Properties

Label 70.10.a.h.1.2
Level $70$
Weight $10$
Character 70.1
Self dual yes
Analytic conductor $36.053$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [70,10,Mod(1,70)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(70, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("70.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 70.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,48,-66] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.0525085315\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.2997373.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 373x - 2632 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{3}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(22.6263\) of defining polynomial
Character \(\chi\) \(=\) 70.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+16.0000 q^{2} -47.7937 q^{3} +256.000 q^{4} -625.000 q^{5} -764.699 q^{6} -2401.00 q^{7} +4096.00 q^{8} -17398.8 q^{9} -10000.0 q^{10} +46788.5 q^{11} -12235.2 q^{12} +30219.1 q^{13} -38416.0 q^{14} +29871.1 q^{15} +65536.0 q^{16} +296290. q^{17} -278380. q^{18} +184250. q^{19} -160000. q^{20} +114753. q^{21} +748616. q^{22} -21163.1 q^{23} -195763. q^{24} +390625. q^{25} +483506. q^{26} +1.77227e6 q^{27} -614656. q^{28} +2.53606e6 q^{29} +477937. q^{30} -141632. q^{31} +1.04858e6 q^{32} -2.23620e6 q^{33} +4.74064e6 q^{34} +1.50062e6 q^{35} -4.45408e6 q^{36} +1.47783e7 q^{37} +2.94800e6 q^{38} -1.44428e6 q^{39} -2.56000e6 q^{40} +2.09468e7 q^{41} +1.83604e6 q^{42} +4.06298e7 q^{43} +1.19779e7 q^{44} +1.08742e7 q^{45} -338610. q^{46} -5.11479e7 q^{47} -3.13221e6 q^{48} +5.76480e6 q^{49} +6.25000e6 q^{50} -1.41608e7 q^{51} +7.73610e6 q^{52} -3.08865e6 q^{53} +2.83564e7 q^{54} -2.92428e7 q^{55} -9.83450e6 q^{56} -8.80600e6 q^{57} +4.05770e7 q^{58} +6.45486e6 q^{59} +7.64699e6 q^{60} +8.87555e7 q^{61} -2.26611e6 q^{62} +4.17744e7 q^{63} +1.67772e7 q^{64} -1.88870e7 q^{65} -3.57791e7 q^{66} -4.97555e6 q^{67} +7.58502e7 q^{68} +1.01146e6 q^{69} +2.40100e7 q^{70} +2.42378e8 q^{71} -7.12653e7 q^{72} -6.13812e6 q^{73} +2.36452e8 q^{74} -1.86694e7 q^{75} +4.71681e7 q^{76} -1.12339e8 q^{77} -2.31086e7 q^{78} +3.41226e7 q^{79} -4.09600e7 q^{80} +2.57756e8 q^{81} +3.35149e8 q^{82} +1.22298e8 q^{83} +2.93767e7 q^{84} -1.85181e8 q^{85} +6.50077e8 q^{86} -1.21208e8 q^{87} +1.91646e8 q^{88} -6.48556e8 q^{89} +1.73988e8 q^{90} -7.25562e7 q^{91} -5.41776e6 q^{92} +6.76910e6 q^{93} -8.18366e8 q^{94} -1.15156e8 q^{95} -5.01153e7 q^{96} -5.98893e8 q^{97} +9.22368e7 q^{98} -8.14062e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 48 q^{2} - 66 q^{3} + 768 q^{4} - 1875 q^{5} - 1056 q^{6} - 7203 q^{7} + 12288 q^{8} + 51129 q^{9} - 30000 q^{10} - 69126 q^{11} - 16896 q^{12} - 9108 q^{13} - 115248 q^{14} + 41250 q^{15} + 196608 q^{16}+ \cdots - 4989354552 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 16.0000 0.707107
\(3\) −47.7937 −0.340663 −0.170332 0.985387i \(-0.554484\pi\)
−0.170332 + 0.985387i \(0.554484\pi\)
\(4\) 256.000 0.500000
\(5\) −625.000 −0.447214
\(6\) −764.699 −0.240885
\(7\) −2401.00 −0.377964
\(8\) 4096.00 0.353553
\(9\) −17398.8 −0.883949
\(10\) −10000.0 −0.316228
\(11\) 46788.5 0.963545 0.481773 0.876296i \(-0.339993\pi\)
0.481773 + 0.876296i \(0.339993\pi\)
\(12\) −12235.2 −0.170332
\(13\) 30219.1 0.293452 0.146726 0.989177i \(-0.453126\pi\)
0.146726 + 0.989177i \(0.453126\pi\)
\(14\) −38416.0 −0.267261
\(15\) 29871.1 0.152349
\(16\) 65536.0 0.250000
\(17\) 296290. 0.860393 0.430196 0.902735i \(-0.358444\pi\)
0.430196 + 0.902735i \(0.358444\pi\)
\(18\) −278380. −0.625046
\(19\) 184250. 0.324352 0.162176 0.986762i \(-0.448149\pi\)
0.162176 + 0.986762i \(0.448149\pi\)
\(20\) −160000. −0.223607
\(21\) 114753. 0.128759
\(22\) 748616. 0.681329
\(23\) −21163.1 −0.0157690 −0.00788450 0.999969i \(-0.502510\pi\)
−0.00788450 + 0.999969i \(0.502510\pi\)
\(24\) −195763. −0.120443
\(25\) 390625. 0.200000
\(26\) 483506. 0.207502
\(27\) 1.77227e6 0.641792
\(28\) −614656. −0.188982
\(29\) 2.53606e6 0.665838 0.332919 0.942955i \(-0.391966\pi\)
0.332919 + 0.942955i \(0.391966\pi\)
\(30\) 477937. 0.107727
\(31\) −141632. −0.0275443 −0.0137722 0.999905i \(-0.504384\pi\)
−0.0137722 + 0.999905i \(0.504384\pi\)
\(32\) 1.04858e6 0.176777
\(33\) −2.23620e6 −0.328244
\(34\) 4.74064e6 0.608390
\(35\) 1.50062e6 0.169031
\(36\) −4.45408e6 −0.441974
\(37\) 1.47783e7 1.29633 0.648165 0.761500i \(-0.275537\pi\)
0.648165 + 0.761500i \(0.275537\pi\)
\(38\) 2.94800e6 0.229352
\(39\) −1.44428e6 −0.0999683
\(40\) −2.56000e6 −0.158114
\(41\) 2.09468e7 1.15769 0.578843 0.815439i \(-0.303504\pi\)
0.578843 + 0.815439i \(0.303504\pi\)
\(42\) 1.83604e6 0.0910460
\(43\) 4.06298e7 1.81233 0.906164 0.422927i \(-0.138997\pi\)
0.906164 + 0.422927i \(0.138997\pi\)
\(44\) 1.19779e7 0.481773
\(45\) 1.08742e7 0.395314
\(46\) −338610. −0.0111504
\(47\) −5.11479e7 −1.52893 −0.764464 0.644666i \(-0.776996\pi\)
−0.764464 + 0.644666i \(0.776996\pi\)
\(48\) −3.13221e6 −0.0851658
\(49\) 5.76480e6 0.142857
\(50\) 6.25000e6 0.141421
\(51\) −1.41608e7 −0.293104
\(52\) 7.73610e6 0.146726
\(53\) −3.08865e6 −0.0537684 −0.0268842 0.999639i \(-0.508559\pi\)
−0.0268842 + 0.999639i \(0.508559\pi\)
\(54\) 2.83564e7 0.453815
\(55\) −2.92428e7 −0.430911
\(56\) −9.83450e6 −0.133631
\(57\) −8.80600e6 −0.110495
\(58\) 4.05770e7 0.470819
\(59\) 6.45486e6 0.0693510 0.0346755 0.999399i \(-0.488960\pi\)
0.0346755 + 0.999399i \(0.488960\pi\)
\(60\) 7.64699e6 0.0761746
\(61\) 8.87555e7 0.820750 0.410375 0.911917i \(-0.365398\pi\)
0.410375 + 0.911917i \(0.365398\pi\)
\(62\) −2.26611e6 −0.0194768
