Properties

Label 925.2.b.f.149.5
Level $925$
Weight $2$
Character 925.149
Analytic conductor $7.386$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(149,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.149"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,-20,0,-12,0,0,-12,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.60703296077824.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 20x^{8} + 142x^{6} + 420x^{4} + 457x^{2} + 144 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 149.5
Root \(0.728950i\) of defining polynomial
Character \(\chi\) \(=\) 925.149
Dual form 925.2.b.f.149.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.728950i q^{2} +2.62871i q^{3} +1.46863 q^{4} +1.91620 q^{6} -2.55244i q^{7} -2.52846i q^{8} -3.91009 q^{9} +2.46863 q^{11} +3.86060i q^{12} +1.55854i q^{13} -1.86060 q^{14} +1.09414 q^{16} +6.83662i q^{17} +2.85026i q^{18} +7.66011 q^{19} +6.70960 q^{21} -1.79951i q^{22} -7.50003i q^{23} +6.64658 q^{24} +1.13610 q^{26} -2.39236i q^{27} -3.74859i q^{28} -3.25741 q^{29} +0.658785 q^{31} -5.85449i q^{32} +6.48930i q^{33} +4.98356 q^{34} -5.74248 q^{36} -1.00000i q^{37} -5.58384i q^{38} -4.09694 q^{39} +2.46863 q^{41} -4.89097i q^{42} +10.9579i q^{43} +3.62551 q^{44} -5.46715 q^{46} -3.11521i q^{47} +2.87617i q^{48} +0.485072 q^{49} -17.9715 q^{51} +2.28892i q^{52} +8.64184i q^{53} -1.74391 q^{54} -6.45373 q^{56} +20.1362i q^{57} +2.37449i q^{58} +6.23634 q^{59} +3.27808 q^{61} -0.480222i q^{62} +9.98026i q^{63} -2.07935 q^{64} +4.73038 q^{66} -1.47764i q^{67} +10.0405i q^{68} +19.7154 q^{69} -8.06686 q^{71} +9.88651i q^{72} -4.96199i q^{73} -0.728950 q^{74} +11.2499 q^{76} -6.30102i q^{77} +2.98647i q^{78} -12.8206 q^{79} -5.44146 q^{81} -1.79951i q^{82} +1.14934i q^{83} +9.85393 q^{84} +7.98779 q^{86} -8.56277i q^{87} -6.24184i q^{88} -11.5207 q^{89} +3.97807 q^{91} -11.0148i q^{92} +1.73175i q^{93} -2.27083 q^{94} +15.3897 q^{96} -17.2929i q^{97} -0.353594i q^{98} -9.65257 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 20 q^{4} - 12 q^{6} - 12 q^{9} - 10 q^{11} + 16 q^{14} + 32 q^{16} + 8 q^{19} + 6 q^{21} + 84 q^{24} - 8 q^{26} + 8 q^{29} + 16 q^{31} + 64 q^{34} + 32 q^{36} - 4 q^{39} - 10 q^{41} + 92 q^{44} - 44 q^{49}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 0.728950i − 0.515446i −0.966219 0.257723i \(-0.917028\pi\)
0.966219 0.257723i \(-0.0829722\pi\)
\(3\) 2.62871i 1.51768i 0.651275 + 0.758842i \(0.274234\pi\)
−0.651275 + 0.758842i \(0.725766\pi\)
\(4\) 1.46863 0.734316
\(5\) 0 0
\(6\) 1.91620 0.782284
\(7\) − 2.55244i − 0.964730i −0.875970 0.482365i \(-0.839778\pi\)
0.875970 0.482365i \(-0.160222\pi\)
\(8\) − 2.52846i − 0.893946i
\(9\) −3.91009 −1.30336
\(10\) 0 0
\(11\) 2.46863 0.744320 0.372160 0.928169i \(-0.378617\pi\)
0.372160 + 0.928169i \(0.378617\pi\)
\(12\) 3.86060i 1.11446i
\(13\) 1.55854i 0.432261i 0.976364 + 0.216131i \(0.0693437\pi\)
−0.976364 + 0.216131i \(0.930656\pi\)
\(14\) −1.86060 −0.497266
\(15\) 0 0
\(16\) 1.09414 0.273535
\(17\) 6.83662i 1.65812i 0.559156 + 0.829062i \(0.311125\pi\)
−0.559156 + 0.829062i \(0.688875\pi\)
\(18\) 2.85026i 0.671813i
\(19\) 7.66011 1.75735 0.878675 0.477421i \(-0.158428\pi\)
0.878675 + 0.477421i \(0.158428\pi\)
\(20\) 0 0
\(21\) 6.70960 1.46415
\(22\) − 1.79951i − 0.383657i
\(23\) − 7.50003i − 1.56387i −0.623363 0.781933i \(-0.714234\pi\)
0.623363 0.781933i \(-0.285766\pi\)
\(24\) 6.64658 1.35673
\(25\) 0 0
\(26\) 1.13610 0.222807
\(27\) − 2.39236i − 0.460410i
\(28\) − 3.74859i − 0.708416i
\(29\) −3.25741 −0.604886 −0.302443 0.953167i \(-0.597802\pi\)
−0.302443 + 0.953167i \(0.597802\pi\)
\(30\) 0 0
\(31\) 0.658785 0.118321 0.0591607 0.998248i \(-0.481158\pi\)
0.0591607 + 0.998248i \(0.481158\pi\)
\(32\) − 5.85449i − 1.03494i
\(33\) 6.48930i 1.12964i
\(34\) 4.98356 0.854673
\(35\) 0 0
\(36\) −5.74248 −0.957080
\(37\) − 1.00000i − 0.164399i
\(38\) − 5.58384i − 0.905818i
\(39\) −4.09694 −0.656036
\(40\) 0 0
\(41\) 2.46863 0.385535 0.192768 0.981244i \(-0.438254\pi\)
0.192768 + 0.981244i \(0.438254\pi\)
\(42\) − 4.89097i − 0.754692i
\(43\) 10.9579i 1.67107i 0.549438 + 0.835535i \(0.314842\pi\)
−0.549438 + 0.835535i \(0.685158\pi\)
\(44\) 3.62551 0.546566
\(45\) 0 0
\(46\) −5.46715 −0.806088
\(47\) − 3.11521i − 0.454400i −0.973848 0.227200i \(-0.927043\pi\)
0.973848 0.227200i \(-0.0729571\pi\)
\(48\) 2.87617i 0.415140i
\(49\) 0.485072 0.0692960
\(50\) 0 0
\(51\) −17.9715 −2.51651
\(52\) 2.28892i 0.317416i
\(53\) 8.64184i 1.18705i 0.804816 + 0.593524i \(0.202264\pi\)
−0.804816 + 0.593524i \(0.797736\pi\)
\(54\) −1.74391 −0.237317
\(55\) 0 0
\(56\) −6.45373 −0.862416
\(57\) 20.1362i 2.66710i
\(58\) 2.37449i 0.311786i
\(59\) 6.23634 0.811903 0.405951 0.913895i \(-0.366940\pi\)
0.405951 + 0.913895i \(0.366940\pi\)
\(60\) 0 0
\(61\) 3.27808 0.419716 0.209858 0.977732i \(-0.432700\pi\)
0.209858 + 0.977732i \(0.432700\pi\)
\(62\) − 0.480222i − 0.0609882i
\(63\) 9.98026i 1.25739i
\(64\) −2.07935 −0.259919
