Properties

Label 925.2.a.f.1.3
Level $925$
Weight $2$
Character 925.1
Self dual yes
Analytic conductor $7.386$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(1,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-2,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.38616218697\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.973904.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 8x^{3} + 6x^{2} + 19x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 185)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.62871\) of defining polynomial
Character \(\chi\) \(=\) 925.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.728950 q^{2} -2.62871 q^{3} -1.46863 q^{4} +1.91620 q^{6} -2.55244 q^{7} +2.52846 q^{8} +3.91009 q^{9} +2.46863 q^{11} +3.86060 q^{12} -1.55854 q^{13} +1.86060 q^{14} +1.09414 q^{16} +6.83662 q^{17} -2.85026 q^{18} -7.66011 q^{19} +6.70960 q^{21} -1.79951 q^{22} +7.50003 q^{23} -6.64658 q^{24} +1.13610 q^{26} -2.39236 q^{27} +3.74859 q^{28} +3.25741 q^{29} +0.658785 q^{31} -5.85449 q^{32} -6.48930 q^{33} -4.98356 q^{34} -5.74248 q^{36} -1.00000 q^{37} +5.58384 q^{38} +4.09694 q^{39} +2.46863 q^{41} -4.89097 q^{42} -10.9579 q^{43} -3.62551 q^{44} -5.46715 q^{46} -3.11521 q^{47} -2.87617 q^{48} -0.485072 q^{49} -17.9715 q^{51} +2.28892 q^{52} -8.64184 q^{53} +1.74391 q^{54} -6.45373 q^{56} +20.1362 q^{57} -2.37449 q^{58} -6.23634 q^{59} +3.27808 q^{61} -0.480222 q^{62} -9.98026 q^{63} +2.07935 q^{64} +4.73038 q^{66} -1.47764 q^{67} -10.0405 q^{68} -19.7154 q^{69} -8.06686 q^{71} +9.88651 q^{72} +4.96199 q^{73} +0.728950 q^{74} +11.2499 q^{76} -6.30102 q^{77} -2.98647 q^{78} +12.8206 q^{79} -5.44146 q^{81} -1.79951 q^{82} -1.14934 q^{83} -9.85393 q^{84} +7.98779 q^{86} -8.56277 q^{87} +6.24184 q^{88} +11.5207 q^{89} +3.97807 q^{91} -11.0148 q^{92} -1.73175 q^{93} +2.27083 q^{94} +15.3897 q^{96} -17.2929 q^{97} +0.353594 q^{98} +9.65257 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{2} - 3 q^{3} + 10 q^{4} - 6 q^{6} - 11 q^{7} - 6 q^{8} + 6 q^{9} - 5 q^{11} + 2 q^{12} - 4 q^{13} - 8 q^{14} + 16 q^{16} - 2 q^{18} - 4 q^{19} + 3 q^{21} + 8 q^{22} - 4 q^{23} - 42 q^{24} - 4 q^{26}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.728950 −0.515446 −0.257723 0.966219i \(-0.582972\pi\)
−0.257723 + 0.966219i \(0.582972\pi\)
\(3\) −2.62871 −1.51768 −0.758842 0.651275i \(-0.774234\pi\)
−0.758842 + 0.651275i \(0.774234\pi\)
\(4\) −1.46863 −0.734316
\(5\) 0 0
\(6\) 1.91620 0.782284
\(7\) −2.55244 −0.964730 −0.482365 0.875970i \(-0.660222\pi\)
−0.482365 + 0.875970i \(0.660222\pi\)
\(8\) 2.52846 0.893946
\(9\) 3.91009 1.30336
\(10\) 0 0
\(11\) 2.46863 0.744320 0.372160 0.928169i \(-0.378617\pi\)
0.372160 + 0.928169i \(0.378617\pi\)
\(12\) 3.86060 1.11446
\(13\) −1.55854 −0.432261 −0.216131 0.976364i \(-0.569344\pi\)
−0.216131 + 0.976364i \(0.569344\pi\)
\(14\) 1.86060 0.497266
\(15\) 0 0
\(16\) 1.09414 0.273535
\(17\) 6.83662 1.65812 0.829062 0.559156i \(-0.188875\pi\)
0.829062 + 0.559156i \(0.188875\pi\)
\(18\) −2.85026 −0.671813
\(19\) −7.66011 −1.75735 −0.878675 0.477421i \(-0.841572\pi\)
−0.878675 + 0.477421i \(0.841572\pi\)
\(20\) 0 0
\(21\) 6.70960 1.46415
\(22\) −1.79951 −0.383657
\(23\) 7.50003 1.56387 0.781933 0.623363i \(-0.214234\pi\)
0.781933 + 0.623363i \(0.214234\pi\)
\(24\) −6.64658 −1.35673
\(25\) 0 0
\(26\) 1.13610 0.222807
\(27\) −2.39236 −0.460410
\(28\) 3.74859 0.708416
\(29\) 3.25741 0.604886 0.302443 0.953167i \(-0.402198\pi\)
0.302443 + 0.953167i \(0.402198\pi\)
\(30\) 0 0
\(31\) 0.658785 0.118321 0.0591607 0.998248i \(-0.481158\pi\)
0.0591607 + 0.998248i \(0.481158\pi\)
\(32\) −5.85449 −1.03494
\(33\) −6.48930 −1.12964
\(34\) −4.98356 −0.854673
\(35\) 0 0
\(36\) −5.74248 −0.957080
\(37\) −1.00000 −0.164399
\(38\) 5.58384 0.905818
\(39\) 4.09694 0.656036
\(40\) 0 0
\(41\) 2.46863 0.385535 0.192768 0.981244i \(-0.438254\pi\)
0.192768 + 0.981244i \(0.438254\pi\)
\(42\) −4.89097 −0.754692
\(43\) −10.9579 −1.67107 −0.835535 0.549438i \(-0.814842\pi\)
−0.835535 + 0.549438i \(0.814842\pi\)
\(44\) −3.62551 −0.546566
\(45\) 0 0
\(46\) −5.46715 −0.806088
\(47\) −3.11521 −0.454400 −0.227200 0.973848i \(-0.572957\pi\)
−0.227200 + 0.973848i \(0.572957\pi\)
\(48\) −2.87617 −0.415140
\(49\) −0.485072 −0.0692960
\(50\) 0 0
\(51\) −17.9715 −2.51651
\(52\) 2.28892 0.317416
\(53\) −8.64184 −1.18705 −0.593524 0.804816i \(-0.702264\pi\)
−0.593524 + 0.804816i \(0.702264\pi\)
\(54\) 1.74391 0.237317
\(55\) 0 0
\(56\) −6.45373 −0.862416
\(57\) 20.1362 2.66710
\(58\) −2.37449 −0.311786
\(59\) −6.23634 −0.811903 −0.405951 0.913895i \(-0.633060\pi\)
−0.405951 + 0.913895i \(0.633060\pi\)
\(60\) 0 0
\(61\) 3.27808 0.419716 0.209858 0.977732i \(-0.432700\pi\)
0.209858 + 0.977732i \(0.432700\pi\)
\(62\) −0.480222 −0.0609882
\(63\) −9.98026 −1.25739