\(63\) 4.17744e7 0.334101
\(64\) 1.67772e7 0.125000
\(65\) −1.88870e7 −0.131236
\(66\) −3.57791e7 −0.232104
\(67\) −4.97555e6 −0.0301651 −0.0150825 0.999886i \(-0.504801\pi\)
−0.0150825 + 0.999886i \(0.504801\pi\)
\(68\) 7.58502e7 0.430196
\(69\) 1.01146e6 0.00537192
\(70\) 2.40100e7 0.119523
\(71\) 2.42378e8 1.13196 0.565978 0.824420i \(-0.308499\pi\)
0.565978 + 0.824420i \(0.308499\pi\)
\(72\) −7.12653e7 −0.312523
\(73\) −6.13812e6 −0.0252978 −0.0126489 0.999920i \(-0.504026\pi\)
−0.0126489 + 0.999920i \(0.504026\pi\)
\(74\) 2.36452e8 0.916644
\(75\) −1.86694e7 −0.0681326
\(76\) 4.71681e7 0.162176
\(77\) −1.12339e8 −0.364186
\(78\) −2.31086e7 −0.0706882
\(79\) 3.41226e7 0.0985645 0.0492822 0.998785i \(-0.484307\pi\)
0.0492822 + 0.998785i \(0.484307\pi\)
\(80\) −4.09600e7 −0.111803
\(81\) 2.57756e8 0.665314
\(82\) 3.35149e8 0.818608
\(83\) 1.22298e8 0.282857 0.141429 0.989948i \(-0.454830\pi\)
0.141429 + 0.989948i \(0.454830\pi\)
\(84\) 2.93767e7 0.0643793
\(85\) −1.85181e8 −0.384779
\(86\) 6.50077e8 1.28151
\(87\) −1.21208e8 −0.226827
\(88\) 1.91646e8 0.340665
\(89\) −6.48556e8 −1.09570 −0.547851 0.836576i \(-0.684554\pi\)
−0.547851 + 0.836576i \(0.684554\pi\)
\(90\) 1.73988e8 0.279529
\(91\) −7.25562e7 −0.110914
\(92\) −5.41776e6 −0.00788450
\(93\) 6.76910e6 0.00938334
\(94\) −8.18366e8 −1.08112
\(95\) −1.15156e8 −0.145055
\(96\) −5.01153e7 −0.0602213
\(97\) −5.98893e8 −0.686873 −0.343436 0.939176i \(-0.611591\pi\)
−0.343436 + 0.939176i \(0.611591\pi\)
\(98\) 9.22368e7 0.101015
\(99\) −8.14062e8 −0.851725
\(100\) 1.00000e8 0.100000
\(101\) −1.47791e9 −1.41319 −0.706595 0.707618i \(-0.749770\pi\)
−0.706595 + 0.707618i \(0.749770\pi\)
\(102\) −2.26573e8 −0.207256
\(103\) −1.71199e9 −1.49877 −0.749384 0.662136i \(-0.769650\pi\)
−0.749384 + 0.662136i \(0.769650\pi\)
\(104\) 1.23778e8 0.103751
\(105\) −7.17204e7 −0.0575826
\(106\) −4.94184e7 −0.0380200
\(107\) 4.38056e8 0.323075 0.161537 0.986867i \(-0.448355\pi\)
0.161537 + 0.986867i \(0.448355\pi\)
\(108\) 4.53702e8 0.320896
\(109\) −6.73291e8 −0.456860 −0.228430 0.973560i \(-0.573359\pi\)
−0.228430 + 0.973560i \(0.573359\pi\)
\(110\) −4.67885e8 −0.304700
\(111\) −7.06308e8 −0.441612
\(112\) −1.57352e8 −0.0944911
\(113\) 5.93891e8 0.342652 0.171326 0.985214i \(-0.445195\pi\)
0.171326 + 0.985214i \(0.445195\pi\)
\(114\) −1.40896e8 −0.0781316
\(115\) 1.32269e7 0.00705211
\(116\) 6.49232e8 0.332919
\(117\) −5.25776e8 −0.259397
\(118\) 1.03278e8 0.0490386
\(119\) −7.11392e8 −0.325198
\(120\) 1.22352e8 0.0538636
\(121\) −1.68783e8 −0.0715806
\(122\) 1.42009e9 0.580358
\(123\) −1.00113e9 −0.394381
\(124\) −3.62577e7 −0.0137722
\(125\) −2.44141e8 −0.0894427
\(126\) 6.68391e8 0.236245
\(127\) −4.41326e9 −1.50537 −0.752685 0.658381i \(-0.771241\pi\)
−0.752685 + 0.658381i \(0.771241\pi\)
\(128\) 2.68435e8 0.0883883
\(129\) −1.94185e9 −0.617393
\(130\) −3.02191e8 −0.0927977
\(131\) 1.12810e9 0.334678 0.167339 0.985899i \(-0.446483\pi\)
0.167339 + 0.985899i \(0.446483\pi\)
\(132\) −5.72466e8 −0.164122
\(133\) −4.42385e8 −0.122594
\(134\) −7.96088e7 −0.0213299
\(135\) −1.10767e9 −0.287018
\(136\) 1.21360e9 0.304195
\(137\) 2.67934e9 0.649808 0.324904 0.945747i \(-0.394668\pi\)
0.324904 + 0.945747i \(0.394668\pi\)
\(138\) 1.61834e7 0.00379852
\(139\) 1.39668e8 0.0317344 0.0158672 0.999874i \(-0.494949\pi\)
0.0158672 + 0.999874i \(0.494949\pi\)
\(140\) 3.84160e8 0.0845154
\(141\) 2.44455e9 0.520850
\(142\) 3.87804e9 0.800414
\(143\) 1.41391e9 0.282754
\(144\) −1.14025e9 −0.220987
\(145\) −1.58504e9 −0.297772
\(146\) −9.82098e7 −0.0178882
\(147\) −2.75521e8 −0.0486661
\(148\) 3.78323e9 0.648165
\(149\) −3.82858e9 −0.636355 −0.318177 0.948031i \(-0.603071\pi\)
−0.318177 + 0.948031i \(0.603071\pi\)
\(150\) −2.98711e8 −0.0481770
\(151\) 1.16205e10 1.81899 0.909495 0.415715i \(-0.136469\pi\)
0.909495 + 0.415715i \(0.136469\pi\)
\(152\) 7.54689e8 0.114676
\(153\) −5.15508e9 −0.760543
\(154\) −1.79743e9 −0.257518
\(155\) 8.85197e7 0.0123182
\(156\) −3.69737e8 −0.0499841
\(157\) 1.13647e10 1.49283 0.746415 0.665481i \(-0.231774\pi\)
0.746415 + 0.665481i \(0.231774\pi\)
\(158\) 5.45962e8 0.0696956
\(159\) 1.47618e8 0.0183169
\(160\) −6.55360e8 −0.0790569
\(161\) 5.08126e7 0.00596012
\(162\) 4.12410e9 0.470448
\(163\) 9.92895e9 1.10169 0.550845 0.834608i \(-0.314306\pi\)
0.550845 + 0.834608i \(0.314306\pi\)
\(164\) 5.36239e9 0.578843
\(165\) 1.39762e9 0.146795
\(166\) 1.95677e9 0.200010
\(167\) −1.98206e9 −0.197193 −0.0985966 0.995127i \(-0.531435\pi\)
−0.0985966 + 0.995127i \(0.531435\pi\)
\(168\) 4.70027e8 0.0455230
\(169\) −9.69130e9 −0.913886
\(170\) −2.96290e9 −0.272080
\(171\) −3.20573e9 −0.286711
\(172\) 1.04012e10 0.906164
\(173\) 1.26158e10 1.07080 0.535400 0.844599i \(-0.320161\pi\)
0.535400 + 0.844599i \(0.320161\pi\)
\(174\) −1.93932e9 −0.160391
\(175\) −9.37891e8 −0.0755929
\(176\) 3.06633e9 0.240886
\(177\) −3.08502e8 −0.0236253
\(178\) −1.03769e10 −0.774779
\(179\) 1.67410e10 1.21883 0.609414 0.792852i \(-0.291405\pi\)
0.609414 + 0.792852i \(0.291405\pi\)
\(180\) 2.78380e9 0.197657
\(181\) −6.03185e8 −0.0417731 −0.0208866 0.999782i \(-0.506649\pi\)
−0.0208866 + 0.999782i \(0.506649\pi\)
\(182\) −1.16090e9 −0.0784284
\(183\) −4.24195e9 −0.279599
\(184\) −8.66841e7 −0.00557518
\(185\) −9.23641e9 −0.579736
\(186\) 1.08306e8 0.00663502
\(187\) 1.38630e10 0.829027
\(188\) −1.30939e10 −0.764464
\(189\) −4.25523e9 −0.242574
\(190\) −1.84250e9 −0.102569
\(191\) 1.41557e10 0.769627 0.384814 0.922994i \(-0.374266\pi\)
0.384814 + 0.922994i \(0.374266\pi\)
\(192\) −8.01845e8 −0.0425829
