Properties

Label 350.10.c
Level $350$
Weight $10$
Character orbit 350.c
Rep. character $\chi_{350}(99,\cdot)$
Character field $\Q$
Dimension $80$
Newform subspaces $16$
Sturm bound $600$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 350.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 16 \)
Sturm bound: \(600\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(350, [\chi])\).

Total New Old
Modular forms 552 80 472
Cusp forms 528 80 448
Eisenstein series 24 0 24

Trace form

\( 80 q - 20480 q^{4} - 582540 q^{9} - 120212 q^{11} + 153664 q^{14} + 5242880 q^{16} + 1799136 q^{19} - 701092 q^{21} - 3609792 q^{26} + 6747240 q^{29} + 11538720 q^{31} - 565184 q^{34} + 149130240 q^{36}+ \cdots + 3655379592 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(350, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
350.10.c.a 350.c 5.b $2$ $180.263$ \(\Q(\sqrt{-1}) \) None 70.10.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+16 i q^{2}+120 i q^{3}-256 q^{4}+\cdots\)
350.10.c.b 350.c 5.b $2$ $180.263$ \(\Q(\sqrt{-1}) \) None 14.10.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-16 i q^{2}+6 i q^{3}-256 q^{4}+96 q^{6}+\cdots\)
350.10.c.c 350.c 5.b $2$ $180.263$ \(\Q(\sqrt{-1}) \) None 70.10.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-16 i q^{2}+87 i q^{3}-256 q^{4}+1392 q^{6}+\cdots\)
350.10.c.d 350.c 5.b $2$ $180.263$ \(\Q(\sqrt{-1}) \) None 14.10.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-16 i q^{2}+170 i q^{3}-256 q^{4}+\cdots\)
350.10.c.e 350.c 5.b $4$ $180.263$ \(\Q(i, \sqrt{2473})\) None 70.10.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2^{4}\beta _{1}q^{2}+(-71\beta _{1}-\beta _{2})q^{3}-2^{8}q^{4}+\cdots\)
350.10.c.f 350.c 5.b $4$ $180.263$ \(\Q(i, \sqrt{5881})\) None 70.10.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2^{4}\beta _{1}q^{2}+(-67\beta _{1}+\beta _{2})q^{3}-2^{8}q^{4}+\cdots\)
350.10.c.g 350.c 5.b $4$ $180.263$ \(\Q(i, \sqrt{3061})\) None 70.10.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2^{4}\beta _{1}q^{2}+(55\beta _{1}-\beta _{2})q^{3}-2^{8}q^{4}+\cdots\)
350.10.c.h 350.c 5.b $4$ $180.263$ \(\Q(i, \sqrt{541})\) None 70.10.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2^{4}\beta _{1}q^{2}+(29\beta _{1}+\beta _{2})q^{3}-2^{8}q^{4}+\cdots\)
350.10.c.i 350.c 5.b $4$ $180.263$ \(\Q(i, \sqrt{457})\) None 70.10.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2^{4}\beta _{1}q^{2}+(21\beta _{1}-\beta _{2})q^{3}-2^{8}q^{4}+\cdots\)
350.10.c.j 350.c 5.b $4$ $180.263$ \(\Q(i, \sqrt{2305})\) None 14.10.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2^{4}\beta _{1}q^{2}+(-7\beta _{1}+\beta _{2})q^{3}-2^{8}q^{4}+\cdots\)
350.10.c.k 350.c 5.b $6$ $180.263$ \(\mathbb{Q}[x]/(x^{6} + \cdots)\) None 70.10.a.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2^{4}\beta _{1}q^{2}+(-22\beta _{1}-\beta _{5})q^{3}-2^{8}q^{4}+\cdots\)
350.10.c.l 350.c 5.b $6$ $180.263$ \(\mathbb{Q}[x]/(x^{6} + \cdots)\) None 70.10.a.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2^{4}\beta _{2}q^{2}+(\beta _{1}+69\beta _{2})q^{3}-2^{8}q^{4}+\cdots\)
350.10.c.m 350.c 5.b $8$ $180.263$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 350.10.a.n \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2^{4}\beta _{4}q^{2}+(-2\beta _{4}-\beta _{5})q^{3}-2^{8}q^{4}+\cdots\)
350.10.c.n 350.c 5.b $8$ $180.263$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 350.10.a.m \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2^{4}\beta _{4}q^{2}+(40\beta _{4}-\beta _{5})q^{3}-2^{8}q^{4}+\cdots\)
350.10.c.o 350.c 5.b $10$ $180.263$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 350.10.a.r \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2^{4}\beta _{6}q^{2}+(\beta _{1}-15\beta _{6})q^{3}-2^{8}q^{4}+\cdots\)
350.10.c.p 350.c 5.b $10$ $180.263$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 350.10.a.q \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2^{4}\beta _{5}q^{2}+(\beta _{1}-19\beta _{5})q^{3}-2^{8}q^{4}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(350, [\chi])\) into lower level spaces

\( S_{10}^{\mathrm{old}}(350, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 2}\)