Properties

Label 350.10.c.k.99.5
Level $350$
Weight $10$
Character 350.99
Analytic conductor $180.263$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [350,10,Mod(99,350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("350.99"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 350.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-1536,0,-2112] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(180.262542657\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 747x^{4} + 133865x^{2} + 6927424 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{6}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.5
Root \(22.6263i\) of defining polynomial
Character \(\chi\) \(=\) 350.99
Dual form 350.10.c.k.99.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+16.0000i q^{2} +47.7937i q^{3} -256.000 q^{4} -764.699 q^{6} -2401.00i q^{7} -4096.00i q^{8} +17398.8 q^{9} +46788.5 q^{11} -12235.2i q^{12} -30219.1i q^{13} +38416.0 q^{14} +65536.0 q^{16} +296290. i q^{17} +278380. i q^{18} -184250. q^{19} +114753. q^{21} +748616. i q^{22} +21163.1i q^{23} +195763. q^{24} +483506. q^{26} +1.77227e6i q^{27} +614656. i q^{28} -2.53606e6 q^{29} -141632. q^{31} +1.04858e6i q^{32} +2.23620e6i q^{33} -4.74064e6 q^{34} -4.45408e6 q^{36} +1.47783e7i q^{37} -2.94800e6i q^{38} +1.44428e6 q^{39} +2.09468e7 q^{41} +1.83604e6i q^{42} -4.06298e7i q^{43} -1.19779e7 q^{44} -338610. q^{46} -5.11479e7i q^{47} +3.13221e6i q^{48} -5.76480e6 q^{49} -1.41608e7 q^{51} +7.73610e6i q^{52} +3.08865e6i q^{53} -2.83564e7 q^{54} -9.83450e6 q^{56} -8.80600e6i q^{57} -4.05770e7i q^{58} -6.45486e6 q^{59} +8.87555e7 q^{61} -2.26611e6i q^{62} -4.17744e7i q^{63} -1.67772e7 q^{64} -3.57791e7 q^{66} -4.97555e6i q^{67} -7.58502e7i q^{68} -1.01146e6 q^{69} +2.42378e8 q^{71} -7.12653e7i q^{72} +6.13812e6i q^{73} -2.36452e8 q^{74} +4.71681e7 q^{76} -1.12339e8i q^{77} +2.31086e7i q^{78} -3.41226e7 q^{79} +2.57756e8 q^{81} +3.35149e8i q^{82} -1.22298e8i q^{83} -2.93767e7 q^{84} +6.50077e8 q^{86} -1.21208e8i q^{87} -1.91646e8i q^{88} +6.48556e8 q^{89} -7.25562e7 q^{91} -5.41776e6i q^{92} -6.76910e6i q^{93} +8.18366e8 q^{94} -5.01153e7 q^{96} -5.98893e8i q^{97} -9.22368e7i q^{98} +8.14062e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 1536 q^{4} - 2112 q^{6} - 102258 q^{9} - 138252 q^{11} + 230496 q^{14} + 393216 q^{16} - 3450888 q^{19} + 316932 q^{21} + 540672 q^{24} - 291456 q^{26} - 13467528 q^{29} + 1570800 q^{31} - 17506560 q^{34}+ \cdots + 9978709104 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 16.0000i 0.707107i
\(3\) 47.7937i 0.340663i 0.985387 + 0.170332i \(0.0544839\pi\)
−0.985387 + 0.170332i \(0.945516\pi\)
\(4\) −256.000 −0.500000
\(5\) 0 0
\(6\) −764.699 −0.240885
\(7\) − 2401.00i − 0.377964i
\(8\) − 4096.00i − 0.353553i
\(9\) 17398.8 0.883949
\(10\) 0 0
\(11\) 46788.5 0.963545 0.481773 0.876296i \(-0.339993\pi\)
0.481773 + 0.876296i \(0.339993\pi\)
\(12\) − 12235.2i − 0.170332i
\(13\) − 30219.1i − 0.293452i −0.989177 0.146726i \(-0.953126\pi\)
0.989177 0.146726i \(-0.0468736\pi\)
\(14\) 38416.0 0.267261
\(15\) 0 0
\(16\) 65536.0 0.250000
\(17\) 296290.i 0.860393i 0.902735 + 0.430196i \(0.141556\pi\)
−0.902735 + 0.430196i \(0.858444\pi\)
\(18\) 278380.i 0.625046i
\(19\) −184250. −0.324352 −0.162176 0.986762i \(-0.551851\pi\)
−0.162176 + 0.986762i \(0.551851\pi\)
\(20\) 0 0
\(21\) 114753. 0.128759
\(22\) 748616.i 0.681329i
\(23\) 21163.1i 0.0157690i 0.999969 + 0.00788450i \(0.00250974\pi\)
−0.999969 + 0.00788450i \(0.997490\pi\)
\(24\) 195763. 0.120443
\(25\) 0 0
\(26\) 483506. 0.207502
\(27\) 1.77227e6i 0.641792i
\(28\) 614656.i 0.188982i
\(29\) −2.53606e6 −0.665838 −0.332919 0.942955i \(-0.608034\pi\)
−0.332919 + 0.942955i \(0.608034\pi\)
\(30\) 0 0
\(31\) −141632. −0.0275443 −0.0137722 0.999905i \(-0.504384\pi\)
−0.0137722 + 0.999905i \(0.504384\pi\)
\(32\) 1.04858e6i 0.176777i
\(33\) 2.23620e6i 0.328244i
\(34\) −4.74064e6 −0.608390
\(35\) 0 0
\(36\) −4.45408e6 −0.441974
\(37\) 1.47783e7i 1.29633i 0.761500 + 0.648165i \(0.224463\pi\)
−0.761500 + 0.648165i \(0.775537\pi\)
\(38\) − 2.94800e6i − 0.229352i
\(39\) 1.44428e6 0.0999683
\(40\) 0 0
\(41\) 2.09468e7 1.15769 0.578843 0.815439i \(-0.303504\pi\)
0.578843 + 0.815439i \(0.303504\pi\)
\(42\) 1.83604e6i 0.0910460i
\(43\) − 4.06298e7i − 1.81233i −0.422927 0.906164i \(-0.638997\pi\)
0.422927 0.906164i \(-0.361003\pi\)
\(44\) −1.19779e7 −0.481773
\(45\) 0 0
\(46\) −338610. −0.0111504
\(47\) − 5.11479e7i − 1.52893i −0.644666 0.764464i \(-0.723004\pi\)
0.644666 0.764464i \(-0.276996\pi\)
\(48\) 3.13221e6i 0.0851658i
\(49\) −5.76480e6 −0.142857
\(50\) 0 0
\(51\) −1.41608e7 −0.293104
\(52\) 7.73610e6i 0.146726i
\(53\) 3.08865e6i 0.0537684i 0.999639 + 0.0268842i \(0.00855854\pi\)
−0.999639 + 0.0268842i \(0.991441\pi\)
\(54\) −2.83564e7 −0.453815
\(55\) 0 0
\(56\) −9.83450e6 −0.133631
\(57\) − 8.80600e6i − 0.110495i
\(58\) − 4.05770e7i − 0.470819i
\(59\) −6.45486e6 −0.0693510 −0.0346755 0.999399i \(-0.511040\pi\)
−0.0346755 + 0.999399i \(0.511040\pi\)
\(60\) 0 0
\(61\) 8.87555e7 0.820750 0.410375 0.911917i \(-0.365398\pi\)
0.410375 + 0.911917i \(0.365398\pi\)
\(62\) − 2.26611e6i − 0.0194768i
\(63\) − 4.17744e7i − 0.334101i
\(64\) −1.67772e7 −0.125000
\(65\) 0 0
\(66\) −3.57791e7 −0.232104
