Properties

Label 70.10.a.h
Level $70$
Weight $10$
Character orbit 70.a
Self dual yes
Analytic conductor $36.053$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [70,10,Mod(1,70)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(70, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("70.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 70.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,48,-66] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.0525085315\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.2997373.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 373x - 2632 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{3}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 16 q^{2} + ( - \beta_{2} - 22) q^{3} + 256 q^{4} - 625 q^{5} + ( - 16 \beta_{2} - 352) q^{6} - 2401 q^{7} + 4096 q^{8} + ( - 13 \beta_1 + 17043) q^{9} - 10000 q^{10} + ( - 66 \beta_{2} + 27 \beta_1 - 23042) q^{11}+ \cdots + ( - 4107402 \beta_{2} + \cdots - 1663118184) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 48 q^{2} - 66 q^{3} + 768 q^{4} - 1875 q^{5} - 1056 q^{6} - 7203 q^{7} + 12288 q^{8} + 51129 q^{9} - 30000 q^{10} - 69126 q^{11} - 16896 q^{12} - 9108 q^{13} - 115248 q^{14} + 41250 q^{15} + 196608 q^{16}+ \cdots - 4989354552 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 373x - 2632 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( -9\nu^{2} + 225\nu + 2166 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 9\nu^{2} - 105\nu - 2206 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta _1 + 40 ) / 120 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 15\beta_{2} + 7\beta _1 + 17928 ) / 72 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−11.5877
22.6263
−10.0386
16.0000 −241.189 256.000 −625.000 −3859.03 −2401.00 4096.00 38489.3 −10000.0
1.2 16.0000 −47.7937 256.000 −625.000 −764.699 −2401.00 4096.00 −17398.8 −10000.0
1.3 16.0000 222.983 256.000 −625.000 3567.73 −2401.00 4096.00 30038.4 −10000.0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 70.10.a.h 3
5.b even 2 1 350.10.a.l 3
5.c odd 4 2 350.10.c.k 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.10.a.h 3 1.a even 1 1 trivial
350.10.a.l 3 5.b even 2 1
350.10.c.k 6 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} + 66T_{3}^{2} - 52911T_{3} - 2570400 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(70))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 16)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 66 T^{2} + \cdots - 2570400 \) Copy content Toggle raw display
$5$ \( (T + 625)^{3} \) Copy content Toggle raw display
$7$ \( (T + 2401)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots - 130003844724100 \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots + 10\!\cdots\!06 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots + 27\!\cdots\!38 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots - 10\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 28\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 42\!\cdots\!94 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 10\!\cdots\!08 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 39\!\cdots\!60 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 11\!\cdots\!12 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 10\!\cdots\!44 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 76\!\cdots\!48 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots - 20\!\cdots\!08 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 33\!\cdots\!12 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 88\!\cdots\!44 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 30\!\cdots\!68 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 23\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 67\!\cdots\!72 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 75\!\cdots\!72 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 21\!\cdots\!88 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 63\!\cdots\!60 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 44\!\cdots\!50 \) Copy content Toggle raw display
show more
show less