Properties

Label 6845.2.a.f.1.3
Level $6845$
Weight $2$
Character 6845.1
Self dual yes
Analytic conductor $54.658$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6845,2,Mod(1,6845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6845.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6845, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6845 = 5 \cdot 37^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6845.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-2,3,10,5,6,11] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.6576001836\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.973904.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 8x^{3} + 6x^{2} + 19x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 185)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.62871\) of defining polynomial
Character \(\chi\) \(=\) 6845.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.728950 q^{2} +2.62871 q^{3} -1.46863 q^{4} +1.00000 q^{5} -1.91620 q^{6} +2.55244 q^{7} +2.52846 q^{8} +3.91009 q^{9} -0.728950 q^{10} +2.46863 q^{11} -3.86060 q^{12} -1.55854 q^{13} -1.86060 q^{14} +2.62871 q^{15} +1.09414 q^{16} +6.83662 q^{17} -2.85026 q^{18} +7.66011 q^{19} -1.46863 q^{20} +6.70960 q^{21} -1.79951 q^{22} +7.50003 q^{23} +6.64658 q^{24} +1.00000 q^{25} +1.13610 q^{26} +2.39236 q^{27} -3.74859 q^{28} -3.25741 q^{29} -1.91620 q^{30} -0.658785 q^{31} -5.85449 q^{32} +6.48930 q^{33} -4.98356 q^{34} +2.55244 q^{35} -5.74248 q^{36} -5.58384 q^{38} -4.09694 q^{39} +2.52846 q^{40} +2.46863 q^{41} -4.89097 q^{42} -10.9579 q^{43} -3.62551 q^{44} +3.91009 q^{45} -5.46715 q^{46} +3.11521 q^{47} +2.87617 q^{48} -0.485072 q^{49} -0.728950 q^{50} +17.9715 q^{51} +2.28892 q^{52} +8.64184 q^{53} -1.74391 q^{54} +2.46863 q^{55} +6.45373 q^{56} +20.1362 q^{57} +2.37449 q^{58} +6.23634 q^{59} -3.86060 q^{60} -3.27808 q^{61} +0.480222 q^{62} +9.98026 q^{63} +2.07935 q^{64} -1.55854 q^{65} -4.73038 q^{66} +1.47764 q^{67} -10.0405 q^{68} +19.7154 q^{69} -1.86060 q^{70} -8.06686 q^{71} +9.88651 q^{72} -4.96199 q^{73} +2.62871 q^{75} -11.2499 q^{76} +6.30102 q^{77} +2.98647 q^{78} -12.8206 q^{79} +1.09414 q^{80} -5.44146 q^{81} -1.79951 q^{82} +1.14934 q^{83} -9.85393 q^{84} +6.83662 q^{85} +7.98779 q^{86} -8.56277 q^{87} +6.24184 q^{88} -11.5207 q^{89} -2.85026 q^{90} -3.97807 q^{91} -11.0148 q^{92} -1.73175 q^{93} -2.27083 q^{94} +7.66011 q^{95} -15.3897 q^{96} -17.2929 q^{97} +0.353594 q^{98} +9.65257 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{2} + 3 q^{3} + 10 q^{4} + 5 q^{5} + 6 q^{6} + 11 q^{7} - 6 q^{8} + 6 q^{9} - 2 q^{10} - 5 q^{11} - 2 q^{12} - 4 q^{13} + 8 q^{14} + 3 q^{15} + 16 q^{16} - 2 q^{18} + 4 q^{19} + 10 q^{20} + 3 q^{21}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.728950 −0.515446 −0.257723 0.966219i \(-0.582972\pi\)
−0.257723 + 0.966219i \(0.582972\pi\)
\(3\) 2.62871 1.51768 0.758842 0.651275i \(-0.225766\pi\)
0.758842 + 0.651275i \(0.225766\pi\)
\(4\) −1.46863 −0.734316
\(5\) 1.00000 0.447214
\(6\) −1.91620 −0.782284
\(7\) 2.55244 0.964730 0.482365 0.875970i \(-0.339778\pi\)
0.482365 + 0.875970i \(0.339778\pi\)
\(8\) 2.52846 0.893946
\(9\) 3.91009 1.30336
\(10\) −0.728950 −0.230514
\(11\) 2.46863 0.744320 0.372160 0.928169i \(-0.378617\pi\)
0.372160 + 0.928169i \(0.378617\pi\)
\(12\) −3.86060 −1.11446
\(13\) −1.55854 −0.432261 −0.216131 0.976364i \(-0.569344\pi\)
−0.216131 + 0.976364i \(0.569344\pi\)
\(14\) −1.86060 −0.497266
\(15\) 2.62871 0.678729
\(16\) 1.09414 0.273535
\(17\) 6.83662 1.65812 0.829062 0.559156i \(-0.188875\pi\)
0.829062 + 0.559156i \(0.188875\pi\)
\(18\) −2.85026 −0.671813
\(19\) 7.66011 1.75735 0.878675 0.477421i \(-0.158428\pi\)
0.878675 + 0.477421i \(0.158428\pi\)
\(20\) −1.46863 −0.328396
\(21\) 6.70960 1.46415
\(22\) −1.79951 −0.383657
\(23\) 7.50003 1.56387 0.781933 0.623363i \(-0.214234\pi\)
0.781933 + 0.623363i \(0.214234\pi\)
\(24\) 6.64658 1.35673
\(25\) 1.00000 0.200000
\(26\) 1.13610 0.222807
\(27\) 2.39236 0.460410
\(28\) −3.74859 −0.708416
\(29\) −3.25741 −0.604886 −0.302443 0.953167i \(-0.597802\pi\)
−0.302443 + 0.953167i \(0.597802\pi\)
\(30\) −1.91620 −0.349848
\(31\) −0.658785 −0.118321 −0.0591607 0.998248i \(-0.518842\pi\)
−0.0591607 + 0.998248i \(0.518842\pi\)
\(32\) −5.85449 −1.03494
\(33\) 6.48930 1.12964
\(34\) −4.98356 −0.854673
\(35\) 2.55244 0.431440
\(36\) −5.74248 −0.957080
\(37\) 0 0
\(38\) −5.58384 −0.905818
\(39\) −4.09694 −0.656036
\(40\) 2.52846 0.399785
\(41\) 2.46863 0.385535 0.192768 0.981244i \(-0.438254\pi\)
0.192768 + 0.981244i \(0.438254\pi\)
\(42\) −4.89097 −0.754692
\(43\) −10.9579 −1.67107 −0.835535 0.549438i \(-0.814842\pi\)
−0.835535 + 0.549438i \(0.814842\pi\)
\(44\) −3.62551 −0.546566
\(45\) 3.91009 0.582882
\(46\) −5.46715 −0.806088
\(47\) 3.11521 0.454400 0.227200 0.973848i \(-0.427043\pi\)
0.227200 + 0.973848i \(0.427043\pi\)
\(48\) 2.87617 0.415140
\(49\) −0.485072 −0.0692960
\(50\) −0.728950 −0.103089
\(51\) 17.9715 2.51651
\(52\) 2.28892 0.317416
\(53\) 8.64184 1.18705 0.593524 0.804816i \(-0.297736\pi\)
0.593524 + 0.804816i \(0.297736\pi\)
\(54\) −1.74391 −0.237317
\(55\) 2.46863 0.332870
\(56\) 6.45373 0.862416