\(65\) 0 0
\(66\) 4.73038 0.582270
\(67\) − 1.47764i − 0.180523i −0.995918 0.0902615i \(-0.971230\pi\)
0.995918 0.0902615i \(-0.0287703\pi\)
\(68\) 10.0405i 1.21759i
\(69\) 19.7154 2.37345
\(70\) 0 0
\(71\) −8.06686 −0.957360 −0.478680 0.877989i \(-0.658885\pi\)
−0.478680 + 0.877989i \(0.658885\pi\)
\(72\) 9.88651i 1.16514i
\(73\) − 4.96199i − 0.580757i −0.956912 0.290379i \(-0.906219\pi\)
0.956912 0.290379i \(-0.0937812\pi\)
\(74\) −0.728950 −0.0847388
\(75\) 0 0
\(76\) 11.2499 1.29045
\(77\) − 6.30102i − 0.718068i
\(78\) 2.98647i 0.338151i
\(79\) −12.8206 −1.44243 −0.721214 0.692713i \(-0.756415\pi\)
−0.721214 + 0.692713i \(0.756415\pi\)
\(80\) 0 0
\(81\) −5.44146 −0.604607
\(82\) − 1.79951i − 0.198723i
\(83\) 1.14934i 0.126157i 0.998009 + 0.0630784i \(0.0200918\pi\)
−0.998009 + 0.0630784i \(0.979908\pi\)
\(84\) 9.85393 1.07515
\(85\) 0 0
\(86\) 7.98779 0.861346
\(87\) − 8.56277i − 0.918026i
\(88\) − 6.24184i − 0.665382i
\(89\) −11.5207 −1.22119 −0.610596 0.791942i \(-0.709070\pi\)
−0.610596 + 0.791942i \(0.709070\pi\)
\(90\) 0 0
\(91\) 3.97807 0.417015
\(92\) − 11.0148i − 1.14837i
\(93\) 1.73175i 0.179574i
\(94\) −2.27083 −0.234218
\(95\) 0 0
\(96\) 15.3897 1.57071
\(97\) − 17.2929i − 1.75583i −0.478815 0.877916i \(-0.658933\pi\)
0.478815 0.877916i \(-0.341067\pi\)
\(98\) − 0.353594i − 0.0357183i
\(99\) −9.65257 −0.970120
\(100\) 0 0
\(101\) −7.33253 −0.729614 −0.364807 0.931083i \(-0.618865\pi\)
−0.364807 + 0.931083i \(0.618865\pi\)
\(102\) 13.1003i 1.29712i
\(103\) 9.26962i 0.913363i 0.889630 + 0.456681i \(0.150962\pi\)
−0.889630 + 0.456681i \(0.849038\pi\)
\(104\) 3.94071 0.386418
\(105\) 0 0
\(106\) 6.29947 0.611859
\(107\) 12.0987i 1.16962i 0.811170 + 0.584811i \(0.198831\pi\)
−0.811170 + 0.584811i \(0.801169\pi\)
\(108\) − 3.51350i − 0.338086i
\(109\) 2.24262 0.214804 0.107402 0.994216i \(-0.465747\pi\)
0.107402 + 0.994216i \(0.465747\pi\)
\(110\) 0 0
\(111\) 2.62871 0.249506
\(112\) − 2.79272i − 0.263888i
\(113\) − 11.3787i − 1.07042i −0.844719 0.535210i \(-0.820232\pi\)
0.844719 0.535210i \(-0.179768\pi\)
\(114\) 14.6783 1.37475
\(115\) 0 0
\(116\) −4.78394 −0.444177
\(117\) − 6.09403i − 0.563394i
\(118\) − 4.54598i − 0.418492i
\(119\) 17.4500 1.59964
\(120\) 0 0
\(121\) −4.90586 −0.445987
\(122\) − 2.38956i − 0.216341i
\(123\) 6.48930i 0.585121i
\(124\) 0.967513 0.0868852
\(125\) 0 0
\(126\) 7.27511 0.648118
\(127\) − 15.6642i − 1.38997i −0.719024 0.694985i \(-0.755411\pi\)
0.719024 0.694985i \(-0.244589\pi\)
\(128\) − 10.1932i − 0.900964i
\(129\) −28.8052 −2.53615
\(130\) 0 0
\(131\) −13.6723 −1.19456 −0.597278 0.802034i \(-0.703751\pi\)
−0.597278 + 0.802034i \(0.703751\pi\)
\(132\) 9.53040i 0.829514i
\(133\) − 19.5519i − 1.69537i
\(134\) −1.07713 −0.0930498
\(135\) 0 0
\(136\) 17.2861 1.48227
\(137\) 14.2031i 1.21346i 0.794910 + 0.606728i \(0.207518\pi\)
−0.794910 + 0.606728i \(0.792482\pi\)
\(138\) − 14.3715i − 1.22339i
\(139\) 11.8416 1.00440 0.502198 0.864753i \(-0.332525\pi\)
0.502198 + 0.864753i \(0.332525\pi\)
\(140\) 0 0
\(141\) 8.18896 0.689635
\(142\) 5.88034i 0.493467i
\(143\) 3.84746i 0.321741i
\(144\) −4.27819 −0.356516
\(145\) 0 0
\(146\) −3.61705 −0.299349
\(147\) 1.27511i 0.105169i
\(148\) − 1.46863i − 0.120721i
\(149\) −4.11726 −0.337299 −0.168649 0.985676i \(-0.553941\pi\)
−0.168649 + 0.985676i \(0.553941\pi\)
\(150\) 0 0
\(151\) 16.9092 1.37605 0.688025 0.725687i \(-0.258478\pi\)
0.688025 + 0.725687i \(0.258478\pi\)
\(152\) − 19.3683i − 1.57097i
\(153\) − 26.7318i − 2.16114i
\(154\) −4.59313 −0.370125
\(155\) 0 0
\(156\) −6.01690 −0.481737
\(157\) − 4.02473i − 0.321208i −0.987019 0.160604i \(-0.948656\pi\)
0.987019 0.160604i \(-0.0513442\pi\)
\(158\) 9.34556i 0.743493i
\(159\) −22.7169 −1.80156
\(160\) 0 0
\(161\) −19.1434 −1.50871
\(162\) 3.96655i 0.311642i
\(163\) 3.57756i 0.280216i 0.990136 + 0.140108i \(0.0447450\pi\)
−0.990136 + 0.140108i \(0.955255\pi\)
\(164\) 3.62551 0.283105
\(165\) 0 0
\(166\) 0.837814 0.0650270
\(167\) − 23.6674i − 1.83144i −0.401816 0.915720i \(-0.631621\pi\)
0.401816 0.915720i \(-0.368379\pi\)
\(168\) − 16.9650i − 1.30887i
\(169\) 10.5710 0.813150
\(170\) 0 0
\(171\) −29.9517 −2.29047
\(172\) 16.0932i 1.22709i
\(173\) − 15.7383i − 1.19656i −0.801288 0.598279i \(-0.795852\pi\)
0.801288 0.598279i \(-0.204148\pi\)
\(174\) −6.24184 −0.473192
\(175\) 0 0
\(176\) 2.70103 0.203598
\(177\) 16.3935i 1.23221i
\(178\) 8.39802i 0.629459i
\(179\) −10.1749 −0.760510 −0.380255 0.924882i \(-0.624164\pi\)
−0.380255 + 0.924882i \(0.624164\pi\)
\(180\) 0 0
\(181\) −2.54781 −0.189377 −0.0946886 0.995507i \(-0.530186\pi\)
−0.0946886 + 0.995507i \(0.530186\pi\)
\(182\) − 2.89982i − 0.214949i
\(183\) 8.61711i 0.636995i
\(184\) −18.9635 −1.39801
\(185\) 0 0
\(186\) 1.26236 0.0925608
\(187\) 16.8771i 1.23418i
\(188\) − 4.57509i − 0.333673i
\(189\) −6.10635 −0.444172
\(190\) 0 0
\(191\) −10.4639 −0.757141 −0.378571 0.925572i \(-0.623584\pi\)
−0.378571 + 0.925572i \(0.623584\pi\)
\(192\) − 5.46601i − 0.394475i