\(193\) −9.33468e8 −0.0484274 −0.0242137 0.999707i \(-0.507708\pi\)
−0.0242137 + 0.999707i \(0.507708\pi\)
\(194\) −9.58229e9 −0.485692
\(195\) 9.02678e8 0.0447072
\(196\) 1.47579e9 0.0714286
\(197\) −3.59986e9 −0.170289 −0.0851446 0.996369i \(-0.527135\pi\)
−0.0851446 + 0.996369i \(0.527135\pi\)
\(198\) −1.30250e10 −0.602260
\(199\) 1.51610e10 0.685315 0.342657 0.939460i \(-0.388673\pi\)
0.342657 + 0.939460i \(0.388673\pi\)
\(200\) 1.60000e9 0.0707107
\(201\) 2.37800e8 0.0102761
\(202\) −2.36465e10 −0.999277
\(203\) −6.08908e9 −0.251663
\(204\) −3.62516e9 −0.146552
\(205\) −1.30918e10 −0.517733
\(206\) −2.73919e10 −1.05979
\(207\) 3.68212e8 0.0139390
\(208\) 1.98044e9 0.0733630
\(209\) 8.62079e9 0.312528
\(210\) −1.14753e9 −0.0407170
\(211\) 3.64707e10 1.26670 0.633350 0.773866i \(-0.281679\pi\)
0.633350 + 0.773866i \(0.281679\pi\)
\(212\) −7.90695e8 −0.0268842
\(213\) −1.15841e10 −0.385616
\(214\) 7.00890e9 0.228448
\(215\) −2.53936e10 −0.810498
\(216\) 7.25924e9 0.226908
\(217\) 3.40057e8 0.0104108
\(218\) −1.07727e10 −0.323049
\(219\) 2.93363e8 0.00861801
\(220\) −7.48616e9 −0.215455
\(221\) 8.95363e9 0.252484
\(222\) −1.13009e10 −0.312267
\(223\) −7.07764e10 −1.91653 −0.958267 0.285874i \(-0.907716\pi\)
−0.958267 + 0.285874i \(0.907716\pi\)
\(224\) −2.51763e9 −0.0668153
\(225\) −6.79639e9 −0.176790
\(226\) 9.50226e9 0.242292
\(227\) −4.82157e9 −0.120524 −0.0602619 0.998183i \(-0.519194\pi\)
−0.0602619 + 0.998183i \(0.519194\pi\)
\(228\) −2.25434e9 −0.0552474
\(229\) 3.22729e10 0.775494 0.387747 0.921766i \(-0.373253\pi\)
0.387747 + 0.921766i \(0.373253\pi\)
\(230\) 2.11631e8 0.00498660
\(231\) 5.36911e9 0.124065
\(232\) 1.03877e10 0.235409
\(233\) −4.99119e10 −1.10944 −0.554718 0.832038i \(-0.687174\pi\)
−0.554718 + 0.832038i \(0.687174\pi\)
\(234\) −8.41241e9 −0.183421
\(235\) 3.19674e10 0.683758
\(236\) 1.65244e9 0.0346755
\(237\) −1.63085e9 −0.0335773
\(238\) −1.13823e10 −0.229950
\(239\) 5.20511e10 1.03190 0.515952 0.856617i \(-0.327438\pi\)
0.515952 + 0.856617i \(0.327438\pi\)
\(240\) 1.95763e9 0.0380873
\(241\) 4.83303e10 0.922876 0.461438 0.887173i \(-0.347334\pi\)
0.461438 + 0.887173i \(0.347334\pi\)
\(242\) −2.70053e9 −0.0506151
\(243\) −4.72028e10 −0.868440
\(244\) 2.27214e10 0.410375
\(245\) −3.60300e9 −0.0638877
\(246\) −1.60180e10 −0.278870
\(247\) 5.56788e9 0.0951818
\(248\) −5.80123e8 −0.00973840
\(249\) −5.84507e9 −0.0963591
\(250\) −3.90625e9 −0.0632456
\(251\) 7.61018e9 0.121022 0.0605108 0.998168i \(-0.480727\pi\)
0.0605108 + 0.998168i \(0.480727\pi\)
\(252\) 1.06943e10 0.167051
\(253\) −9.90190e8 −0.0151941
\(254\) −7.06122e10 −1.06446
\(255\) 8.85049e9 0.131080
\(256\) 4.29497e9 0.0625000
\(257\) −3.96631e10 −0.567136 −0.283568 0.958952i \(-0.591518\pi\)
−0.283568 + 0.958952i \(0.591518\pi\)
\(258\) −3.10696e10 −0.436563
\(259\) −3.54826e10 −0.489967
\(260\) −4.83506e9 −0.0656179
\(261\) −4.41243e10 −0.588567
\(262\) 1.80496e10 0.236653
\(263\) −5.27510e10 −0.679877 −0.339938 0.940448i \(-0.610406\pi\)
−0.339938 + 0.940448i \(0.610406\pi\)
\(264\) −9.15946e9 −0.116052
\(265\) 1.93041e9 0.0240460
\(266\) −7.07816e9 −0.0866868
\(267\) 3.09969e10 0.373265
\(268\) −1.27374e9 −0.0150825
\(269\) 7.78415e9 0.0906413 0.0453206 0.998972i \(-0.485569\pi\)
0.0453206 + 0.998972i \(0.485569\pi\)
\(270\) −1.77227e10 −0.202952
\(271\) 6.73788e10 0.758859 0.379430 0.925221i \(-0.376120\pi\)
0.379430 + 0.925221i \(0.376120\pi\)
\(272\) 1.94177e10 0.215098
\(273\) 3.46773e9 0.0377844
\(274\) 4.28694e10 0.459483
\(275\) 1.82768e10 0.192709
\(276\) 2.58935e8 0.00268596
\(277\) 1.03616e11 1.05747 0.528734 0.848788i \(-0.322667\pi\)
0.528734 + 0.848788i \(0.322667\pi\)
\(278\) 2.23468e9 0.0224396
\(279\) 2.46421e9 0.0243478
\(280\) 6.14656e9 0.0597614
\(281\) 1.99578e11 1.90956 0.954781 0.297311i \(-0.0960898\pi\)
0.954781 + 0.297311i \(0.0960898\pi\)
\(282\) 3.91127e10 0.368296
\(283\) −1.14421e11 −1.06040 −0.530199 0.847874i \(-0.677883\pi\)
−0.530199 + 0.847874i \(0.677883\pi\)
\(284\) 6.20487e10 0.565978
\(285\) 5.50375e9 0.0494148
\(286\) 2.26225e10 0.199937
\(287\) −5.02933e10 −0.437564
\(288\) −1.82439e10 −0.156262
\(289\) −3.08002e10 −0.259724
\(290\) −2.53606e10 −0.210557
\(291\) 2.86233e10 0.233992
\(292\) −1.57136e9 −0.0126489
\(293\) −1.85827e11 −1.47300 −0.736501 0.676436i \(-0.763523\pi\)
−0.736501 + 0.676436i \(0.763523\pi\)
\(294\) −4.40834e9 −0.0344122
\(295\) −4.03429e9 −0.0310147
\(296\) 6.05318e10 0.458322
\(297\) 8.29221e10 0.618395
\(298\) −6.12572e10 −0.449971
\(299\) −6.39531e8 −0.00462745
\(300\) −4.77937e9 −0.0340663
\(301\) −9.75522e10 −0.684995
\(302\) 1.85929e11 1.28622
\(303\) 7.06346e10 0.481422
\(304\) 1.20750e10 0.0810881
\(305\) −5.54722e10 −0.367051
\(306\) −8.24812e10 −0.537785
\(307\) −4.40731e10 −0.283172 −0.141586 0.989926i \(-0.545220\pi\)
−0.141586 + 0.989926i \(0.545220\pi\)
\(308\) −2.87588e10 −0.182093
\(309\) 8.18225e10 0.510575
\(310\) 1.41632e9 0.00871029
\(311\) 2.34014e11 1.41847 0.709234 0.704973i \(-0.249041\pi\)
0.709234 + 0.704973i \(0.249041\pi\)
\(312\) −5.91579e9 −0.0353441
\(313\) −2.91468e11 −1.71649 −0.858246 0.513238i \(-0.828446\pi\)
−0.858246 + 0.513238i \(0.828446\pi\)
\(314\) 1.81835e11 1.05559
\(315\) −2.61090e10 −0.149415
\(316\) 8.73539e9 0.0492822
\(317\) −5.48144e10 −0.304879 −0.152440 0.988313i \(-0.548713\pi\)
−0.152440 + 0.988313i \(0.548713\pi\)
\(318\) 2.36189e9 0.0129520
\(319\) 1.18659e11 0.641565
\(320\) −1.04858e10 −0.0559017
\(321\) −2.09363e10 −0.110060
\(322\) 8.13002e8 0.00421444
\(323\) 5.45915e10 0.279070
\(324\) 6.59856e10 0.332657