\(57\) 20.1362 2.66710
\(58\) 2.37449 0.311786
\(59\) 6.23634 0.811903 0.405951 0.913895i \(-0.366940\pi\)
0.405951 + 0.913895i \(0.366940\pi\)
\(60\) −3.86060 −0.498401
\(61\) −3.27808 −0.419716 −0.209858 0.977732i \(-0.567300\pi\)
−0.209858 + 0.977732i \(0.567300\pi\)
\(62\) 0.480222 0.0609882
\(63\) 9.98026 1.25739
\(64\) 2.07935 0.259919
\(65\) −1.55854 −0.193313
\(66\) −4.73038 −0.582270
\(67\) 1.47764 0.180523 0.0902615 0.995918i \(-0.471230\pi\)
0.0902615 + 0.995918i \(0.471230\pi\)
\(68\) −10.0405 −1.21759
\(69\) 19.7154 2.37345
\(70\) −1.86060 −0.222384
\(71\) −8.06686 −0.957360 −0.478680 0.877989i \(-0.658885\pi\)
−0.478680 + 0.877989i \(0.658885\pi\)
\(72\) 9.88651 1.16514
\(73\) −4.96199 −0.580757 −0.290379 0.956912i \(-0.593781\pi\)
−0.290379 + 0.956912i \(0.593781\pi\)
\(74\) 0 0
\(75\) 2.62871 0.303537
\(76\) −11.2499 −1.29045
\(77\) 6.30102 0.718068
\(78\) 2.98647 0.338151
\(79\) −12.8206 −1.44243 −0.721214 0.692713i \(-0.756415\pi\)
−0.721214 + 0.692713i \(0.756415\pi\)
\(80\) 1.09414 0.122329
\(81\) −5.44146 −0.604607
\(82\) −1.79951 −0.198723
\(83\) 1.14934 0.126157 0.0630784 0.998009i \(-0.479908\pi\)
0.0630784 + 0.998009i \(0.479908\pi\)
\(84\) −9.85393 −1.07515
\(85\) 6.83662 0.741536
\(86\) 7.98779 0.861346
\(87\) −8.56277 −0.918026
\(88\) 6.24184 0.665382
\(89\) −11.5207 −1.22119 −0.610596 0.791942i \(-0.709070\pi\)
−0.610596 + 0.791942i \(0.709070\pi\)
\(90\) −2.85026 −0.300444
\(91\) −3.97807 −0.417015
\(92\) −11.0148 −1.14837
\(93\) −1.73175 −0.179574
\(94\) −2.27083 −0.234218
\(95\) 7.66011 0.785911
\(96\) −15.3897 −1.57071
\(97\) −17.2929 −1.75583 −0.877916 0.478815i \(-0.841067\pi\)
−0.877916 + 0.478815i \(0.841067\pi\)
\(98\) 0.353594 0.0357183
\(99\) 9.65257 0.970120
\(100\) −1.46863 −0.146863
\(101\) −7.33253 −0.729614 −0.364807 0.931083i \(-0.618865\pi\)
−0.364807 + 0.931083i \(0.618865\pi\)
\(102\) −13.1003 −1.29712
\(103\) −9.26962 −0.913363 −0.456681 0.889630i \(-0.650962\pi\)
−0.456681 + 0.889630i \(0.650962\pi\)
\(104\) −3.94071 −0.386418
\(105\) 6.70960 0.654790
\(106\) −6.29947 −0.611859
\(107\) −12.0987 −1.16962 −0.584811 0.811170i \(-0.698831\pi\)
−0.584811 + 0.811170i \(0.698831\pi\)
\(108\) −3.51350 −0.338086
\(109\) 2.24262 0.214804 0.107402 0.994216i \(-0.465747\pi\)
0.107402 + 0.994216i \(0.465747\pi\)
\(110\) −1.79951 −0.171577
\(111\) 0 0
\(112\) 2.79272 0.263888
\(113\) 11.3787 1.07042 0.535210 0.844719i \(-0.320232\pi\)
0.535210 + 0.844719i \(0.320232\pi\)
\(114\) −14.6783 −1.37475
\(115\) 7.50003 0.699382
\(116\) 4.78394 0.444177
\(117\) −6.09403 −0.563394
\(118\) −4.54598 −0.418492
\(119\) 17.4500 1.59964
\(120\) 6.64658 0.606747
\(121\) −4.90586 −0.445987
\(122\) 2.38956 0.216341
\(123\) 6.48930 0.585121
\(124\) 0.967513 0.0868852
\(125\) 1.00000 0.0894427
\(126\) −7.27511 −0.648118
\(127\) 15.6642 1.38997 0.694985 0.719024i \(-0.255411\pi\)
0.694985 + 0.719024i \(0.255411\pi\)
\(128\) 10.1932 0.900964
\(129\) −28.8052 −2.53615
\(130\) 1.13610 0.0996424
\(131\) 13.6723 1.19456 0.597278 0.802034i \(-0.296249\pi\)
0.597278 + 0.802034i \(0.296249\pi\)
\(132\) −9.53040 −0.829514
\(133\) 19.5519 1.69537
\(134\) −1.07713 −0.0930498
\(135\) 2.39236 0.205902
\(136\) 17.2861 1.48227
\(137\) −14.2031 −1.21346 −0.606728 0.794910i \(-0.707518\pi\)
−0.606728 + 0.794910i \(0.707518\pi\)
\(138\) −14.3715 −1.22339
\(139\) −11.8416 −1.00440 −0.502198 0.864753i \(-0.667475\pi\)
−0.502198 + 0.864753i \(0.667475\pi\)
\(140\) −3.74859 −0.316813
\(141\) 8.18896 0.689635
\(142\) 5.88034 0.493467
\(143\) −3.84746 −0.321741
\(144\) 4.27819 0.356516
\(145\) −3.25741 −0.270513
\(146\) 3.61705 0.299349
\(147\) −1.27511 −0.105169
\(148\) 0 0
\(149\) 4.11726 0.337299 0.168649 0.985676i \(-0.446059\pi\)
0.168649 + 0.985676i \(0.446059\pi\)
\(150\) −1.91620 −0.156457
\(151\) 16.9092 1.37605 0.688025 0.725687i \(-0.258478\pi\)
0.688025 + 0.725687i \(0.258478\pi\)
\(152\) 19.3683 1.57097
\(153\) 26.7318 2.16114
\(154\) −4.59313 −0.370125
\(155\) −0.658785 −0.0529149
\(156\) 6.01690 0.481737
\(157\) 4.02473 0.321208 0.160604 0.987019i \(-0.448656\pi\)
0.160604 + 0.987019i \(0.448656\pi\)
\(158\) 9.34556 0.743493
\(159\) 22.7169 1.80156
\(160\) −5.85449 −0.462838
\(161\) 19.1434 1.50871
\(162\) 3.96655 0.311642
\(163\) −3.57756 −0.280216 −0.140108 0.990136i \(-0.544745\pi\)
−0.140108 + 0.990136i \(0.544745\pi\)
\(164\) −3.62551 −0.283105
\(165\) 6.48930 0.505192
\(166\) −0.837814 −0.0650270
\(167\) −23.6674 −1.83144 −0.915720 0.401816i \(-0.868379\pi\)
−0.915720 + 0.401816i \(0.868379\pi\)
\(168\) 16.9650 1.30887
\(169\) −10.5710 −0.813150
\(170\) −4.98356 −0.382222
\(171\) 29.9517 2.29047
\(172\) 16.0932 1.22709
\(173\) −15.7383 −1.19656 −0.598279 0.801288i \(-0.704148\pi\)
−0.598279 + 0.801288i \(0.704148\pi\)
\(174\) 6.24184 0.473192
\(175\) 2.55244 0.192946
\(176\) 2.70103 0.203598
\(177\) 16.3935 1.23221
\(178\) 8.39802 0.629459
\(179\) −10.1749 −0.760510 −0.380255 0.924882i \(-0.624164\pi\)
−0.380255 + 0.924882i \(0.624164\pi\)
\(180\) −5.74248 −0.428019
\(181\) −2.54781 −0.189377 −0.0946886 0.995507i \(-0.530186\pi\)
−0.0946886 + 0.995507i \(0.530186\pi\)
\(182\) 2.89982 0.214949
\(183\) −8.61711 −0.636995
\(184\) 18.9635 1.39801
