Properties

Label 6845.2.a.f
Level $6845$
Weight $2$
Character orbit 6845.a
Self dual yes
Analytic conductor $54.658$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6845,2,Mod(1,6845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6845.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6845, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6845 = 5 \cdot 37^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6845.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-2,3,10,5,6,11] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.6576001836\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.973904.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 8x^{3} + 6x^{2} + 19x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 185)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{4} q^{2} + ( - \beta_1 + 1) q^{3} + (\beta_{3} + 2) q^{4} + q^{5} + ( - \beta_{4} + \beta_{3} + \beta_{2} + \cdots + 1) q^{6} + ( - \beta_{4} + \beta_{2} + \beta_1 + 2) q^{7} + ( - \beta_{4} - 2 \beta_1) q^{8}+ \cdots + (2 \beta_{4} - 2 \beta_{3} - 2 \beta_1 - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{2} + 3 q^{3} + 10 q^{4} + 5 q^{5} + 6 q^{6} + 11 q^{7} - 6 q^{8} + 6 q^{9} - 2 q^{10} - 5 q^{11} - 2 q^{12} - 4 q^{13} + 8 q^{14} + 3 q^{15} + 16 q^{16} - 2 q^{18} + 4 q^{19} + 10 q^{20} + 3 q^{21}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 2x^{4} - 8x^{3} + 6x^{2} + 19x + 6 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{4} + 4\nu^{3} + 2\nu^{2} - 12\nu - 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 3\nu^{3} - 4\nu^{2} + 9\nu + 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} + \beta_{3} + 2\beta_{2} + 7\beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 4\beta_{4} + 3\beta_{3} + 10\beta_{2} + 20\beta _1 + 18 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.29298
−0.383115
−1.62871
2.10563
−1.38679
−2.72362 −2.29298 5.41809 1.00000 6.24519 3.82710 −9.30957 2.25774 −2.72362
1.2 −2.15510 1.38311 2.64446 1.00000 −2.98075 −2.62521 −1.38887 −1.08699 −2.15510
1.3 −0.728950 2.62871 −1.46863 1.00000 −1.91620 2.55244 2.52846 3.91009 −0.728950
1.4 1.13359 −1.10563 −0.714970 1.00000 −1.25333 2.46164 −3.07767 −1.77758 1.13359
1.5 2.47408 2.38679 4.12105 1.00000 5.90509 4.78404 5.24765 2.69675 2.47408
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(37\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6845.2.a.f 5
37.b even 2 1 185.2.a.e 5
111.d odd 2 1 1665.2.a.p 5
148.b odd 2 1 2960.2.a.w 5
185.d even 2 1 925.2.a.f 5
185.h odd 4 2 925.2.b.f 10
259.b odd 2 1 9065.2.a.k 5
555.b odd 2 1 8325.2.a.ch 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
185.2.a.e 5 37.b even 2 1
925.2.a.f 5 185.d even 2 1
925.2.b.f 10 185.h odd 4 2
1665.2.a.p 5 111.d odd 2 1
2960.2.a.w 5 148.b odd 2 1
6845.2.a.f 5 1.a even 1 1 trivial
8325.2.a.ch 5 555.b odd 2 1
9065.2.a.k 5 259.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6845))\):

\( T_{2}^{5} + 2T_{2}^{4} - 8T_{2}^{3} - 14T_{2}^{2} + 11T_{2} + 12 \) Copy content Toggle raw display
\( T_{7}^{5} - 11T_{7}^{4} + 32T_{7}^{3} + 32T_{7}^{2} - 268T_{7} + 302 \) Copy content Toggle raw display
\( T_{17}^{5} - 52T_{17}^{3} - 12T_{17}^{2} + 356T_{17} - 192 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} + 2 T^{4} + \cdots + 12 \) Copy content Toggle raw display
$3$ \( T^{5} - 3 T^{4} + \cdots - 22 \) Copy content Toggle raw display
$5$ \( (T - 1)^{5} \) Copy content Toggle raw display
$7$ \( T^{5} - 11 T^{4} + \cdots + 302 \) Copy content Toggle raw display
$11$ \( T^{5} + 5 T^{4} + \cdots + 96 \) Copy content Toggle raw display
$13$ \( T^{5} + 4 T^{4} + \cdots + 256 \) Copy content Toggle raw display
$17$ \( T^{5} - 52 T^{3} + \cdots - 192 \) Copy content Toggle raw display
$19$ \( T^{5} - 4 T^{4} + \cdots + 8 \) Copy content Toggle raw display
$23$ \( T^{5} + 4 T^{4} + \cdots - 192 \) Copy content Toggle raw display
$29$ \( T^{5} - 4 T^{4} + \cdots + 192 \) Copy content Toggle raw display
$31$ \( T^{5} + 8 T^{4} + \cdots - 324 \) Copy content Toggle raw display
$37$ \( T^{5} \) Copy content Toggle raw display
$41$ \( T^{5} + 5 T^{4} + \cdots + 96 \) Copy content Toggle raw display
$43$ \( T^{5} + 10 T^{4} + \cdots + 2528 \) Copy content Toggle raw display
$47$ \( T^{5} - 7 T^{4} + \cdots - 978 \) Copy content Toggle raw display
$53$ \( T^{5} + T^{4} + \cdots + 528 \) Copy content Toggle raw display
$59$ \( T^{5} - 30 T^{4} + \cdots + 576 \) Copy content Toggle raw display
$61$ \( T^{5} - 14 T^{4} + \cdots - 3296 \) Copy content Toggle raw display
$67$ \( T^{5} - 24 T^{4} + \cdots + 10952 \) Copy content Toggle raw display
$71$ \( T^{5} + 7 T^{4} + \cdots - 7104 \) Copy content Toggle raw display
$73$ \( T^{5} - 5 T^{4} + \cdots + 368 \) Copy content Toggle raw display
$79$ \( T^{5} + 28 T^{4} + \cdots + 19508 \) Copy content Toggle raw display
$83$ \( T^{5} - 27 T^{4} + \cdots + 4818 \) Copy content Toggle raw display
$89$ \( T^{5} + 6 T^{4} + \cdots - 22944 \) Copy content Toggle raw display
$97$ \( T^{5} - 26 T^{4} + \cdots + 166976 \) Copy content Toggle raw display
show more
show less