\(325\) 1.18044e10 0.0586904
\(326\) 1.58863e11 0.779012
\(327\) 3.21791e10 0.155635
\(328\) 8.57982e10 0.409304
\(329\) 1.22806e11 0.577881
\(330\) 2.23620e10 0.103800
\(331\) 3.33423e11 1.52676 0.763378 0.645952i \(-0.223539\pi\)
0.763378 + 0.645952i \(0.223539\pi\)
\(332\) 3.13083e10 0.141429
\(333\) −2.57123e11 −1.14589
\(334\) −3.17129e10 −0.139437
\(335\) 3.10972e9 0.0134902
\(336\) 7.52043e9 0.0321896
\(337\) 1.74864e10 0.0738527 0.0369263 0.999318i \(-0.488243\pi\)
0.0369263 + 0.999318i \(0.488243\pi\)
\(338\) −1.55061e11 −0.646215
\(339\) −2.83842e10 −0.116729
\(340\) −4.74064e10 −0.192390
\(341\) −6.62673e9 −0.0265402
\(342\) −5.12916e10 −0.202735
\(343\) −1.38413e10 −0.0539949
\(344\) 1.66420e11 0.640755
\(345\) −6.32165e8 −0.00240239
\(346\) 2.01853e11 0.757169
\(347\) 5.82899e10 0.215829 0.107915 0.994160i \(-0.465583\pi\)
0.107915 + 0.994160i \(0.465583\pi\)
\(348\) −3.10292e10 −0.113413
\(349\) −3.27438e11 −1.18145 −0.590724 0.806874i \(-0.701158\pi\)
−0.590724 + 0.806874i \(0.701158\pi\)
\(350\) −1.50062e10 −0.0534522
\(351\) 5.35566e10 0.188335
\(352\) 4.90613e10 0.170332
\(353\) 5.05786e11 1.73373 0.866864 0.498545i \(-0.166132\pi\)
0.866864 + 0.498545i \(0.166132\pi\)
\(354\) −4.93603e9 −0.0167056
\(355\) −1.51486e11 −0.506227
\(356\) −1.66030e11 −0.547851
\(357\) 3.40001e10 0.110783
\(358\) 2.67856e11 0.861841
\(359\) −3.40768e11 −1.08276 −0.541382 0.840776i \(-0.682099\pi\)
−0.541382 + 0.840776i \(0.682099\pi\)
\(360\) 4.45408e10 0.139765
\(361\) −2.88740e11 −0.894796
\(362\) −9.65096e9 −0.0295381
\(363\) 8.06678e9 0.0243849
\(364\) −1.85744e10 −0.0554572
\(365\) 3.83632e9 0.0113135
\(366\) −6.78713e10 −0.197707
\(367\) 1.48153e11 0.426298 0.213149 0.977020i \(-0.431628\pi\)
0.213149 + 0.977020i \(0.431628\pi\)
\(368\) −1.38695e9 −0.00394225
\(369\) −3.64449e11 −1.02334
\(370\) −1.47783e11 −0.409936
\(371\) 7.41585e9 0.0203226
\(372\) 1.73289e9 0.00469167
\(373\) −6.68098e11 −1.78711 −0.893553 0.448958i \(-0.851795\pi\)
−0.893553 + 0.448958i \(0.851795\pi\)
\(374\) 2.21807e11 0.586211
\(375\) 1.16684e10 0.0304698
\(376\) −2.09502e11 −0.540558
\(377\) 7.66376e10 0.195392
\(378\) −6.80837e10 −0.171526
\(379\) 6.37388e11 1.58682 0.793410 0.608687i \(-0.208304\pi\)
0.793410 + 0.608687i \(0.208304\pi\)
\(380\) −2.94800e10 −0.0725274
\(381\) 2.10926e11 0.512824
\(382\) 2.26491e11 0.544209
\(383\) −5.84553e10 −0.138813 −0.0694064 0.997588i \(-0.522111\pi\)
−0.0694064 + 0.997588i \(0.522111\pi\)
\(384\) −1.28295e10 −0.0301106
\(385\) 7.02120e10 0.162869
\(386\) −1.49355e10 −0.0342434
\(387\) −7.06908e11 −1.60200
\(388\) −1.53317e11 −0.343436
\(389\) −4.40338e11 −0.975018 −0.487509 0.873118i \(-0.662094\pi\)
−0.487509 + 0.873118i \(0.662094\pi\)
\(390\) 1.44428e10 0.0316127
\(391\) −6.27042e9 −0.0135675
\(392\) 2.36126e10 0.0505076
\(393\) −5.39162e10 −0.114013
\(394\) −5.75977e10 −0.120413
\(395\) −2.13266e10 −0.0440794
\(396\) −2.08400e11 −0.425862
\(397\) −8.55630e11 −1.72874 −0.864368 0.502859i \(-0.832281\pi\)
−0.864368 + 0.502859i \(0.832281\pi\)
\(398\) 2.42577e11 0.484591
\(399\) 2.11432e10 0.0417631
\(400\) 2.56000e10 0.0500000
\(401\) −3.72657e11 −0.719713 −0.359857 0.933008i \(-0.617174\pi\)
−0.359857 + 0.933008i \(0.617174\pi\)
\(402\) 3.80480e9 0.00726632
\(403\) −4.27999e9 −0.00808294
\(404\) −3.78344e11 −0.706595
\(405\) −1.61098e11 −0.297537
\(406\) −9.74253e10 −0.177953
\(407\) 6.91453e11 1.24907
\(408\) −5.80026e10 −0.103628
\(409\) −5.39642e11 −0.953566 −0.476783 0.879021i \(-0.658197\pi\)
−0.476783 + 0.879021i \(0.658197\pi\)
\(410\) −2.09468e11 −0.366093
\(411\) −1.28055e11 −0.221365
\(412\) −4.38270e11 −0.749384
\(413\) −1.54981e10 −0.0262122
\(414\) 5.89139e9 0.00985635
\(415\) −7.64362e10 −0.126498
\(416\) 3.16871e10 0.0518755
\(417\) −6.67524e9 −0.0108107
\(418\) 1.37933e11 0.220991
\(419\) −5.16016e11 −0.817900 −0.408950 0.912557i \(-0.634105\pi\)
−0.408950 + 0.912557i \(0.634105\pi\)
\(420\) −1.83604e10 −0.0287913
\(421\) 4.17716e11 0.648055 0.324028 0.946048i \(-0.394963\pi\)
0.324028 + 0.946048i \(0.394963\pi\)
\(422\) 5.83532e11 0.895692
\(423\) 8.89910e11 1.35149
\(424\) −1.26511e10 −0.0190100
\(425\) 1.15738e11 0.172079
\(426\) −1.85346e11 −0.272672
\(427\) −2.13102e11 −0.310214
\(428\) 1.12142e11 0.161537
\(429\) −6.75759e10 −0.0963239
\(430\) −4.06298e11 −0.573108
\(431\) 8.43198e11 1.17702 0.588508 0.808492i \(-0.299716\pi\)
0.588508 + 0.808492i \(0.299716\pi\)
\(432\) 1.16148e11 0.160448
\(433\) −3.77330e11 −0.515853 −0.257927 0.966164i \(-0.583039\pi\)
−0.257927 + 0.966164i \(0.583039\pi\)
\(434\) 5.44092e9 0.00736154
\(435\) 7.57549e10 0.101440
\(436\) −1.72362e11 −0.228430
\(437\) −3.89931e9 −0.00511471
\(438\) 4.69381e9 0.00609386
\(439\) −4.84525e11 −0.622624 −0.311312 0.950308i \(-0.600768\pi\)
−0.311312 + 0.950308i \(0.600768\pi\)
\(440\) −1.19779e11 −0.152350
\(441\) −1.00300e11 −0.126278
\(442\) 1.43258e11 0.178533
\(443\) 1.11440e12 1.37475 0.687376 0.726301i \(-0.258762\pi\)
0.687376 + 0.726301i \(0.258762\pi\)
\(444\) −1.80815e11 −0.220806
\(445\) 4.05348e11 0.490013
\(446\) −1.13242e12 −1.35519
\(447\) 1.82982e11 0.216783
\(448\) −4.02821e10 −0.0472456
\(449\) 1.02272e12 1.18754 0.593770 0.804635i \(-0.297639\pi\)
0.593770 + 0.804635i \(0.297639\pi\)
\(450\) −1.08742e11 −0.125009
\(451\) 9.80071e11 1.11548
\(452\) 1.52036e11 0.171326
\(453\) −5.55389e11 −0.619662
\(454\) −7.71452e10 −0.0852231
\(455\) 4.53476e10 0.0496024
\(456\) −3.60694e10 −0.0390658
\(457\) −1.20876e12 −1.29634 −0.648168 0.761497i \(-0.724465\pi\)
−0.648168 + 0.761497i \(0.724465\pi\)
\(458\) 5.16366e11 0.548357