\(64\) 2.07935 0.259919
\(65\) 0 0
\(66\) 4.73038 0.582270
\(67\) −1.47764 −0.180523 −0.0902615 0.995918i \(-0.528770\pi\)
−0.0902615 + 0.995918i \(0.528770\pi\)
\(68\) −10.0405 −1.21759
\(69\) −19.7154 −2.37345
\(70\) 0 0
\(71\) −8.06686 −0.957360 −0.478680 0.877989i \(-0.658885\pi\)
−0.478680 + 0.877989i \(0.658885\pi\)
\(72\) 9.88651 1.16514
\(73\) 4.96199 0.580757 0.290379 0.956912i \(-0.406219\pi\)
0.290379 + 0.956912i \(0.406219\pi\)
\(74\) 0.728950 0.0847388
\(75\) 0 0
\(76\) 11.2499 1.29045
\(77\) −6.30102 −0.718068
\(78\) −2.98647 −0.338151
\(79\) 12.8206 1.44243 0.721214 0.692713i \(-0.243585\pi\)
0.721214 + 0.692713i \(0.243585\pi\)
\(80\) 0 0
\(81\) −5.44146 −0.604607
\(82\) −1.79951 −0.198723
\(83\) −1.14934 −0.126157 −0.0630784 0.998009i \(-0.520092\pi\)
−0.0630784 + 0.998009i \(0.520092\pi\)
\(84\) −9.85393 −1.07515
\(85\) 0 0
\(86\) 7.98779 0.861346
\(87\) −8.56277 −0.918026
\(88\) 6.24184 0.665382
\(89\) 11.5207 1.22119 0.610596 0.791942i \(-0.290930\pi\)
0.610596 + 0.791942i \(0.290930\pi\)
\(90\) 0 0
\(91\) 3.97807 0.417015
\(92\) −11.0148 −1.14837
\(93\) −1.73175 −0.179574
\(94\) 2.27083 0.234218
\(95\) 0 0
\(96\) 15.3897 1.57071
\(97\) −17.2929 −1.75583 −0.877916 0.478815i \(-0.841067\pi\)
−0.877916 + 0.478815i \(0.841067\pi\)
\(98\) 0.353594 0.0357183
\(99\) 9.65257 0.970120
\(100\) 0 0
\(101\) −7.33253 −0.729614 −0.364807 0.931083i \(-0.618865\pi\)
−0.364807 + 0.931083i \(0.618865\pi\)
\(102\) 13.1003 1.29712
\(103\) −9.26962 −0.913363 −0.456681 0.889630i \(-0.650962\pi\)
−0.456681 + 0.889630i \(0.650962\pi\)
\(104\) −3.94071 −0.386418
\(105\) 0 0
\(106\) 6.29947 0.611859
\(107\) 12.0987 1.16962 0.584811 0.811170i \(-0.301169\pi\)
0.584811 + 0.811170i \(0.301169\pi\)
\(108\) 3.51350 0.338086
\(109\) −2.24262 −0.214804 −0.107402 0.994216i \(-0.534253\pi\)
−0.107402 + 0.994216i \(0.534253\pi\)
\(110\) 0 0
\(111\) 2.62871 0.249506
\(112\) −2.79272 −0.263888
\(113\) 11.3787 1.07042 0.535210 0.844719i \(-0.320232\pi\)
0.535210 + 0.844719i \(0.320232\pi\)
\(114\) −14.6783 −1.37475
\(115\) 0 0
\(116\) −4.78394 −0.444177
\(117\) −6.09403 −0.563394
\(118\) 4.54598 0.418492
\(119\) −17.4500 −1.59964
\(120\) 0 0
\(121\) −4.90586 −0.445987
\(122\) −2.38956 −0.216341
\(123\) −6.48930 −0.585121
\(124\) −0.967513 −0.0868852
\(125\) 0 0
\(126\) 7.27511 0.648118
\(127\) −15.6642 −1.38997 −0.694985 0.719024i \(-0.744589\pi\)
−0.694985 + 0.719024i \(0.744589\pi\)
\(128\) 10.1932 0.900964
\(129\) 28.8052 2.53615
\(130\) 0 0
\(131\) −13.6723 −1.19456 −0.597278 0.802034i \(-0.703751\pi\)
−0.597278 + 0.802034i \(0.703751\pi\)
\(132\) 9.53040 0.829514
\(133\) 19.5519 1.69537
\(134\) 1.07713 0.0930498
\(135\) 0 0
\(136\) 17.2861 1.48227
\(137\) 14.2031 1.21346 0.606728 0.794910i \(-0.292482\pi\)
0.606728 + 0.794910i \(0.292482\pi\)
\(138\) 14.3715 1.22339
\(139\) −11.8416 −1.00440 −0.502198 0.864753i \(-0.667475\pi\)
−0.502198 + 0.864753i \(0.667475\pi\)
\(140\) 0 0
\(141\) 8.18896 0.689635
\(142\) 5.88034 0.493467
\(143\) −3.84746 −0.321741
\(144\) 4.27819 0.356516
\(145\) 0 0
\(146\) −3.61705 −0.299349
\(147\) 1.27511 0.105169
\(148\) 1.46863 0.120721
\(149\) 4.11726 0.337299 0.168649 0.985676i \(-0.446059\pi\)
0.168649 + 0.985676i \(0.446059\pi\)
\(150\) 0 0
\(151\) 16.9092 1.37605 0.688025 0.725687i \(-0.258478\pi\)
0.688025 + 0.725687i \(0.258478\pi\)
\(152\) −19.3683 −1.57097
\(153\) 26.7318 2.16114
\(154\) 4.59313 0.370125
\(155\) 0 0
\(156\) −6.01690 −0.481737
\(157\) −4.02473 −0.321208 −0.160604 0.987019i \(-0.551344\pi\)
−0.160604 + 0.987019i \(0.551344\pi\)
\(158\) −9.34556 −0.743493
\(159\) 22.7169 1.80156
\(160\) 0 0
\(161\) −19.1434 −1.50871
\(162\) 3.96655 0.311642
\(163\) −3.57756 −0.280216 −0.140108 0.990136i \(-0.544745\pi\)
−0.140108 + 0.990136i \(0.544745\pi\)
\(164\) −3.62551 −0.283105
\(165\) 0 0
\(166\) 0.837814 0.0650270
\(167\) −23.6674 −1.83144 −0.915720 0.401816i \(-0.868379\pi\)
−0.915720 + 0.401816i \(0.868379\pi\)
\(168\) 16.9650 1.30887
\(169\) −10.5710 −0.813150
\(170\) 0 0
\(171\) −29.9517 −2.29047
\(172\) 16.0932 1.22709
\(173\) 15.7383 1.19656 0.598279 0.801288i \(-0.295852\pi\)
0.598279 + 0.801288i \(0.295852\pi\)
\(174\) 6.24184 0.473192
\(175\) 0 0
\(176\) 2.70103 0.203598
\(177\) 16.3935 1.23221
\(178\) −8.39802 −0.629459
\(179\) 10.1749 0.760510 0.380255 0.924882i \(-0.375836\pi\)
0.380255 + 0.924882i \(0.375836\pi\)
\(180\) 0 0
\(181\) −2.54781 −0.189377 −0.0946886 0.995507i \(-0.530186\pi\)
−0.0946886 + 0.995507i \(0.530186\pi\)
\(182\) −2.89982 −0.214949
\(183\) −8.61711 −0.636995
\(184\) 18.9635 1.39801
\(185\) 0 0
\(186\) 1.26236 0.0925608
\(187\) 16.8771 1.23418
\(188\) 4.57509 0.333673
\(189\) 6.10635 0.444172
\(190\) 0 0
\(191\) −10.4639 −0.757141 −0.378571 0.925572i \(-0.623584\pi\)
−0.378571 + 0.925572i \(0.623584\pi\)