\(193\) − 9.81172i − 0.706263i −0.935574 0.353131i \(-0.885117\pi\)
0.935574 0.353131i \(-0.114883\pi\)
\(194\) −12.6057 −0.905036
\(195\) 0 0
\(196\) 0.712392 0.0508852
\(197\) − 13.3945i − 0.954317i −0.878817 0.477158i \(-0.841667\pi\)
0.878817 0.477158i \(-0.158333\pi\)
\(198\) 7.03625i 0.500044i
\(199\) −4.20221 −0.297887 −0.148943 0.988846i \(-0.547587\pi\)
−0.148943 + 0.988846i \(0.547587\pi\)
\(200\) 0 0
\(201\) 3.88429 0.273977
\(202\) 5.34505i 0.376077i
\(203\) 8.31433i 0.583552i
\(204\) −26.3935 −1.84791
\(205\) 0 0
\(206\) 6.75709 0.470789
\(207\) 29.3258i 2.03829i
\(208\) 1.70526i 0.118239i
\(209\) 18.9100 1.30803
\(210\) 0 0
\(211\) 20.0610 1.38106 0.690530 0.723304i \(-0.257377\pi\)
0.690530 + 0.723304i \(0.257377\pi\)
\(212\) 12.6917i 0.871668i
\(213\) − 21.2054i − 1.45297i
\(214\) 8.81932 0.602876
\(215\) 0 0
\(216\) −6.04899 −0.411582
\(217\) − 1.68151i − 0.114148i
\(218\) − 1.63476i − 0.110720i
\(219\) 13.0436 0.881406
\(220\) 0 0
\(221\) −10.6552 −0.716743
\(222\) − 1.91620i − 0.128607i
\(223\) 1.72511i 0.115522i 0.998330 + 0.0577610i \(0.0183961\pi\)
−0.998330 + 0.0577610i \(0.981604\pi\)
\(224\) −14.9432 −0.998436
\(225\) 0 0
\(226\) −8.29452 −0.551744
\(227\) − 4.59930i − 0.305266i −0.988283 0.152633i \(-0.951225\pi\)
0.988283 0.152633i \(-0.0487753\pi\)
\(228\) 29.5726i 1.95849i
\(229\) 23.4902 1.55227 0.776137 0.630565i \(-0.217177\pi\)
0.776137 + 0.630565i \(0.217177\pi\)
\(230\) 0 0
\(231\) 16.5635 1.08980
\(232\) 8.23623i 0.540735i
\(233\) 2.43465i 0.159499i 0.996815 + 0.0797496i \(0.0254121\pi\)
−0.996815 + 0.0797496i \(0.974588\pi\)
\(234\) −4.44225 −0.290399
\(235\) 0 0
\(236\) 9.15889 0.596193
\(237\) − 33.7015i − 2.18915i
\(238\) − 12.7202i − 0.824529i
\(239\) −2.03195 −0.131436 −0.0657180 0.997838i \(-0.520934\pi\)
−0.0657180 + 0.997838i \(0.520934\pi\)
\(240\) 0 0
\(241\) −20.2246 −1.30278 −0.651390 0.758743i \(-0.725814\pi\)
−0.651390 + 0.758743i \(0.725814\pi\)
\(242\) 3.57613i 0.229882i
\(243\) − 21.4811i − 1.37801i
\(244\) 4.81430 0.308204
\(245\) 0 0
\(246\) 4.73038 0.301598
\(247\) 11.9386i 0.759634i
\(248\) − 1.66571i − 0.105773i
\(249\) −3.02128 −0.191466
\(250\) 0 0
\(251\) 0.695568 0.0439038 0.0219519 0.999759i \(-0.493012\pi\)
0.0219519 + 0.999759i \(0.493012\pi\)
\(252\) 14.6573i 0.923324i
\(253\) − 18.5148i − 1.16402i
\(254\) −11.4184 −0.716454
\(255\) 0 0
\(256\) −11.5891 −0.724317
\(257\) − 7.13610i − 0.445138i −0.974917 0.222569i \(-0.928556\pi\)
0.974917 0.222569i \(-0.0714442\pi\)
\(258\) 20.9975i 1.30725i
\(259\) −2.55244 −0.158601
\(260\) 0 0
\(261\) 12.7368 0.788386
\(262\) 9.96644i 0.615729i
\(263\) 21.2754i 1.31190i 0.754806 + 0.655948i \(0.227731\pi\)
−0.754806 + 0.655948i \(0.772269\pi\)
\(264\) 16.4079 1.00984
\(265\) 0 0
\(266\) −14.2524 −0.873870
\(267\) − 30.2845i − 1.85338i
\(268\) − 2.17011i − 0.132561i
\(269\) −18.3525 −1.11897 −0.559486 0.828840i \(-0.689002\pi\)
−0.559486 + 0.828840i \(0.689002\pi\)
\(270\) 0 0
\(271\) −23.2195 −1.41048 −0.705241 0.708967i \(-0.749161\pi\)
−0.705241 + 0.708967i \(0.749161\pi\)
\(272\) 7.48023i 0.453555i
\(273\) 10.4572i 0.632897i
\(274\) 10.3534 0.625471
\(275\) 0 0
\(276\) 28.9546 1.74286
\(277\) − 5.65674i − 0.339880i −0.985454 0.169940i \(-0.945643\pi\)
0.985454 0.169940i \(-0.0543574\pi\)
\(278\) − 8.63197i − 0.517711i
\(279\) −2.57591 −0.154216
\(280\) 0 0
\(281\) −24.4373 −1.45781 −0.728903 0.684616i \(-0.759970\pi\)
−0.728903 + 0.684616i \(0.759970\pi\)
\(282\) − 5.96935i − 0.355469i
\(283\) 20.8498i 1.23939i 0.784841 + 0.619697i \(0.212744\pi\)
−0.784841 + 0.619697i \(0.787256\pi\)
\(284\) −11.8472 −0.703005
\(285\) 0 0
\(286\) 2.80461 0.165840
\(287\) − 6.30102i − 0.371938i
\(288\) 22.8916i 1.34890i
\(289\) −29.7394 −1.74938
\(290\) 0 0
\(291\) 45.4580 2.66480
\(292\) − 7.28734i − 0.426459i
\(293\) 7.72199i 0.451123i 0.974229 + 0.225562i \(0.0724217\pi\)
−0.974229 + 0.225562i \(0.927578\pi\)
\(294\) 0.929493 0.0542091
\(295\) 0 0
\(296\) −2.52846 −0.146964
\(297\) − 5.90586i − 0.342693i
\(298\) 3.00128i 0.173859i
\(299\) 11.6891 0.675998
\(300\) 0 0
\(301\) 27.9694 1.61213
\(302\) − 12.3260i − 0.709280i
\(303\) − 19.2751i − 1.10732i
\(304\) 8.38124 0.480697
\(305\) 0 0
\(306\) −19.4862 −1.11395
\(307\) 9.01041i 0.514251i 0.966378 + 0.257126i \(0.0827754\pi\)
−0.966378 + 0.257126i \(0.917225\pi\)
\(308\) − 9.25388i − 0.527289i
\(309\) −24.3671 −1.38620
\(310\) 0 0
\(311\) −32.1220 −1.82147 −0.910735 0.412991i \(-0.864484\pi\)
−0.910735 + 0.412991i \(0.864484\pi\)
\(312\) 10.3590i 0.586460i
\(313\) 19.8623i 1.12268i 0.827584 + 0.561342i \(0.189715\pi\)
−0.827584 + 0.561342i \(0.810285\pi\)
\(314\) −2.93383 −0.165565
\(315\) 0 0
\(316\) −18.8287 −1.05920
\(317\) 8.58984i 0.482453i 0.970469 + 0.241227i \(0.0775497\pi\)
−0.970469 + 0.241227i \(0.922450\pi\)
\(318\) 16.5595i 0.928609i
\(319\) −8.04135 −0.450229
\(320\) 0 0
\(321\) −31.8038 −1.77512
\(322\) 13.9546i 0.777657i
\(323\) 52.3693i 2.91390i
\(324\) −7.99150 −0.443972