\(67\) − 4.97555e6i − 0.0301651i −0.999886 0.0150825i \(-0.995199\pi\)
0.999886 0.0150825i \(-0.00480111\pi\)
\(68\) − 7.58502e7i − 0.430196i
\(69\) −1.01146e6 −0.00537192
\(70\) 0 0
\(71\) 2.42378e8 1.13196 0.565978 0.824420i \(-0.308499\pi\)
0.565978 + 0.824420i \(0.308499\pi\)
\(72\) − 7.12653e7i − 0.312523i
\(73\) 6.13812e6i 0.0252978i 0.999920 + 0.0126489i \(0.00402637\pi\)
−0.999920 + 0.0126489i \(0.995974\pi\)
\(74\) −2.36452e8 −0.916644
\(75\) 0 0
\(76\) 4.71681e7 0.162176
\(77\) − 1.12339e8i − 0.364186i
\(78\) 2.31086e7i 0.0706882i
\(79\) −3.41226e7 −0.0985645 −0.0492822 0.998785i \(-0.515693\pi\)
−0.0492822 + 0.998785i \(0.515693\pi\)
\(80\) 0 0
\(81\) 2.57756e8 0.665314
\(82\) 3.35149e8i 0.818608i
\(83\) − 1.22298e8i − 0.282857i −0.989948 0.141429i \(-0.954830\pi\)
0.989948 0.141429i \(-0.0451696\pi\)
\(84\) −2.93767e7 −0.0643793
\(85\) 0 0
\(86\) 6.50077e8 1.28151
\(87\) − 1.21208e8i − 0.226827i
\(88\) − 1.91646e8i − 0.340665i
\(89\) 6.48556e8 1.09570 0.547851 0.836576i \(-0.315446\pi\)
0.547851 + 0.836576i \(0.315446\pi\)
\(90\) 0 0
\(91\) −7.25562e7 −0.110914
\(92\) − 5.41776e6i − 0.00788450i
\(93\) − 6.76910e6i − 0.00938334i
\(94\) 8.18366e8 1.08112
\(95\) 0 0
\(96\) −5.01153e7 −0.0602213
\(97\) − 5.98893e8i − 0.686873i −0.939176 0.343436i \(-0.888409\pi\)
0.939176 0.343436i \(-0.111591\pi\)
\(98\) − 9.22368e7i − 0.101015i
\(99\) 8.14062e8 0.851725
\(100\) 0 0
\(101\) −1.47791e9 −1.41319 −0.706595 0.707618i \(-0.749770\pi\)
−0.706595 + 0.707618i \(0.749770\pi\)
\(102\) − 2.26573e8i − 0.207256i
\(103\) 1.71199e9i 1.49877i 0.662136 + 0.749384i \(0.269650\pi\)
−0.662136 + 0.749384i \(0.730350\pi\)
\(104\) −1.23778e8 −0.103751
\(105\) 0 0
\(106\) −4.94184e7 −0.0380200
\(107\) 4.38056e8i 0.323075i 0.986867 + 0.161537i \(0.0516452\pi\)
−0.986867 + 0.161537i \(0.948355\pi\)
\(108\) − 4.53702e8i − 0.320896i
\(109\) 6.73291e8 0.456860 0.228430 0.973560i \(-0.426641\pi\)
0.228430 + 0.973560i \(0.426641\pi\)
\(110\) 0 0
\(111\) −7.06308e8 −0.441612
\(112\) − 1.57352e8i − 0.0944911i
\(113\) − 5.93891e8i − 0.342652i −0.985214 0.171326i \(-0.945195\pi\)
0.985214 0.171326i \(-0.0548052\pi\)
\(114\) 1.40896e8 0.0781316
\(115\) 0 0
\(116\) 6.49232e8 0.332919
\(117\) − 5.25776e8i − 0.259397i
\(118\) − 1.03278e8i − 0.0490386i
\(119\) 7.11392e8 0.325198
\(120\) 0 0
\(121\) −1.68783e8 −0.0715806
\(122\) 1.42009e9i 0.580358i
\(123\) 1.00113e9i 0.394381i
\(124\) 3.62577e7 0.0137722
\(125\) 0 0
\(126\) 6.68391e8 0.236245
\(127\) − 4.41326e9i − 1.50537i −0.658381 0.752685i \(-0.728759\pi\)
0.658381 0.752685i \(-0.271241\pi\)
\(128\) − 2.68435e8i − 0.0883883i
\(129\) 1.94185e9 0.617393
\(130\) 0 0
\(131\) 1.12810e9 0.334678 0.167339 0.985899i \(-0.446483\pi\)
0.167339 + 0.985899i \(0.446483\pi\)
\(132\) − 5.72466e8i − 0.164122i
\(133\) 4.42385e8i 0.122594i
\(134\) 7.96088e7 0.0213299
\(135\) 0 0
\(136\) 1.21360e9 0.304195
\(137\) 2.67934e9i 0.649808i 0.945747 + 0.324904i \(0.105332\pi\)
−0.945747 + 0.324904i \(0.894668\pi\)
\(138\) − 1.61834e7i − 0.00379852i
\(139\) −1.39668e8 −0.0317344 −0.0158672 0.999874i \(-0.505051\pi\)
−0.0158672 + 0.999874i \(0.505051\pi\)
\(140\) 0 0
\(141\) 2.44455e9 0.520850
\(142\) 3.87804e9i 0.800414i
\(143\) − 1.41391e9i − 0.282754i
\(144\) 1.14025e9 0.220987
\(145\) 0 0
\(146\) −9.82098e7 −0.0178882
\(147\) − 2.75521e8i − 0.0486661i
\(148\) − 3.78323e9i − 0.648165i
\(149\) 3.82858e9 0.636355 0.318177 0.948031i \(-0.396929\pi\)
0.318177 + 0.948031i \(0.396929\pi\)
\(150\) 0 0
\(151\) 1.16205e10 1.81899 0.909495 0.415715i \(-0.136469\pi\)
0.909495 + 0.415715i \(0.136469\pi\)
\(152\) 7.54689e8i 0.114676i
\(153\) 5.15508e9i 0.760543i
\(154\) 1.79743e9 0.257518
\(155\) 0 0
\(156\) −3.69737e8 −0.0499841
\(157\) 1.13647e10i 1.49283i 0.665481 + 0.746415i \(0.268226\pi\)
−0.665481 + 0.746415i \(0.731774\pi\)
\(158\) − 5.45962e8i − 0.0696956i
\(159\) −1.47618e8 −0.0183169
\(160\) 0 0
\(161\) 5.08126e7 0.00596012
\(162\) 4.12410e9i 0.470448i
\(163\) − 9.92895e9i − 1.10169i −0.834608 0.550845i \(-0.814306\pi\)
0.834608 0.550845i \(-0.185694\pi\)
\(164\) −5.36239e9 −0.578843
\(165\) 0 0
\(166\) 1.95677e9 0.200010
\(167\) − 1.98206e9i − 0.197193i −0.995127 0.0985966i \(-0.968565\pi\)
0.995127 0.0985966i \(-0.0314353\pi\)
\(168\) − 4.70027e8i − 0.0455230i
\(169\) 9.69130e9 0.913886
\(170\) 0 0
\(171\) −3.20573e9 −0.286711
\(172\) 1.04012e10i 0.906164i
\(173\) − 1.26158e10i − 1.07080i −0.844599 0.535400i \(-0.820161\pi\)
0.844599 0.535400i \(-0.179839\pi\)
\(174\) 1.93932e9 0.160391
\(175\) 0 0
\(176\) 3.06633e9 0.240886
\(177\) − 3.08502e8i − 0.0236253i
\(178\) 1.03769e10i 0.774779i
\(179\) −1.67410e10 −1.21883 −0.609414 0.792852i \(-0.708595\pi\)
−0.609414 + 0.792852i \(0.708595\pi\)
\(180\) 0 0
\(181\) −6.03185e8 −0.0417731 −0.0208866 0.999782i \(-0.506649\pi\)
−0.0208866 + 0.999782i \(0.506649\pi\)
\(182\) − 1.16090e9i − 0.0784284i
\(183\) 4.24195e9i 0.279599i
\(184\) 8.66841e7 0.00557518
\(185\) 0 0
\(186\) 1.08306e8 0.00663502
\(187\) 1.38630e10i 0.829027i
\(188\) 1.30939e10i 0.764464i
\(189\) 4.25523e9 0.242574
\(190\) 0 0
\(191\) 1.41557e10 0.769627 0.384814 0.922994i \(-0.374266\pi\)
0.384814 + 0.922994i \(0.374266\pi\)
\(192\) − 8.01845e8i − 0.0425829i
\(193\) 9.33468e8i 0.0484274i 0.999707 + 0.0242137i \(0.00770822\pi\)