\(459\) 5.25107e11 0.552193
\(460\) 3.38610e9 0.00352606
\(461\) 1.07621e12 1.10980 0.554898 0.831919i \(-0.312757\pi\)
0.554898 + 0.831919i \(0.312757\pi\)
\(462\) 8.59057e10 0.0877270
\(463\) 7.86233e11 0.795127 0.397564 0.917575i \(-0.369856\pi\)
0.397564 + 0.917575i \(0.369856\pi\)
\(464\) 1.66203e11 0.166460
\(465\) −4.23069e9 −0.00419636
\(466\) −7.98590e11 −0.784490
\(467\) 1.25725e12 1.22319 0.611597 0.791170i \(-0.290528\pi\)
0.611597 + 0.791170i \(0.290528\pi\)
\(468\) −1.34599e11 −0.129698
\(469\) 1.19463e10 0.0114013
\(470\) 5.11479e11 0.483490
\(471\) −5.43162e11 −0.508552
\(472\) 2.64391e10 0.0245193
\(473\) 1.90101e12 1.74626
\(474\) −2.60935e10 −0.0237427
\(475\) 7.19727e10 0.0648704
\(476\) −1.82116e11 −0.162599
\(477\) 5.37387e10 0.0475285
\(478\) 8.32818e11 0.729666
\(479\) 1.24726e12 1.08255 0.541274 0.840846i \(-0.317942\pi\)
0.541274 + 0.840846i \(0.317942\pi\)
\(480\) 3.13221e10 0.0269318
\(481\) 4.46586e11 0.380411
\(482\) 7.73286e11 0.652572
\(483\) −2.42852e9 −0.00203039
\(484\) −4.32085e10 −0.0357903
\(485\) 3.74308e11 0.307179
\(486\) −7.55245e11 −0.614080
\(487\) 1.79336e11 0.144474 0.0722368 0.997388i \(-0.476986\pi\)
0.0722368 + 0.997388i \(0.476986\pi\)
\(488\) 3.63542e11 0.290179
\(489\) −4.74541e11 −0.375305
\(490\) −5.76480e10 −0.0451754
\(491\) 4.94081e11 0.383647 0.191823 0.981429i \(-0.438560\pi\)
0.191823 + 0.981429i \(0.438560\pi\)
\(492\) −2.56288e11 −0.197191
\(493\) 7.51410e11 0.572883
\(494\) 8.90862e10 0.0673037
\(495\) 5.08789e11 0.380903
\(496\) −9.28197e9 −0.00688609
\(497\) −5.81949e11 −0.427840
\(498\) −9.35211e10 −0.0681362
\(499\) −6.73453e11 −0.486245 −0.243122 0.969996i \(-0.578172\pi\)
−0.243122 + 0.969996i \(0.578172\pi\)
\(500\) −6.25000e10 −0.0447214
\(501\) 9.47298e10 0.0671764
\(502\) 1.21763e11 0.0855752
\(503\) −3.69632e11 −0.257462 −0.128731 0.991680i \(-0.541090\pi\)
−0.128731 + 0.991680i \(0.541090\pi\)
\(504\) 1.71108e11 0.118123
\(505\) 9.23692e11 0.631998
\(506\) −1.58430e10 −0.0107439
\(507\) 4.63183e11 0.311327
\(508\) −1.12980e12 −0.752685
\(509\) −1.87204e11 −0.123619 −0.0618094 0.998088i \(-0.519687\pi\)
−0.0618094 + 0.998088i \(0.519687\pi\)
\(510\) 1.41608e11 0.0926876
\(511\) 1.47376e10 0.00956166
\(512\) 6.87195e10 0.0441942
\(513\) 3.26542e11 0.208167
\(514\) −6.34609e11 −0.401026
\(515\) 1.07000e12 0.670269
\(516\) −4.97113e11 −0.308697
\(517\) −2.39313e12 −1.47319
\(518\) −5.67722e11 −0.346459
\(519\) −6.02957e11 −0.364782
\(520\) −7.73610e10 −0.0463988
\(521\) −1.46566e12 −0.871494 −0.435747 0.900069i \(-0.643516\pi\)
−0.435747 + 0.900069i \(0.643516\pi\)
\(522\) −7.05989e11 −0.416180
\(523\) −2.21909e11 −0.129693 −0.0648467 0.997895i \(-0.520656\pi\)
−0.0648467 + 0.997895i \(0.520656\pi\)
\(524\) 2.88794e11 0.167339
\(525\) 4.48253e10 0.0257517
\(526\) −8.44017e11 −0.480745
\(527\) −4.19640e10 −0.0236990
\(528\) −1.46551e11 −0.0820611
\(529\) −1.80070e12 −0.999751
\(530\) 3.08865e10 0.0170031
\(531\) −1.12307e11 −0.0613027
\(532\) −1.13251e11 −0.0612968
\(533\) 6.32995e11 0.339725
\(534\) 4.95950e11 0.263938
\(535\) −2.73785e11 −0.144483
\(536\) −2.03799e10 −0.0106650
\(537\) −8.00114e11 −0.415210
\(538\) 1.24546e11 0.0640931
\(539\) 2.69726e11 0.137649
\(540\) −2.83564e11 −0.143509
\(541\) −1.75400e12 −0.880323 −0.440162 0.897919i \(-0.645079\pi\)
−0.440162 + 0.897919i \(0.645079\pi\)
\(542\) 1.07806e12 0.536594
\(543\) 2.88284e10 0.0142306
\(544\) 3.10683e11 0.152097
\(545\) 4.20807e11 0.204314
\(546\) 5.54836e10 0.0267176
\(547\) −2.01155e12 −0.960701 −0.480351 0.877077i \(-0.659491\pi\)
−0.480351 + 0.877077i \(0.659491\pi\)
\(548\) 6.85910e11 0.324904
\(549\) −1.54424e12 −0.725501
\(550\) 2.92428e11 0.136266
\(551\) 4.67270e11 0.215966
\(552\) 4.14295e9 0.00189926
\(553\) −8.19284e10 −0.0372539
\(554\) 1.65785e12 0.747743
\(555\) 4.41442e11 0.197495
\(556\) 3.57550e10 0.0158672
\(557\) −6.62452e11 −0.291613 −0.145806 0.989313i \(-0.546578\pi\)
−0.145806 + 0.989313i \(0.546578\pi\)
\(558\) 3.94274e10 0.0172165
\(559\) 1.22780e12 0.531831
\(560\) 9.83450e10 0.0422577
\(561\) −6.62562e11 −0.282419
\(562\) 3.19324e12 1.35026
\(563\) 1.14706e12 0.481171 0.240585 0.970628i \(-0.422661\pi\)
0.240585 + 0.970628i \(0.422661\pi\)
\(564\) 6.25804e11 0.260425
\(565\) −3.71182e11 −0.153239
\(566\) −1.83074e12 −0.749814
\(567\) −6.18873e11 −0.251465
\(568\) 9.92779e11 0.400207
\(569\) −1.08600e12 −0.434333 −0.217167 0.976135i \(-0.569681\pi\)
−0.217167 + 0.976135i \(0.569681\pi\)
\(570\) 8.80600e10 0.0349415
\(571\) −7.48876e11 −0.294813 −0.147407 0.989076i \(-0.547093\pi\)
−0.147407 + 0.989076i \(0.547093\pi\)
\(572\) 3.61961e11 0.141377
\(573\) −6.76552e11 −0.262184
\(574\) −8.04694e11 −0.309405
\(575\) −8.26684e9 −0.00315380
\(576\) −2.91903e11 −0.110494
\(577\) −3.40755e12 −1.27983 −0.639914 0.768447i \(-0.721030\pi\)
−0.639914 + 0.768447i \(0.721030\pi\)
\(578\) −4.92803e11 −0.183653
\(579\) 4.46139e10 0.0164974
\(580\) −4.05770e11 −0.148886
\(581\) −2.93637e11 −0.106910
\(582\) 4.57973e11 0.165457
\(583\) −1.44513e11 −0.0518083
\(584\) −2.51417e10 −0.00894411
\(585\) 3.28610e11 0.116006
\(586\) −2.97322e12 −1.04157
\(587\) −3.56830e12 −1.24048 −0.620241 0.784412i \(-0.712965\pi\)
−0.620241 + 0.784412i \(0.712965\pi\)
\(588\) −7.05334e10 −0.0243331
\(589\) −2.60957e10 −0.00893407
\(590\) −6.45486e10 −0.0219307
\(591\) 1.72051e11 0.0580113
\(592\) 9.68508e11 0.324082
\(593\) 5.06024e12 1.68045 0.840224 0.542240i \(-0.182424\pi\)
0.840224 + 0.542240i \(0.182424\pi\)
\(594\) 1.32675e12 0.437272
\(595\) 4.44620e11 0.145433
\(596\) −9.80116e11 −0.318177