\(185\) 0 0
\(186\) 1.26236 0.0925608
\(187\) 16.8771 1.23418
\(188\) −4.57509 −0.333673
\(189\) 6.10635 0.444172
\(190\) −5.58384 −0.405094
\(191\) 10.4639 0.757141 0.378571 0.925572i \(-0.376416\pi\)
0.378571 + 0.925572i \(0.376416\pi\)
\(192\) 5.46601 0.394475
\(193\) 9.81172 0.706263 0.353131 0.935574i \(-0.385117\pi\)
0.353131 + 0.935574i \(0.385117\pi\)
\(194\) 12.6057 0.905036
\(195\) −4.09694 −0.293388
\(196\) 0.712392 0.0508852
\(197\) 13.3945 0.954317 0.477158 0.878817i \(-0.341667\pi\)
0.477158 + 0.878817i \(0.341667\pi\)
\(198\) −7.03625 −0.500044
\(199\) −4.20221 −0.297887 −0.148943 0.988846i \(-0.547587\pi\)
−0.148943 + 0.988846i \(0.547587\pi\)
\(200\) 2.52846 0.178789
\(201\) 3.88429 0.273977
\(202\) 5.34505 0.376077
\(203\) −8.31433 −0.583552
\(204\) −26.3935 −1.84791
\(205\) 2.46863 0.172417
\(206\) 6.75709 0.470789
\(207\) 29.3258 2.03829
\(208\) −1.70526 −0.118239
\(209\) 18.9100 1.30803
\(210\) −4.89097 −0.337509
\(211\) 20.0610 1.38106 0.690530 0.723304i \(-0.257377\pi\)
0.690530 + 0.723304i \(0.257377\pi\)
\(212\) −12.6917 −0.871668
\(213\) −21.2054 −1.45297
\(214\) 8.81932 0.602876
\(215\) −10.9579 −0.747325
\(216\) 6.04899 0.411582
\(217\) −1.68151 −0.114148
\(218\) −1.63476 −0.110720
\(219\) −13.0436 −0.881406
\(220\) −3.62551 −0.244432
\(221\) −10.6552 −0.716743
\(222\) 0 0
\(223\) 1.72511 0.115522 0.0577610 0.998330i \(-0.481604\pi\)
0.0577610 + 0.998330i \(0.481604\pi\)
\(224\) −14.9432 −0.998436
\(225\) 3.91009 0.260673
\(226\) −8.29452 −0.551744
\(227\) −4.59930 −0.305266 −0.152633 0.988283i \(-0.548775\pi\)
−0.152633 + 0.988283i \(0.548775\pi\)
\(228\) −29.5726 −1.95849
\(229\) −23.4902 −1.55227 −0.776137 0.630565i \(-0.782823\pi\)
−0.776137 + 0.630565i \(0.782823\pi\)
\(230\) −5.46715 −0.360493
\(231\) 16.5635 1.08980
\(232\) −8.23623 −0.540735
\(233\) 2.43465 0.159499 0.0797496 0.996815i \(-0.474588\pi\)
0.0797496 + 0.996815i \(0.474588\pi\)
\(234\) 4.44225 0.290399
\(235\) 3.11521 0.203214
\(236\) −9.15889 −0.596193
\(237\) −33.7015 −2.18915
\(238\) −12.7202 −0.824529
\(239\) −2.03195 −0.131436 −0.0657180 0.997838i \(-0.520934\pi\)
−0.0657180 + 0.997838i \(0.520934\pi\)
\(240\) 2.87617 0.185656
\(241\) 20.2246 1.30278 0.651390 0.758743i \(-0.274186\pi\)
0.651390 + 0.758743i \(0.274186\pi\)
\(242\) 3.57613 0.229882
\(243\) −21.4811 −1.37801
\(244\) 4.81430 0.308204
\(245\) −0.485072 −0.0309901
\(246\) −4.73038 −0.301598
\(247\) −11.9386 −0.759634
\(248\) −1.66571 −0.105773
\(249\) 3.02128 0.191466
\(250\) −0.728950 −0.0461029
\(251\) −0.695568 −0.0439038 −0.0219519 0.999759i \(-0.506988\pi\)
−0.0219519 + 0.999759i \(0.506988\pi\)
\(252\) −14.6573 −0.923324
\(253\) 18.5148 1.16402
\(254\) −11.4184 −0.716454
\(255\) 17.9715 1.12542
\(256\) −11.5891 −0.724317
\(257\) −7.13610 −0.445138 −0.222569 0.974917i \(-0.571444\pi\)
−0.222569 + 0.974917i \(0.571444\pi\)
\(258\) 20.9975 1.30725
\(259\) 0 0
\(260\) 2.28892 0.141953
\(261\) −12.7368 −0.788386
\(262\) −9.96644 −0.615729
\(263\) 21.2754 1.31190 0.655948 0.754806i \(-0.272269\pi\)
0.655948 + 0.754806i \(0.272269\pi\)
\(264\) 16.4079 1.00984
\(265\) 8.64184 0.530864
\(266\) −14.2524 −0.873870
\(267\) −30.2845 −1.85338
\(268\) −2.17011 −0.132561
\(269\) 18.3525 1.11897 0.559486 0.828840i \(-0.310998\pi\)
0.559486 + 0.828840i \(0.310998\pi\)
\(270\) −1.74391 −0.106131
\(271\) −23.2195 −1.41048 −0.705241 0.708967i \(-0.749161\pi\)
−0.705241 + 0.708967i \(0.749161\pi\)
\(272\) 7.48023 0.453555
\(273\) −10.4572 −0.632897
\(274\) 10.3534 0.625471
\(275\) 2.46863 0.148864
\(276\) −28.9546 −1.74286
\(277\) −5.65674 −0.339880 −0.169940 0.985454i \(-0.554357\pi\)
−0.169940 + 0.985454i \(0.554357\pi\)
\(278\) 8.63197 0.517711
\(279\) −2.57591 −0.154216
\(280\) 6.45373 0.385684
\(281\) 24.4373 1.45781 0.728903 0.684616i \(-0.240030\pi\)
0.728903 + 0.684616i \(0.240030\pi\)
\(282\) −5.96935 −0.355469
\(283\) −20.8498 −1.23939 −0.619697 0.784841i \(-0.712744\pi\)
−0.619697 + 0.784841i \(0.712744\pi\)
\(284\) 11.8472 0.703005
\(285\) 20.1362 1.19276
\(286\) 2.80461 0.165840
\(287\) 6.30102 0.371938
\(288\) −22.8916 −1.34890
\(289\) 29.7394 1.74938
\(290\) 2.37449 0.139435
\(291\) −45.4580 −2.66480
\(292\) 7.28734 0.426459
\(293\) 7.72199 0.451123 0.225562 0.974229i \(-0.427578\pi\)
0.225562 + 0.974229i \(0.427578\pi\)
\(294\) 0.929493 0.0542091
\(295\) 6.23634 0.363094
\(296\) 0 0
\(297\) 5.90586 0.342693
\(298\) −3.00128 −0.173859
\(299\) −11.6891 −0.675998
\(300\) −3.86060 −0.222892
\(301\) −27.9694 −1.61213
\(302\) −12.3260 −0.709280
\(303\) −19.2751 −1.10732
\(304\) 8.38124 0.480697
\(305\) −3.27808 −0.187703
\(306\) −19.4862 −1.11395
\(307\) −9.01041 −0.514251 −0.257126 0.966378i \(-0.582775\pi\)
−0.257126 + 0.966378i \(0.582775\pi\)
\(308\) −9.25388 −0.527289
\(309\) −24.3671 −1.38620
\(310\) 0.480222 0.0272748
\(311\) 32.1220 1.82147 0.910735 0.412991i \(-0.135516\pi\)
0.910735 + 0.412991i \(0.135516\pi\)
\(312\) −10.3590 −0.586460
\(313\) −19.8623 −1.12268 −0.561342 0.827584i \(-0.689715\pi\)
−0.561342 + 0.827584i \(0.689715\pi\)
\(314\) −2.93383 −0.165565
\(315\) 9.98026 0.562324
\(316\) 18.8287 1.05920
\(317\) −8.58984 −0.482453 −0.241227 0.970469i \(-0.577550\pi\)