−0.999707 + 0.0242137i \(0.992292\pi\)
\(194\) 9.58229e9 0.485692
\(195\) 0 0
\(196\) 1.47579e9 0.0714286
\(197\) − 3.59986e9i − 0.170289i −0.996369 0.0851446i \(-0.972865\pi\)
0.996369 0.0851446i \(-0.0271352\pi\)
\(198\) 1.30250e10i 0.602260i
\(199\) −1.51610e10 −0.685315 −0.342657 0.939460i \(-0.611327\pi\)
−0.342657 + 0.939460i \(0.611327\pi\)
\(200\) 0 0
\(201\) 2.37800e8 0.0102761
\(202\) − 2.36465e10i − 0.999277i
\(203\) 6.08908e9i 0.251663i
\(204\) 3.62516e9 0.146552
\(205\) 0 0
\(206\) −2.73919e10 −1.05979
\(207\) 3.68212e8i 0.0139390i
\(208\) − 1.98044e9i − 0.0733630i
\(209\) −8.62079e9 −0.312528
\(210\) 0 0
\(211\) 3.64707e10 1.26670 0.633350 0.773866i \(-0.281679\pi\)
0.633350 + 0.773866i \(0.281679\pi\)
\(212\) − 7.90695e8i − 0.0268842i
\(213\) 1.15841e10i 0.385616i
\(214\) −7.00890e9 −0.228448
\(215\) 0 0
\(216\) 7.25924e9 0.226908
\(217\) 3.40057e8i 0.0104108i
\(218\) 1.07727e10i 0.323049i
\(219\) −2.93363e8 −0.00861801
\(220\) 0 0
\(221\) 8.95363e9 0.252484
\(222\) − 1.13009e10i − 0.312267i
\(223\) 7.07764e10i 1.91653i 0.285874 + 0.958267i \(0.407716\pi\)
−0.285874 + 0.958267i \(0.592284\pi\)
\(224\) 2.51763e9 0.0668153
\(225\) 0 0
\(226\) 9.50226e9 0.242292
\(227\) − 4.82157e9i − 0.120524i −0.998183 0.0602619i \(-0.980806\pi\)
0.998183 0.0602619i \(-0.0191936\pi\)
\(228\) 2.25434e9i 0.0552474i
\(229\) −3.22729e10 −0.775494 −0.387747 0.921766i \(-0.626747\pi\)
−0.387747 + 0.921766i \(0.626747\pi\)
\(230\) 0 0
\(231\) 5.36911e9 0.124065
\(232\) 1.03877e10i 0.235409i
\(233\) 4.99119e10i 1.10944i 0.832038 + 0.554718i \(0.187174\pi\)
−0.832038 + 0.554718i \(0.812826\pi\)
\(234\) 8.41241e9 0.183421
\(235\) 0 0
\(236\) 1.65244e9 0.0346755
\(237\) − 1.63085e9i − 0.0335773i
\(238\) 1.13823e10i 0.229950i
\(239\) −5.20511e10 −1.03190 −0.515952 0.856617i \(-0.672562\pi\)
−0.515952 + 0.856617i \(0.672562\pi\)
\(240\) 0 0
\(241\) 4.83303e10 0.922876 0.461438 0.887173i \(-0.347334\pi\)
0.461438 + 0.887173i \(0.347334\pi\)
\(242\) − 2.70053e9i − 0.0506151i
\(243\) 4.72028e10i 0.868440i
\(244\) −2.27214e10 −0.410375
\(245\) 0 0
\(246\) −1.60180e10 −0.278870
\(247\) 5.56788e9i 0.0951818i
\(248\) 5.80123e8i 0.00973840i
\(249\) 5.84507e9 0.0963591
\(250\) 0 0
\(251\) 7.61018e9 0.121022 0.0605108 0.998168i \(-0.480727\pi\)
0.0605108 + 0.998168i \(0.480727\pi\)
\(252\) 1.06943e10i 0.167051i
\(253\) 9.90190e8i 0.0151941i
\(254\) 7.06122e10 1.06446
\(255\) 0 0
\(256\) 4.29497e9 0.0625000
\(257\) − 3.96631e10i − 0.567136i −0.958952 0.283568i \(-0.908482\pi\)
0.958952 0.283568i \(-0.0915182\pi\)
\(258\) 3.10696e10i 0.436563i
\(259\) 3.54826e10 0.489967
\(260\) 0 0
\(261\) −4.41243e10 −0.588567
\(262\) 1.80496e10i 0.236653i
\(263\) 5.27510e10i 0.679877i 0.940448 + 0.339938i \(0.110406\pi\)
−0.940448 + 0.339938i \(0.889594\pi\)
\(264\) 9.15946e9 0.116052
\(265\) 0 0
\(266\) −7.07816e9 −0.0866868
\(267\) 3.09969e10i 0.373265i
\(268\) 1.27374e9i 0.0150825i
\(269\) −7.78415e9 −0.0906413 −0.0453206 0.998972i \(-0.514431\pi\)
−0.0453206 + 0.998972i \(0.514431\pi\)
\(270\) 0 0
\(271\) 6.73788e10 0.758859 0.379430 0.925221i \(-0.376120\pi\)
0.379430 + 0.925221i \(0.376120\pi\)
\(272\) 1.94177e10i 0.215098i
\(273\) − 3.46773e9i − 0.0377844i
\(274\) −4.28694e10 −0.459483
\(275\) 0 0
\(276\) 2.58935e8 0.00268596
\(277\) 1.03616e11i 1.05747i 0.848788 + 0.528734i \(0.177333\pi\)
−0.848788 + 0.528734i \(0.822667\pi\)
\(278\) − 2.23468e9i − 0.0224396i
\(279\) −2.46421e9 −0.0243478
\(280\) 0 0
\(281\) 1.99578e11 1.90956 0.954781 0.297311i \(-0.0960898\pi\)
0.954781 + 0.297311i \(0.0960898\pi\)
\(282\) 3.91127e10i 0.368296i
\(283\) 1.14421e11i 1.06040i 0.847874 + 0.530199i \(0.177883\pi\)
−0.847874 + 0.530199i \(0.822117\pi\)
\(284\) −6.20487e10 −0.565978
\(285\) 0 0
\(286\) 2.26225e10 0.199937
\(287\) − 5.02933e10i − 0.437564i
\(288\) 1.82439e10i 0.156262i
\(289\) 3.08002e10 0.259724
\(290\) 0 0
\(291\) 2.86233e10 0.233992
\(292\) − 1.57136e9i − 0.0126489i
\(293\) 1.85827e11i 1.47300i 0.676436 + 0.736501i \(0.263523\pi\)
−0.676436 + 0.736501i \(0.736477\pi\)
\(294\) 4.40834e9 0.0344122
\(295\) 0 0
\(296\) 6.05318e10 0.458322
\(297\) 8.29221e10i 0.618395i
\(298\) 6.12572e10i 0.449971i
\(299\) 6.39531e8 0.00462745
\(300\) 0 0
\(301\) −9.75522e10 −0.684995
\(302\) 1.85929e11i 1.28622i
\(303\) − 7.06346e10i − 0.481422i
\(304\) −1.20750e10 −0.0810881
\(305\) 0 0
\(306\) −8.24812e10 −0.537785
\(307\) − 4.40731e10i − 0.283172i −0.989926 0.141586i \(-0.954780\pi\)
0.989926 0.141586i \(-0.0452202\pi\)
\(308\) 2.87588e10i 0.182093i
\(309\) −8.18225e10 −0.510575
\(310\) 0 0
\(311\) 2.34014e11 1.41847 0.709234 0.704973i \(-0.249041\pi\)
0.709234 + 0.704973i \(0.249041\pi\)
\(312\) − 5.91579e9i − 0.0353441i
\(313\) 2.91468e11i 1.71649i 0.513238 + 0.858246i \(0.328446\pi\)
−0.513238 + 0.858246i \(0.671554\pi\)
\(314\) −1.81835e11 −1.05559
\(315\) 0 0
\(316\) 8.73539e9 0.0492822
\(317\) − 5.48144e10i − 0.304879i −0.988313 0.152440i \(-0.951287\pi\)
0.988313 0.152440i \(-0.0487129\pi\)
\(318\) − 2.36189e9i − 0.0129520i
\(319\) −1.18659e11 −0.641565
\(320\) 0 0
\(321\) −2.09363e10 −0.110060
\(322\) 8.13002e8i 0.00421444i
\(323\) − 5.45915e10i − 0.279070i
\(324\) −6.59856e10 −0.332657
\(325\) 0 0
\(326\) 1.58863e11 0.779012
