0.651969i \(-0.226057\pi\)
−0.651969 + 0.758245i \(0.726057\pi\)
\(860\) 0 0
\(861\) 2.18709 2.18709i 0.0745357 0.0745357i
\(862\) 0 0
\(863\) 18.7075 18.7075i 0.636810 0.636810i −0.312957 0.949767i \(-0.601320\pi\)
0.949767 + 0.312957i \(0.101320\pi\)
\(864\) 0 0
\(865\) −53.4620 3.36382i −1.81776 0.114373i
\(866\) 0 0
\(867\) −6.66950 −0.226508
\(868\) 0 0
\(869\) 19.5814 19.5814i 0.664253 0.664253i
\(870\) 0 0
\(871\) 66.2029 2.24320
\(872\) 0 0
\(873\) 0.751384 0.751384i 0.0254305 0.0254305i
\(874\) 0 0
\(875\) 37.0309 25.1654i 1.25187 0.850744i
\(876\) 0 0
\(877\) 20.1135i 0.679184i 0.940573 + 0.339592i \(0.110289\pi\)
−0.940573 + 0.339592i \(0.889711\pi\)
\(878\) 0 0
\(879\) −3.49295 −0.117814
\(880\) 0 0
\(881\) 8.65598 0.291628 0.145814 0.989312i \(-0.453420\pi\)
0.145814 + 0.989312i \(0.453420\pi\)
\(882\) 0 0
\(883\) 15.9095i 0.535399i 0.963502 + 0.267699i \(0.0862634\pi\)
−0.963502 + 0.267699i \(0.913737\pi\)
\(884\) 0 0
\(885\) 5.30463 4.67661i 0.178313 0.157203i
\(886\) 0 0
\(887\) −19.2454 + 19.2454i −0.646197 + 0.646197i −0.952072 0.305875i \(-0.901051\pi\)
0.305875 + 0.952072i \(0.401051\pi\)
\(888\) 0 0
\(889\) −88.0995 −2.95476
\(890\) 0 0
\(891\) −4.36026 + 4.36026i −0.146074 + 0.146074i
\(892\) 0 0
\(893\) −1.31492 −0.0440021
\(894\) 0 0
\(895\) 3.10087 2.73376i 0.103651 0.0913795i
\(896\) 0 0
\(897\) 6.43619 6.43619i 0.214898 0.214898i
\(898\) 0 0
\(899\) −0.679870 + 0.679870i −0.0226749 + 0.0226749i
\(900\) 0 0
\(901\) 9.49652 + 9.49652i 0.316375 + 0.316375i
\(902\) 0 0
\(903\) 13.7270 + 13.7270i 0.456807 + 0.456807i
\(904\) 0 0
\(905\) −14.5400 16.4926i −0.483327 0.548232i
\(906\) 0 0
\(907\) 13.9176i 0.462128i −0.972939 0.231064i \(-0.925779\pi\)
0.972939 0.231064i \(-0.0742206\pi\)
\(908\) 0 0
\(909\) −5.30053 5.30053i −0.175808 0.175808i
\(910\) 0 0
\(911\) 3.79155i 0.125620i −0.998026 0.0628098i \(-0.979994\pi\)
0.998026 0.0628098i \(-0.0200062\pi\)
\(912\) 0 0
\(913\) −33.1258 33.1258i −1.09630 1.09630i
\(914\) 0 0
\(915\) 1.66147 + 1.88458i 0.0549264 + 0.0623025i
\(916\) 0 0
\(917\) −81.6690 −2.69695
\(918\) 0 0
\(919\) 12.6465i 0.417169i −0.978004 0.208584i \(-0.933114\pi\)
0.978004 0.208584i \(-0.0668856\pi\)
\(920\) 0 0
\(921\) 7.81653i 0.257563i
\(922\) 0 0
\(923\) 54.1830 1.78346
\(924\) 0 0
\(925\) −31.2385 3.94666i −1.02711 0.129766i
\(926\) 0 0
\(927\) −5.38356 5.38356i −0.176819 0.176819i
\(928\) 0 0
\(929\) 52.7686i 1.73128i −0.500665 0.865641i \(-0.666911\pi\)
0.500665 0.865641i \(-0.333089\pi\)
\(930\) 0 0
\(931\) −13.1899 13.1899i −0.432282 0.432282i
\(932\) 0 0
\(933\) 6.15295i 0.201438i
\(934\) 0 0
\(935\) −2.78294 + 44.2298i −0.0910117 + 1.44647i
\(936\) 0 0
\(937\) −12.0351 12.0351i −0.393168 0.393168i 0.482647 0.875815i \(-0.339676\pi\)
−0.875815 + 0.482647i \(0.839676\pi\)
\(938\) 0 0
\(939\) 9.65621 + 9.65621i 0.315119 + 0.315119i
\(940\) 0 0
\(941\) 43.1823 43.1823i 1.40770 1.40770i 0.636076 0.771626i \(-0.280556\pi\)
0.771626 0.636076i \(-0.219444\pi\)
\(942\) 0 0
\(943\) −0.995664 + 0.995664i −0.0324233 + 0.0324233i
\(944\) 0 0
\(945\) −5.92169 6.71691i −0.192633 0.218501i
\(946\) 0 0
\(947\) 34.2870 1.11418 0.557089 0.830453i \(-0.311918\pi\)
0.557089 + 0.830453i \(0.311918\pi\)
\(948\) 0 0