−0.241227 + 0.970469i \(0.577550\pi\)
\(318\) −16.5595 −0.928609
\(319\) −8.04135 −0.450229
\(320\) 2.07935 0.116239
\(321\) −31.8038 −1.77512
\(322\) −13.9546 −0.777657
\(323\) 52.3693 2.91390
\(324\) 7.99150 0.443972
\(325\) −1.55854 −0.0864522
\(326\) 2.60786 0.144436
\(327\) 5.89520 0.326005
\(328\) 6.24184 0.344648
\(329\) 7.95137 0.438373
\(330\) −4.73038 −0.260399
\(331\) 22.9711 1.26260 0.631302 0.775537i \(-0.282521\pi\)
0.631302 + 0.775537i \(0.282521\pi\)
\(332\) −1.68796 −0.0926389
\(333\) 0 0
\(334\) 17.2524 0.944008
\(335\) 1.47764 0.0807323
\(336\) 7.34125 0.400498
\(337\) 26.2320 1.42895 0.714473 0.699663i \(-0.246666\pi\)
0.714473 + 0.699663i \(0.246666\pi\)
\(338\) 7.70570 0.419135
\(339\) 29.9113 1.62456
\(340\) −10.0405 −0.544521
\(341\) −1.62630 −0.0880690
\(342\) −21.8333 −1.18061
\(343\) −19.1052 −1.03158
\(344\) −27.7067 −1.49385
\(345\) 19.7154 1.06144
\(346\) 11.4724 0.616760
\(347\) 0.390348 0.0209550 0.0104775 0.999945i \(-0.496665\pi\)
0.0104775 + 0.999945i \(0.496665\pi\)
\(348\) 12.5756 0.674121
\(349\) −6.37205 −0.341088 −0.170544 0.985350i \(-0.554552\pi\)
−0.170544 + 0.985350i \(0.554552\pi\)
\(350\) −1.86060 −0.0994532
\(351\) −3.72859 −0.199017
\(352\) −14.4526 −0.770326
\(353\) 9.35970 0.498167 0.249083 0.968482i \(-0.419871\pi\)
0.249083 + 0.968482i \(0.419871\pi\)
\(354\) −11.9501 −0.635138
\(355\) −8.06686 −0.428145
\(356\) 16.9197 0.896741
\(357\) 45.8710 2.42775
\(358\) 7.41702 0.392002
\(359\) −5.38443 −0.284179 −0.142090 0.989854i \(-0.545382\pi\)
−0.142090 + 0.989854i \(0.545382\pi\)
\(360\) 9.88651 0.521065
\(361\) 39.6773 2.08828
\(362\) 1.85723 0.0976137
\(363\) −12.8961 −0.676868
\(364\) 5.84232 0.306221
\(365\) −4.96199 −0.259722
\(366\) 6.28145 0.328337
\(367\) −22.1964 −1.15864 −0.579321 0.815099i \(-0.696682\pi\)
−0.579321 + 0.815099i \(0.696682\pi\)
\(368\) 8.20609 0.427772
\(369\) 9.65257 0.502493
\(370\) 0 0
\(371\) 22.0577 1.14518
\(372\) 2.54331 0.131864
\(373\) −31.6626 −1.63943 −0.819713 0.572774i \(-0.805867\pi\)
−0.819713 + 0.572774i \(0.805867\pi\)
\(374\) −12.3026 −0.636151
\(375\) 2.62871 0.135746
\(376\) 7.87668 0.406209
\(377\) 5.07680 0.261469
\(378\) −4.45123 −0.228946
\(379\) −15.6622 −0.804515 −0.402257 0.915527i \(-0.631774\pi\)
−0.402257 + 0.915527i \(0.631774\pi\)
\(380\) −11.2499 −0.577106
\(381\) 41.1765 2.10953
\(382\) −7.62766 −0.390265
\(383\) −7.84825 −0.401027 −0.200513 0.979691i \(-0.564261\pi\)
−0.200513 + 0.979691i \(0.564261\pi\)
\(384\) 26.7950 1.36738
\(385\) 6.30102 0.321130
\(386\) −7.15226 −0.364040
\(387\) −42.8465 −2.17801
\(388\) 25.3970 1.28933
\(389\) −17.6518 −0.894981 −0.447491 0.894289i \(-0.647682\pi\)
−0.447491 + 0.894289i \(0.647682\pi\)
\(390\) 2.98647 0.151226
\(391\) 51.2749 2.59308
\(392\) −1.22649 −0.0619469
\(393\) 35.9405 1.81296
\(394\) −9.76391 −0.491899
\(395\) −12.8206 −0.645073
\(396\) −14.1761 −0.712374
\(397\) −22.7648 −1.14253 −0.571267 0.820765i \(-0.693548\pi\)
−0.571267 + 0.820765i \(0.693548\pi\)
\(398\) 3.06320 0.153544
\(399\) 51.3963 2.57303
\(400\) 1.09414 0.0547070
\(401\) 0.168397 0.00840934 0.00420467 0.999991i \(-0.498662\pi\)
0.00420467 + 0.999991i \(0.498662\pi\)
\(402\) −2.83146 −0.141220
\(403\) 1.02674 0.0511457
\(404\) 10.7688 0.535767
\(405\) −5.44146 −0.270388
\(406\) 6.06073 0.300789
\(407\) 0 0
\(408\) 45.4401 2.24962
\(409\) 21.1075 1.04370 0.521850 0.853037i \(-0.325242\pi\)
0.521850 + 0.853037i \(0.325242\pi\)
\(410\) −1.79951 −0.0888715
\(411\) −37.3359 −1.84164
\(412\) 13.6137 0.670697
\(413\) 15.9179 0.783267
\(414\) −21.3771 −1.05063
\(415\) 1.14934 0.0564190
\(416\) 9.12446 0.447364
\(417\) −31.1282 −1.52435
\(418\) −13.7844 −0.674219
\(419\) −22.3217 −1.09049 −0.545243 0.838278i \(-0.683563\pi\)
−0.545243 + 0.838278i \(0.683563\pi\)
\(420\) −9.85393 −0.480823
\(421\) 27.4605 1.33835 0.669173 0.743107i \(-0.266649\pi\)
0.669173 + 0.743107i \(0.266649\pi\)
\(422\) −14.6235 −0.711861
\(423\) 12.1807 0.592248
\(424\) 21.8506 1.06116
\(425\) 6.83662 0.331625
\(426\) 15.4577 0.748927
\(427\) −8.36710 −0.404912
\(428\) 17.7685 0.858871
\(429\) −10.1138 −0.488301
\(430\) 7.98779 0.385205
\(431\) −36.7380 −1.76960 −0.884802 0.465966i \(-0.845707\pi\)
−0.884802 + 0.465966i \(0.845707\pi\)
\(432\) 2.61758 0.125938
\(433\) 0.370435 0.0178020 0.00890098 0.999960i \(-0.497167\pi\)
0.00890098 + 0.999960i \(0.497167\pi\)
\(434\) 1.22574 0.0588372
\(435\) −8.56277 −0.410553
\(436\) −3.29359 −0.157734
\(437\) 57.4511 2.74826
\(438\) 9.50815 0.454317
\(439\) −30.1768 −1.44026 −0.720130 0.693839i \(-0.755918\pi\)
−0.720130 + 0.693839i \(0.755918\pi\)
\(440\) 6.24184 0.297568
\(441\) −1.89668 −0.0903179
\(442\) 7.76708 0.369442
\(443\) 38.1789 1.81393 0.906966 0.421203i \(-0.138392\pi\)
0.906966 + 0.421203i \(0.138392\pi\)
\(444\) 0 0
\(445\) −11.5207 −0.546134
\(446\) −1.25752 −0.0595454
\(447\) 10.8231 0.511913
\(448\) 5.30742 0.250752
\(449\) 3.77840 0.178314 0.0891569 0.996018i \(-0.471583\pi\)
0.0891569 + 0.996018i \(0.471583\pi\)
\(450\) −2.85026 −0.134363
\(451\) 6.09414 0.286962
\(452\) −16.7111 −0.786026
\(453\) 44.4493 2.08841
\(454\) 3.35266 0.157348
\(455\) −3.97807 −0.186495
\(456\) 50.9135 2.38424