\(327\) 3.21791e10i 0.155635i
\(328\) − 8.57982e10i − 0.409304i
\(329\) −1.22806e11 −0.577881
\(330\) 0 0
\(331\) 3.33423e11 1.52676 0.763378 0.645952i \(-0.223539\pi\)
0.763378 + 0.645952i \(0.223539\pi\)
\(332\) 3.13083e10i 0.141429i
\(333\) 2.57123e11i 1.14589i
\(334\) 3.17129e10 0.139437
\(335\) 0 0
\(336\) 7.52043e9 0.0321896
\(337\) 1.74864e10i 0.0738527i 0.999318 + 0.0369263i \(0.0117567\pi\)
−0.999318 + 0.0369263i \(0.988243\pi\)
\(338\) 1.55061e11i 0.646215i
\(339\) 2.83842e10 0.116729
\(340\) 0 0
\(341\) −6.62673e9 −0.0265402
\(342\) − 5.12916e10i − 0.202735i
\(343\) 1.38413e10i 0.0539949i
\(344\) −1.66420e11 −0.640755
\(345\) 0 0
\(346\) 2.01853e11 0.757169
\(347\) 5.82899e10i 0.215829i 0.994160 + 0.107915i \(0.0344173\pi\)
−0.994160 + 0.107915i \(0.965583\pi\)
\(348\) 3.10292e10i 0.113413i
\(349\) 3.27438e11 1.18145 0.590724 0.806874i \(-0.298842\pi\)
0.590724 + 0.806874i \(0.298842\pi\)
\(350\) 0 0
\(351\) 5.35566e10 0.188335
\(352\) 4.90613e10i 0.170332i
\(353\) − 5.05786e11i − 1.73373i −0.498545 0.866864i \(-0.666132\pi\)
0.498545 0.866864i \(-0.333868\pi\)
\(354\) 4.93603e9 0.0167056
\(355\) 0 0
\(356\) −1.66030e11 −0.547851
\(357\) 3.40001e10i 0.110783i
\(358\) − 2.67856e11i − 0.861841i
\(359\) 3.40768e11 1.08276 0.541382 0.840776i \(-0.317901\pi\)
0.541382 + 0.840776i \(0.317901\pi\)
\(360\) 0 0
\(361\) −2.88740e11 −0.894796
\(362\) − 9.65096e9i − 0.0295381i
\(363\) − 8.06678e9i − 0.0243849i
\(364\) 1.85744e10 0.0554572
\(365\) 0 0
\(366\) −6.78713e10 −0.197707
\(367\) 1.48153e11i 0.426298i 0.977020 + 0.213149i \(0.0683720\pi\)
−0.977020 + 0.213149i \(0.931628\pi\)
\(368\) 1.38695e9i 0.00394225i
\(369\) 3.64449e11 1.02334
\(370\) 0 0
\(371\) 7.41585e9 0.0203226
\(372\) 1.73289e9i 0.00469167i
\(373\) 6.68098e11i 1.78711i 0.448958 + 0.893553i \(0.351795\pi\)
−0.448958 + 0.893553i \(0.648205\pi\)
\(374\) −2.21807e11 −0.586211
\(375\) 0 0
\(376\) −2.09502e11 −0.540558
\(377\) 7.66376e10i 0.195392i
\(378\) 6.80837e10i 0.171526i
\(379\) −6.37388e11 −1.58682 −0.793410 0.608687i \(-0.791696\pi\)
−0.793410 + 0.608687i \(0.791696\pi\)
\(380\) 0 0
\(381\) 2.10926e11 0.512824
\(382\) 2.26491e11i 0.544209i
\(383\) 5.84553e10i 0.138813i 0.997588 + 0.0694064i \(0.0221105\pi\)
−0.997588 + 0.0694064i \(0.977889\pi\)
\(384\) 1.28295e10 0.0301106
\(385\) 0 0
\(386\) −1.49355e10 −0.0342434
\(387\) − 7.06908e11i − 1.60200i
\(388\) 1.53317e11i 0.343436i
\(389\) 4.40338e11 0.975018 0.487509 0.873118i \(-0.337906\pi\)
0.487509 + 0.873118i \(0.337906\pi\)
\(390\) 0 0
\(391\) −6.27042e9 −0.0135675
\(392\) 2.36126e10i 0.0505076i
\(393\) 5.39162e10i 0.114013i
\(394\) 5.75977e10 0.120413
\(395\) 0 0
\(396\) −2.08400e11 −0.425862
\(397\) − 8.55630e11i − 1.72874i −0.502859 0.864368i \(-0.667719\pi\)
0.502859 0.864368i \(-0.332281\pi\)
\(398\) − 2.42577e11i − 0.484591i
\(399\) −2.11432e10 −0.0417631
\(400\) 0 0
\(401\) −3.72657e11 −0.719713 −0.359857 0.933008i \(-0.617174\pi\)
−0.359857 + 0.933008i \(0.617174\pi\)
\(402\) 3.80480e9i 0.00726632i
\(403\) 4.27999e9i 0.00808294i
\(404\) 3.78344e11 0.706595
\(405\) 0 0
\(406\) −9.74253e10 −0.177953
\(407\) 6.91453e11i 1.24907i
\(408\) 5.80026e10i 0.103628i
\(409\) 5.39642e11 0.953566 0.476783 0.879021i \(-0.341803\pi\)
0.476783 + 0.879021i \(0.341803\pi\)
\(410\) 0 0
\(411\) −1.28055e11 −0.221365
\(412\) − 4.38270e11i − 0.749384i
\(413\) 1.54981e10i 0.0262122i
\(414\) −5.89139e9 −0.00985635
\(415\) 0 0
\(416\) 3.16871e10 0.0518755
\(417\) − 6.67524e9i − 0.0108107i
\(418\) − 1.37933e11i − 0.220991i
\(419\) 5.16016e11 0.817900 0.408950 0.912557i \(-0.365895\pi\)
0.408950 + 0.912557i \(0.365895\pi\)
\(420\) 0 0
\(421\) 4.17716e11 0.648055 0.324028 0.946048i \(-0.394963\pi\)
0.324028 + 0.946048i \(0.394963\pi\)
\(422\) 5.83532e11i 0.895692i
\(423\) − 8.89910e11i − 1.35149i
\(424\) 1.26511e10 0.0190100
\(425\) 0 0
\(426\) −1.85346e11 −0.272672
\(427\) − 2.13102e11i − 0.310214i
\(428\) − 1.12142e11i − 0.161537i
\(429\) 6.75759e10 0.0963239
\(430\) 0 0
\(431\) 8.43198e11 1.17702 0.588508 0.808492i \(-0.299716\pi\)
0.588508 + 0.808492i \(0.299716\pi\)
\(432\) 1.16148e11i 0.160448i
\(433\) 3.77330e11i 0.515853i 0.966164 + 0.257927i \(0.0830393\pi\)
−0.966164 + 0.257927i \(0.916961\pi\)
\(434\) −5.44092e9 −0.00736154
\(435\) 0 0
\(436\) −1.72362e11 −0.228430
\(437\) − 3.89931e9i − 0.00511471i
\(438\) − 4.69381e9i − 0.00609386i
\(439\) 4.84525e11 0.622624 0.311312 0.950308i \(-0.399232\pi\)
0.311312 + 0.950308i \(0.399232\pi\)
\(440\) 0 0
\(441\) −1.00300e11 −0.126278
\(442\) 1.43258e11i 0.178533i
\(443\) − 1.11440e12i − 1.37475i −0.726301 0.687376i \(-0.758762\pi\)
0.726301 0.687376i \(-0.241238\pi\)
\(444\) 1.80815e11 0.220806
\(445\) 0 0
\(446\) −1.13242e12 −1.35519
\(447\) 1.82982e11i 0.216783i
\(448\) 4.02821e10i 0.0472456i
\(449\) −1.02272e12 −1.18754 −0.593770 0.804635i \(-0.702361\pi\)
−0.593770 + 0.804635i \(0.702361\pi\)
\(450\) 0 0
\(451\) 9.80071e11 1.11548
\(452\) 1.52036e11i 0.171326i
\(453\) 5.55389e11i 0.619662i
\(454\) 7.71452e10 0.0852231
\(455\) 0 0
\(456\) −3.60694e10 −0.0390658
\(457\) − 1.20876e12i − 1.29634i −0.761497 0.648168i \(-0.775535\pi\)
0.761497 0.648168i \(-0.224465\pi\)
\(458\) − 5.16366e11i − 0.548357i
\(459\) −5.25107e11 −0.552193
\(460\) 0 0