\(597\) −7.24602e11 −0.233461
\(598\) −1.02325e10 −0.00327210
\(599\) 3.96760e12 1.25924 0.629618 0.776905i \(-0.283211\pi\)
0.629618 + 0.776905i \(0.283211\pi\)
\(600\) −7.64699e10 −0.0240885
\(601\) −3.08383e12 −0.964173 −0.482086 0.876124i \(-0.660121\pi\)
−0.482086 + 0.876124i \(0.660121\pi\)
\(602\) −1.56083e12 −0.484365
\(603\) 8.65684e10 0.0266644
\(604\) 2.97486e12 0.909495
\(605\) 1.05490e11 0.0320118
\(606\) 1.13015e12 0.340417
\(607\) −2.30191e11 −0.0688239 −0.0344120 0.999408i \(-0.510956\pi\)
−0.0344120 + 0.999408i \(0.510956\pi\)
\(608\) 1.93200e11 0.0573379
\(609\) 2.91020e11 0.0857324
\(610\) −8.87555e11 −0.259544
\(611\) −1.54565e12 −0.448667
\(612\) −1.31970e12 −0.380272
\(613\) −3.21533e12 −0.919716 −0.459858 0.887992i \(-0.652100\pi\)
−0.459858 + 0.887992i \(0.652100\pi\)
\(614\) −7.05170e11 −0.200233
\(615\) 6.25704e11 0.176373
\(616\) −4.60141e11 −0.128759
\(617\) −5.58117e12 −1.55039 −0.775196 0.631720i \(-0.782349\pi\)
−0.775196 + 0.631720i \(0.782349\pi\)
\(618\) 1.30916e12 0.361031
\(619\) −3.95942e11 −0.108398 −0.0541992 0.998530i \(-0.517261\pi\)
−0.0541992 + 0.998530i \(0.517261\pi\)
\(620\) 2.26611e10 0.00615910
\(621\) −3.75068e10 −0.0101204
\(622\) 3.74422e12 1.00301
\(623\) 1.55718e12 0.414137
\(624\) −9.46526e10 −0.0249921
\(625\) 1.52588e11 0.0400000
\(626\) −4.66349e12 −1.21374
\(627\) −4.12020e11 −0.106467
\(628\) 2.90937e12 0.746415
\(629\) 4.37865e12 1.11535
\(630\) −4.17744e11 −0.105652
\(631\) −2.03177e12 −0.510203 −0.255102 0.966914i \(-0.582109\pi\)
−0.255102 + 0.966914i \(0.582109\pi\)
\(632\) 1.39766e11 0.0348478
\(633\) −1.74307e12 −0.431518
\(634\) −8.77030e11 −0.215582
\(635\) 2.75829e12 0.673222
\(636\) 3.77902e10 0.00915846
\(637\) 1.74207e11 0.0419217
\(638\) 1.89854e12 0.453655
\(639\) −4.21707e12 −1.00059
\(640\) −1.67772e11 −0.0395285
\(641\) 5.58429e12 1.30649 0.653246 0.757146i \(-0.273407\pi\)
0.653246 + 0.757146i \(0.273407\pi\)
\(642\) −3.34981e11 −0.0778239
\(643\) −6.16637e12 −1.42259 −0.711296 0.702893i \(-0.751891\pi\)
−0.711296 + 0.702893i \(0.751891\pi\)
\(644\) 1.30080e10 0.00298006
\(645\) 1.21366e12 0.276107
\(646\) 8.73464e11 0.197332
\(647\) −1.02974e11 −0.0231025 −0.0115512 0.999933i \(-0.503677\pi\)
−0.0115512 + 0.999933i \(0.503677\pi\)
\(648\) 1.05577e12 0.235224
\(649\) 3.02013e11 0.0668228
\(650\) 1.88870e11 0.0415004
\(651\) −1.62526e10 −0.00354657
\(652\) 2.54181e12 0.550845
\(653\) 2.82592e12 0.608207 0.304103 0.952639i \(-0.401643\pi\)
0.304103 + 0.952639i \(0.401643\pi\)
\(654\) 5.14865e11 0.110051
\(655\) −7.05064e11 −0.149673
\(656\) 1.37277e12 0.289422
\(657\) 1.06796e11 0.0223619
\(658\) 1.96490e12 0.408623
\(659\) −5.44052e12 −1.12371 −0.561857 0.827234i \(-0.689913\pi\)
−0.561857 + 0.827234i \(0.689913\pi\)
\(660\) 3.57791e11 0.0733976
\(661\) 3.62012e12 0.737592 0.368796 0.929510i \(-0.379770\pi\)
0.368796 + 0.929510i \(0.379770\pi\)
\(662\) 5.33477e12 1.07958
\(663\) −4.27927e11 −0.0860120
\(664\) 5.00932e11 0.100005
\(665\) 2.76491e11 0.0548255
\(666\) −4.11398e12 −0.810266
\(667\) −5.36710e10 −0.0104996
\(668\) −5.07406e11 −0.0985966
\(669\) 3.38267e12 0.652892
\(670\) 4.97555e10 0.00953904
\(671\) 4.15274e12 0.790830
\(672\) 1.20327e11 0.0227615
\(673\) −1.96230e12 −0.368721 −0.184361 0.982859i \(-0.559021\pi\)
−0.184361 + 0.982859i \(0.559021\pi\)
\(674\) 2.79783e11 0.0522217
\(675\) 6.92295e11 0.128358
\(676\) −2.48097e12 −0.456943
\(677\) 6.57309e12 1.20260 0.601299 0.799024i \(-0.294650\pi\)
0.601299 + 0.799024i \(0.294650\pi\)
\(678\) −4.54148e11 −0.0825399
\(679\) 1.43794e12 0.259614
\(680\) −7.58502e11 −0.136040
\(681\) 2.30441e11 0.0410580
\(682\) −1.06028e11 −0.0187668
\(683\) −2.98633e12 −0.525103 −0.262551 0.964918i \(-0.584564\pi\)
−0.262551 + 0.964918i \(0.584564\pi\)
\(684\) −8.20666e11 −0.143355
\(685\) −1.67459e12 −0.290603
\(686\) −2.21461e11 −0.0381802
\(687\) −1.54244e12 −0.264182
\(688\) 2.66272e12 0.453082
\(689\) −9.33364e10 −0.0157785
\(690\) −1.01146e10 −0.00169875
\(691\) 4.56733e12 0.762098 0.381049 0.924555i \(-0.375563\pi\)
0.381049 + 0.924555i \(0.375563\pi\)
\(692\) 3.22965e12 0.535400
\(693\) 1.95456e12 0.321922
\(694\) 9.32638e11 0.152614
\(695\) −8.72924e10 −0.0141920
\(696\) −4.96467e11 −0.0801953
\(697\) 6.20634e12 0.996065
\(698\) −5.23901e12 −0.835410
\(699\) 2.38547e12 0.377944
\(700\) −2.40100e11 −0.0377964
\(701\) −6.84995e12 −1.07141 −0.535706 0.844405i \(-0.679954\pi\)
−0.535706 + 0.844405i \(0.679954\pi\)
\(702\) 8.56906e11 0.133173
\(703\) 2.72290e12 0.420467
\(704\) 7.84981e11 0.120443
\(705\) −1.52784e12 −0.232931
\(706\) 8.09258e12 1.22593
\(707\) 3.54845e12 0.534136
\(708\) −7.89764e10 −0.0118127
\(709\) −8.40144e12 −1.24866 −0.624332 0.781159i \(-0.714629\pi\)
−0.624332 + 0.781159i \(0.714629\pi\)
\(710\) −2.42378e12 −0.357956
\(711\) −5.93691e11 −0.0871260
\(712\) −2.65649e12 −0.387389
\(713\) 2.99736e9 0.000434347 0
\(714\) 5.44001e11 0.0783353
\(715\) −8.83693e11 −0.126452
\(716\) 4.28569e12 0.609414
\(717\) −2.48771e12 −0.351532
\(718\) −5.45229e12 −0.765630
\(719\) 4.28211e12 0.597555 0.298777 0.954323i \(-0.403421\pi\)
0.298777 + 0.954323i \(0.403421\pi\)
\(720\) 7.12653e11 0.0988285
\(721\) 4.11049e12 0.566481
\(722\) −4.61983e12 −0.632716
\(723\) −2.30989e12 −0.314390
\(724\) −1.54415e11 −0.0208866
\(725\) 9.90649e11 0.133168
\(726\) 1.29068e11 0.0172427
\(727\) 4.03989e12 0.536370 0.268185 0.963367i \(-0.413576\pi\)
0.268185 + 0.963367i \(0.413576\pi\)
\(728\) −2.97190e11 −0.0392142
\(729\) −2.81742e12 −0.369469
\(730\) 6.13812e10 0.00799986
\(731\) 1.20382e13 1.55931