\(457\) −25.3343 −1.18509 −0.592544 0.805538i \(-0.701876\pi\)
−0.592544 + 0.805538i \(0.701876\pi\)
\(458\) 17.1232 0.800113
\(459\) 16.3557 0.763418
\(460\) −11.0148 −0.513567
\(461\) 14.7582 0.687359 0.343680 0.939087i \(-0.388327\pi\)
0.343680 + 0.939087i \(0.388327\pi\)
\(462\) −12.0740 −0.561733
\(463\) −8.63700 −0.401395 −0.200698 0.979653i \(-0.564321\pi\)
−0.200698 + 0.979653i \(0.564321\pi\)
\(464\) −3.56407 −0.165458
\(465\) −1.73175 −0.0803081
\(466\) −1.77474 −0.0822132
\(467\) 1.64618 0.0761762 0.0380881 0.999274i \(-0.487873\pi\)
0.0380881 + 0.999274i \(0.487873\pi\)
\(468\) 8.94989 0.413709
\(469\) 3.77159 0.174156
\(470\) −2.27083 −0.104746
\(471\) 10.5798 0.487493
\(472\) 15.7683 0.725797
\(473\) −27.0511 −1.24381
\(474\) 24.5667 1.12839
\(475\) 7.66011 0.351470
\(476\) −25.6277 −1.17464
\(477\) 33.7904 1.54716
\(478\) 1.48119 0.0677482
\(479\) −16.0571 −0.733669 −0.366835 0.930286i \(-0.619558\pi\)
−0.366835 + 0.930286i \(0.619558\pi\)
\(480\) −15.3897 −0.702442
\(481\) 0 0
\(482\) −14.7427 −0.671513
\(483\) 50.3222 2.28974
\(484\) 7.20490 0.327495
\(485\) −17.2929 −0.785232
\(486\) 15.6586 0.710290
\(487\) 6.60786 0.299431 0.149715 0.988729i \(-0.452164\pi\)
0.149715 + 0.988729i \(0.452164\pi\)
\(488\) −8.28850 −0.375203
\(489\) −9.40435 −0.425279
\(490\) 0.353594 0.0159737
\(491\) −18.2039 −0.821532 −0.410766 0.911741i \(-0.634739\pi\)
−0.410766 + 0.911741i \(0.634739\pi\)
\(492\) −9.53040 −0.429663
\(493\) −22.2697 −1.00298
\(494\) 8.70264 0.391550
\(495\) 9.65257 0.433851
\(496\) −0.720804 −0.0323650
\(497\) −20.5901 −0.923594
\(498\) −2.20237 −0.0986904
\(499\) 26.1795 1.17196 0.585978 0.810327i \(-0.300711\pi\)
0.585978 + 0.810327i \(0.300711\pi\)
\(500\) −1.46863 −0.0656792
\(501\) −62.2147 −2.77955
\(502\) 0.507034 0.0226301
\(503\) −0.546197 −0.0243537 −0.0121769 0.999926i \(-0.503876\pi\)
−0.0121769 + 0.999926i \(0.503876\pi\)
\(504\) 25.2347 1.12404
\(505\) −7.33253 −0.326293
\(506\) −13.4964 −0.599988
\(507\) −27.7879 −1.23410
\(508\) −23.0049 −1.02068
\(509\) −27.4237 −1.21553 −0.607767 0.794115i \(-0.707935\pi\)
−0.607767 + 0.794115i \(0.707935\pi\)
\(510\) −13.1003 −0.580091
\(511\) −12.6652 −0.560274
\(512\) −11.9386 −0.527618
\(513\) 18.3258 0.809102
\(514\) 5.20186 0.229444
\(515\) −9.26962 −0.408468
\(516\) 42.3042 1.86234
\(517\) 7.69030 0.338219
\(518\) 0 0
\(519\) −41.3712 −1.81600
\(520\) −3.94071 −0.172811
\(521\) 39.2211 1.71831 0.859154 0.511717i \(-0.170990\pi\)
0.859154 + 0.511717i \(0.170990\pi\)
\(522\) 9.28448 0.406370
\(523\) 2.89217 0.126466 0.0632329 0.997999i \(-0.479859\pi\)
0.0632329 + 0.997999i \(0.479859\pi\)
\(524\) −20.0796 −0.877181
\(525\) 6.70960 0.292831
\(526\) −15.5087 −0.676212
\(527\) −4.50387 −0.196191
\(528\) 7.10021 0.308997
\(529\) 33.2505 1.44567
\(530\) −6.29947 −0.273632
\(531\) 24.3847 1.05820
\(532\) −28.7146 −1.24494
\(533\) −3.84746 −0.166652
\(534\) 22.0759 0.955319
\(535\) −12.0987 −0.523071
\(536\) 3.73616 0.161378
\(537\) −26.7469 −1.15421
\(538\) −13.3781 −0.576770
\(539\) −1.19746 −0.0515784
\(540\) −3.51350 −0.151197
\(541\) 30.3727 1.30582 0.652912 0.757434i \(-0.273547\pi\)
0.652912 + 0.757434i \(0.273547\pi\)
\(542\) 16.9258 0.727027
\(543\) −6.69744 −0.287415
\(544\) −40.0250 −1.71606
\(545\) 2.24262 0.0960635
\(546\) 7.62277 0.326224
\(547\) −18.8597 −0.806384 −0.403192 0.915115i \(-0.632099\pi\)
−0.403192 + 0.915115i \(0.632099\pi\)
\(548\) 20.8592 0.891060
\(549\) −12.8176 −0.547042
\(550\) −1.79951 −0.0767314
\(551\) −24.9521 −1.06300
\(552\) 49.8496 2.12174
\(553\) −32.7237 −1.39155
\(554\) 4.12348 0.175190
\(555\) 0 0
\(556\) 17.3910 0.737543
\(557\) −24.2064 −1.02566 −0.512828 0.858491i \(-0.671402\pi\)
−0.512828 + 0.858491i \(0.671402\pi\)
\(558\) 1.87771 0.0794898
\(559\) 17.0784 0.722339
\(560\) 2.79272 0.118014
\(561\) 44.3649 1.87309
\(562\) −17.8136 −0.751420
\(563\) −5.13444 −0.216391 −0.108196 0.994130i \(-0.534507\pi\)
−0.108196 + 0.994130i \(0.534507\pi\)
\(564\) −12.0266 −0.506410
\(565\) 11.3787 0.478706
\(566\) 15.1985 0.638840
\(567\) −13.8890 −0.583282
\(568\) −20.3967 −0.855828
\(569\) 11.9797 0.502214 0.251107 0.967959i \(-0.419205\pi\)
0.251107 + 0.967959i \(0.419205\pi\)
\(570\) −14.6783 −0.614805
\(571\) −25.5874 −1.07080 −0.535399 0.844599i \(-0.679839\pi\)
−0.535399 + 0.844599i \(0.679839\pi\)
\(572\) 5.65050 0.236259
\(573\) 27.5065 1.14910
\(574\) −4.59313 −0.191714
\(575\) 7.50003 0.312773
\(576\) 8.13047 0.338769
\(577\) 40.3272 1.67884 0.839421 0.543481i \(-0.182894\pi\)
0.839421 + 0.543481i \(0.182894\pi\)
\(578\) −21.6786 −0.901709
\(579\) 25.7921 1.07188
\(580\) 4.78394 0.198642
\(581\) 2.93362 0.121707
\(582\) 33.1367 1.37356
\(583\) 21.3335 0.883544
\(584\) −12.5462 −0.519165
\(585\) −6.09403 −0.251957
\(586\) −5.62894 −0.232530
\(587\) 31.6751 1.30737 0.653686 0.756766i \(-0.273222\pi\)
0.653686 + 0.756766i \(0.273222\pi\)
\(588\) 1.87267 0.0772276
\(589\) −5.04637 −0.207932
\(590\) −4.54598 −0.187155
\(591\) 35.2101 1.44835
\(592\) 0 0
\(593\) 6.26075 0.257098 0.128549 0.991703i \(-0.458968\pi\)
0.128549 + 0.991703i \(0.458968\pi\)
\(594\) −4.30508 −0.176640
\(595\) 17.4500 0.715382
\(596\) −6.04673 −0.247684