\(461\) 1.07621e12 1.10980 0.554898 0.831919i \(-0.312757\pi\)
0.554898 + 0.831919i \(0.312757\pi\)
\(462\) 8.59057e10i 0.0877270i
\(463\) − 7.86233e11i − 0.795127i −0.917575 0.397564i \(-0.869856\pi\)
0.917575 0.397564i \(-0.130144\pi\)
\(464\) −1.66203e11 −0.166460
\(465\) 0 0
\(466\) −7.98590e11 −0.784490
\(467\) 1.25725e12i 1.22319i 0.791170 + 0.611597i \(0.209472\pi\)
−0.791170 + 0.611597i \(0.790528\pi\)
\(468\) 1.34599e11i 0.129698i
\(469\) −1.19463e10 −0.0114013
\(470\) 0 0
\(471\) −5.43162e11 −0.508552
\(472\) 2.64391e10i 0.0245193i
\(473\) − 1.90101e12i − 1.74626i
\(474\) 2.60935e10 0.0237427
\(475\) 0 0
\(476\) −1.82116e11 −0.162599
\(477\) 5.37387e10i 0.0475285i
\(478\) − 8.32818e11i − 0.729666i
\(479\) −1.24726e12 −1.08255 −0.541274 0.840846i \(-0.682058\pi\)
−0.541274 + 0.840846i \(0.682058\pi\)
\(480\) 0 0
\(481\) 4.46586e11 0.380411
\(482\) 7.73286e11i 0.652572i
\(483\) 2.42852e9i 0.00203039i
\(484\) 4.32085e10 0.0357903
\(485\) 0 0
\(486\) −7.55245e11 −0.614080
\(487\) 1.79336e11i 0.144474i 0.997388 + 0.0722368i \(0.0230137\pi\)
−0.997388 + 0.0722368i \(0.976986\pi\)
\(488\) − 3.63542e11i − 0.290179i
\(489\) 4.74541e11 0.375305
\(490\) 0 0
\(491\) 4.94081e11 0.383647 0.191823 0.981429i \(-0.438560\pi\)
0.191823 + 0.981429i \(0.438560\pi\)
\(492\) − 2.56288e11i − 0.197191i
\(493\) − 7.51410e11i − 0.572883i
\(494\) −8.90862e10 −0.0673037
\(495\) 0 0
\(496\) −9.28197e9 −0.00688609
\(497\) − 5.81949e11i − 0.427840i
\(498\) 9.35211e10i 0.0681362i
\(499\) 6.73453e11 0.486245 0.243122 0.969996i \(-0.421828\pi\)
0.243122 + 0.969996i \(0.421828\pi\)
\(500\) 0 0
\(501\) 9.47298e10 0.0671764
\(502\) 1.21763e11i 0.0855752i
\(503\) 3.69632e11i 0.257462i 0.991680 + 0.128731i \(0.0410904\pi\)
−0.991680 + 0.128731i \(0.958910\pi\)
\(504\) −1.71108e11 −0.118123
\(505\) 0 0
\(506\) −1.58430e10 −0.0107439
\(507\) 4.63183e11i 0.311327i
\(508\) 1.12980e12i 0.752685i
\(509\) 1.87204e11 0.123619 0.0618094 0.998088i \(-0.480313\pi\)
0.0618094 + 0.998088i \(0.480313\pi\)
\(510\) 0 0
\(511\) 1.47376e10 0.00956166
\(512\) 6.87195e10i 0.0441942i
\(513\) − 3.26542e11i − 0.208167i
\(514\) 6.34609e11 0.401026
\(515\) 0 0
\(516\) −4.97113e11 −0.308697
\(517\) − 2.39313e12i − 1.47319i
\(518\) 5.67722e11i 0.346459i
\(519\) 6.02957e11 0.364782
\(520\) 0 0
\(521\) −1.46566e12 −0.871494 −0.435747 0.900069i \(-0.643516\pi\)
−0.435747 + 0.900069i \(0.643516\pi\)
\(522\) − 7.05989e11i − 0.416180i
\(523\) 2.21909e11i 0.129693i 0.997895 + 0.0648467i \(0.0206558\pi\)
−0.997895 + 0.0648467i \(0.979344\pi\)
\(524\) −2.88794e11 −0.167339
\(525\) 0 0
\(526\) −8.44017e11 −0.480745
\(527\) − 4.19640e10i − 0.0236990i
\(528\) 1.46551e11i 0.0820611i
\(529\) 1.80070e12 0.999751
\(530\) 0 0
\(531\) −1.12307e11 −0.0613027
\(532\) − 1.13251e11i − 0.0612968i
\(533\) − 6.32995e11i − 0.339725i
\(534\) −4.95950e11 −0.263938
\(535\) 0 0
\(536\) −2.03799e10 −0.0106650
\(537\) − 8.00114e11i − 0.415210i
\(538\) − 1.24546e11i − 0.0640931i
\(539\) −2.69726e11 −0.137649
\(540\) 0 0
\(541\) −1.75400e12 −0.880323 −0.440162 0.897919i \(-0.645079\pi\)
−0.440162 + 0.897919i \(0.645079\pi\)
\(542\) 1.07806e12i 0.536594i
\(543\) − 2.88284e10i − 0.0142306i
\(544\) −3.10683e11 −0.152097
\(545\) 0 0
\(546\) 5.54836e10 0.0267176
\(547\) − 2.01155e12i − 0.960701i −0.877077 0.480351i \(-0.840509\pi\)
0.877077 0.480351i \(-0.159491\pi\)
\(548\) − 6.85910e11i − 0.324904i
\(549\) 1.54424e12 0.725501
\(550\) 0 0
\(551\) 4.67270e11 0.215966
\(552\) 4.14295e9i 0.00189926i
\(553\) 8.19284e10i 0.0372539i
\(554\) −1.65785e12 −0.747743
\(555\) 0 0
\(556\) 3.57550e10 0.0158672
\(557\) − 6.62452e11i − 0.291613i −0.989313 0.145806i \(-0.953422\pi\)
0.989313 0.145806i \(-0.0465776\pi\)
\(558\) − 3.94274e10i − 0.0172165i
\(559\) −1.22780e12 −0.531831
\(560\) 0 0
\(561\) −6.62562e11 −0.282419
\(562\) 3.19324e12i 1.35026i
\(563\) − 1.14706e12i − 0.481171i −0.970628 0.240585i \(-0.922661\pi\)
0.970628 0.240585i \(-0.0773394\pi\)
\(564\) −6.25804e11 −0.260425
\(565\) 0 0
\(566\) −1.83074e12 −0.749814
\(567\) − 6.18873e11i − 0.251465i
\(568\) − 9.92779e11i − 0.400207i
\(569\) 1.08600e12 0.434333 0.217167 0.976135i \(-0.430319\pi\)
0.217167 + 0.976135i \(0.430319\pi\)
\(570\) 0 0
\(571\) −7.48876e11 −0.294813 −0.147407 0.989076i \(-0.547093\pi\)
−0.147407 + 0.989076i \(0.547093\pi\)
\(572\) 3.61961e11i 0.141377i
\(573\) 6.76552e11i 0.262184i
\(574\) 8.04694e11 0.309405
\(575\) 0 0
\(576\) −2.91903e11 −0.110494
\(577\) − 3.40755e12i − 1.27983i −0.768447 0.639914i \(-0.778970\pi\)
0.768447 0.639914i \(-0.221030\pi\)
\(578\) 4.92803e11i 0.183653i
\(579\) −4.46139e10 −0.0164974
\(580\) 0 0
\(581\) −2.93637e11 −0.106910
\(582\) 4.57973e11i 0.165457i
\(583\) 1.44513e11i 0.0518083i
\(584\) 2.51417e10 0.00894411
\(585\) 0 0
\(586\) −2.97322e12 −1.04157
\(587\) − 3.56830e12i − 1.24048i −0.784412 0.620241i \(-0.787035\pi\)
0.784412 0.620241i \(-0.212965\pi\)
\(588\) 7.05334e10i 0.0243331i
\(589\) 2.60957e10 0.00893407
\(590\) 0 0
\(591\) 1.72051e11 0.0580113
\(592\) 9.68508e11i 0.324082i
\(593\) − 5.06024e12i − 1.68045i −0.542240 0.840224i \(-0.682424\pi\)
0.542240 0.840224i \(-0.317576\pi\)
\(594\) −1.32675e12 −0.437272
\(595\) 0 0
\(596\) −9.80116e11 −0.318177
\(597\) − 7.24602e11i − 0.233461i
\(598\) 1.02325e10i 0.00327210i