\(192\) −5.46601 −0.394475
\(193\) 9.81172 0.706263 0.353131 0.935574i \(-0.385117\pi\)
0.353131 + 0.935574i \(0.385117\pi\)
\(194\) 12.6057 0.905036
\(195\) 0 0
\(196\) 0.712392 0.0508852
\(197\) −13.3945 −0.954317 −0.477158 0.878817i \(-0.658333\pi\)
−0.477158 + 0.878817i \(0.658333\pi\)
\(198\) −7.03625 −0.500044
\(199\) 4.20221 0.297887 0.148943 0.988846i \(-0.452413\pi\)
0.148943 + 0.988846i \(0.452413\pi\)
\(200\) 0 0
\(201\) 3.88429 0.273977
\(202\) 5.34505 0.376077
\(203\) −8.31433 −0.583552
\(204\) 26.3935 1.84791
\(205\) 0 0
\(206\) 6.75709 0.470789
\(207\) 29.3258 2.03829
\(208\) −1.70526 −0.118239
\(209\) −18.9100 −1.30803
\(210\) 0 0
\(211\) 20.0610 1.38106 0.690530 0.723304i \(-0.257377\pi\)
0.690530 + 0.723304i \(0.257377\pi\)
\(212\) 12.6917 0.871668
\(213\) 21.2054 1.45297
\(214\) −8.81932 −0.602876
\(215\) 0 0
\(216\) −6.04899 −0.411582
\(217\) −1.68151 −0.114148
\(218\) 1.63476 0.110720
\(219\) −13.0436 −0.881406
\(220\) 0 0
\(221\) −10.6552 −0.716743
\(222\) −1.91620 −0.128607
\(223\) −1.72511 −0.115522 −0.0577610 0.998330i \(-0.518396\pi\)
−0.0577610 + 0.998330i \(0.518396\pi\)
\(224\) 14.9432 0.998436
\(225\) 0 0
\(226\) −8.29452 −0.551744
\(227\) −4.59930 −0.305266 −0.152633 0.988283i \(-0.548775\pi\)
−0.152633 + 0.988283i \(0.548775\pi\)
\(228\) −29.5726 −1.95849
\(229\) −23.4902 −1.55227 −0.776137 0.630565i \(-0.782823\pi\)
−0.776137 + 0.630565i \(0.782823\pi\)
\(230\) 0 0
\(231\) 16.5635 1.08980
\(232\) 8.23623 0.540735
\(233\) −2.43465 −0.159499 −0.0797496 0.996815i \(-0.525412\pi\)
−0.0797496 + 0.996815i \(0.525412\pi\)
\(234\) 4.44225 0.290399
\(235\) 0 0
\(236\) 9.15889 0.596193
\(237\) −33.7015 −2.18915
\(238\) 12.7202 0.824529
\(239\) 2.03195 0.131436 0.0657180 0.997838i \(-0.479066\pi\)
0.0657180 + 0.997838i \(0.479066\pi\)
\(240\) 0 0
\(241\) −20.2246 −1.30278 −0.651390 0.758743i \(-0.725814\pi\)
−0.651390 + 0.758743i \(0.725814\pi\)
\(242\) 3.57613 0.229882
\(243\) 21.4811 1.37801
\(244\) −4.81430 −0.308204
\(245\) 0 0
\(246\) 4.73038 0.301598
\(247\) 11.9386 0.759634
\(248\) 1.66571 0.105773
\(249\) 3.02128 0.191466
\(250\) 0 0
\(251\) 0.695568 0.0439038 0.0219519 0.999759i \(-0.493012\pi\)
0.0219519 + 0.999759i \(0.493012\pi\)
\(252\) 14.6573 0.923324
\(253\) 18.5148 1.16402
\(254\) 11.4184 0.716454
\(255\) 0 0
\(256\) −11.5891 −0.724317
\(257\) −7.13610 −0.445138 −0.222569 0.974917i \(-0.571444\pi\)
−0.222569 + 0.974917i \(0.571444\pi\)
\(258\) −20.9975 −1.30725
\(259\) 2.55244 0.158601
\(260\) 0 0
\(261\) 12.7368 0.788386
\(262\) 9.96644 0.615729
\(263\) −21.2754 −1.31190 −0.655948 0.754806i \(-0.727731\pi\)
−0.655948 + 0.754806i \(0.727731\pi\)
\(264\) −16.4079 −1.00984
\(265\) 0 0
\(266\) −14.2524 −0.873870
\(267\) −30.2845 −1.85338
\(268\) 2.17011 0.132561
\(269\) 18.3525 1.11897 0.559486 0.828840i \(-0.310998\pi\)
0.559486 + 0.828840i \(0.310998\pi\)
\(270\) 0 0
\(271\) −23.2195 −1.41048 −0.705241 0.708967i \(-0.749161\pi\)
−0.705241 + 0.708967i \(0.749161\pi\)
\(272\) 7.48023 0.453555
\(273\) −10.4572 −0.632897
\(274\) −10.3534 −0.625471
\(275\) 0 0
\(276\) 28.9546 1.74286
\(277\) −5.65674 −0.339880 −0.169940 0.985454i \(-0.554357\pi\)
−0.169940 + 0.985454i \(0.554357\pi\)
\(278\) 8.63197 0.517711
\(279\) 2.57591 0.154216
\(280\) 0 0
\(281\) −24.4373 −1.45781 −0.728903 0.684616i \(-0.759970\pi\)
−0.728903 + 0.684616i \(0.759970\pi\)
\(282\) −5.96935 −0.355469
\(283\) −20.8498 −1.23939 −0.619697 0.784841i \(-0.712744\pi\)
−0.619697 + 0.784841i \(0.712744\pi\)
\(284\) 11.8472 0.703005
\(285\) 0 0
\(286\) 2.80461 0.165840
\(287\) −6.30102 −0.371938
\(288\) −22.8916 −1.34890
\(289\) 29.7394 1.74938
\(290\) 0 0
\(291\) 45.4580 2.66480
\(292\) −7.28734 −0.426459
\(293\) −7.72199 −0.451123 −0.225562 0.974229i \(-0.572422\pi\)
−0.225562 + 0.974229i \(0.572422\pi\)
\(294\) −0.929493 −0.0542091
\(295\) 0 0
\(296\) −2.52846 −0.146964
\(297\) −5.90586 −0.342693
\(298\) −3.00128 −0.173859
\(299\) −11.6891 −0.675998
\(300\) 0 0
\(301\) 27.9694 1.61213
\(302\) −12.3260 −0.709280
\(303\) 19.2751 1.10732
\(304\) −8.38124 −0.480697
\(305\) 0 0
\(306\) −19.4862 −1.11395
\(307\) 9.01041 0.514251 0.257126 0.966378i \(-0.417225\pi\)
0.257126 + 0.966378i \(0.417225\pi\)
\(308\) 9.25388 0.527289
\(309\) 24.3671 1.38620
\(310\) 0 0
\(311\) −32.1220 −1.82147 −0.910735 0.412991i \(-0.864484\pi\)
−0.910735 + 0.412991i \(0.864484\pi\)
\(312\) 10.3590 0.586460
\(313\) −19.8623 −1.12268 −0.561342 0.827584i \(-0.689715\pi\)
−0.561342 + 0.827584i \(0.689715\pi\)
\(314\) 2.93383 0.165565
\(315\) 0 0
\(316\) −18.8287 −1.05920
\(317\) 8.58984 0.482453 0.241227 0.970469i \(-0.422450\pi\)
0.241227 + 0.970469i \(0.422450\pi\)
\(318\) −16.5595 −0.928609
\(319\) 8.04135 0.450229
\(320\) 0 0
\(321\) −31.8038 −1.77512
\(322\) 13.9546 0.777657
\(323\) −52.3693 −2.91390