\(949\) −51.8438 + 51.8438i −1.68292 + 1.68292i
\(950\) 0 0
\(951\) −10.5517 −0.342162
\(952\) 0 0
\(953\) 8.81942 8.81942i 0.285689 0.285689i −0.549684 0.835373i \(-0.685252\pi\)
0.835373 + 0.549684i \(0.185252\pi\)
\(954\) 0 0
\(955\) −0.340741 + 5.41547i −0.0110261 + 0.175241i
\(956\) 0 0
\(957\) 8.42165i 0.272233i
\(958\) 0 0
\(959\) −20.0898 −0.648735
\(960\) 0 0
\(961\) 30.5044 0.984013
\(962\) 0 0
\(963\) 11.9693i 0.385705i
\(964\) 0 0
\(965\) −1.27881 1.45055i −0.0411665 0.0466947i
\(966\) 0 0
\(967\) −1.93099 + 1.93099i −0.0620964 + 0.0620964i −0.737473 0.675377i \(-0.763981\pi\)
0.675377 + 0.737473i \(0.263981\pi\)
\(968\) 0 0
\(969\) 6.63451 0.213131
\(970\) 0 0
\(971\) −6.98427 + 6.98427i −0.224136 + 0.224136i −0.810238 0.586102i \(-0.800662\pi\)
0.586102 + 0.810238i \(0.300662\pi\)
\(972\) 0 0
\(973\) −23.6247 −0.757374
\(974\) 0 0
\(975\) −3.12905 + 24.7669i −0.100210 + 0.793176i
\(976\) 0 0
\(977\) 28.9284 28.9284i 0.925502 0.925502i −0.0719094 0.997411i \(-0.522909\pi\)
0.997411 + 0.0719094i \(0.0229092\pi\)
\(978\) 0 0
\(979\) 46.8496 46.8496i 1.49732 1.49732i
\(980\) 0 0
\(981\) −3.91485 3.91485i −0.124992 0.124992i
\(982\) 0 0
\(983\) 23.8805 + 23.8805i 0.761669 + 0.761669i 0.976624 0.214955i \(-0.0689606\pi\)
−0.214955 + 0.976624i \(0.568961\pi\)
\(984\) 0 0
\(985\) 28.2019 + 1.77446i 0.898586 + 0.0565389i
\(986\) 0 0
\(987\) 2.55099i 0.0811988i
\(988\) 0 0
\(989\) −6.24918 6.24918i −0.198712 0.198712i
\(990\) 0 0
\(991\) 29.1750i 0.926774i 0.886156 + 0.463387i \(0.153366\pi\)
−0.886156 + 0.463387i \(0.846634\pi\)
\(992\) 0 0
\(993\) −0.447095 0.447095i −0.0141881 0.0141881i
\(994\) 0 0
\(995\) −1.40465 + 22.3245i −0.0445305 + 0.707734i
\(996\) 0 0
\(997\) 42.5940 1.34896 0.674482 0.738291i \(-0.264367\pi\)
0.674482 + 0.738291i \(0.264367\pi\)
\(998\) 0 0
\(999\) 6.29736i 0.199240i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.2.bc.f.463.10 20
4.3 odd 2 240.2.bc.f.43.2 yes 20
5.2 odd 4 960.2.y.f.847.6 20
8.3 odd 2 1920.2.bc.k.1183.1 20
8.5 even 2 1920.2.bc.l.1183.1 20
12.11 even 2 720.2.bd.h.523.9 20
16.3 odd 4 960.2.y.f.943.6 20
16.5 even 4 1920.2.y.l.223.5 20
16.11 odd 4 1920.2.y.k.223.5 20
16.13 even 4 240.2.y.f.163.3 20
20.7 even 4 240.2.y.f.187.3 yes 20
40.27 even 4 1920.2.y.l.1567.5 20
40.37 odd 4 1920.2.y.k.1567.5 20
48.29 odd 4 720.2.z.h.163.8 20
60.47 odd 4 720.2.z.h.667.8 20
80.27 even 4 1920.2.bc.l.607.1 20
80.37 odd 4 1920.2.bc.k.607.1 20
80.67 even 4 inner 960.2.bc.f.367.10 20
80.77 odd 4 240.2.bc.f.67.2 yes 20
240.77 even 4 720.2.bd.h.307.9 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.f.163.3 20 16.13 even 4
240.2.y.f.187.3 yes 20 20.7 even 4
240.2.bc.f.43.2 yes 20 4.3 odd 2
240.2.bc.f.67.2 yes 20 80.77 odd 4
720.2.z.h.163.8 20 48.29 odd 4
720.2.z.h.667.8 20 60.47 odd 4
720.2.bd.h.307.9 20 240.77 even 4
720.2.bd.h.523.9 20 12.11 even 2
960.2.y.f.847.6 20 5.2 odd 4
960.2.y.f.943.6 20 16.3 odd 4
960.2.bc.f.367.10 20 80.67 even 4 inner
960.2.bc.f.463.10 20 1.1 even 1 trivial
1920.2.y.k.223.5 20 16.11 odd 4
1920.2.y.k.1567.5 20 40.37 odd 4
1920.2.y.l.223.5 20 16.5 even 4
1920.2.y.l.1567.5 20 40.27 even 4
1920.2.bc.k.607.1 20 80.37 odd 4
1920.2.bc.k.1183.1 20 8.3 odd 2
1920.2.bc.l.607.1 20 80.27 even 4
1920.2.bc.l.1183.1 20 8.5 even 2