\(599\) −3.96760e12 −1.25924 −0.629618 0.776905i \(-0.716789\pi\)
−0.629618 + 0.776905i \(0.716789\pi\)
\(600\) 0 0
\(601\) −3.08383e12 −0.964173 −0.482086 0.876124i \(-0.660121\pi\)
−0.482086 + 0.876124i \(0.660121\pi\)
\(602\) − 1.56083e12i − 0.484365i
\(603\) − 8.65684e10i − 0.0266644i
\(604\) −2.97486e12 −0.909495
\(605\) 0 0
\(606\) 1.13015e12 0.340417
\(607\) − 2.30191e11i − 0.0688239i −0.999408 0.0344120i \(-0.989044\pi\)
0.999408 0.0344120i \(-0.0109558\pi\)
\(608\) − 1.93200e11i − 0.0573379i
\(609\) −2.91020e11 −0.0857324
\(610\) 0 0
\(611\) −1.54565e12 −0.448667
\(612\) − 1.31970e12i − 0.380272i
\(613\) 3.21533e12i 0.919716i 0.887992 + 0.459858i \(0.152100\pi\)
−0.887992 + 0.459858i \(0.847900\pi\)
\(614\) 7.05170e11 0.200233
\(615\) 0 0
\(616\) −4.60141e11 −0.128759
\(617\) − 5.58117e12i − 1.55039i −0.631720 0.775196i \(-0.717651\pi\)
0.631720 0.775196i \(-0.282349\pi\)
\(618\) − 1.30916e12i − 0.361031i
\(619\) 3.95942e11 0.108398 0.0541992 0.998530i \(-0.482739\pi\)
0.0541992 + 0.998530i \(0.482739\pi\)
\(620\) 0 0
\(621\) −3.75068e10 −0.0101204
\(622\) 3.74422e12i 1.00301i
\(623\) − 1.55718e12i − 0.414137i
\(624\) 9.46526e10 0.0249921
\(625\) 0 0
\(626\) −4.66349e12 −1.21374
\(627\) − 4.12020e11i − 0.106467i
\(628\) − 2.90937e12i − 0.746415i
\(629\) −4.37865e12 −1.11535
\(630\) 0 0
\(631\) −2.03177e12 −0.510203 −0.255102 0.966914i \(-0.582109\pi\)
−0.255102 + 0.966914i \(0.582109\pi\)
\(632\) 1.39766e11i 0.0348478i
\(633\) 1.74307e12i 0.431518i
\(634\) 8.77030e11 0.215582
\(635\) 0 0
\(636\) 3.77902e10 0.00915846
\(637\) 1.74207e11i 0.0419217i
\(638\) − 1.89854e12i − 0.453655i
\(639\) 4.21707e12 1.00059
\(640\) 0 0
\(641\) 5.58429e12 1.30649 0.653246 0.757146i \(-0.273407\pi\)
0.653246 + 0.757146i \(0.273407\pi\)
\(642\) − 3.34981e11i − 0.0778239i
\(643\) 6.16637e12i 1.42259i 0.702893 + 0.711296i \(0.251891\pi\)
−0.702893 + 0.711296i \(0.748109\pi\)
\(644\) −1.30080e10 −0.00298006
\(645\) 0 0
\(646\) 8.73464e11 0.197332
\(647\) − 1.02974e11i − 0.0231025i −0.999933 0.0115512i \(-0.996323\pi\)
0.999933 0.0115512i \(-0.00367696\pi\)
\(648\) − 1.05577e12i − 0.235224i
\(649\) −3.02013e11 −0.0668228
\(650\) 0 0
\(651\) −1.62526e10 −0.00354657
\(652\) 2.54181e12i 0.550845i
\(653\) − 2.82592e12i − 0.608207i −0.952639 0.304103i \(-0.901643\pi\)
0.952639 0.304103i \(-0.0983568\pi\)
\(654\) −5.14865e11 −0.110051
\(655\) 0 0
\(656\) 1.37277e12 0.289422
\(657\) 1.06796e11i 0.0223619i
\(658\) − 1.96490e12i − 0.408623i
\(659\) 5.44052e12 1.12371 0.561857 0.827234i \(-0.310087\pi\)
0.561857 + 0.827234i \(0.310087\pi\)
\(660\) 0 0
\(661\) 3.62012e12 0.737592 0.368796 0.929510i \(-0.379770\pi\)
0.368796 + 0.929510i \(0.379770\pi\)
\(662\) 5.33477e12i 1.07958i
\(663\) 4.27927e11i 0.0860120i
\(664\) −5.00932e11 −0.100005
\(665\) 0 0
\(666\) −4.11398e12 −0.810266
\(667\) − 5.36710e10i − 0.0104996i
\(668\) 5.07406e11i 0.0985966i
\(669\) −3.38267e12 −0.652892
\(670\) 0 0
\(671\) 4.15274e12 0.790830
\(672\) 1.20327e11i 0.0227615i
\(673\) 1.96230e12i 0.368721i 0.982859 + 0.184361i \(0.0590214\pi\)
−0.982859 + 0.184361i \(0.940979\pi\)
\(674\) −2.79783e11 −0.0522217
\(675\) 0 0
\(676\) −2.48097e12 −0.456943
\(677\) 6.57309e12i 1.20260i 0.799024 + 0.601299i \(0.205350\pi\)
−0.799024 + 0.601299i \(0.794650\pi\)
\(678\) 4.54148e11i 0.0825399i
\(679\) −1.43794e12 −0.259614
\(680\) 0 0
\(681\) 2.30441e11 0.0410580
\(682\) − 1.06028e11i − 0.0187668i
\(683\) 2.98633e12i 0.525103i 0.964918 + 0.262551i \(0.0845640\pi\)
−0.964918 + 0.262551i \(0.915436\pi\)
\(684\) 8.20666e11 0.143355
\(685\) 0 0
\(686\) −2.21461e11 −0.0381802
\(687\) − 1.54244e12i − 0.264182i
\(688\) − 2.66272e12i − 0.453082i
\(689\) 9.33364e10 0.0157785
\(690\) 0 0
\(691\) 4.56733e12 0.762098 0.381049 0.924555i \(-0.375563\pi\)
0.381049 + 0.924555i \(0.375563\pi\)
\(692\) 3.22965e12i 0.535400i
\(693\) − 1.95456e12i − 0.321922i
\(694\) −9.32638e11 −0.152614
\(695\) 0 0
\(696\) −4.96467e11 −0.0801953
\(697\) 6.20634e12i 0.996065i
\(698\) 5.23901e12i 0.835410i
\(699\) −2.38547e12 −0.377944
\(700\) 0 0
\(701\) −6.84995e12 −1.07141 −0.535706 0.844405i \(-0.679954\pi\)
−0.535706 + 0.844405i \(0.679954\pi\)
\(702\) 8.56906e11i 0.133173i
\(703\) − 2.72290e12i − 0.420467i
\(704\) −7.84981e11 −0.120443
\(705\) 0 0
\(706\) 8.09258e12 1.22593
\(707\) 3.54845e12i 0.534136i
\(708\) 7.89764e10i 0.0118127i
\(709\) 8.40144e12 1.24866 0.624332 0.781159i \(-0.285371\pi\)
0.624332 + 0.781159i \(0.285371\pi\)
\(710\) 0 0
\(711\) −5.93691e11 −0.0871260
\(712\) − 2.65649e12i − 0.387389i
\(713\) − 2.99736e9i 0 0.000434347i
\(714\) −5.44001e11 −0.0783353
\(715\) 0 0
\(716\) 4.28569e12 0.609414
\(717\) − 2.48771e12i − 0.351532i
\(718\) 5.45229e12i 0.765630i
\(719\) −4.28211e12 −0.597555 −0.298777 0.954323i \(-0.596579\pi\)
−0.298777 + 0.954323i \(0.596579\pi\)
\(720\) 0 0
\(721\) 4.11049e12 0.566481
\(722\) − 4.61983e12i − 0.632716i
\(723\) 2.30989e12i 0.314390i
\(724\) 1.54415e11 0.0208866
\(725\) 0 0
\(726\) 1.29068e11 0.0172427
\(727\) 4.03989e12i 0.536370i 0.963367 + 0.268185i \(0.0864238\pi\)
−0.963367 + 0.268185i \(0.913576\pi\)
\(728\) 2.97190e11i 0.0392142i
\(729\) 2.81742e12 0.369469
\(730\) 0 0
\(731\) 1.20382e13 1.55931
\(732\) − 1.08594e12i − 0.139800i