\(324\) 7.99150 0.443972
\(325\) 0 0
\(326\) 2.60786 0.144436
\(327\) 5.89520 0.326005
\(328\) 6.24184 0.344648
\(329\) 7.95137 0.438373
\(330\) 0 0
\(331\) −22.9711 −1.26260 −0.631302 0.775537i \(-0.717479\pi\)
−0.631302 + 0.775537i \(0.717479\pi\)
\(332\) 1.68796 0.0926389
\(333\) −3.91009 −0.214272
\(334\) 17.2524 0.944008
\(335\) 0 0
\(336\) 7.34125 0.400498
\(337\) −26.2320 −1.42895 −0.714473 0.699663i \(-0.753334\pi\)
−0.714473 + 0.699663i \(0.753334\pi\)
\(338\) 7.70570 0.419135
\(339\) −29.9113 −1.62456
\(340\) 0 0
\(341\) 1.62630 0.0880690
\(342\) 21.8333 1.18061
\(343\) 19.1052 1.03158
\(344\) −27.7067 −1.49385
\(345\) 0 0
\(346\) −11.4724 −0.616760
\(347\) 0.390348 0.0209550 0.0104775 0.999945i \(-0.496665\pi\)
0.0104775 + 0.999945i \(0.496665\pi\)
\(348\) 12.5756 0.674121
\(349\) −6.37205 −0.341088 −0.170544 0.985350i \(-0.554552\pi\)
−0.170544 + 0.985350i \(0.554552\pi\)
\(350\) 0 0
\(351\) 3.72859 0.199017
\(352\) −14.4526 −0.770326
\(353\) 9.35970 0.498167 0.249083 0.968482i \(-0.419871\pi\)
0.249083 + 0.968482i \(0.419871\pi\)
\(354\) −11.9501 −0.635138
\(355\) 0 0
\(356\) −16.9197 −0.896741
\(357\) 45.8710 2.42775
\(358\) −7.41702 −0.392002
\(359\) −5.38443 −0.284179 −0.142090 0.989854i \(-0.545382\pi\)
−0.142090 + 0.989854i \(0.545382\pi\)
\(360\) 0 0
\(361\) 39.6773 2.08828
\(362\) 1.85723 0.0976137
\(363\) 12.8961 0.676868
\(364\) −5.84232 −0.306221
\(365\) 0 0
\(366\) 6.28145 0.328337
\(367\) 22.1964 1.15864 0.579321 0.815099i \(-0.303318\pi\)
0.579321 + 0.815099i \(0.303318\pi\)
\(368\) 8.20609 0.427772
\(369\) 9.65257 0.502493
\(370\) 0 0
\(371\) 22.0577 1.14518
\(372\) 2.54331 0.131864
\(373\) 31.6626 1.63943 0.819713 0.572774i \(-0.194133\pi\)
0.819713 + 0.572774i \(0.194133\pi\)
\(374\) −12.3026 −0.636151
\(375\) 0 0
\(376\) −7.87668 −0.406209
\(377\) −5.07680 −0.261469
\(378\) −4.45123 −0.228946
\(379\) −15.6622 −0.804515 −0.402257 0.915527i \(-0.631774\pi\)
−0.402257 + 0.915527i \(0.631774\pi\)
\(380\) 0 0
\(381\) 41.1765 2.10953
\(382\) 7.62766 0.390265
\(383\) −7.84825 −0.401027 −0.200513 0.979691i \(-0.564261\pi\)
−0.200513 + 0.979691i \(0.564261\pi\)
\(384\) −26.7950 −1.36738
\(385\) 0 0
\(386\) −7.15226 −0.364040
\(387\) −42.8465 −2.17801
\(388\) 25.3970 1.28933
\(389\) 17.6518 0.894981 0.447491 0.894289i \(-0.352318\pi\)
0.447491 + 0.894289i \(0.352318\pi\)
\(390\) 0 0
\(391\) 51.2749 2.59308
\(392\) −1.22649 −0.0619469
\(393\) 35.9405 1.81296
\(394\) 9.76391 0.491899
\(395\) 0 0
\(396\) −14.1761 −0.712374
\(397\) 22.7648 1.14253 0.571267 0.820765i \(-0.306452\pi\)
0.571267 + 0.820765i \(0.306452\pi\)
\(398\) −3.06320 −0.153544
\(399\) −51.3963 −2.57303
\(400\) 0 0
\(401\) −0.168397 −0.00840934 −0.00420467 0.999991i \(-0.501338\pi\)
−0.00420467 + 0.999991i \(0.501338\pi\)
\(402\) −2.83146 −0.141220
\(403\) −1.02674 −0.0511457
\(404\) 10.7688 0.535767
\(405\) 0 0
\(406\) 6.06073 0.300789
\(407\) −2.46863 −0.122366
\(408\) −45.4401 −2.24962
\(409\) −21.1075 −1.04370 −0.521850 0.853037i \(-0.674758\pi\)
−0.521850 + 0.853037i \(0.674758\pi\)
\(410\) 0 0
\(411\) −37.3359 −1.84164
\(412\) 13.6137 0.670697
\(413\) 15.9179 0.783267
\(414\) −21.3771 −1.05063
\(415\) 0 0
\(416\) 9.12446 0.447364
\(417\) 31.1282 1.52435
\(418\) 13.7844 0.674219
\(419\) −22.3217 −1.09049 −0.545243 0.838278i \(-0.683563\pi\)
−0.545243 + 0.838278i \(0.683563\pi\)
\(420\) 0 0
\(421\) −27.4605 −1.33835 −0.669173 0.743107i \(-0.733351\pi\)
−0.669173 + 0.743107i \(0.733351\pi\)
\(422\) −14.6235 −0.711861
\(423\) −12.1807 −0.592248
\(424\) −21.8506 −1.06116
\(425\) 0 0
\(426\) −15.4577 −0.748927
\(427\) −8.36710 −0.404912
\(428\) −17.7685 −0.858871
\(429\) 10.1138 0.488301
\(430\) 0 0
\(431\) 36.7380 1.76960 0.884802 0.465966i \(-0.154293\pi\)
0.884802 + 0.465966i \(0.154293\pi\)
\(432\) −2.61758 −0.125938
\(433\) −0.370435 −0.0178020 −0.00890098 0.999960i \(-0.502833\pi\)
−0.00890098 + 0.999960i \(0.502833\pi\)
\(434\) 1.22574 0.0588372
\(435\) 0 0
\(436\) 3.29359 0.157734
\(437\) −57.4511 −2.74826
\(438\) 9.50815 0.454317
\(439\) 30.1768 1.44026 0.720130 0.693839i \(-0.244082\pi\)
0.720130 + 0.693839i \(0.244082\pi\)
\(440\) 0 0
\(441\) −1.89668 −0.0903179
\(442\) 7.76708 0.369442
\(443\) −38.1789 −1.81393 −0.906966 0.421203i \(-0.861608\pi\)
−0.906966 + 0.421203i \(0.861608\pi\)
\(444\) −3.86060 −0.183216
\(445\) 0 0
\(446\) 1.25752 0.0595454
\(447\) −10.8231 −0.511913
\(448\) −5.30742 −0.250752
\(449\) −3.77840 −0.178314 −0.0891569 0.996018i \(-0.528417\pi\)
−0.0891569 + 0.996018i \(0.528417\pi\)
\(450\) 0 0
\(451\) 6.09414 0.286962
\(452\) −16.7111 −0.786026
\(453\) −44.4493 −2.08841
\(454\) 3.35266 0.157348
\(455\) 0 0
\(456\) 50.9135 2.38424
\(457\) −25.3343 −1.18509 −0.592544 0.805538i \(-0.701876\pi\)
−0.592544 + 0.805538i \(0.701876\pi\)
\(458\) 17.1232 0.800113