\(597\) −11.0464 −0.452098
\(598\) 8.52078 0.348440
\(599\) 34.4197 1.40635 0.703175 0.711017i \(-0.251765\pi\)
0.703175 + 0.711017i \(0.251765\pi\)
\(600\) 6.64658 0.271345
\(601\) 12.2491 0.499650 0.249825 0.968291i \(-0.419627\pi\)
0.249825 + 0.968291i \(0.419627\pi\)
\(602\) 20.3883 0.830966
\(603\) 5.77772 0.235287
\(604\) −24.8334 −1.01046
\(605\) −4.90586 −0.199452
\(606\) 14.0506 0.570765
\(607\) 31.0932 1.26204 0.631018 0.775768i \(-0.282637\pi\)
0.631018 + 0.775768i \(0.282637\pi\)
\(608\) −44.8461 −1.81875
\(609\) −21.8559 −0.885647
\(610\) 2.38956 0.0967505
\(611\) −4.85518 −0.196419
\(612\) −39.2592 −1.58696
\(613\) 15.0998 0.609876 0.304938 0.952372i \(-0.401364\pi\)
0.304938 + 0.952372i \(0.401364\pi\)
\(614\) 6.56814 0.265069
\(615\) 6.48930 0.261674
\(616\) 15.9319 0.641914
\(617\) −27.3635 −1.10161 −0.550807 0.834632i \(-0.685680\pi\)
−0.550807 + 0.834632i \(0.685680\pi\)
\(618\) 17.7624 0.714509
\(619\) −11.1466 −0.448021 −0.224010 0.974587i \(-0.571915\pi\)
−0.224010 + 0.974587i \(0.571915\pi\)
\(620\) 0.967513 0.0388562
\(621\) 17.9428 0.720020
\(622\) −23.4153 −0.938869
\(623\) −29.4059 −1.17812
\(624\) −4.48263 −0.179449
\(625\) 1.00000 0.0400000
\(626\) 14.4786 0.578683
\(627\) 49.7088 1.98518
\(628\) −5.91084 −0.235868
\(629\) 0 0
\(630\) −7.27511 −0.289847
\(631\) −11.9459 −0.475558 −0.237779 0.971319i \(-0.576419\pi\)
−0.237779 + 0.971319i \(0.576419\pi\)
\(632\) −32.4163 −1.28945
\(633\) 52.7346 2.09601
\(634\) 6.26156 0.248679
\(635\) 15.6642 0.621613
\(636\) −33.3627 −1.32292
\(637\) 0.756004 0.0299540
\(638\) 5.86174 0.232069
\(639\) −31.5422 −1.24779
\(640\) 10.1932 0.402923
\(641\) 27.9313 1.10322 0.551609 0.834103i \(-0.314014\pi\)
0.551609 + 0.834103i \(0.314014\pi\)
\(642\) 23.1834 0.914976
\(643\) −39.0497 −1.53997 −0.769984 0.638063i \(-0.779736\pi\)
−0.769984 + 0.638063i \(0.779736\pi\)
\(644\) −28.1145 −1.10787
\(645\) −28.8052 −1.13420
\(646\) −38.1746 −1.50196
\(647\) 3.60562 0.141752 0.0708759 0.997485i \(-0.477421\pi\)
0.0708759 + 0.997485i \(0.477421\pi\)
\(648\) −13.7585 −0.540485
\(649\) 15.3952 0.604316
\(650\) 1.13610 0.0445614
\(651\) −4.42019 −0.173241
\(652\) 5.25411 0.205767
\(653\) 16.9343 0.662691 0.331345 0.943510i \(-0.392497\pi\)
0.331345 + 0.943510i \(0.392497\pi\)
\(654\) −4.29731 −0.168038
\(655\) 13.6723 0.534222
\(656\) 2.70103 0.105458
\(657\) −19.4018 −0.756938
\(658\) −5.79615 −0.225958
\(659\) 31.2664 1.21797 0.608983 0.793183i \(-0.291578\pi\)
0.608983 + 0.793183i \(0.291578\pi\)
\(660\) −9.53040 −0.370970
\(661\) 39.2941 1.52836 0.764181 0.645002i \(-0.223143\pi\)
0.764181 + 0.645002i \(0.223143\pi\)
\(662\) −16.7448 −0.650804
\(663\) −28.0093 −1.08779
\(664\) 2.90607 0.112777
\(665\) 19.5519 0.758192
\(666\) 0 0
\(667\) −24.4307 −0.945960
\(668\) 34.7587 1.34486
\(669\) 4.53481 0.175326
\(670\) −1.07713 −0.0416131
\(671\) −8.09238 −0.312403
\(672\) −39.2813 −1.51531
\(673\) 33.7258 1.30004 0.650018 0.759919i \(-0.274762\pi\)
0.650018 + 0.759919i \(0.274762\pi\)
\(674\) −19.1218 −0.736544
\(675\) 2.39236 0.0920820
\(676\) 15.5248 0.597109
\(677\) −20.4385 −0.785515 −0.392758 0.919642i \(-0.628479\pi\)
−0.392758 + 0.919642i \(0.628479\pi\)
\(678\) −21.8039 −0.837372
\(679\) −44.1391 −1.69390
\(680\) 17.2861 0.662893
\(681\) −12.0902 −0.463298
\(682\) 1.18549 0.0453948
\(683\) 31.0965 1.18988 0.594938 0.803771i \(-0.297177\pi\)
0.594938 + 0.803771i \(0.297177\pi\)
\(684\) −43.9880 −1.68192
\(685\) −14.2031 −0.542674
\(686\) 13.9267 0.531725
\(687\) −61.7487 −2.35586
\(688\) −11.9895 −0.457096
\(689\) −13.4687 −0.513115
\(690\) −14.3715 −0.547115
\(691\) 10.8292 0.411960 0.205980 0.978556i \(-0.433962\pi\)
0.205980 + 0.978556i \(0.433962\pi\)
\(692\) 23.1137 0.878651
\(693\) 24.6376 0.935904
\(694\) −0.284545 −0.0108012
\(695\) −11.8416 −0.449179
\(696\) −21.6506 −0.820665
\(697\) 16.8771 0.639266
\(698\) 4.64491 0.175812
\(699\) 6.39998 0.242069
\(700\) −3.74859 −0.141683
\(701\) −3.32122 −0.125441 −0.0627204 0.998031i \(-0.519978\pi\)
−0.0627204 + 0.998031i \(0.519978\pi\)
\(702\) 2.71796 0.102583
\(703\) 0 0
\(704\) 5.13316 0.193463
\(705\) 8.18896 0.308414
\(706\) −6.82276 −0.256778
\(707\) −18.7158 −0.703881
\(708\) −24.0760 −0.904832
\(709\) −17.6659 −0.663458 −0.331729 0.943375i \(-0.607632\pi\)
−0.331729 + 0.943375i \(0.607632\pi\)
\(710\) 5.88034 0.220685
\(711\) −50.1296 −1.88001
\(712\) −29.1296 −1.09168
\(713\) −4.94091 −0.185039
\(714\) −33.4377 −1.25137
\(715\) −3.84746 −0.143887
\(716\) 14.9432 0.558454
\(717\) −5.34140 −0.199478
\(718\) 3.92498 0.146479
\(719\) −17.4938 −0.652410 −0.326205 0.945299i \(-0.605770\pi\)
−0.326205 + 0.945299i \(0.605770\pi\)
\(720\) 4.27819 0.159439
\(721\) −23.6601 −0.881148
\(722\) −28.9228 −1.07639
\(723\) 53.1645 1.97721
\(724\) 3.74179 0.139063
\(725\) −3.25741 −0.120977
\(726\) 9.40059 0.348888
\(727\) −19.2435 −0.713701 −0.356851 0.934161i \(-0.616149\pi\)
−0.356851 + 0.934161i \(0.616149\pi\)
\(728\) −10.0584 −0.372789
\(729\) −40.1430 −1.48678
\(730\) 3.61705 0.133873
\(731\) −74.9153 −2.77084
\(732\) 12.6554 0.467756
\(733\) −17.2213 −0.636082 −0.318041 0.948077i \(-0.603025\pi\)
−0.318041 + 0.948077i \(0.603025\pi\)