\(325\) 0 0
\(326\) 2.60786 0.144436
\(327\) 5.89520i 0.326005i
\(328\) − 6.24184i − 0.344648i
\(329\) −7.95137 −0.438373
\(330\) 0 0
\(331\) −22.9711 −1.26260 −0.631302 0.775537i \(-0.717479\pi\)
−0.631302 + 0.775537i \(0.717479\pi\)
\(332\) 1.68796i 0.0926389i
\(333\) 3.91009i 0.214272i
\(334\) −17.2524 −0.944008
\(335\) 0 0
\(336\) 7.34125 0.400498
\(337\) − 26.2320i − 1.42895i −0.699663 0.714473i \(-0.746666\pi\)
0.699663 0.714473i \(-0.253334\pi\)
\(338\) − 7.70570i − 0.419135i
\(339\) 29.9113 1.62456
\(340\) 0 0
\(341\) 1.62630 0.0880690
\(342\) 21.8333i 1.18061i
\(343\) − 19.1052i − 1.03158i
\(344\) 27.7067 1.49385
\(345\) 0 0
\(346\) −11.4724 −0.616760
\(347\) 0.390348i 0.0209550i 0.999945 + 0.0104775i \(0.00333515\pi\)
−0.999945 + 0.0104775i \(0.996665\pi\)
\(348\) − 12.5756i − 0.674121i
\(349\) 6.37205 0.341088 0.170544 0.985350i \(-0.445448\pi\)
0.170544 + 0.985350i \(0.445448\pi\)
\(350\) 0 0
\(351\) 3.72859 0.199017
\(352\) − 14.4526i − 0.770326i
\(353\) − 9.35970i − 0.498167i −0.968482 0.249083i \(-0.919871\pi\)
0.968482 0.249083i \(-0.0801293\pi\)
\(354\) 11.9501 0.635138
\(355\) 0 0
\(356\) −16.9197 −0.896741
\(357\) 45.8710i 2.42775i
\(358\) 7.41702i 0.392002i
\(359\) 5.38443 0.284179 0.142090 0.989854i \(-0.454618\pi\)
0.142090 + 0.989854i \(0.454618\pi\)
\(360\) 0 0
\(361\) 39.6773 2.08828
\(362\) 1.85723i 0.0976137i
\(363\) − 12.8961i − 0.676868i
\(364\) 5.84232 0.306221
\(365\) 0 0
\(366\) 6.28145 0.328337
\(367\) 22.1964i 1.15864i 0.815099 + 0.579321i \(0.196682\pi\)
−0.815099 + 0.579321i \(0.803318\pi\)
\(368\) − 8.20609i − 0.427772i
\(369\) −9.65257 −0.502493
\(370\) 0 0
\(371\) 22.0577 1.14518
\(372\) 2.54331i 0.131864i
\(373\) − 31.6626i − 1.63943i −0.572774 0.819713i \(-0.694133\pi\)
0.572774 0.819713i \(-0.305867\pi\)
\(374\) 12.3026 0.636151
\(375\) 0 0
\(376\) −7.87668 −0.406209
\(377\) − 5.07680i − 0.261469i
\(378\) 4.45123i 0.228946i
\(379\) 15.6622 0.804515 0.402257 0.915527i \(-0.368226\pi\)
0.402257 + 0.915527i \(0.368226\pi\)
\(380\) 0 0
\(381\) 41.1765 2.10953
\(382\) 7.62766i 0.390265i
\(383\) 7.84825i 0.401027i 0.979691 + 0.200513i \(0.0642610\pi\)
−0.979691 + 0.200513i \(0.935739\pi\)
\(384\) 26.7950 1.36738
\(385\) 0 0
\(386\) −7.15226 −0.364040
\(387\) − 42.8465i − 2.17801i
\(388\) − 25.3970i − 1.28933i
\(389\) −17.6518 −0.894981 −0.447491 0.894289i \(-0.647682\pi\)
−0.447491 + 0.894289i \(0.647682\pi\)
\(390\) 0 0
\(391\) 51.2749 2.59308
\(392\) − 1.22649i − 0.0619469i
\(393\) − 35.9405i − 1.81296i
\(394\) −9.76391 −0.491899
\(395\) 0 0
\(396\) −14.1761 −0.712374
\(397\) 22.7648i 1.14253i 0.820765 + 0.571267i \(0.193548\pi\)
−0.820765 + 0.571267i \(0.806452\pi\)
\(398\) 3.06320i 0.153544i
\(399\) 51.3963 2.57303
\(400\) 0 0
\(401\) −0.168397 −0.00840934 −0.00420467 0.999991i \(-0.501338\pi\)
−0.00420467 + 0.999991i \(0.501338\pi\)
\(402\) − 2.83146i − 0.141220i
\(403\) 1.02674i 0.0511457i
\(404\) −10.7688 −0.535767
\(405\) 0 0
\(406\) 6.06073 0.300789
\(407\) − 2.46863i − 0.122366i
\(408\) 45.4401i 2.24962i
\(409\) 21.1075 1.04370 0.521850 0.853037i \(-0.325242\pi\)
0.521850 + 0.853037i \(0.325242\pi\)
\(410\) 0 0
\(411\) −37.3359 −1.84164
\(412\) 13.6137i 0.670697i
\(413\) − 15.9179i − 0.783267i
\(414\) 21.3771 1.05063
\(415\) 0 0
\(416\) 9.12446 0.447364
\(417\) 31.1282i 1.52435i
\(418\) − 13.7844i − 0.674219i
\(419\) 22.3217 1.09049 0.545243 0.838278i \(-0.316437\pi\)
0.545243 + 0.838278i \(0.316437\pi\)
\(420\) 0 0
\(421\) −27.4605 −1.33835 −0.669173 0.743107i \(-0.733351\pi\)
−0.669173 + 0.743107i \(0.733351\pi\)
\(422\) − 14.6235i − 0.711861i
\(423\) 12.1807i 0.592248i
\(424\) 21.8506 1.06116
\(425\) 0 0
\(426\) −15.4577 −0.748927
\(427\) − 8.36710i − 0.404912i
\(428\) 17.7685i 0.858871i
\(429\) −10.1138 −0.488301
\(430\) 0 0
\(431\) 36.7380 1.76960 0.884802 0.465966i \(-0.154293\pi\)
0.884802 + 0.465966i \(0.154293\pi\)
\(432\) − 2.61758i − 0.125938i
\(433\) 0.370435i 0.0178020i 0.999960 + 0.00890098i \(0.00283331\pi\)
−0.999960 + 0.00890098i \(0.997167\pi\)
\(434\) −1.22574 −0.0588372
\(435\) 0 0
\(436\) 3.29359 0.157734
\(437\) − 57.4511i − 2.74826i
\(438\) − 9.50815i − 0.454317i
\(439\) −30.1768 −1.44026 −0.720130 0.693839i \(-0.755918\pi\)
−0.720130 + 0.693839i \(0.755918\pi\)
\(440\) 0 0
\(441\) −1.89668 −0.0903179
\(442\) 7.76708i 0.369442i
\(443\) 38.1789i 1.81393i 0.421203 + 0.906966i \(0.361608\pi\)
−0.421203 + 0.906966i \(0.638392\pi\)
\(444\) 3.86060 0.183216
\(445\) 0 0
\(446\) 1.25752 0.0595454
\(447\) − 10.8231i − 0.511913i
\(448\) 5.30742i 0.250752i
\(449\) 3.77840 0.178314 0.0891569 0.996018i \(-0.471583\pi\)
0.0891569 + 0.996018i \(0.471583\pi\)
\(450\) 0 0
\(451\) 6.09414 0.286962
\(452\) − 16.7111i − 0.786026i
\(453\) 44.4493i 2.08841i
\(454\) −3.35266 −0.157348
\(455\) 0 0
\(456\) 50.9135 2.38424
\(457\) − 25.3343i − 1.18509i −0.805538 0.592544i \(-0.798124\pi\)
0.805538 0.592544i \(-0.201876\pi\)
\(458\) − 17.1232i − 0.800113i
\(459\) 16.3557 0.763418