\(459\) −16.3557 −0.763418
\(460\) 0 0
\(461\) −14.7582 −0.687359 −0.343680 0.939087i \(-0.611673\pi\)
−0.343680 + 0.939087i \(0.611673\pi\)
\(462\) −12.0740 −0.561733
\(463\) −8.63700 −0.401395 −0.200698 0.979653i \(-0.564321\pi\)
−0.200698 + 0.979653i \(0.564321\pi\)
\(464\) 3.56407 0.165458
\(465\) 0 0
\(466\) 1.77474 0.0822132
\(467\) 1.64618 0.0761762 0.0380881 0.999274i \(-0.487873\pi\)
0.0380881 + 0.999274i \(0.487873\pi\)
\(468\) 8.94989 0.413709
\(469\) 3.77159 0.174156
\(470\) 0 0
\(471\) 10.5798 0.487493
\(472\) −15.7683 −0.725797
\(473\) −27.0511 −1.24381
\(474\) 24.5667 1.12839
\(475\) 0 0
\(476\) 25.6277 1.17464
\(477\) −33.7904 −1.54716
\(478\) −1.48119 −0.0677482
\(479\) 16.0571 0.733669 0.366835 0.930286i \(-0.380442\pi\)
0.366835 + 0.930286i \(0.380442\pi\)
\(480\) 0 0
\(481\) 1.55854 0.0710633
\(482\) 14.7427 0.671513
\(483\) 50.3222 2.28974
\(484\) 7.20490 0.327495
\(485\) 0 0
\(486\) −15.6586 −0.710290
\(487\) 6.60786 0.299431 0.149715 0.988729i \(-0.452164\pi\)
0.149715 + 0.988729i \(0.452164\pi\)
\(488\) 8.28850 0.375203
\(489\) 9.40435 0.425279
\(490\) 0 0
\(491\) −18.2039 −0.821532 −0.410766 0.911741i \(-0.634739\pi\)
−0.410766 + 0.911741i \(0.634739\pi\)
\(492\) 9.53040 0.429663
\(493\) 22.2697 1.00298
\(494\) −8.70264 −0.391550
\(495\) 0 0
\(496\) 0.720804 0.0323650
\(497\) 20.5901 0.923594
\(498\) −2.20237 −0.0986904
\(499\) −26.1795 −1.17196 −0.585978 0.810327i \(-0.699289\pi\)
−0.585978 + 0.810327i \(0.699289\pi\)
\(500\) 0 0
\(501\) 62.2147 2.77955
\(502\) −0.507034 −0.0226301
\(503\) −0.546197 −0.0243537 −0.0121769 0.999926i \(-0.503876\pi\)
−0.0121769 + 0.999926i \(0.503876\pi\)
\(504\) −25.2347 −1.12404
\(505\) 0 0
\(506\) −13.4964 −0.599988
\(507\) 27.7879 1.23410
\(508\) 23.0049 1.02068
\(509\) −27.4237 −1.21553 −0.607767 0.794115i \(-0.707935\pi\)
−0.607767 + 0.794115i \(0.707935\pi\)
\(510\) 0 0
\(511\) −12.6652 −0.560274
\(512\) −11.9386 −0.527618
\(513\) 18.3258 0.809102
\(514\) 5.20186 0.229444
\(515\) 0 0
\(516\) −42.3042 −1.86234
\(517\) −7.69030 −0.338219
\(518\) −1.86060 −0.0817500
\(519\) −41.3712 −1.81600
\(520\) 0 0
\(521\) 39.2211 1.71831 0.859154 0.511717i \(-0.170990\pi\)
0.859154 + 0.511717i \(0.170990\pi\)
\(522\) −9.28448 −0.406370
\(523\) 2.89217 0.126466 0.0632329 0.997999i \(-0.479859\pi\)
0.0632329 + 0.997999i \(0.479859\pi\)
\(524\) 20.0796 0.877181
\(525\) 0 0
\(526\) 15.5087 0.676212
\(527\) 4.50387 0.196191
\(528\) −7.10021 −0.308997
\(529\) 33.2505 1.44567
\(530\) 0 0
\(531\) −24.3847 −1.05820
\(532\) −28.7146 −1.24494
\(533\) −3.84746 −0.166652
\(534\) 22.0759 0.955319
\(535\) 0 0
\(536\) −3.73616 −0.161378
\(537\) −26.7469 −1.15421
\(538\) −13.3781 −0.576770
\(539\) −1.19746 −0.0515784
\(540\) 0 0
\(541\) −30.3727 −1.30582 −0.652912 0.757434i \(-0.726453\pi\)
−0.652912 + 0.757434i \(0.726453\pi\)
\(542\) 16.9258 0.727027
\(543\) 6.69744 0.287415
\(544\) −40.0250 −1.71606
\(545\) 0 0
\(546\) 7.62277 0.326224
\(547\) −18.8597 −0.806384 −0.403192 0.915115i \(-0.632099\pi\)
−0.403192 + 0.915115i \(0.632099\pi\)
\(548\) −20.8592 −0.891060
\(549\) 12.8176 0.547042
\(550\) 0 0
\(551\) −24.9521 −1.06300
\(552\) −49.8496 −2.12174
\(553\) −32.7237 −1.39155
\(554\) 4.12348 0.175190
\(555\) 0 0
\(556\) 17.3910 0.737543
\(557\) −24.2064 −1.02566 −0.512828 0.858491i \(-0.671402\pi\)
−0.512828 + 0.858491i \(0.671402\pi\)
\(558\) −1.87771 −0.0794898
\(559\) 17.0784 0.722339
\(560\) 0 0
\(561\) −44.3649 −1.87309
\(562\) 17.8136 0.751420
\(563\) −5.13444 −0.216391 −0.108196 0.994130i \(-0.534507\pi\)
−0.108196 + 0.994130i \(0.534507\pi\)
\(564\) −12.0266 −0.506410
\(565\) 0 0
\(566\) 15.1985 0.638840
\(567\) 13.8890 0.583282
\(568\) −20.3967 −0.855828
\(569\) −11.9797 −0.502214 −0.251107 0.967959i \(-0.580795\pi\)
−0.251107 + 0.967959i \(0.580795\pi\)
\(570\) 0 0
\(571\) −25.5874 −1.07080 −0.535399 0.844599i \(-0.679839\pi\)
−0.535399 + 0.844599i \(0.679839\pi\)
\(572\) 5.65050 0.236259
\(573\) 27.5065 1.14910
\(574\) 4.59313 0.191714
\(575\) 0 0
\(576\) 8.13047 0.338769
\(577\) 40.3272 1.67884 0.839421 0.543481i \(-0.182894\pi\)
0.839421 + 0.543481i \(0.182894\pi\)
\(578\) −21.6786 −0.901709
\(579\) −25.7921 −1.07188
\(580\) 0 0
\(581\) 2.93362 0.121707
\(582\) −33.1367 −1.37356
\(583\) −21.3335 −0.883544
\(584\) 12.5462 0.519165
\(585\) 0 0
\(586\) 5.62894 0.232530
\(587\) 31.6751 1.30737 0.653686 0.756766i \(-0.273222\pi\)
0.653686 + 0.756766i \(0.273222\pi\)
\(588\) −1.87267 −0.0772276
\(589\) −5.04637 −0.207932
\(590\) 0 0
\(591\) 35.2101 1.44835
\(592\) −1.09414 −0.0449689
\(593\) −6.26075 −0.257098 −0.128549 0.991703i \(-0.541032\pi\)
−0.128549 + 0.991703i \(0.541032\pi\)
\(594\) 4.30508 0.176640
\(595\) 0 0
\(596\) −6.04673 −0.247684
\(597\) −11.0464 −0.452098
\(598\) 8.52078 0.348440