\(733\) − 8.78598e12i − 1.12415i −0.827088 0.562073i \(-0.810004\pi\)
0.827088 0.562073i \(-0.189996\pi\)
\(734\) −2.37045e12 −0.301439
\(735\) 0 0
\(736\) −2.21911e10 −0.00278759
\(737\) − 2.32799e11i − 0.0290654i
\(738\) 5.83118e12i 0.723608i
\(739\) 1.26308e13 1.55787 0.778935 0.627105i \(-0.215760\pi\)
0.778935 + 0.627105i \(0.215760\pi\)
\(740\) 0 0
\(741\) −2.66110e11 −0.0324249
\(742\) 1.18654e11i 0.0143702i
\(743\) 1.72613e12i 0.207790i 0.994588 + 0.103895i \(0.0331306\pi\)
−0.994588 + 0.103895i \(0.966869\pi\)
\(744\) −2.77262e10 −0.00331751
\(745\) 0 0
\(746\) −1.06896e13 −1.26367
\(747\) − 2.12783e12i − 0.250031i
\(748\) − 3.54892e12i − 0.414514i
\(749\) 1.05177e12 0.122111
\(750\) 0 0
\(751\) 3.06753e12 0.351892 0.175946 0.984400i \(-0.443702\pi\)
0.175946 + 0.984400i \(0.443702\pi\)
\(752\) − 3.35203e12i − 0.382232i
\(753\) 3.63718e11i 0.0412276i
\(754\) −1.22620e12 −0.138163
\(755\) 0 0
\(756\) −1.08934e12 −0.121287
\(757\) 6.51793e12i 0.721403i 0.932681 + 0.360702i \(0.117463\pi\)
−0.932681 + 0.360702i \(0.882537\pi\)
\(758\) − 1.01982e13i − 1.12205i
\(759\) −4.73249e10 −0.00517608
\(760\) 0 0
\(761\) −4.75019e11 −0.0513428 −0.0256714 0.999670i \(-0.508172\pi\)
−0.0256714 + 0.999670i \(0.508172\pi\)
\(762\) 3.37482e12i 0.362621i
\(763\) − 1.61657e12i − 0.172677i
\(764\) −3.62385e12 −0.384814
\(765\) 0 0
\(766\) −9.35285e11 −0.0981555
\(767\) 1.95060e11i 0.0203512i
\(768\) 2.05272e11i 0.0212914i
\(769\) −7.10887e12 −0.733048 −0.366524 0.930409i \(-0.619452\pi\)
−0.366524 + 0.930409i \(0.619452\pi\)
\(770\) 0 0
\(771\) 1.89564e12 0.193202
\(772\) − 2.38968e11i − 0.0242137i
\(773\) 6.83668e12i 0.688712i 0.938839 + 0.344356i \(0.111903\pi\)
−0.938839 + 0.344356i \(0.888097\pi\)
\(774\) 1.13105e13 1.13279
\(775\) 0 0
\(776\) −2.45307e12 −0.242846
\(777\) 1.69584e12i 0.166914i
\(778\) 7.04540e12i 0.689442i
\(779\) −3.85946e12 −0.375498
\(780\) 0 0
\(781\) 1.13405e13 1.09069
\(782\) − 1.00327e11i − 0.00959370i
\(783\) − 4.49460e12i − 0.427330i
\(784\) −3.77802e11 −0.0357143
\(785\) 0 0
\(786\) −8.62659e11 −0.0806190
\(787\) − 6.09938e12i − 0.566760i −0.959008 0.283380i \(-0.908544\pi\)
0.959008 0.283380i \(-0.0914558\pi\)
\(788\) 9.21564e11i 0.0851446i
\(789\) −2.52117e12 −0.231609
\(790\) 0 0
\(791\) −1.42593e12 −0.129510
\(792\) − 3.33440e12i − 0.301130i
\(793\) − 2.68211e12i − 0.240851i
\(794\) 1.36901e13 1.22240
\(795\) 0 0
\(796\) 3.88122e12 0.342657
\(797\) 6.20696e12i 0.544900i 0.962170 + 0.272450i \(0.0878339\pi\)
−0.962170 + 0.272450i \(0.912166\pi\)
\(798\) − 3.38291e11i − 0.0295310i
\(799\) 1.51546e13 1.31548
\(800\) 0 0
\(801\) 1.12841e13 0.968545
\(802\) − 5.96251e12i − 0.508914i
\(803\) 2.87193e11i 0.0243755i
\(804\) −6.08768e10 −0.00513807
\(805\) 0 0
\(806\) −6.84798e10 −0.00571550
\(807\) − 3.72033e11i − 0.0308781i
\(808\) 6.05351e12i 0.499638i
\(809\) 1.43675e13 1.17927 0.589633 0.807671i \(-0.299272\pi\)
0.589633 + 0.807671i \(0.299272\pi\)
\(810\) 0 0
\(811\) 1.78668e13 1.45028 0.725140 0.688602i \(-0.241775\pi\)
0.725140 + 0.688602i \(0.241775\pi\)
\(812\) − 1.55881e12i − 0.125832i
\(813\) 3.22028e12i 0.258515i
\(814\) −1.10632e13 −0.883228
\(815\) 0 0
\(816\) −9.28042e11 −0.0732760
\(817\) 7.48605e12i 0.587832i
\(818\) 8.63427e12i 0.674273i
\(819\) −1.26239e12 −0.0980427
\(820\) 0 0
\(821\) −8.35383e12 −0.641714 −0.320857 0.947128i \(-0.603971\pi\)
−0.320857 + 0.947128i \(0.603971\pi\)
\(822\) − 2.04889e12i − 0.156529i
\(823\) 1.49432e13i 1.13539i 0.823239 + 0.567696i \(0.192165\pi\)
−0.823239 + 0.567696i \(0.807835\pi\)
\(824\) 7.01232e12 0.529894
\(825\) 0 0
\(826\) −2.47970e11 −0.0185348
\(827\) − 1.86653e13i − 1.38758i −0.720175 0.693792i \(-0.755938\pi\)
0.720175 0.693792i \(-0.244062\pi\)
\(828\) − 9.42622e10i − 0.00696949i
\(829\) −1.50539e13 −1.10701 −0.553506 0.832845i \(-0.686711\pi\)
−0.553506 + 0.832845i \(0.686711\pi\)
\(830\) 0 0
\(831\) −4.95219e12 −0.360240
\(832\) 5.06993e11i 0.0366815i
\(833\) − 1.70805e12i − 0.122913i
\(834\) 1.06804e11 0.00764433
\(835\) 0 0
\(836\) 2.20692e12 0.156264
\(837\) − 2.51010e11i − 0.0176777i
\(838\) 8.25626e12i 0.578342i
\(839\) 1.47923e13 1.03064 0.515320 0.856998i \(-0.327673\pi\)
0.515320 + 0.856998i \(0.327673\pi\)
\(840\) 0 0
\(841\) −8.07554e12 −0.556659
\(842\) 6.68346e12i 0.458244i
\(843\) 9.53856e12i 0.650517i
\(844\) −9.33651e12 −0.633350
\(845\) 0 0
\(846\) 1.42386e13 0.955651
\(847\) 4.05249e11i 0.0270549i
\(848\) 2.02418e11i 0.0134421i
\(849\) −5.46863e12 −0.361238
\(850\) 0 0
\(851\) −3.12754e11 −0.0204418
\(852\) − 2.96554e12i − 0.192808i
\(853\) 2.80780e13i 1.81591i 0.419064 + 0.907957i \(0.362358\pi\)
−0.419064 + 0.907957i \(0.637642\pi\)
\(854\) 3.40963e12 0.219355
\(855\) 0 0
\(856\) 1.79428e12 0.114224
\(857\) 1.40734e13i 0.891218i 0.895228 + 0.445609i \(0.147013\pi\)
−0.895228 + 0.445609i \(0.852987\pi\)
\(858\) 1.08121e12i 0.0681113i
\(859\) 4.08045e12 0.255705 0.127852 0.991793i \(-0.459192\pi\)
0.127852 + 0.991793i \(0.459192\pi\)
\(860\) 0 0
\(861\) 2.40371e12 0.149062
\(862\) 1.34912e13i 0.832275i
\(863\) 2.65684e13i 1.63048i 0.579121 + 0.815242i \(0.303396\pi\)
−0.579121 + 0.815242i \(0.696604\pi\)
\(864\) −1.85836e12 −0.113454
\(865\) 0 0
\(866\) −6.03729e12 −0.364763
\(867\) 1.47205e12i 0.0884785i
\(868\) − 8.70547e10i − 0.00520539i