\(460\) 0 0
\(461\) −14.7582 −0.687359 −0.343680 0.939087i \(-0.611673\pi\)
−0.343680 + 0.939087i \(0.611673\pi\)
\(462\) − 12.0740i − 0.561733i
\(463\) 8.63700i 0.401395i 0.979653 + 0.200698i \(0.0643209\pi\)
−0.979653 + 0.200698i \(0.935679\pi\)
\(464\) −3.56407 −0.165458
\(465\) 0 0
\(466\) 1.77474 0.0822132
\(467\) 1.64618i 0.0761762i 0.999274 + 0.0380881i \(0.0121268\pi\)
−0.999274 + 0.0380881i \(0.987873\pi\)
\(468\) − 8.94989i − 0.413709i
\(469\) −3.77159 −0.174156
\(470\) 0 0
\(471\) 10.5798 0.487493
\(472\) − 15.7683i − 0.725797i
\(473\) 27.0511i 1.24381i
\(474\) −24.5667 −1.12839
\(475\) 0 0
\(476\) 25.6277 1.17464
\(477\) − 33.7904i − 1.54716i
\(478\) 1.48119i 0.0677482i
\(479\) −16.0571 −0.733669 −0.366835 0.930286i \(-0.619558\pi\)
−0.366835 + 0.930286i \(0.619558\pi\)
\(480\) 0 0
\(481\) 1.55854 0.0710633
\(482\) 14.7427i 0.671513i
\(483\) − 50.3222i − 2.28974i
\(484\) −7.20490 −0.327495
\(485\) 0 0
\(486\) −15.6586 −0.710290
\(487\) 6.60786i 0.299431i 0.988729 + 0.149715i \(0.0478357\pi\)
−0.988729 + 0.149715i \(0.952164\pi\)
\(488\) − 8.28850i − 0.375203i
\(489\) −9.40435 −0.425279
\(490\) 0 0
\(491\) −18.2039 −0.821532 −0.410766 0.911741i \(-0.634739\pi\)
−0.410766 + 0.911741i \(0.634739\pi\)
\(492\) 9.53040i 0.429663i
\(493\) − 22.2697i − 1.00298i
\(494\) 8.70264 0.391550
\(495\) 0 0
\(496\) 0.720804 0.0323650
\(497\) 20.5901i 0.923594i
\(498\) 2.20237i 0.0986904i
\(499\) 26.1795 1.17196 0.585978 0.810327i \(-0.300711\pi\)
0.585978 + 0.810327i \(0.300711\pi\)
\(500\) 0 0
\(501\) 62.2147 2.77955
\(502\) − 0.507034i − 0.0226301i
\(503\) 0.546197i 0.0243537i 0.999926 + 0.0121769i \(0.00387611\pi\)
−0.999926 + 0.0121769i \(0.996124\pi\)
\(504\) 25.2347 1.12404
\(505\) 0 0
\(506\) −13.4964 −0.599988
\(507\) 27.7879i 1.23410i
\(508\) − 23.0049i − 1.02068i
\(509\) 27.4237 1.21553 0.607767 0.794115i \(-0.292065\pi\)
0.607767 + 0.794115i \(0.292065\pi\)
\(510\) 0 0
\(511\) −12.6652 −0.560274
\(512\) − 11.9386i − 0.527618i
\(513\) − 18.3258i − 0.809102i
\(514\) −5.20186 −0.229444
\(515\) 0 0
\(516\) −42.3042 −1.86234
\(517\) − 7.69030i − 0.338219i
\(518\) 1.86060i 0.0817500i
\(519\) 41.3712 1.81600
\(520\) 0 0
\(521\) 39.2211 1.71831 0.859154 0.511717i \(-0.170990\pi\)
0.859154 + 0.511717i \(0.170990\pi\)
\(522\) − 9.28448i − 0.406370i
\(523\) − 2.89217i − 0.126466i −0.997999 0.0632329i \(-0.979859\pi\)
0.997999 0.0632329i \(-0.0201411\pi\)
\(524\) −20.0796 −0.877181
\(525\) 0 0
\(526\) 15.5087 0.676212
\(527\) 4.50387i 0.196191i
\(528\) 7.10021i 0.308997i
\(529\) −33.2505 −1.44567
\(530\) 0 0
\(531\) −24.3847 −1.05820
\(532\) − 28.7146i − 1.24494i
\(533\) 3.84746i 0.166652i
\(534\) −22.0759 −0.955319
\(535\) 0 0
\(536\) −3.73616 −0.161378
\(537\) − 26.7469i − 1.15421i
\(538\) 13.3781i 0.576770i
\(539\) 1.19746 0.0515784
\(540\) 0 0
\(541\) −30.3727 −1.30582 −0.652912 0.757434i \(-0.726453\pi\)
−0.652912 + 0.757434i \(0.726453\pi\)
\(542\) 16.9258i 0.727027i
\(543\) − 6.69744i − 0.287415i
\(544\) 40.0250 1.71606
\(545\) 0 0
\(546\) 7.62277 0.326224
\(547\) − 18.8597i − 0.806384i −0.915115 0.403192i \(-0.867901\pi\)
0.915115 0.403192i \(-0.132099\pi\)
\(548\) 20.8592i 0.891060i
\(549\) −12.8176 −0.547042
\(550\) 0 0
\(551\) −24.9521 −1.06300
\(552\) − 49.8496i − 2.12174i
\(553\) 32.7237i 1.39155i
\(554\) −4.12348 −0.175190
\(555\) 0 0
\(556\) 17.3910 0.737543
\(557\) − 24.2064i − 1.02566i −0.858491 0.512828i \(-0.828598\pi\)
0.858491 0.512828i \(-0.171402\pi\)
\(558\) 1.87771i 0.0794898i
\(559\) −17.0784 −0.722339
\(560\) 0 0
\(561\) −44.3649 −1.87309
\(562\) 17.8136i 0.751420i
\(563\) 5.13444i 0.216391i 0.994130 + 0.108196i \(0.0345072\pi\)
−0.994130 + 0.108196i \(0.965493\pi\)
\(564\) 12.0266 0.506410
\(565\) 0 0
\(566\) 15.1985 0.638840
\(567\) 13.8890i 0.583282i
\(568\) 20.3967i 0.855828i
\(569\) 11.9797 0.502214 0.251107 0.967959i \(-0.419205\pi\)
0.251107 + 0.967959i \(0.419205\pi\)
\(570\) 0 0
\(571\) −25.5874 −1.07080 −0.535399 0.844599i \(-0.679839\pi\)
−0.535399 + 0.844599i \(0.679839\pi\)
\(572\) 5.65050i 0.236259i
\(573\) − 27.5065i − 1.14910i
\(574\) −4.59313 −0.191714
\(575\) 0 0
\(576\) 8.13047 0.338769
\(577\) 40.3272i 1.67884i 0.543481 + 0.839421i \(0.317106\pi\)
−0.543481 + 0.839421i \(0.682894\pi\)
\(578\) 21.6786i 0.901709i
\(579\) 25.7921 1.07188
\(580\) 0 0
\(581\) 2.93362 0.121707
\(582\) − 33.1367i − 1.37356i
\(583\) 21.3335i 0.883544i
\(584\) −12.5462 −0.519165
\(585\) 0 0
\(586\) 5.62894 0.232530
\(587\) 31.6751i 1.30737i 0.756766 + 0.653686i \(0.226778\pi\)
−0.756766 + 0.653686i \(0.773222\pi\)
\(588\) 1.87267i 0.0772276i
\(589\) 5.04637 0.207932
\(590\) 0 0
\(591\) 35.2101 1.44835
\(592\) − 1.09414i − 0.0449689i
\(593\) 6.26075i 0.257098i 0.991703 + 0.128549i \(0.0410320\pi\)
−0.991703 + 0.128549i \(0.958968\pi\)
\(594\) −4.30508 −0.176640
\(595\) 0 0
\(596\) −6.04673 −0.247684
\(597\) − 11.0464i − 0.452098i
\(598\) − 8.52078i − 0.348440i
\(599\) −34.4197 −1.40635 −0.703175 0.711017i \(-0.748235\pi\)
