Properties

Label 70.10.a
Level $70$
Weight $10$
Character orbit 70.a
Rep. character $\chi_{70}(1,\cdot)$
Character field $\Q$
Dimension $18$
Newform subspaces $9$
Sturm bound $120$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 70.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 9 \)
Sturm bound: \(120\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(70))\).

Total New Old
Modular forms 112 18 94
Cusp forms 104 18 86
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(7\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(12\)\(2\)\(10\)\(11\)\(2\)\(9\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(15\)\(2\)\(13\)\(14\)\(2\)\(12\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(15\)\(2\)\(13\)\(14\)\(2\)\(12\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(14\)\(2\)\(12\)\(13\)\(2\)\(11\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(14\)\(3\)\(11\)\(13\)\(3\)\(10\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(14\)\(2\)\(12\)\(13\)\(2\)\(11\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(15\)\(2\)\(13\)\(14\)\(2\)\(12\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(13\)\(3\)\(10\)\(12\)\(3\)\(9\)\(1\)\(0\)\(1\)
Plus space\(+\)\(55\)\(8\)\(47\)\(51\)\(8\)\(43\)\(4\)\(0\)\(4\)
Minus space\(-\)\(57\)\(10\)\(47\)\(53\)\(10\)\(43\)\(4\)\(0\)\(4\)

Trace form

\( 18 q + 32 q^{2} + 292 q^{3} + 4608 q^{4} - 6080 q^{6} + 8192 q^{8} + 92054 q^{9} - 106964 q^{11} + 74752 q^{12} - 188896 q^{13} + 265000 q^{15} + 1179648 q^{16} + 1318244 q^{17} + 734368 q^{18} - 1898020 q^{19}+ \cdots - 9378937624 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(70))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 7
70.10.a.a 70.a 1.a $1$ $36.053$ \(\Q\) None 70.10.a.a \(-16\) \(-87\) \(-625\) \(2401\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2^{4}q^{2}-87q^{3}+2^{8}q^{4}-5^{4}q^{5}+\cdots\)
70.10.a.b 70.a 1.a $1$ $36.053$ \(\Q\) None 70.10.a.b \(-16\) \(120\) \(-625\) \(2401\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2^{4}q^{2}+120q^{3}+2^{8}q^{4}-5^{4}q^{5}+\cdots\)
70.10.a.c 70.a 1.a $2$ $36.053$ \(\Q(\sqrt{541}) \) None 70.10.a.c \(-32\) \(58\) \(1250\) \(4802\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2^{4}q^{2}+(29-\beta )q^{3}+2^{8}q^{4}+5^{4}q^{5}+\cdots\)
70.10.a.d 70.a 1.a $2$ $36.053$ \(\Q(\sqrt{3061}) \) None 70.10.a.d \(-32\) \(110\) \(-1250\) \(-4802\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2^{4}q^{2}+(55-\beta )q^{3}+2^{8}q^{4}-5^{4}q^{5}+\cdots\)
70.10.a.e 70.a 1.a $2$ $36.053$ \(\Q(\sqrt{5881}) \) None 70.10.a.e \(-32\) \(135\) \(1250\) \(-4802\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2^{4}q^{2}+(67-\beta )q^{3}+2^{8}q^{4}+5^{4}q^{5}+\cdots\)
70.10.a.f 70.a 1.a $2$ $36.053$ \(\Q(\sqrt{2473}) \) None 70.10.a.f \(32\) \(-143\) \(-1250\) \(4802\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2^{4}q^{2}+(-72-\beta )q^{3}+2^{8}q^{4}-5^{4}q^{5}+\cdots\)
70.10.a.g 70.a 1.a $2$ $36.053$ \(\Q(\sqrt{457}) \) None 70.10.a.g \(32\) \(-41\) \(1250\) \(-4802\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2^{4}q^{2}+(-21-\beta )q^{3}+2^{8}q^{4}+5^{4}q^{5}+\cdots\)
70.10.a.h 70.a 1.a $3$ $36.053$ 3.3.2997373.1 None 70.10.a.h \(48\) \(-66\) \(-1875\) \(-7203\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2^{4}q^{2}+(-22-\beta _{2})q^{3}+2^{8}q^{4}+\cdots\)
70.10.a.i 70.a 1.a $3$ $36.053$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 70.10.a.i \(48\) \(206\) \(1875\) \(7203\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2^{4}q^{2}+(69-\beta _{1})q^{3}+2^{8}q^{4}+5^{4}q^{5}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(70))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_0(70)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 2}\)