\(732\) −1.08594e12 −0.139800
\(733\) 8.78598e12 1.12415 0.562073 0.827088i \(-0.310004\pi\)
0.562073 + 0.827088i \(0.310004\pi\)
\(734\) 2.37045e12 0.301439
\(735\) 1.72201e11 0.0217642
\(736\) −2.21911e10 −0.00278759
\(737\) −2.32799e11 −0.0290654
\(738\) −5.83118e12 −0.723608
\(739\) −1.26308e13 −1.55787 −0.778935 0.627105i \(-0.784240\pi\)
−0.778935 + 0.627105i \(0.784240\pi\)
\(740\) −2.36452e12 −0.289868
\(741\) −2.66110e11 −0.0324249
\(742\) 1.18654e11 0.0143702
\(743\) −1.72613e12 −0.207790 −0.103895 0.994588i \(-0.533131\pi\)
−0.103895 + 0.994588i \(0.533131\pi\)
\(744\) 2.77262e10 0.00331751
\(745\) 2.39286e12 0.284586
\(746\) −1.06896e13 −1.26367
\(747\) −2.12783e12 −0.250031
\(748\) 3.54892e12 0.414514
\(749\) −1.05177e12 −0.122111
\(750\) 1.86694e11 0.0215454
\(751\) 3.06753e12 0.351892 0.175946 0.984400i \(-0.443702\pi\)
0.175946 + 0.984400i \(0.443702\pi\)
\(752\) −3.35203e12 −0.382232
\(753\) −3.63718e11 −0.0412276
\(754\) 1.22620e12 0.138163
\(755\) −7.26284e12 −0.813477
\(756\) −1.08934e12 −0.121287
\(757\) 6.51793e12 0.721403 0.360702 0.932681i \(-0.382537\pi\)
0.360702 + 0.932681i \(0.382537\pi\)
\(758\) 1.01982e13 1.12205
\(759\) 4.73249e10 0.00517608
\(760\) −4.71681e11 −0.0512846
\(761\) −4.75019e11 −0.0513428 −0.0256714 0.999670i \(-0.508172\pi\)
−0.0256714 + 0.999670i \(0.508172\pi\)
\(762\) 3.37482e12 0.362621
\(763\) 1.61657e12 0.172677
\(764\) 3.62385e12 0.384814
\(765\) 3.22192e12 0.340125
\(766\) −9.35285e11 −0.0981555
\(767\) 1.95060e11 0.0203512
\(768\) −2.05272e11 −0.0212914
\(769\) 7.10887e12 0.733048 0.366524 0.930409i \(-0.380548\pi\)
0.366524 + 0.930409i \(0.380548\pi\)
\(770\) 1.12339e12 0.115166
\(771\) 1.89564e12 0.193202
\(772\) −2.38968e11 −0.0242137
\(773\) −6.83668e12 −0.688712 −0.344356 0.938839i \(-0.611903\pi\)
−0.344356 + 0.938839i \(0.611903\pi\)
\(774\) −1.13105e13 −1.13279
\(775\) −5.53248e10 −0.00550887
\(776\) −2.45307e12 −0.242846
\(777\) 1.69584e12 0.166914
\(778\) −7.04540e12 −0.689442
\(779\) 3.85946e12 0.375498
\(780\) 2.31086e11 0.0223536
\(781\) 1.13405e13 1.09069
\(782\) −1.00327e11 −0.00959370
\(783\) 4.49460e12 0.427330
\(784\) 3.77802e11 0.0357143
\(785\) −7.10295e12 −0.667613
\(786\) −8.62659e11 −0.0806190
\(787\) −6.09938e12 −0.566760 −0.283380 0.959008i \(-0.591456\pi\)
−0.283380 + 0.959008i \(0.591456\pi\)
\(788\) −9.21564e11 −0.0851446
\(789\) 2.52117e12 0.231609
\(790\) −3.41226e11 −0.0311688
\(791\) −1.42593e12 −0.129510
\(792\) −3.33440e12 −0.301130
\(793\) 2.68211e12 0.240851
\(794\) −1.36901e13 −1.22240
\(795\) −9.22613e10 −0.00819158
\(796\) 3.88122e12 0.342657
\(797\) 6.20696e12 0.544900 0.272450 0.962170i \(-0.412166\pi\)
0.272450 + 0.962170i \(0.412166\pi\)
\(798\) 3.38291e11 0.0295310
\(799\) −1.51546e13 −1.31548
\(800\) 4.09600e11 0.0353553
\(801\) 1.12841e13 0.968545
\(802\) −5.96251e12 −0.508914
\(803\) −2.87193e11 −0.0243755
\(804\) 6.08768e10 0.00513807
\(805\) −3.17579e10 −0.00266545
\(806\) −6.84798e10 −0.00571550
\(807\) −3.72033e11 −0.0308781
\(808\) −6.05351e12 −0.499638
\(809\) −1.43675e13 −1.17927 −0.589633 0.807671i \(-0.700728\pi\)
−0.589633 + 0.807671i \(0.700728\pi\)
\(810\) −2.57756e12 −0.210391
\(811\) 1.78668e13 1.45028 0.725140 0.688602i \(-0.241775\pi\)
0.725140 + 0.688602i \(0.241775\pi\)
\(812\) −1.55881e12 −0.125832
\(813\) −3.22028e12 −0.258515
\(814\) 1.10632e13 0.883228
\(815\) −6.20560e12 −0.492691
\(816\) −9.28042e11 −0.0732760
\(817\) 7.48605e12 0.587832
\(818\) −8.63427e12 −0.674273
\(819\) 1.26239e12 0.0980427
\(820\) −3.35149e12 −0.258867
\(821\) −8.35383e12 −0.641714 −0.320857 0.947128i \(-0.603971\pi\)
−0.320857 + 0.947128i \(0.603971\pi\)
\(822\) −2.04889e12 −0.156529
\(823\) −1.49432e13 −1.13539 −0.567696 0.823239i \(-0.692165\pi\)
−0.567696 + 0.823239i \(0.692165\pi\)
\(824\) −7.01232e12 −0.529894
\(825\) −8.73514e11 −0.0656488
\(826\) −2.47970e11 −0.0185348
\(827\) −1.86653e13 −1.38758 −0.693792 0.720175i \(-0.744062\pi\)
−0.693792 + 0.720175i \(0.744062\pi\)
\(828\) 9.42622e10 0.00696949
\(829\) 1.50539e13 1.10701 0.553506 0.832845i \(-0.313289\pi\)
0.553506 + 0.832845i \(0.313289\pi\)
\(830\) −1.22298e12 −0.0894474
\(831\) −4.95219e12 −0.360240
\(832\) 5.06993e11 0.0366815
\(833\) 1.70805e12 0.122913
\(834\) −1.06804e11 −0.00764433
\(835\) 1.23878e12 0.0881874
\(836\) 2.20692e12 0.156264
\(837\) −2.51010e11 −0.0176777
\(838\) −8.25626e12 −0.578342
\(839\) −1.47923e13 −1.03064 −0.515320 0.856998i \(-0.672327\pi\)
−0.515320 + 0.856998i \(0.672327\pi\)
\(840\) −2.93767e11 −0.0203585
\(841\) −8.07554e12 −0.556659
\(842\) 6.68346e12 0.458244
\(843\) −9.53856e12 −0.650517
\(844\) 9.33651e12 0.633350
\(845\) 6.05706e12 0.408702
\(846\) 1.42386e13 0.955651
\(847\) 4.05249e11 0.0270549
\(848\) −2.02418e11 −0.0134421
\(849\) 5.46863e12 0.361238
\(850\) 1.85181e12 0.121678
\(851\) −3.12754e11 −0.0204418
\(852\) −2.96554e12 −0.192808
\(853\) −2.80780e13 −1.81591 −0.907957 0.419064i \(-0.862358\pi\)
−0.907957 + 0.419064i \(0.862358\pi\)
\(854\) −3.40963e12 −0.219355
\(855\) 2.00358e12 0.128221
\(856\) 1.79428e12 0.114224
\(857\) 1.40734e13 0.891218 0.445609 0.895228i \(-0.352987\pi\)
0.445609 + 0.895228i \(0.352987\pi\)
\(858\) −1.08121e12 −0.0681113
\(859\) −4.08045e12 −0.255705 −0.127852 0.991793i \(-0.540808\pi\)
−0.127852 + 0.991793i \(0.540808\pi\)
\(860\) −6.50077e12 −0.405249
\(861\) 2.40371e12 0.149062
\(862\) 1.34912e13 0.832275
\(863\) −2.65684e13 −1.63048 −0.815242 0.579121i \(-0.803396\pi\)
−0.815242 + 0.579121i \(0.803396\pi\)
\(864\) 1.85836e12 0.113454
\(865\) −7.88489e12 −0.478876
\(866\) −6.03729e12 −0.364763
