Properties

Label 2-70-1.1-c9-0-5
Degree $2$
Conductor $70$
Sign $1$
Analytic cond. $36.0525$
Root an. cond. $6.00437$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 16·2-s − 47.7·3-s + 256·4-s − 625·5-s − 764.·6-s − 2.40e3·7-s + 4.09e3·8-s − 1.73e4·9-s − 1.00e4·10-s + 4.67e4·11-s − 1.22e4·12-s + 3.02e4·13-s − 3.84e4·14-s + 2.98e4·15-s + 6.55e4·16-s + 2.96e5·17-s − 2.78e5·18-s + 1.84e5·19-s − 1.60e5·20-s + 1.14e5·21-s + 7.48e5·22-s − 2.11e4·23-s − 1.95e5·24-s + 3.90e5·25-s + 4.83e5·26-s + 1.77e6·27-s − 6.14e5·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.340·3-s + 0.5·4-s − 0.447·5-s − 0.240·6-s − 0.377·7-s + 0.353·8-s − 0.883·9-s − 0.316·10-s + 0.963·11-s − 0.170·12-s + 0.293·13-s − 0.267·14-s + 0.152·15-s + 0.250·16-s + 0.860·17-s − 0.625·18-s + 0.324·19-s − 0.223·20-s + 0.128·21-s + 0.681·22-s − 0.0157·23-s − 0.120·24-s + 0.200·25-s + 0.207·26-s + 0.641·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(70\)    =    \(2 \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(36.0525\)
Root analytic conductor: \(6.00437\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 70,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(2.514912860\)
\(L(\frac12)\) \(\approx\) \(2.514912860\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 16T \)
5 \( 1 + 625T \)
7 \( 1 + 2.40e3T \)
good3 \( 1 + 47.7T + 1.96e4T^{2} \)
11 \( 1 - 4.67e4T + 2.35e9T^{2} \)
13 \( 1 - 3.02e4T + 1.06e10T^{2} \)
17 \( 1 - 2.96e5T + 1.18e11T^{2} \)
19 \( 1 - 1.84e5T + 3.22e11T^{2} \)
23 \( 1 + 2.11e4T + 1.80e12T^{2} \)
29 \( 1 - 2.53e6T + 1.45e13T^{2} \)
31 \( 1 + 1.41e5T + 2.64e13T^{2} \)
37 \( 1 - 1.47e7T + 1.29e14T^{2} \)
41 \( 1 - 2.09e7T + 3.27e14T^{2} \)
43 \( 1 - 4.06e7T + 5.02e14T^{2} \)
47 \( 1 + 5.11e7T + 1.11e15T^{2} \)
53 \( 1 + 3.08e6T + 3.29e15T^{2} \)
59 \( 1 - 6.45e6T + 8.66e15T^{2} \)
61 \( 1 - 8.87e7T + 1.16e16T^{2} \)
67 \( 1 + 4.97e6T + 2.72e16T^{2} \)
71 \( 1 - 2.42e8T + 4.58e16T^{2} \)
73 \( 1 + 6.13e6T + 5.88e16T^{2} \)
79 \( 1 - 3.41e7T + 1.19e17T^{2} \)
83 \( 1 - 1.22e8T + 1.86e17T^{2} \)
89 \( 1 + 6.48e8T + 3.50e17T^{2} \)
97 \( 1 + 5.98e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.66868329805969914778264325493, −11.79606022405377849289258439213, −10.97749621547641807833159831023, −9.457729365444238835209112547645, −8.021823315338662370129275237130, −6.59342515204399879626648990393, −5.59219077051837557249380421684, −4.09933221612695671803949746649, −2.89488284113051692185814811104, −0.900313268931347071650415188452, 0.900313268931347071650415188452, 2.89488284113051692185814811104, 4.09933221612695671803949746649, 5.59219077051837557249380421684, 6.59342515204399879626648990393, 8.021823315338662370129275237130, 9.457729365444238835209112547645, 10.97749621547641807833159831023, 11.79606022405377849289258439213, 12.66868329805969914778264325493

Graph of the $Z$-function along the critical line