−0.703175 + 0.711017i \(0.748235\pi\)
\(600\) 0 0
\(601\) 12.2491 0.499650 0.249825 0.968291i \(-0.419627\pi\)
0.249825 + 0.968291i \(0.419627\pi\)
\(602\) − 20.3883i − 0.830966i
\(603\) 5.77772i 0.235287i
\(604\) 24.8334 1.01046
\(605\) 0 0
\(606\) −14.0506 −0.570765
\(607\) 31.0932i 1.26204i 0.775768 + 0.631018i \(0.217363\pi\)
−0.775768 + 0.631018i \(0.782637\pi\)
\(608\) − 44.8461i − 1.81875i
\(609\) −21.8559 −0.885647
\(610\) 0 0
\(611\) 4.85518 0.196419
\(612\) − 39.2592i − 1.58696i
\(613\) 15.0998i 0.609876i 0.952372 + 0.304938i \(0.0986357\pi\)
−0.952372 + 0.304938i \(0.901364\pi\)
\(614\) 6.56814 0.265069
\(615\) 0 0
\(616\) −15.9319 −0.641914
\(617\) 27.3635i 1.10161i 0.834632 + 0.550807i \(0.185680\pi\)
−0.834632 + 0.550807i \(0.814320\pi\)
\(618\) 17.7624i 0.714509i
\(619\) 11.1466 0.448021 0.224010 0.974587i \(-0.428085\pi\)
0.224010 + 0.974587i \(0.428085\pi\)
\(620\) 0 0
\(621\) −17.9428 −0.720020
\(622\) 23.4153i 0.938869i
\(623\) 29.4059i 1.17812i
\(624\) −4.48263 −0.179449
\(625\) 0 0
\(626\) 14.4786 0.578683
\(627\) 49.7088i 1.98518i
\(628\) − 5.91084i − 0.235868i
\(629\) 6.83662 0.272594
\(630\) 0 0
\(631\) 11.9459 0.475558 0.237779 0.971319i \(-0.423581\pi\)
0.237779 + 0.971319i \(0.423581\pi\)
\(632\) 32.4163i 1.28945i
\(633\) 52.7346i 2.09601i
\(634\) 6.26156 0.248679
\(635\) 0 0
\(636\) −33.3627 −1.32292
\(637\) 0.756004i 0.0299540i
\(638\) 5.86174i 0.232069i
\(639\) 31.5422 1.24779
\(640\) 0 0
\(641\) 27.9313 1.10322 0.551609 0.834103i \(-0.314014\pi\)
0.551609 + 0.834103i \(0.314014\pi\)
\(642\) 23.1834i 0.914976i
\(643\) 39.0497i 1.53997i 0.638063 + 0.769984i \(0.279736\pi\)
−0.638063 + 0.769984i \(0.720264\pi\)
\(644\) −28.1145 −1.10787
\(645\) 0 0
\(646\) 38.1746 1.50196
\(647\) 3.60562i 0.141752i 0.997485 + 0.0708759i \(0.0225794\pi\)
−0.997485 + 0.0708759i \(0.977421\pi\)
\(648\) 13.7585i 0.540485i
\(649\) 15.3952 0.604316
\(650\) 0 0
\(651\) 4.42019 0.173241
\(652\) 5.25411i 0.205767i
\(653\) − 16.9343i − 0.662691i −0.943510 0.331345i \(-0.892497\pi\)
0.943510 0.331345i \(-0.107503\pi\)
\(654\) 4.29731 0.168038
\(655\) 0 0
\(656\) 2.70103 0.105458
\(657\) 19.4018i 0.756938i
\(658\) 5.79615i 0.225958i
\(659\) −31.2664 −1.21797 −0.608983 0.793183i \(-0.708422\pi\)
−0.608983 + 0.793183i \(0.708422\pi\)
\(660\) 0 0
\(661\) −39.2941 −1.52836 −0.764181 0.645002i \(-0.776857\pi\)
−0.764181 + 0.645002i \(0.776857\pi\)
\(662\) 16.7448i 0.650804i
\(663\) − 28.0093i − 1.08779i
\(664\) 2.90607 0.112777
\(665\) 0 0
\(666\) 2.85026 0.110445
\(667\) 24.4307i 0.945960i
\(668\) − 34.7587i − 1.34486i
\(669\) −4.53481 −0.175326
\(670\) 0 0
\(671\) 8.09238 0.312403
\(672\) − 39.2813i − 1.51531i
\(673\) 33.7258i 1.30004i 0.759919 + 0.650018i \(0.225238\pi\)
−0.759919 + 0.650018i \(0.774762\pi\)
\(674\) −19.1218 −0.736544
\(675\) 0 0
\(676\) 15.5248 0.597109
\(677\) 20.4385i 0.785515i 0.919642 + 0.392758i \(0.128479\pi\)
−0.919642 + 0.392758i \(0.871521\pi\)
\(678\) − 21.8039i − 0.837372i
\(679\) −44.1391 −1.69390
\(680\) 0 0
\(681\) 12.0902 0.463298
\(682\) − 1.18549i − 0.0453948i
\(683\) − 31.0965i − 1.18988i −0.803771 0.594938i \(-0.797177\pi\)
0.803771 0.594938i \(-0.202823\pi\)
\(684\) −43.9880 −1.68192
\(685\) 0 0
\(686\) −13.9267 −0.531725
\(687\) 61.7487i 2.35586i
\(688\) 11.9895i 0.457096i
\(689\) −13.4687 −0.513115
\(690\) 0 0
\(691\) 10.8292 0.411960 0.205980 0.978556i \(-0.433962\pi\)
0.205980 + 0.978556i \(0.433962\pi\)
\(692\) − 23.1137i − 0.878651i
\(693\) 24.6376i 0.935904i
\(694\) 0.284545 0.0108012
\(695\) 0 0
\(696\) −21.6506 −0.820665
\(697\) 16.8771i 0.639266i
\(698\) − 4.64491i − 0.175812i
\(699\) −6.39998 −0.242069
\(700\) 0 0
\(701\) 3.32122 0.125441 0.0627204 0.998031i \(-0.480022\pi\)
0.0627204 + 0.998031i \(0.480022\pi\)
\(702\) − 2.71796i − 0.102583i
\(703\) − 7.66011i − 0.288906i
\(704\) −5.13316 −0.193463
\(705\) 0 0
\(706\) −6.82276 −0.256778
\(707\) 18.7158i 0.703881i
\(708\) 24.0760i 0.904832i
\(709\) −17.6659 −0.663458 −0.331729 0.943375i \(-0.607632\pi\)
−0.331729 + 0.943375i \(0.607632\pi\)
\(710\) 0 0
\(711\) 50.1296 1.88001
\(712\) 29.1296i 1.09168i
\(713\) − 4.94091i − 0.185039i
\(714\) 33.4377 1.25137
\(715\) 0 0
\(716\) −14.9432 −0.558454
\(717\) − 5.34140i − 0.199478i
\(718\) − 3.92498i − 0.146479i
\(719\) 17.4938 0.652410 0.326205 0.945299i \(-0.394230\pi\)
0.326205 + 0.945299i \(0.394230\pi\)
\(720\) 0 0
\(721\) 23.6601 0.881148
\(722\) − 28.9228i − 1.07639i
\(723\) − 53.1645i − 1.97721i
\(724\) −3.74179 −0.139063
\(725\) 0 0
\(726\) −9.40059 −0.348888
\(727\) − 19.2435i − 0.713701i −0.934161 0.356851i \(-0.883851\pi\)
0.934161 0.356851i \(-0.116149\pi\)
\(728\) − 10.0584i − 0.372789i
\(729\) 40.1430 1.48678
\(730\) 0 0
\(731\) −74.9153 −2.77084
\(732\) 12.6554i 0.467756i
\(733\) − 17.2213i − 0.636082i −0.948077 0.318041i \(-0.896975\pi\)
0.948077 0.318041i \(-0.103025\pi\)
\(734\) 16.1801 0.597217
\(735\) 0 0
\(736\) −43.9089 −1.61850
\(737\) − 3.64776i − 0.134367i