\(869\) −1.59655e12 −0.0949714
\(870\) 0 0
\(871\) −1.50357e11 −0.00885201
\(872\) − 2.75780e12i − 0.161524i
\(873\) − 1.04200e13i − 0.607160i
\(874\) 6.23889e10 0.00361665
\(875\) 0 0
\(876\) 7.51010e10 0.00430901
\(877\) − 2.30661e13i − 1.31667i −0.752727 0.658333i \(-0.771262\pi\)
0.752727 0.658333i \(-0.228738\pi\)
\(878\) 7.75240e12i 0.440262i
\(879\) −8.88134e12 −0.501797
\(880\) 0 0
\(881\) 3.49096e13 1.95233 0.976164 0.217033i \(-0.0696381\pi\)
0.976164 + 0.217033i \(0.0696381\pi\)
\(882\) − 1.60481e12i − 0.0892923i
\(883\) − 7.37648e12i − 0.408344i −0.978935 0.204172i \(-0.934550\pi\)
0.978935 0.204172i \(-0.0654501\pi\)
\(884\) −2.29213e12 −0.126242
\(885\) 0 0
\(886\) 1.78304e13 0.972097
\(887\) 1.87675e13i 1.01800i 0.860765 + 0.509002i \(0.169985\pi\)
−0.860765 + 0.509002i \(0.830015\pi\)
\(888\) 2.89304e12i 0.156133i
\(889\) −1.05962e13 −0.568976
\(890\) 0 0
\(891\) 1.20600e13 0.641060
\(892\) − 1.81188e13i − 0.958267i
\(893\) 9.42401e12i 0.495911i
\(894\) −2.92771e12 −0.153288
\(895\) 0 0
\(896\) −6.44514e11 −0.0334077
\(897\) 3.05656e10i 0.00157640i
\(898\) − 1.63635e13i − 0.839718i
\(899\) 3.59186e11 0.0183401
\(900\) 0 0
\(901\) −9.15136e11 −0.0462620
\(902\) 1.56811e13i 0.788766i
\(903\) − 4.66238e12i − 0.233353i
\(904\) −2.43258e12 −0.121146
\(905\) 0 0
\(906\) −8.88622e12 −0.438168
\(907\) − 1.37618e12i − 0.0675215i −0.999430 0.0337607i \(-0.989252\pi\)
0.999430 0.0337607i \(-0.0107484\pi\)
\(908\) 1.23432e12i 0.0602619i
\(909\) −2.57137e13 −1.24919
\(910\) 0 0
\(911\) −3.17846e13 −1.52892 −0.764458 0.644674i \(-0.776993\pi\)
−0.764458 + 0.644674i \(0.776993\pi\)
\(912\) − 5.77110e11i − 0.0276237i
\(913\) − 5.72214e12i − 0.272546i
\(914\) 1.93402e13 0.916649
\(915\) 0 0
\(916\) 8.26186e12 0.387747
\(917\) − 2.70857e12i − 0.126497i
\(918\) − 8.40171e12i − 0.390459i
\(919\) −4.52221e12 −0.209137 −0.104569 0.994518i \(-0.533346\pi\)
−0.104569 + 0.994518i \(0.533346\pi\)
\(920\) 0 0
\(921\) 2.10642e12 0.0964664
\(922\) 1.72194e13i 0.784744i
\(923\) − 7.32444e12i − 0.332175i
\(924\) −1.37449e12 −0.0620323
\(925\) 0 0
\(926\) 1.25797e13 0.562240
\(927\) 2.97866e13i 1.32483i
\(928\) − 2.65925e12i − 0.117705i
\(929\) −3.69672e13 −1.62834 −0.814171 0.580626i \(-0.802808\pi\)
−0.814171 + 0.580626i \(0.802808\pi\)
\(930\) 0 0
\(931\) 1.06217e12 0.0463360
\(932\) − 1.27774e13i − 0.554718i
\(933\) 1.11844e13i 0.483220i
\(934\) −2.01160e13 −0.864928
\(935\) 0 0
\(936\) −2.15358e12 −0.0917105
\(937\) 1.20574e13i 0.511005i 0.966808 + 0.255502i \(0.0822409\pi\)
−0.966808 + 0.255502i \(0.917759\pi\)
\(938\) − 1.91141e11i − 0.00806196i
\(939\) −1.39304e13 −0.584746
\(940\) 0 0
\(941\) −2.75798e13 −1.14667 −0.573335 0.819321i \(-0.694351\pi\)
−0.573335 + 0.819321i \(0.694351\pi\)
\(942\) − 8.69059e12i − 0.359600i
\(943\) 4.43300e11i 0.0182556i
\(944\) −4.23026e11 −0.0173378
\(945\) 0 0
\(946\) 3.04161e13 1.23479
\(947\) 8.81700e12i 0.356243i 0.984009 + 0.178121i \(0.0570020\pi\)
−0.984009 + 0.178121i \(0.942998\pi\)
\(948\) 4.17497e11i 0.0167886i
\(949\) 1.85489e11 0.00742368
\(950\) 0 0
\(951\) 2.61978e12 0.103861
\(952\) − 2.91386e12i − 0.114975i
\(953\) − 2.00605e13i − 0.787813i −0.919151 0.393907i \(-0.871123\pi\)
0.919151 0.393907i \(-0.128877\pi\)
\(954\) −8.59819e11 −0.0336078
\(955\) 0 0
\(956\) 1.33251e13 0.515952
\(957\) − 5.67113e12i − 0.218558i
\(958\) − 1.99562e13i − 0.765477i
\(959\) 6.43309e12 0.245604
\(960\) 0 0
\(961\) −2.64196e13 −0.999241
\(962\) 7.14538e12i 0.268991i
\(963\) 7.62163e12i 0.285581i
\(964\) −1.23726e13 −0.461438
\(965\) 0 0
\(966\) −3.88564e10 −0.00143570
\(967\) − 3.57232e12i − 0.131380i −0.997840 0.0656902i \(-0.979075\pi\)
0.997840 0.0656902i \(-0.0209249\pi\)
\(968\) 6.91337e11i 0.0253076i
\(969\) 2.60913e12 0.0950689
\(970\) 0 0
\(971\) −4.97663e13 −1.79659 −0.898295 0.439394i \(-0.855193\pi\)
−0.898295 + 0.439394i \(0.855193\pi\)
\(972\) − 1.20839e13i − 0.434220i
\(973\) 3.35342e11i 0.0119945i
\(974\) −2.86938e12 −0.102158
\(975\) 0 0
\(976\) 5.81668e12 0.205188
\(977\) 2.14940e13i 0.754730i 0.926065 + 0.377365i \(0.123170\pi\)
−0.926065 + 0.377365i \(0.876830\pi\)
\(978\) 7.59266e12i 0.265381i
\(979\) 3.03450e13 1.05576
\(980\) 0 0
\(981\) 1.17144e13 0.403841
\(982\) 7.90530e12i 0.271279i
\(983\) 3.03607e13i 1.03710i 0.855047 + 0.518551i \(0.173528\pi\)
−0.855047 + 0.518551i \(0.826472\pi\)
\(984\) 4.10061e12 0.139435
\(985\) 0 0
\(986\) 1.20226e13 0.405089
\(987\) − 5.86936e12i − 0.196863i
\(988\) − 1.42538e12i − 0.0475909i
\(989\) 8.59853e11 0.0285786
\(990\) 0 0
\(991\) 4.36370e13 1.43722 0.718610 0.695413i \(-0.244779\pi\)
0.718610 + 0.695413i \(0.244779\pi\)
\(992\) − 1.48511e11i − 0.00486920i
\(993\) 1.59355e13i 0.520109i
\(994\) 9.31118e12 0.302528
\(995\) 0 0
\(996\) −1.49634e12 −0.0481795
\(997\) 1.08721e13i 0.348485i 0.984703 + 0.174243i \(0.0557477\pi\)
−0.984703 + 0.174243i \(0.944252\pi\)
\(998\) 1.07752e13i 0.343827i
\(999\) −2.61911e13 −0.831974
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.10.c.k.99.5 6
5.2 odd 4 350.10.a.l.1.2 3
5.3 odd 4 70.10.a.h.1.2 3
5.4 even 2 inner 350.10.c.k.99.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.10.a.h.1.2 3 5.3 odd 4
350.10.a.l.1.2 3 5.2 odd 4
350.10.c.k.99.2 6 5.4 even 2 inner
350.10.c.k.99.5 6 1.1 even 1 trivial