\(599\) 34.4197 1.40635 0.703175 0.711017i \(-0.251765\pi\)
0.703175 + 0.711017i \(0.251765\pi\)
\(600\) 0 0
\(601\) 12.2491 0.499650 0.249825 0.968291i \(-0.419627\pi\)
0.249825 + 0.968291i \(0.419627\pi\)
\(602\) −20.3883 −0.830966
\(603\) −5.77772 −0.235287
\(604\) −24.8334 −1.01046
\(605\) 0 0
\(606\) −14.0506 −0.570765
\(607\) 31.0932 1.26204 0.631018 0.775768i \(-0.282637\pi\)
0.631018 + 0.775768i \(0.282637\pi\)
\(608\) 44.8461 1.81875
\(609\) 21.8559 0.885647
\(610\) 0 0
\(611\) 4.85518 0.196419
\(612\) −39.2592 −1.58696
\(613\) −15.0998 −0.609876 −0.304938 0.952372i \(-0.598636\pi\)
−0.304938 + 0.952372i \(0.598636\pi\)
\(614\) −6.56814 −0.265069
\(615\) 0 0
\(616\) −15.9319 −0.641914
\(617\) 27.3635 1.10161 0.550807 0.834632i \(-0.314320\pi\)
0.550807 + 0.834632i \(0.314320\pi\)
\(618\) −17.7624 −0.714509
\(619\) −11.1466 −0.448021 −0.224010 0.974587i \(-0.571915\pi\)
−0.224010 + 0.974587i \(0.571915\pi\)
\(620\) 0 0
\(621\) −17.9428 −0.720020
\(622\) 23.4153 0.938869
\(623\) −29.4059 −1.17812
\(624\) 4.48263 0.179449
\(625\) 0 0
\(626\) 14.4786 0.578683
\(627\) 49.7088 1.98518
\(628\) 5.91084 0.235868
\(629\) −6.83662 −0.272594
\(630\) 0 0
\(631\) 11.9459 0.475558 0.237779 0.971319i \(-0.423581\pi\)
0.237779 + 0.971319i \(0.423581\pi\)
\(632\) 32.4163 1.28945
\(633\) −52.7346 −2.09601
\(634\) −6.26156 −0.248679
\(635\) 0 0
\(636\) −33.3627 −1.32292
\(637\) 0.756004 0.0299540
\(638\) −5.86174 −0.232069
\(639\) −31.5422 −1.24779
\(640\) 0 0
\(641\) 27.9313 1.10322 0.551609 0.834103i \(-0.314014\pi\)
0.551609 + 0.834103i \(0.314014\pi\)
\(642\) 23.1834 0.914976
\(643\) −39.0497 −1.53997 −0.769984 0.638063i \(-0.779736\pi\)
−0.769984 + 0.638063i \(0.779736\pi\)
\(644\) 28.1145 1.10787
\(645\) 0 0
\(646\) 38.1746 1.50196
\(647\) 3.60562 0.141752 0.0708759 0.997485i \(-0.477421\pi\)
0.0708759 + 0.997485i \(0.477421\pi\)
\(648\) −13.7585 −0.540485
\(649\) −15.3952 −0.604316
\(650\) 0 0
\(651\) 4.42019 0.173241
\(652\) 5.25411 0.205767
\(653\) 16.9343 0.662691 0.331345 0.943510i \(-0.392497\pi\)
0.331345 + 0.943510i \(0.392497\pi\)
\(654\) −4.29731 −0.168038
\(655\) 0 0
\(656\) 2.70103 0.105458
\(657\) 19.4018 0.756938
\(658\) −5.79615 −0.225958
\(659\) 31.2664 1.21797 0.608983 0.793183i \(-0.291578\pi\)
0.608983 + 0.793183i \(0.291578\pi\)
\(660\) 0 0
\(661\) −39.2941 −1.52836 −0.764181 0.645002i \(-0.776857\pi\)
−0.764181 + 0.645002i \(0.776857\pi\)
\(662\) 16.7448 0.650804
\(663\) 28.0093 1.08779
\(664\) −2.90607 −0.112777
\(665\) 0 0
\(666\) 2.85026 0.110445
\(667\) 24.4307 0.945960
\(668\) 34.7587 1.34486
\(669\) 4.53481 0.175326
\(670\) 0 0
\(671\) 8.09238 0.312403
\(672\) −39.2813 −1.51531
\(673\) −33.7258 −1.30004 −0.650018 0.759919i \(-0.725238\pi\)
−0.650018 + 0.759919i \(0.725238\pi\)
\(674\) 19.1218 0.736544
\(675\) 0 0
\(676\) 15.5248 0.597109
\(677\) 20.4385 0.785515 0.392758 0.919642i \(-0.371521\pi\)
0.392758 + 0.919642i \(0.371521\pi\)
\(678\) 21.8039 0.837372
\(679\) 44.1391 1.69390
\(680\) 0 0
\(681\) 12.0902 0.463298
\(682\) −1.18549 −0.0453948
\(683\) 31.0965 1.18988 0.594938 0.803771i \(-0.297177\pi\)
0.594938 + 0.803771i \(0.297177\pi\)
\(684\) 43.9880 1.68192
\(685\) 0 0
\(686\) −13.9267 −0.531725
\(687\) 61.7487 2.35586
\(688\) −11.9895 −0.457096
\(689\) 13.4687 0.513115
\(690\) 0 0
\(691\) 10.8292 0.411960 0.205980 0.978556i \(-0.433962\pi\)
0.205980 + 0.978556i \(0.433962\pi\)
\(692\) −23.1137 −0.878651
\(693\) −24.6376 −0.935904
\(694\) −0.284545 −0.0108012
\(695\) 0 0
\(696\) −21.6506 −0.820665
\(697\) 16.8771 0.639266
\(698\) 4.64491 0.175812
\(699\) 6.39998 0.242069
\(700\) 0 0
\(701\) 3.32122 0.125441 0.0627204 0.998031i \(-0.480022\pi\)
0.0627204 + 0.998031i \(0.480022\pi\)
\(702\) −2.71796 −0.102583
\(703\) 7.66011 0.288906
\(704\) 5.13316 0.193463
\(705\) 0 0
\(706\) −6.82276 −0.256778
\(707\) 18.7158 0.703881
\(708\) −24.0760 −0.904832
\(709\) 17.6659 0.663458 0.331729 0.943375i \(-0.392368\pi\)
0.331729 + 0.943375i \(0.392368\pi\)
\(710\) 0 0
\(711\) 50.1296 1.88001
\(712\) 29.1296 1.09168
\(713\) 4.94091 0.185039
\(714\) −33.4377 −1.25137
\(715\) 0 0
\(716\) −14.9432 −0.558454
\(717\) −5.34140 −0.199478
\(718\) 3.92498 0.146479
\(719\) −17.4938 −0.652410 −0.326205 0.945299i \(-0.605770\pi\)
−0.326205 + 0.945299i \(0.605770\pi\)
\(720\) 0 0
\(721\) 23.6601 0.881148
\(722\) −28.9228 −1.07639
\(723\) 53.1645 1.97721
\(724\) 3.74179 0.139063
\(725\) 0 0
\(726\) −9.40059 −0.348888
\(727\) −19.2435 −0.713701 −0.356851 0.934161i \(-0.616149\pi\)
−0.356851 + 0.934161i \(0.616149\pi\)
\(728\) 10.0584 0.372789
\(729\) −40.1430 −1.48678
\(730\) 0 0
\(731\) −74.9153 −2.77084
\(732\) 12.6554 0.467756
\(733\) 17.2213 0.636082 0.318041 0.948077i \(-0.396975\pi\)
0.318041 + 0.948077i \(0.396975\pi\)
\(734\) −16.1801 −0.597217
\(735\) 0 0
\(736\) −43.9089 −1.61850