\(734\) 16.1801 0.597217
\(735\) −1.27511 −0.0470332
\(736\) −43.9089 −1.61850
\(737\) 3.64776 0.134367
\(738\) −7.03625 −0.259008
\(739\) 44.1590 1.62442 0.812208 0.583368i \(-0.198265\pi\)
0.812208 + 0.583368i \(0.198265\pi\)
\(740\) 0 0
\(741\) −31.3830 −1.15288
\(742\) −16.0790 −0.590279
\(743\) −15.8768 −0.582461 −0.291231 0.956653i \(-0.594065\pi\)
−0.291231 + 0.956653i \(0.594065\pi\)
\(744\) −4.37867 −0.160530
\(745\) 4.11726 0.150845
\(746\) 23.0805 0.845035
\(747\) 4.49404 0.164428
\(748\) −24.7862 −0.906275
\(749\) −30.8811 −1.12837
\(750\) −1.91620 −0.0699696
\(751\) 20.6030 0.751815 0.375907 0.926657i \(-0.377331\pi\)
0.375907 + 0.926657i \(0.377331\pi\)
\(752\) 3.40848 0.124294
\(753\) −1.82844 −0.0666322
\(754\) −3.70074 −0.134773
\(755\) 16.9092 0.615389
\(756\) −8.96798 −0.326162
\(757\) 21.6914 0.788387 0.394194 0.919027i \(-0.371024\pi\)
0.394194 + 0.919027i \(0.371024\pi\)
\(758\) 11.4170 0.414684
\(759\) 48.6700 1.76661
\(760\) 19.3683 0.702561
\(761\) 22.5166 0.816225 0.408113 0.912932i \(-0.366187\pi\)
0.408113 + 0.912932i \(0.366187\pi\)
\(762\) −30.0156 −1.08735
\(763\) 5.72415 0.207228
\(764\) −15.3676 −0.555981
\(765\) 26.7318 0.966491
\(766\) 5.72098 0.206708
\(767\) −9.71959 −0.350954
\(768\) −30.4643 −1.09928
\(769\) 0.975961 0.0351941 0.0175970 0.999845i \(-0.494398\pi\)
0.0175970 + 0.999845i \(0.494398\pi\)
\(770\) −4.59313 −0.165525
\(771\) −18.7587 −0.675578
\(772\) −14.4098 −0.518620
\(773\) 15.6271 0.562066 0.281033 0.959698i \(-0.409323\pi\)
0.281033 + 0.959698i \(0.409323\pi\)
\(774\) 31.2330 1.12265
\(775\) −0.658785 −0.0236643
\(776\) −43.7245 −1.56962
\(777\) 0 0
\(778\) 12.8673 0.461314
\(779\) 18.9100 0.677521
\(780\) 6.01690 0.215440
\(781\) −19.9141 −0.712583
\(782\) −37.3769 −1.33659
\(783\) −7.79290 −0.278496
\(784\) −0.530737 −0.0189549
\(785\) 4.02473 0.143649
\(786\) −26.1988 −0.934482
\(787\) 44.8503 1.59874 0.799370 0.600840i \(-0.205167\pi\)
0.799370 + 0.600840i \(0.205167\pi\)
\(788\) −19.6715 −0.700770
\(789\) 55.9267 1.99104
\(790\) 9.34556 0.332500
\(791\) 29.0435 1.03267
\(792\) 24.4061 0.867235
\(793\) 5.10902 0.181427
\(794\) 16.5944 0.588914
\(795\) 22.7169 0.805684
\(796\) 6.17149 0.218743
\(797\) −12.4685 −0.441658 −0.220829 0.975313i \(-0.570876\pi\)
−0.220829 + 0.975313i \(0.570876\pi\)
\(798\) −37.4653 −1.32626
\(799\) 21.2975 0.753451
\(800\) −5.85449 −0.206988
\(801\) −45.0470 −1.59166
\(802\) −0.122753 −0.00433456
\(803\) −12.2493 −0.432269
\(804\) −5.70459 −0.201185
\(805\) 19.1434 0.674715
\(806\) −0.748445 −0.0263628
\(807\) 48.2434 1.69825
\(808\) −18.5400 −0.652236
\(809\) −18.8505 −0.662748 −0.331374 0.943500i \(-0.607512\pi\)
−0.331374 + 0.943500i \(0.607512\pi\)
\(810\) 3.96655 0.139371
\(811\) 29.8244 1.04728 0.523638 0.851941i \(-0.324575\pi\)
0.523638 + 0.851941i \(0.324575\pi\)
\(812\) 12.2107 0.428511
\(813\) −61.0371 −2.14067
\(814\) 0 0
\(815\) −3.57756 −0.125316
\(816\) 19.6633 0.688354
\(817\) −83.9390 −2.93665
\(818\) −15.3863 −0.537971
\(819\) −15.5546 −0.543523
\(820\) −3.62551 −0.126608
\(821\) 11.9059 0.415517 0.207759 0.978180i \(-0.433383\pi\)
0.207759 + 0.978180i \(0.433383\pi\)
\(822\) 27.2160 0.949267
\(823\) 41.2544 1.43804 0.719020 0.694990i \(-0.244591\pi\)
0.719020 + 0.694990i \(0.244591\pi\)
\(824\) −23.4379 −0.816497
\(825\) 6.48930 0.225929
\(826\) −11.6033 −0.403732
\(827\) −27.0596 −0.940953 −0.470477 0.882412i \(-0.655918\pi\)
−0.470477 + 0.882412i \(0.655918\pi\)
\(828\) −43.0688 −1.49674
\(829\) 20.6787 0.718200 0.359100 0.933299i \(-0.383084\pi\)
0.359100 + 0.933299i \(0.383084\pi\)
\(830\) −0.837814 −0.0290810
\(831\) −14.8699 −0.515831
\(832\) −3.24076 −0.112353
\(833\) −3.31626 −0.114901
\(834\) 22.6909 0.785722
\(835\) −23.6674 −0.819045
\(836\) −27.7718 −0.960508
\(837\) −1.57605 −0.0544763
\(838\) 16.2714 0.562086
\(839\) −0.0974789 −0.00336534 −0.00168267 0.999999i \(-0.500536\pi\)
−0.00168267 + 0.999999i \(0.500536\pi\)
\(840\) 16.9650 0.585347
\(841\) −18.3893 −0.634113
\(842\) −20.0174 −0.689844
\(843\) 64.2385 2.21249
\(844\) −29.4623 −1.01413
\(845\) −10.5710 −0.363652
\(846\) −8.87916 −0.305272
\(847\) −12.5219 −0.430257
\(848\) 9.45539 0.324700
\(849\) −54.8080 −1.88101
\(850\) −4.98356 −0.170935
\(851\) 0 0
\(852\) 31.1429 1.06694
\(853\) −0.919899 −0.0314967 −0.0157484 0.999876i \(-0.505013\pi\)
−0.0157484 + 0.999876i \(0.505013\pi\)
\(854\) 6.09920 0.208710
\(855\) 29.9517 1.02433
\(856\) −30.5910 −1.04558
\(857\) −20.3344 −0.694608 −0.347304 0.937753i \(-0.612903\pi\)
−0.347304 + 0.937753i \(0.612903\pi\)
\(858\) 7.37249 0.251693
\(859\) −15.8959 −0.542360 −0.271180 0.962529i \(-0.587414\pi\)
−0.271180 + 0.962529i \(0.587414\pi\)
\(860\) 16.0932 0.548772
\(861\) 16.5635 0.564484
\(862\) 26.7801 0.912135
\(863\) −37.0558 −1.26139 −0.630697 0.776029i \(-0.717231\pi\)
−0.630697 + 0.776029i \(0.717231\pi\)
\(864\) −14.0061 −0.476496
\(865\) −15.7383 −0.535117
\(866\) −0.270029 −0.00917595
\(867\) 78.1762 2.65500
\(868\) 2.46951 0.0838208
\(869\) −31.6493 −1.07363
\(870\) 6.24184 0.211618
\(871\) −2.30297 −0.0780331
\(872\) 5.67039 0.192024
\(873\) −67.6170 −2.28849
\(874\) −41.8790 −1.41658
\(875\) 2.55244 0.0862881