\(738\) 7.03625i 0.259008i
\(739\) −44.1590 −1.62442 −0.812208 0.583368i \(-0.801735\pi\)
−0.812208 + 0.583368i \(0.801735\pi\)
\(740\) 0 0
\(741\) −31.3830 −1.15288
\(742\) − 16.0790i − 0.590279i
\(743\) − 15.8768i − 0.582461i −0.956653 0.291231i \(-0.905935\pi\)
0.956653 0.291231i \(-0.0940647\pi\)
\(744\) 4.37867 0.160530
\(745\) 0 0
\(746\) −23.0805 −0.845035
\(747\) − 4.49404i − 0.164428i
\(748\) 24.7862i 0.906275i
\(749\) 30.8811 1.12837
\(750\) 0 0
\(751\) 20.6030 0.751815 0.375907 0.926657i \(-0.377331\pi\)
0.375907 + 0.926657i \(0.377331\pi\)
\(752\) − 3.40848i − 0.124294i
\(753\) 1.82844i 0.0666322i
\(754\) −3.70074 −0.134773
\(755\) 0 0
\(756\) −8.96798 −0.326162
\(757\) 21.6914i 0.788387i 0.919027 + 0.394194i \(0.128976\pi\)
−0.919027 + 0.394194i \(0.871024\pi\)
\(758\) − 11.4170i − 0.414684i
\(759\) 48.6700 1.76661
\(760\) 0 0
\(761\) 22.5166 0.816225 0.408113 0.912932i \(-0.366187\pi\)
0.408113 + 0.912932i \(0.366187\pi\)
\(762\) − 30.0156i − 1.08735i
\(763\) − 5.72415i − 0.207228i
\(764\) −15.3676 −0.555981
\(765\) 0 0
\(766\) 5.72098 0.206708
\(767\) 9.71959i 0.350954i
\(768\) − 30.4643i − 1.09928i
\(769\) 0.975961 0.0351941 0.0175970 0.999845i \(-0.494398\pi\)
0.0175970 + 0.999845i \(0.494398\pi\)
\(770\) 0 0
\(771\) 18.7587 0.675578
\(772\) − 14.4098i − 0.518620i
\(773\) 15.6271i 0.562066i 0.959698 + 0.281033i \(0.0906771\pi\)
−0.959698 + 0.281033i \(0.909323\pi\)
\(774\) −31.2330 −1.12265
\(775\) 0 0
\(776\) −43.7245 −1.56962
\(777\) − 6.70960i − 0.240706i
\(778\) 12.8673i 0.461314i
\(779\) 18.9100 0.677521
\(780\) 0 0
\(781\) −19.9141 −0.712583
\(782\) − 37.3769i − 1.33659i
\(783\) 7.79290i 0.278496i
\(784\) 0.530737 0.0189549
\(785\) 0 0
\(786\) −26.1988 −0.934482
\(787\) − 44.8503i − 1.59874i −0.600840 0.799370i \(-0.705167\pi\)
0.600840 0.799370i \(-0.294833\pi\)
\(788\) − 19.6715i − 0.700770i
\(789\) −55.9267 −1.99104
\(790\) 0 0
\(791\) −29.0435 −1.03267
\(792\) 24.4061i 0.867235i
\(793\) 5.10902i 0.181427i
\(794\) 16.5944 0.588914
\(795\) 0 0
\(796\) −6.17149 −0.218743
\(797\) − 12.4685i − 0.441658i −0.975313 0.220829i \(-0.929124\pi\)
0.975313 0.220829i \(-0.0708762\pi\)
\(798\) − 37.4653i − 1.32626i
\(799\) 21.2975 0.753451
\(800\) 0 0
\(801\) 45.0470 1.59166
\(802\) 0.122753i 0.00433456i
\(803\) − 12.2493i − 0.432269i
\(804\) 5.70459 0.201185
\(805\) 0 0
\(806\) 0.748445 0.0263628
\(807\) − 48.2434i − 1.69825i
\(808\) 18.5400i 0.652236i
\(809\) −18.8505 −0.662748 −0.331374 0.943500i \(-0.607512\pi\)
−0.331374 + 0.943500i \(0.607512\pi\)
\(810\) 0 0
\(811\) 29.8244 1.04728 0.523638 0.851941i \(-0.324575\pi\)
0.523638 + 0.851941i \(0.324575\pi\)
\(812\) 12.2107i 0.428511i
\(813\) − 61.0371i − 2.14067i
\(814\) −1.79951 −0.0630728
\(815\) 0 0
\(816\) −19.6633 −0.688354
\(817\) 83.9390i 2.93665i
\(818\) − 15.3863i − 0.537971i
\(819\) −15.5546 −0.543523
\(820\) 0 0
\(821\) 11.9059 0.415517 0.207759 0.978180i \(-0.433383\pi\)
0.207759 + 0.978180i \(0.433383\pi\)
\(822\) 27.2160i 0.949267i
\(823\) 41.2544i 1.43804i 0.694990 + 0.719020i \(0.255409\pi\)
−0.694990 + 0.719020i \(0.744591\pi\)
\(824\) 23.4379 0.816497
\(825\) 0 0
\(826\) −11.6033 −0.403732
\(827\) − 27.0596i − 0.940953i −0.882412 0.470477i \(-0.844082\pi\)
0.882412 0.470477i \(-0.155918\pi\)
\(828\) 43.0688i 1.49674i
\(829\) 20.6787 0.718200 0.359100 0.933299i \(-0.383084\pi\)
0.359100 + 0.933299i \(0.383084\pi\)
\(830\) 0 0
\(831\) 14.8699 0.515831
\(832\) − 3.24076i − 0.112353i
\(833\) 3.31626i 0.114901i
\(834\) 22.6909 0.785722
\(835\) 0 0
\(836\) 27.7718 0.960508
\(837\) − 1.57605i − 0.0544763i
\(838\) − 16.2714i − 0.562086i
\(839\) 0.0974789 0.00336534 0.00168267 0.999999i \(-0.499464\pi\)
0.00168267 + 0.999999i \(0.499464\pi\)
\(840\) 0 0
\(841\) −18.3893 −0.634113
\(842\) 20.0174i 0.689844i
\(843\) − 64.2385i − 2.21249i
\(844\) 29.4623 1.01413
\(845\) 0 0
\(846\) 8.87916 0.305272
\(847\) 12.5219i 0.430257i
\(848\) 9.45539i 0.324700i
\(849\) −54.8080 −1.88101
\(850\) 0 0
\(851\) −7.50003 −0.257098
\(852\) − 31.1429i − 1.06694i
\(853\) 0.919899i 0.0314967i 0.999876 + 0.0157484i \(0.00501307\pi\)
−0.999876 + 0.0157484i \(0.994987\pi\)
\(854\) −6.09920 −0.208710
\(855\) 0 0
\(856\) 30.5910 1.04558
\(857\) − 20.3344i − 0.694608i −0.937753 0.347304i \(-0.887097\pi\)
0.937753 0.347304i \(-0.112903\pi\)
\(858\) 7.37249i 0.251693i
\(859\) −15.8959 −0.542360 −0.271180 0.962529i \(-0.587414\pi\)
−0.271180 + 0.962529i \(0.587414\pi\)
\(860\) 0 0
\(861\) 16.5635 0.564484
\(862\) − 26.7801i − 0.912135i
\(863\) − 37.0558i − 1.26139i −0.776029 0.630697i \(-0.782769\pi\)
0.776029 0.630697i \(-0.217231\pi\)
\(864\) −14.0061 −0.476496
\(865\) 0 0
\(866\) 0.270029 0.00917595
\(867\) − 78.1762i − 2.65500i
\(868\) − 2.46951i − 0.0838208i
\(869\) −31.6493 −1.07363
\(870\) 0 0
\(871\) 2.30297 0.0780331
\(872\) − 5.67039i − 0.192024i
\(873\) 67.6170i 2.28849i
\(874\) −41.8790 −1.41658
\(875\) 0 0
\(876\) 19.1563 0.647230
\(877\) 25.4103i 0.858045i 0.903294 + 0.429022i \(0.141142\pi\)