\(737\) −3.64776 −0.134367
\(738\) −7.03625 −0.259008
\(739\) 44.1590 1.62442 0.812208 0.583368i \(-0.198265\pi\)
0.812208 + 0.583368i \(0.198265\pi\)
\(740\) 0 0
\(741\) −31.3830 −1.15288
\(742\) −16.0790 −0.590279
\(743\) 15.8768 0.582461 0.291231 0.956653i \(-0.405935\pi\)
0.291231 + 0.956653i \(0.405935\pi\)
\(744\) −4.37867 −0.160530
\(745\) 0 0
\(746\) −23.0805 −0.845035
\(747\) −4.49404 −0.164428
\(748\) −24.7862 −0.906275
\(749\) −30.8811 −1.12837
\(750\) 0 0
\(751\) 20.6030 0.751815 0.375907 0.926657i \(-0.377331\pi\)
0.375907 + 0.926657i \(0.377331\pi\)
\(752\) −3.40848 −0.124294
\(753\) −1.82844 −0.0666322
\(754\) 3.70074 0.134773
\(755\) 0 0
\(756\) −8.96798 −0.326162
\(757\) 21.6914 0.788387 0.394194 0.919027i \(-0.371024\pi\)
0.394194 + 0.919027i \(0.371024\pi\)
\(758\) 11.4170 0.414684
\(759\) −48.6700 −1.76661
\(760\) 0 0
\(761\) 22.5166 0.816225 0.408113 0.912932i \(-0.366187\pi\)
0.408113 + 0.912932i \(0.366187\pi\)
\(762\) −30.0156 −1.08735
\(763\) 5.72415 0.207228
\(764\) 15.3676 0.555981
\(765\) 0 0
\(766\) 5.72098 0.206708
\(767\) 9.71959 0.350954
\(768\) 30.4643 1.09928
\(769\) −0.975961 −0.0351941 −0.0175970 0.999845i \(-0.505602\pi\)
−0.0175970 + 0.999845i \(0.505602\pi\)
\(770\) 0 0
\(771\) 18.7587 0.675578
\(772\) −14.4098 −0.518620
\(773\) −15.6271 −0.562066 −0.281033 0.959698i \(-0.590677\pi\)
−0.281033 + 0.959698i \(0.590677\pi\)
\(774\) 31.2330 1.12265
\(775\) 0 0
\(776\) −43.7245 −1.56962
\(777\) −6.70960 −0.240706
\(778\) −12.8673 −0.461314
\(779\) −18.9100 −0.677521
\(780\) 0 0
\(781\) −19.9141 −0.712583
\(782\) −37.3769 −1.33659
\(783\) −7.79290 −0.278496
\(784\) −0.530737 −0.0189549
\(785\) 0 0
\(786\) −26.1988 −0.934482
\(787\) −44.8503 −1.59874 −0.799370 0.600840i \(-0.794833\pi\)
−0.799370 + 0.600840i \(0.794833\pi\)
\(788\) 19.6715 0.700770
\(789\) 55.9267 1.99104
\(790\) 0 0
\(791\) −29.0435 −1.03267
\(792\) 24.4061 0.867235
\(793\) −5.10902 −0.181427
\(794\) −16.5944 −0.588914
\(795\) 0 0
\(796\) −6.17149 −0.218743
\(797\) −12.4685 −0.441658 −0.220829 0.975313i \(-0.570876\pi\)
−0.220829 + 0.975313i \(0.570876\pi\)
\(798\) 37.4653 1.32626
\(799\) −21.2975 −0.753451
\(800\) 0 0
\(801\) 45.0470 1.59166
\(802\) 0.122753 0.00433456
\(803\) 12.2493 0.432269
\(804\) −5.70459 −0.201185
\(805\) 0 0
\(806\) 0.748445 0.0263628
\(807\) −48.2434 −1.69825
\(808\) −18.5400 −0.652236
\(809\) 18.8505 0.662748 0.331374 0.943500i \(-0.392488\pi\)
0.331374 + 0.943500i \(0.392488\pi\)
\(810\) 0 0
\(811\) 29.8244 1.04728 0.523638 0.851941i \(-0.324575\pi\)
0.523638 + 0.851941i \(0.324575\pi\)
\(812\) 12.2107 0.428511
\(813\) 61.0371 2.14067
\(814\) 1.79951 0.0630728
\(815\) 0 0
\(816\) −19.6633 −0.688354
\(817\) 83.9390 2.93665
\(818\) 15.3863 0.537971
\(819\) 15.5546 0.543523
\(820\) 0 0
\(821\) 11.9059 0.415517 0.207759 0.978180i \(-0.433383\pi\)
0.207759 + 0.978180i \(0.433383\pi\)
\(822\) 27.2160 0.949267
\(823\) −41.2544 −1.43804 −0.719020 0.694990i \(-0.755409\pi\)
−0.719020 + 0.694990i \(0.755409\pi\)
\(824\) −23.4379 −0.816497
\(825\) 0 0
\(826\) −11.6033 −0.403732
\(827\) −27.0596 −0.940953 −0.470477 0.882412i \(-0.655918\pi\)
−0.470477 + 0.882412i \(0.655918\pi\)
\(828\) −43.0688 −1.49674
\(829\) −20.6787 −0.718200 −0.359100 0.933299i \(-0.616916\pi\)
−0.359100 + 0.933299i \(0.616916\pi\)
\(830\) 0 0
\(831\) 14.8699 0.515831
\(832\) −3.24076 −0.112353
\(833\) −3.31626 −0.114901
\(834\) −22.6909 −0.785722
\(835\) 0 0
\(836\) 27.7718 0.960508
\(837\) −1.57605 −0.0544763
\(838\) 16.2714 0.562086
\(839\) −0.0974789 −0.00336534 −0.00168267 0.999999i \(-0.500536\pi\)
−0.00168267 + 0.999999i \(0.500536\pi\)
\(840\) 0 0
\(841\) −18.3893 −0.634113
\(842\) 20.0174 0.689844
\(843\) 64.2385 2.21249
\(844\) −29.4623 −1.01413
\(845\) 0 0
\(846\) 8.87916 0.305272
\(847\) 12.5219 0.430257
\(848\) −9.45539 −0.324700
\(849\) 54.8080 1.88101
\(850\) 0 0
\(851\) −7.50003 −0.257098
\(852\) −31.1429 −1.06694
\(853\) −0.919899 −0.0314967 −0.0157484 0.999876i \(-0.505013\pi\)
−0.0157484 + 0.999876i \(0.505013\pi\)
\(854\) 6.09920 0.208710
\(855\) 0 0
\(856\) 30.5910 1.04558
\(857\) −20.3344 −0.694608 −0.347304 0.937753i \(-0.612903\pi\)
−0.347304 + 0.937753i \(0.612903\pi\)
\(858\) −7.37249 −0.251693
\(859\) 15.8959 0.542360 0.271180 0.962529i \(-0.412586\pi\)
0.271180 + 0.962529i \(0.412586\pi\)
\(860\) 0 0
\(861\) 16.5635 0.564484
\(862\) −26.7801 −0.912135
\(863\) 37.0558 1.26139 0.630697 0.776029i \(-0.282769\pi\)
0.630697 + 0.776029i \(0.282769\pi\)
\(864\) 14.0061 0.476496
\(865\) 0 0
\(866\) 0.270029 0.00917595
\(867\) −78.1762 −2.65500
\(868\) 2.46951 0.0838208
\(869\) 31.6493 1.07363
\(870\) 0 0
\(871\) 2.30297 0.0780331
\(872\) −5.67039 −0.192024
\(873\) −67.6170 −2.28849
\(874\) 41.8790 1.41658
\(875\) 0 0
\(876\) 19.1563 0.647230
\(877\) 25.4103 0.858045 0.429022 0.903294i \(-0.358858\pi\)