\(867\) 1.47205e12 0.0884785
\(868\) 8.70547e10 0.00520539
\(869\) 1.59655e12 0.0949714
\(870\) 1.21208e12 0.0717288
\(871\) −1.50357e11 −0.00885201
\(872\) −2.75780e12 −0.161524
\(873\) 1.04200e13 0.607160
\(874\) −6.23889e10 −0.00361665
\(875\) 5.86182e11 0.0338062
\(876\) 7.51010e10 0.00430901
\(877\) −2.30661e13 −1.31667 −0.658333 0.752727i \(-0.728738\pi\)
−0.658333 + 0.752727i \(0.728738\pi\)
\(878\) −7.75240e12 −0.440262
\(879\) 8.88134e12 0.501797
\(880\) −1.91646e12 −0.107728
\(881\) 3.49096e13 1.95233 0.976164 0.217033i \(-0.0696381\pi\)
0.976164 + 0.217033i \(0.0696381\pi\)
\(882\) −1.60481e12 −0.0892923
\(883\) 7.37648e12 0.408344 0.204172 0.978935i \(-0.434550\pi\)
0.204172 + 0.978935i \(0.434550\pi\)
\(884\) 2.29213e12 0.126242
\(885\) 1.92814e11 0.0105656
\(886\) 1.78304e13 0.972097
\(887\) 1.87675e13 1.01800 0.509002 0.860765i \(-0.330015\pi\)
0.509002 + 0.860765i \(0.330015\pi\)
\(888\) −2.89304e12 −0.156133
\(889\) 1.05962e13 0.568976
\(890\) 6.48556e12 0.346492
\(891\) 1.20600e13 0.641060
\(892\) −1.81188e13 −0.958267
\(893\) −9.42401e12 −0.495911
\(894\) 2.92771e12 0.153288
\(895\) −1.04631e13 −0.545076
\(896\) −6.44514e11 −0.0334077
\(897\) 3.05656e10 0.00157640
\(898\) 1.63635e13 0.839718
\(899\) −3.59186e11 −0.0183401
\(900\) −1.73988e12 −0.0883949
\(901\) −9.15136e11 −0.0462620
\(902\) 1.56811e13 0.788766
\(903\) 4.66238e12 0.233353
\(904\) 2.43258e12 0.121146
\(905\) 3.76991e11 0.0186815
\(906\) −8.88622e12 −0.438168
\(907\) −1.37618e12 −0.0675215 −0.0337607 0.999430i \(-0.510748\pi\)
−0.0337607 + 0.999430i \(0.510748\pi\)
\(908\) −1.23432e12 −0.0602619
\(909\) 2.57137e13 1.24919
\(910\) 7.25562e11 0.0350742
\(911\) −3.17846e13 −1.52892 −0.764458 0.644674i \(-0.776993\pi\)
−0.764458 + 0.644674i \(0.776993\pi\)
\(912\) −5.77110e11 −0.0276237
\(913\) 5.72214e12 0.272546
\(914\) −1.93402e13 −0.916649
\(915\) 2.65122e12 0.125041
\(916\) 8.26186e12 0.387747
\(917\) −2.70857e12 −0.126497
\(918\) 8.40171e12 0.390459
\(919\) 4.52221e12 0.209137 0.104569 0.994518i \(-0.466654\pi\)
0.104569 + 0.994518i \(0.466654\pi\)
\(920\) 5.41776e10 0.00249330
\(921\) 2.10642e12 0.0964664
\(922\) 1.72194e13 0.784744
\(923\) 7.32444e12 0.332175
\(924\) 1.37449e12 0.0620323
\(925\) 5.77276e12 0.259266
\(926\) 1.25797e13 0.562240
\(927\) 2.97866e13 1.32483
\(928\) 2.65925e12 0.117705
\(929\) 3.69672e13 1.62834 0.814171 0.580626i \(-0.197192\pi\)
0.814171 + 0.580626i \(0.197192\pi\)
\(930\) −6.76910e10 −0.00296727
\(931\) 1.06217e12 0.0463360
\(932\) −1.27774e13 −0.554718
\(933\) −1.11844e13 −0.483220
\(934\) 2.01160e13 0.864928
\(935\) −8.66435e12 −0.370752
\(936\) −2.15358e12 −0.0917105
\(937\) 1.20574e13 0.511005 0.255502 0.966808i \(-0.417759\pi\)
0.255502 + 0.966808i \(0.417759\pi\)
\(938\) 1.91141e11 0.00806196
\(939\) 1.39304e13 0.584746
\(940\) 8.18366e12 0.341879
\(941\) −2.75798e13 −1.14667 −0.573335 0.819321i \(-0.694351\pi\)
−0.573335 + 0.819321i \(0.694351\pi\)
\(942\) −8.69059e12 −0.359600
\(943\) −4.43300e11 −0.0182556
\(944\) 4.23026e11 0.0173378
\(945\) 2.65952e12 0.108483
\(946\) 3.04161e13 1.23479
\(947\) 8.81700e12 0.356243 0.178121 0.984009i \(-0.442998\pi\)
0.178121 + 0.984009i \(0.442998\pi\)
\(948\) −4.17497e11 −0.0167886
\(949\) −1.85489e11 −0.00742368
\(950\) 1.15156e12 0.0458703
\(951\) 2.61978e12 0.103861
\(952\) −2.91386e12 −0.114975
\(953\) 2.00605e13 0.787813 0.393907 0.919151i \(-0.371123\pi\)
0.393907 + 0.919151i \(0.371123\pi\)
\(954\) 8.59819e11 0.0336078
\(955\) −8.84730e12 −0.344188
\(956\) 1.33251e13 0.515952
\(957\) −5.67113e12 −0.218558
\(958\) 1.99562e13 0.765477
\(959\) −6.43309e12 −0.245604
\(960\) 5.01153e11 0.0190436
\(961\) −2.64196e13 −0.999241
\(962\) 7.14538e12 0.268991
\(963\) −7.62163e12 −0.285581
\(964\) 1.23726e13 0.461438
\(965\) 5.83417e11 0.0216574
\(966\) −3.88564e10 −0.00143570
\(967\) −3.57232e12 −0.131380 −0.0656902 0.997840i \(-0.520925\pi\)
−0.0656902 + 0.997840i \(0.520925\pi\)
\(968\) −6.91337e11 −0.0253076
\(969\) −2.60913e12 −0.0950689
\(970\) 5.98893e12 0.217208
\(971\) −4.97663e13 −1.79659 −0.898295 0.439394i \(-0.855193\pi\)
−0.898295 + 0.439394i \(0.855193\pi\)
\(972\) −1.20839e13 −0.434220
\(973\) −3.35342e11 −0.0119945
\(974\) 2.86938e12 0.102158
\(975\) −5.64174e11 −0.0199937
\(976\) 5.81668e12 0.205188
\(977\) 2.14940e13 0.754730 0.377365 0.926065i \(-0.376830\pi\)
0.377365 + 0.926065i \(0.376830\pi\)
\(978\) −7.59266e12 −0.265381
\(979\) −3.03450e13 −1.05576
\(980\) −9.22368e11 −0.0319438
\(981\) 1.17144e13 0.403841
\(982\) 7.90530e12 0.271279
\(983\) −3.03607e13 −1.03710 −0.518551 0.855047i \(-0.673528\pi\)
−0.518551 + 0.855047i \(0.673528\pi\)
\(984\) −4.10061e12 −0.139435
\(985\) 2.24991e12 0.0761557
\(986\) 1.20226e13 0.405089
\(987\) −5.86936e12 −0.196863
\(988\) 1.42538e12 0.0475909
\(989\) −8.59853e11 −0.0285786
\(990\) 8.14062e12 0.269339
\(991\) 4.36370e13 1.43722 0.718610 0.695413i \(-0.244779\pi\)
0.718610 + 0.695413i \(0.244779\pi\)
\(992\) −1.48511e11 −0.00486920
\(993\) −1.59355e13 −0.520109
\(994\) −9.31118e12 −0.302528
\(995\) −9.47565e12 −0.306482
\(996\) −1.49634e12 −0.0481795
\(997\) 1.08721e13 0.348485 0.174243 0.984703i \(-0.444252\pi\)
0.174243 + 0.984703i \(0.444252\pi\)
\(998\) −1.07752e13 −0.343827
\(999\) 2.61911e13 0.831974
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 70.10.a.h.1.2 3
5.2 odd 4 350.10.c.k.99.5 6
5.3 odd 4 350.10.c.k.99.2 6
5.4 even 2 350.10.a.l.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.10.a.h.1.2 3 1.1 even 1 trivial
350.10.a.l.1.2 3 5.4 even 2
350.10.c.k.99.2 6 5.3 odd 4
350.10.c.k.99.5 6 5.2 odd 4