−0.903294 + 0.429022i \(0.858858\pi\)
\(878\) 21.9974i 0.742376i
\(879\) −20.2988 −0.684662
\(880\) 0 0
\(881\) 1.37793 0.0464238 0.0232119 0.999731i \(-0.492611\pi\)
0.0232119 + 0.999731i \(0.492611\pi\)
\(882\) 1.38258i 0.0465540i
\(883\) − 54.5280i − 1.83501i −0.397722 0.917506i \(-0.630199\pi\)
0.397722 0.917506i \(-0.369801\pi\)
\(884\) −15.6485 −0.526316
\(885\) 0 0
\(886\) 27.8305 0.934984
\(887\) 6.43212i 0.215969i 0.994153 + 0.107985i \(0.0344397\pi\)
−0.994153 + 0.107985i \(0.965560\pi\)
\(888\) − 6.64658i − 0.223045i
\(889\) −39.9818 −1.34095
\(890\) 0 0
\(891\) −13.4330 −0.450021
\(892\) 2.53355i 0.0848297i
\(893\) − 23.8628i − 0.798539i
\(894\) −7.88947 −0.263863
\(895\) 0 0
\(896\) −26.0176 −0.869187
\(897\) 30.7272i 1.02595i
\(898\) − 2.75427i − 0.0919111i
\(899\) −2.14593 −0.0715709
\(900\) 0 0
\(901\) −59.0810 −1.96827
\(902\) − 4.44233i − 0.147913i
\(903\) 73.5234i 2.44670i
\(904\) −28.7706 −0.956897
\(905\) 0 0
\(906\) 32.4013 1.07646
\(907\) 33.4197i 1.10968i 0.831957 + 0.554841i \(0.187221\pi\)
−0.831957 + 0.554841i \(0.812779\pi\)
\(908\) − 6.75468i − 0.224162i
\(909\) 28.6709 0.950953
\(910\) 0 0
\(911\) 52.4122 1.73649 0.868247 0.496132i \(-0.165247\pi\)
0.868247 + 0.496132i \(0.165247\pi\)
\(912\) 22.0318i 0.729546i
\(913\) 2.83730i 0.0939011i
\(914\) −18.4674 −0.610849
\(915\) 0 0
\(916\) 34.4984 1.13986
\(917\) 34.8977i 1.15242i
\(918\) − 11.9225i − 0.393500i
\(919\) 11.6967 0.385838 0.192919 0.981215i \(-0.438205\pi\)
0.192919 + 0.981215i \(0.438205\pi\)
\(920\) 0 0
\(921\) −23.6857 −0.780470
\(922\) 10.7580i 0.354297i
\(923\) − 12.5725i − 0.413830i
\(924\) 24.3257 0.800257
\(925\) 0 0
\(926\) 6.29594 0.206898
\(927\) − 36.2451i − 1.19044i
\(928\) 19.0705i 0.626020i
\(929\) 10.4868 0.344059 0.172030 0.985092i \(-0.444968\pi\)
0.172030 + 0.985092i \(0.444968\pi\)
\(930\) 0 0
\(931\) 3.71571 0.121777
\(932\) 3.57560i 0.117123i
\(933\) − 84.4392i − 2.76442i
\(934\) 1.19999 0.0392647
\(935\) 0 0
\(936\) −15.4085 −0.503643
\(937\) − 38.3244i − 1.25200i −0.779821 0.626002i \(-0.784690\pi\)
0.779821 0.626002i \(-0.215310\pi\)
\(938\) 2.74930i 0.0897679i
\(939\) −52.2122 −1.70388
\(940\) 0 0
\(941\) 33.4866 1.09163 0.545816 0.837905i \(-0.316220\pi\)
0.545816 + 0.837905i \(0.316220\pi\)
\(942\) − 7.71217i − 0.251276i
\(943\) − 18.5148i − 0.602926i
\(944\) 6.82344 0.222084
\(945\) 0 0
\(946\) 19.7189 0.641117
\(947\) 40.2997i 1.30956i 0.755818 + 0.654782i \(0.227240\pi\)
−0.755818 + 0.654782i \(0.772760\pi\)
\(948\) − 49.4951i − 1.60753i
\(949\) 7.73346 0.251039
\(950\) 0 0
\(951\) −22.5801 −0.732211
\(952\) − 44.1217i − 1.42999i
\(953\) 10.8028i 0.349939i 0.984574 + 0.174969i \(0.0559826\pi\)
−0.984574 + 0.174969i \(0.944017\pi\)
\(954\) −24.6315 −0.797475
\(955\) 0 0
\(956\) −2.98419 −0.0965156
\(957\) − 21.1383i − 0.683305i
\(958\) 11.7049i 0.378167i
\(959\) 36.2526 1.17066
\(960\) 0 0
\(961\) −30.5660 −0.986000
\(962\) − 1.13610i − 0.0366293i
\(963\) − 47.3069i − 1.52444i
\(964\) −29.7025 −0.956652
\(965\) 0 0
\(966\) −36.6824 −1.18024
\(967\) − 46.0540i − 1.48100i −0.672058 0.740499i \(-0.734589\pi\)
0.672058 0.740499i \(-0.265411\pi\)
\(968\) 12.4043i 0.398688i
\(969\) −137.663 −4.42239
\(970\) 0 0
\(971\) −0.231513 −0.00742961 −0.00371481 0.999993i \(-0.501182\pi\)
−0.00371481 + 0.999993i \(0.501182\pi\)
\(972\) − 31.5478i − 1.01190i
\(973\) − 30.2250i − 0.968970i
\(974\) 4.81680 0.154340
\(975\) 0 0
\(976\) 3.58668 0.114807
\(977\) − 8.81121i − 0.281896i −0.990017 0.140948i \(-0.954985\pi\)
0.990017 0.140948i \(-0.0450150\pi\)
\(978\) 6.85530i 0.219208i
\(979\) −28.4404 −0.908958
\(980\) 0 0
\(981\) −8.76887 −0.279968
\(982\) 13.2698i 0.423455i
\(983\) 18.8943i 0.602634i 0.953524 + 0.301317i \(0.0974263\pi\)
−0.953524 + 0.301317i \(0.902574\pi\)
\(984\) 16.4079 0.523066
\(985\) 0 0
\(986\) −16.2335 −0.516980
\(987\) − 20.9018i − 0.665312i
\(988\) 17.5334i 0.557811i
\(989\) 82.1849 2.61333
\(990\) 0 0
\(991\) 30.3969 0.965589 0.482794 0.875734i \(-0.339622\pi\)
0.482794 + 0.875734i \(0.339622\pi\)
\(992\) − 3.85685i − 0.122455i
\(993\) − 60.3842i − 1.91623i
\(994\) 15.0092 0.476063
\(995\) 0 0
\(996\) −4.43715 −0.140597
\(997\) − 35.2291i − 1.11572i −0.829936 0.557859i \(-0.811623\pi\)
0.829936 0.557859i \(-0.188377\pi\)
\(998\) − 19.0836i − 0.604079i
\(999\) −2.39236 −0.0756910
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.b.f.149.5 10
5.2 odd 4 185.2.a.e.1.3 5
5.3 odd 4 925.2.a.f.1.3 5
5.4 even 2 inner 925.2.b.f.149.6 10
15.2 even 4 1665.2.a.p.1.3 5
15.8 even 4 8325.2.a.ch.1.3 5
20.7 even 4 2960.2.a.w.1.1 5
35.27 even 4 9065.2.a.k.1.3 5
185.147 odd 4 6845.2.a.f.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.a.e.1.3 5 5.2 odd 4
925.2.a.f.1.3 5 5.3 odd 4
925.2.b.f.149.5 10 1.1 even 1 trivial
925.2.b.f.149.6 10 5.4 even 2 inner
1665.2.a.p.1.3 5 15.2 even 4
2960.2.a.w.1.1 5 20.7 even 4
6845.2.a.f.1.3 5 185.147 odd 4
8325.2.a.ch.1.3 5 15.8 even 4
9065.2.a.k.1.3 5 35.27 even 4