0.429022 + 0.903294i \(0.358858\pi\)
\(878\) −21.9974 −0.742376
\(879\) 20.2988 0.684662
\(880\) 0 0
\(881\) 1.37793 0.0464238 0.0232119 0.999731i \(-0.492611\pi\)
0.0232119 + 0.999731i \(0.492611\pi\)
\(882\) 1.38258 0.0465540
\(883\) 54.5280 1.83501 0.917506 0.397722i \(-0.130199\pi\)
0.917506 + 0.397722i \(0.130199\pi\)
\(884\) 15.6485 0.526316
\(885\) 0 0
\(886\) 27.8305 0.934984
\(887\) 6.43212 0.215969 0.107985 0.994153i \(-0.465560\pi\)
0.107985 + 0.994153i \(0.465560\pi\)
\(888\) 6.64658 0.223045
\(889\) 39.9818 1.34095
\(890\) 0 0
\(891\) −13.4330 −0.450021
\(892\) 2.53355 0.0848297
\(893\) 23.8628 0.798539
\(894\) 7.88947 0.263863
\(895\) 0 0
\(896\) −26.0176 −0.869187
\(897\) 30.7272 1.02595
\(898\) 2.75427 0.0919111
\(899\) 2.14593 0.0715709
\(900\) 0 0
\(901\) −59.0810 −1.96827
\(902\) −4.44233 −0.147913
\(903\) −73.5234 −2.44670
\(904\) 28.7706 0.956897
\(905\) 0 0
\(906\) 32.4013 1.07646
\(907\) 33.4197 1.10968 0.554841 0.831957i \(-0.312779\pi\)
0.554841 + 0.831957i \(0.312779\pi\)
\(908\) 6.75468 0.224162
\(909\) −28.6709 −0.950953
\(910\) 0 0
\(911\) 52.4122 1.73649 0.868247 0.496132i \(-0.165247\pi\)
0.868247 + 0.496132i \(0.165247\pi\)
\(912\) 22.0318 0.729546
\(913\) −2.83730 −0.0939011
\(914\) 18.4674 0.610849
\(915\) 0 0
\(916\) 34.4984 1.13986
\(917\) 34.8977 1.15242
\(918\) 11.9225 0.393500
\(919\) −11.6967 −0.385838 −0.192919 0.981215i \(-0.561795\pi\)
−0.192919 + 0.981215i \(0.561795\pi\)
\(920\) 0 0
\(921\) −23.6857 −0.780470
\(922\) 10.7580 0.354297
\(923\) 12.5725 0.413830
\(924\) −24.3257 −0.800257
\(925\) 0 0
\(926\) 6.29594 0.206898
\(927\) −36.2451 −1.19044
\(928\) −19.0705 −0.626020
\(929\) −10.4868 −0.344059 −0.172030 0.985092i \(-0.555032\pi\)
−0.172030 + 0.985092i \(0.555032\pi\)
\(930\) 0 0
\(931\) 3.71571 0.121777
\(932\) 3.57560 0.117123
\(933\) 84.4392 2.76442
\(934\) −1.19999 −0.0392647
\(935\) 0 0
\(936\) −15.4085 −0.503643
\(937\) −38.3244 −1.25200 −0.626002 0.779821i \(-0.715310\pi\)
−0.626002 + 0.779821i \(0.715310\pi\)
\(938\) −2.74930 −0.0897679
\(939\) 52.2122 1.70388
\(940\) 0 0
\(941\) 33.4866 1.09163 0.545816 0.837905i \(-0.316220\pi\)
0.545816 + 0.837905i \(0.316220\pi\)
\(942\) −7.71217 −0.251276
\(943\) 18.5148 0.602926
\(944\) −6.82344 −0.222084
\(945\) 0 0
\(946\) 19.7189 0.641117
\(947\) 40.2997 1.30956 0.654782 0.755818i \(-0.272760\pi\)
0.654782 + 0.755818i \(0.272760\pi\)
\(948\) 49.4951 1.60753
\(949\) −7.73346 −0.251039
\(950\) 0 0
\(951\) −22.5801 −0.732211
\(952\) −44.1217 −1.42999
\(953\) −10.8028 −0.349939 −0.174969 0.984574i \(-0.555983\pi\)
−0.174969 + 0.984574i \(0.555983\pi\)
\(954\) 24.6315 0.797475
\(955\) 0 0
\(956\) −2.98419 −0.0965156
\(957\) −21.1383 −0.683305
\(958\) −11.7049 −0.378167
\(959\) −36.2526 −1.17066
\(960\) 0 0
\(961\) −30.5660 −0.986000
\(962\) −1.13610 −0.0366293
\(963\) 47.3069 1.52444
\(964\) 29.7025 0.956652
\(965\) 0 0
\(966\) −36.6824 −1.18024
\(967\) −46.0540 −1.48100 −0.740499 0.672058i \(-0.765411\pi\)
−0.740499 + 0.672058i \(0.765411\pi\)
\(968\) −12.4043 −0.398688
\(969\) 137.663 4.42239
\(970\) 0 0
\(971\) −0.231513 −0.00742961 −0.00371481 0.999993i \(-0.501182\pi\)
−0.00371481 + 0.999993i \(0.501182\pi\)
\(972\) −31.5478 −1.01190
\(973\) 30.2250 0.968970
\(974\) −4.81680 −0.154340
\(975\) 0 0
\(976\) 3.58668 0.114807
\(977\) −8.81121 −0.281896 −0.140948 0.990017i \(-0.545015\pi\)
−0.140948 + 0.990017i \(0.545015\pi\)
\(978\) −6.85530 −0.219208
\(979\) 28.4404 0.908958
\(980\) 0 0
\(981\) −8.76887 −0.279968
\(982\) 13.2698 0.423455
\(983\) −18.8943 −0.602634 −0.301317 0.953524i \(-0.597426\pi\)
−0.301317 + 0.953524i \(0.597426\pi\)
\(984\) −16.4079 −0.523066
\(985\) 0 0
\(986\) −16.2335 −0.516980
\(987\) −20.9018 −0.665312
\(988\) −17.5334 −0.557811
\(989\) −82.1849 −2.61333
\(990\) 0 0
\(991\) 30.3969 0.965589 0.482794 0.875734i \(-0.339622\pi\)
0.482794 + 0.875734i \(0.339622\pi\)
\(992\) −3.85685 −0.122455
\(993\) 60.3842 1.91623
\(994\) −15.0092 −0.476063
\(995\) 0 0
\(996\) −4.43715 −0.140597
\(997\) −35.2291 −1.11572 −0.557859 0.829936i \(-0.688377\pi\)
−0.557859 + 0.829936i \(0.688377\pi\)
\(998\) 19.0836 0.604079
\(999\) 2.39236 0.0756910
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.a.f.1.3 5
3.2 odd 2 8325.2.a.ch.1.3 5
5.2 odd 4 925.2.b.f.149.5 10
5.3 odd 4 925.2.b.f.149.6 10
5.4 even 2 185.2.a.e.1.3 5
15.14 odd 2 1665.2.a.p.1.3 5
20.19 odd 2 2960.2.a.w.1.1 5
35.34 odd 2 9065.2.a.k.1.3 5
185.184 even 2 6845.2.a.f.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.a.e.1.3 5 5.4 even 2
925.2.a.f.1.3 5 1.1 even 1 trivial
925.2.b.f.149.5 10 5.2 odd 4
925.2.b.f.149.6 10 5.3 odd 4
1665.2.a.p.1.3 5 15.14 odd 2
2960.2.a.w.1.1 5 20.19 odd 2
6845.2.a.f.1.3 5 185.184 even 2
8325.2.a.ch.1.3 5 3.2 odd 2
9065.2.a.k.1.3 5 35.34 odd 2