\(876\) 19.1563 0.647230
\(877\) −25.4103 −0.858045 −0.429022 0.903294i \(-0.641142\pi\)
−0.429022 + 0.903294i \(0.641142\pi\)
\(878\) 21.9974 0.742376
\(879\) 20.2988 0.684662
\(880\) 2.70103 0.0910517
\(881\) 1.37793 0.0464238 0.0232119 0.999731i \(-0.492611\pi\)
0.0232119 + 0.999731i \(0.492611\pi\)
\(882\) 1.38258 0.0465540
\(883\) 54.5280 1.83501 0.917506 0.397722i \(-0.130199\pi\)
0.917506 + 0.397722i \(0.130199\pi\)
\(884\) 15.6485 0.526316
\(885\) 16.3935 0.551062
\(886\) −27.8305 −0.934984
\(887\) −6.43212 −0.215969 −0.107985 0.994153i \(-0.534440\pi\)
−0.107985 + 0.994153i \(0.534440\pi\)
\(888\) 0 0
\(889\) 39.9818 1.34095
\(890\) 8.39802 0.281502
\(891\) −13.4330 −0.450021
\(892\) −2.53355 −0.0848297
\(893\) 23.8628 0.798539
\(894\) −7.88947 −0.263863
\(895\) −10.1749 −0.340110
\(896\) 26.0176 0.869187
\(897\) −30.7272 −1.02595
\(898\) −2.75427 −0.0919111
\(899\) 2.14593 0.0715709
\(900\) −5.74248 −0.191416
\(901\) 59.0810 1.96827
\(902\) −4.44233 −0.147913
\(903\) −73.5234 −2.44670
\(904\) 28.7706 0.956897
\(905\) −2.54781 −0.0846921
\(906\) −32.4013 −1.07646
\(907\) 33.4197 1.10968 0.554841 0.831957i \(-0.312779\pi\)
0.554841 + 0.831957i \(0.312779\pi\)
\(908\) 6.75468 0.224162
\(909\) −28.6709 −0.950953
\(910\) 2.89982 0.0961280
\(911\) −52.4122 −1.73649 −0.868247 0.496132i \(-0.834753\pi\)
−0.868247 + 0.496132i \(0.834753\pi\)
\(912\) 22.0318 0.729546
\(913\) 2.83730 0.0939011
\(914\) 18.4674 0.610849
\(915\) −8.61711 −0.284873
\(916\) 34.4984 1.13986
\(917\) 34.8977 1.15242
\(918\) −11.9225 −0.393500
\(919\) 11.6967 0.385838 0.192919 0.981215i \(-0.438205\pi\)
0.192919 + 0.981215i \(0.438205\pi\)
\(920\) 18.9635 0.625209
\(921\) −23.6857 −0.780470
\(922\) −10.7580 −0.354297
\(923\) 12.5725 0.413830
\(924\) −24.3257 −0.800257
\(925\) 0 0
\(926\) 6.29594 0.206898
\(927\) −36.2451 −1.19044
\(928\) 19.0705 0.626020
\(929\) −10.4868 −0.344059 −0.172030 0.985092i \(-0.555032\pi\)
−0.172030 + 0.985092i \(0.555032\pi\)
\(930\) 1.26236 0.0413945
\(931\) −3.71571 −0.121777
\(932\) −3.57560 −0.117123
\(933\) 84.4392 2.76442
\(934\) −1.19999 −0.0392647
\(935\) 16.8771 0.551940
\(936\) −15.4085 −0.503643
\(937\) 38.3244 1.25200 0.626002 0.779821i \(-0.284690\pi\)
0.626002 + 0.779821i \(0.284690\pi\)
\(938\) −2.74930 −0.0897679
\(939\) −52.2122 −1.70388
\(940\) −4.57509 −0.149223
\(941\) 33.4866 1.09163 0.545816 0.837905i \(-0.316220\pi\)
0.545816 + 0.837905i \(0.316220\pi\)
\(942\) −7.71217 −0.251276
\(943\) 18.5148 0.602926
\(944\) 6.82344 0.222084
\(945\) 6.10635 0.198640
\(946\) 19.7189 0.641117
\(947\) 40.2997 1.30956 0.654782 0.755818i \(-0.272760\pi\)
0.654782 + 0.755818i \(0.272760\pi\)
\(948\) 49.4951 1.60753
\(949\) 7.73346 0.251039
\(950\) −5.58384 −0.181164
\(951\) −22.5801 −0.732211
\(952\) 44.1217 1.42999
\(953\) 10.8028 0.349939 0.174969 0.984574i \(-0.444017\pi\)
0.174969 + 0.984574i \(0.444017\pi\)
\(954\) −24.6315 −0.797475
\(955\) 10.4639 0.338604
\(956\) 2.98419 0.0965156
\(957\) −21.1383 −0.683305
\(958\) 11.7049 0.378167
\(959\) −36.2526 −1.17066
\(960\) 5.46601 0.176415
\(961\) −30.5660 −0.986000
\(962\) 0 0
\(963\) −47.3069 −1.52444
\(964\) −29.7025 −0.956652
\(965\) 9.81172 0.315850
\(966\) −36.6824 −1.18024
\(967\) −46.0540 −1.48100 −0.740499 0.672058i \(-0.765411\pi\)
−0.740499 + 0.672058i \(0.765411\pi\)
\(968\) −12.4043 −0.398688
\(969\) 137.663 4.42239
\(970\) 12.6057 0.404744
\(971\) −0.231513 −0.00742961 −0.00371481 0.999993i \(-0.501182\pi\)
−0.00371481 + 0.999993i \(0.501182\pi\)
\(972\) 31.5478 1.01190
\(973\) −30.2250 −0.968970
\(974\) −4.81680 −0.154340
\(975\) −4.09694 −0.131207
\(976\) −3.58668 −0.114807
\(977\) −8.81121 −0.281896 −0.140948 0.990017i \(-0.545015\pi\)
−0.140948 + 0.990017i \(0.545015\pi\)
\(978\) 6.85530 0.219208
\(979\) −28.4404 −0.908958
\(980\) 0.712392 0.0227565
\(981\) 8.76887 0.279968
\(982\) 13.2698 0.423455
\(983\) 18.8943 0.602634 0.301317 0.953524i \(-0.402574\pi\)
0.301317 + 0.953524i \(0.402574\pi\)
\(984\) 16.4079 0.523066
\(985\) 13.3945 0.426783
\(986\) 16.2335 0.516980
\(987\) 20.9018 0.665312
\(988\) 17.5334 0.557811
\(989\) −82.1849 −2.61333
\(990\) −7.03625 −0.223627
\(991\) −30.3969 −0.965589 −0.482794 0.875734i \(-0.660378\pi\)
−0.482794 + 0.875734i \(0.660378\pi\)
\(992\) 3.85685 0.122455
\(993\) 60.3842 1.91623
\(994\) 15.0092 0.476063
\(995\) −4.20221 −0.133219
\(996\) −4.43715 −0.140597
\(997\) −35.2291 −1.11572 −0.557859 0.829936i \(-0.688377\pi\)
−0.557859 + 0.829936i \(0.688377\pi\)
\(998\) −19.0836 −0.604079
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6845.2.a.f.1.3 5
37.36 even 2 185.2.a.e.1.3 5
111.110 odd 2 1665.2.a.p.1.3 5
148.147 odd 2 2960.2.a.w.1.1 5
185.73 odd 4 925.2.b.f.149.5 10
185.147 odd 4 925.2.b.f.149.6 10
185.184 even 2 925.2.a.f.1.3 5
259.258 odd 2 9065.2.a.k.1.3 5
555.554 odd 2 8325.2.a.ch.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.a.e.1.3 5 37.36 even 2
925.2.a.f.1.3 5 185.184 even 2
925.2.b.f.149.5 10 185.73 odd 4
925.2.b.f.149.6 10 185.147 odd 4
1665.2.a.p.1.3 5 111.110 odd 2
2960.2.a.w.1.1 5 148.147 odd 2
6845.2.a.f.1.3 5 1.1 even 1 trivial
8325.2.a.ch.1.3 5 555.554 odd 2
9065.2.a.k.1.3 5 259.258 odd 2