Properties

Label 185.2.a.e.1.3
Level 185185
Weight 22
Character 185.1
Self dual yes
Analytic conductor 1.4771.477
Analytic rank 00
Dimension 55
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [185,2,Mod(1,185)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("185.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(185, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: N N == 185=537 185 = 5 \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 185.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.477232437391.47723243739
Analytic rank: 00
Dimension: 55
Coefficient field: 5.5.973904.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x52x48x3+6x2+19x+6 x^{5} - 2x^{4} - 8x^{3} + 6x^{2} + 19x + 6 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.3
Root 1.62871-1.62871 of defining polynomial
Character χ\chi == 185.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+0.728950q2+2.62871q31.46863q41.00000q5+1.91620q6+2.55244q72.52846q8+3.91009q90.728950q10+2.46863q113.86060q12+1.55854q13+1.86060q142.62871q15+1.09414q166.83662q17+2.85026q187.66011q19+1.46863q20+6.70960q21+1.79951q227.50003q236.64658q24+1.00000q25+1.13610q26+2.39236q273.74859q28+3.25741q291.91620q30+0.658785q31+5.85449q32+6.48930q334.98356q342.55244q355.74248q36+1.00000q375.58384q38+4.09694q39+2.52846q40+2.46863q41+4.89097q42+10.9579q433.62551q443.91009q455.46715q46+3.11521q47+2.87617q480.485072q49+0.728950q5017.9715q512.28892q52+8.64184q53+1.74391q542.46863q556.45373q5620.1362q57+2.37449q586.23634q59+3.86060q60+3.27808q61+0.480222q62+9.98026q63+2.07935q641.55854q65+4.73038q66+1.47764q67+10.0405q6819.7154q691.86060q708.06686q719.88651q724.96199q73+0.728950q74+2.62871q75+11.2499q76+6.30102q77+2.98647q78+12.8206q791.09414q805.44146q81+1.79951q82+1.14934q839.85393q84+6.83662q85+7.98779q86+8.56277q876.24184q88+11.5207q892.85026q90+3.97807q91+11.0148q92+1.73175q93+2.27083q94+7.66011q95+15.3897q96+17.2929q970.353594q98+9.65257q99+O(q100)q+0.728950 q^{2} +2.62871 q^{3} -1.46863 q^{4} -1.00000 q^{5} +1.91620 q^{6} +2.55244 q^{7} -2.52846 q^{8} +3.91009 q^{9} -0.728950 q^{10} +2.46863 q^{11} -3.86060 q^{12} +1.55854 q^{13} +1.86060 q^{14} -2.62871 q^{15} +1.09414 q^{16} -6.83662 q^{17} +2.85026 q^{18} -7.66011 q^{19} +1.46863 q^{20} +6.70960 q^{21} +1.79951 q^{22} -7.50003 q^{23} -6.64658 q^{24} +1.00000 q^{25} +1.13610 q^{26} +2.39236 q^{27} -3.74859 q^{28} +3.25741 q^{29} -1.91620 q^{30} +0.658785 q^{31} +5.85449 q^{32} +6.48930 q^{33} -4.98356 q^{34} -2.55244 q^{35} -5.74248 q^{36} +1.00000 q^{37} -5.58384 q^{38} +4.09694 q^{39} +2.52846 q^{40} +2.46863 q^{41} +4.89097 q^{42} +10.9579 q^{43} -3.62551 q^{44} -3.91009 q^{45} -5.46715 q^{46} +3.11521 q^{47} +2.87617 q^{48} -0.485072 q^{49} +0.728950 q^{50} -17.9715 q^{51} -2.28892 q^{52} +8.64184 q^{53} +1.74391 q^{54} -2.46863 q^{55} -6.45373 q^{56} -20.1362 q^{57} +2.37449 q^{58} -6.23634 q^{59} +3.86060 q^{60} +3.27808 q^{61} +0.480222 q^{62} +9.98026 q^{63} +2.07935 q^{64} -1.55854 q^{65} +4.73038 q^{66} +1.47764 q^{67} +10.0405 q^{68} -19.7154 q^{69} -1.86060 q^{70} -8.06686 q^{71} -9.88651 q^{72} -4.96199 q^{73} +0.728950 q^{74} +2.62871 q^{75} +11.2499 q^{76} +6.30102 q^{77} +2.98647 q^{78} +12.8206 q^{79} -1.09414 q^{80} -5.44146 q^{81} +1.79951 q^{82} +1.14934 q^{83} -9.85393 q^{84} +6.83662 q^{85} +7.98779 q^{86} +8.56277 q^{87} -6.24184 q^{88} +11.5207 q^{89} -2.85026 q^{90} +3.97807 q^{91} +11.0148 q^{92} +1.73175 q^{93} +2.27083 q^{94} +7.66011 q^{95} +15.3897 q^{96} +17.2929 q^{97} -0.353594 q^{98} +9.65257 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 5q+2q2+3q3+10q45q56q6+11q7+6q8+6q92q105q112q12+4q138q143q15+16q16+2q184q1910q20+3q21+10q99+O(q100) 5 q + 2 q^{2} + 3 q^{3} + 10 q^{4} - 5 q^{5} - 6 q^{6} + 11 q^{7} + 6 q^{8} + 6 q^{9} - 2 q^{10} - 5 q^{11} - 2 q^{12} + 4 q^{13} - 8 q^{14} - 3 q^{15} + 16 q^{16} + 2 q^{18} - 4 q^{19} - 10 q^{20} + 3 q^{21}+ \cdots - 10 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.728950 0.515446 0.257723 0.966219i 0.417028π-0.417028\pi
0.257723 + 0.966219i 0.417028π0.417028\pi
33 2.62871 1.51768 0.758842 0.651275i 0.225766π-0.225766\pi
0.758842 + 0.651275i 0.225766π0.225766\pi
44 −1.46863 −0.734316
55 −1.00000 −0.447214
66 1.91620 0.782284
77 2.55244 0.964730 0.482365 0.875970i 0.339778π-0.339778\pi
0.482365 + 0.875970i 0.339778π0.339778\pi
88 −2.52846 −0.893946
99 3.91009 1.30336
1010 −0.728950 −0.230514
1111 2.46863 0.744320 0.372160 0.928169i 0.378617π-0.378617\pi
0.372160 + 0.928169i 0.378617π0.378617\pi
1212 −3.86060 −1.11446
1313 1.55854 0.432261 0.216131 0.976364i 0.430656π-0.430656\pi
0.216131 + 0.976364i 0.430656π0.430656\pi
1414 1.86060 0.497266
1515 −2.62871 −0.678729
1616 1.09414 0.273535
1717 −6.83662 −1.65812 −0.829062 0.559156i 0.811125π-0.811125\pi
−0.829062 + 0.559156i 0.811125π0.811125\pi
1818 2.85026 0.671813
1919 −7.66011 −1.75735 −0.878675 0.477421i 0.841572π-0.841572\pi
−0.878675 + 0.477421i 0.841572π0.841572\pi
2020 1.46863 0.328396
2121 6.70960 1.46415
2222 1.79951 0.383657
2323 −7.50003 −1.56387 −0.781933 0.623363i 0.785766π-0.785766\pi
−0.781933 + 0.623363i 0.785766π0.785766\pi
2424 −6.64658 −1.35673
2525 1.00000 0.200000
2626 1.13610 0.222807
2727 2.39236 0.460410
2828 −3.74859 −0.708416
2929 3.25741 0.604886 0.302443 0.953167i 0.402198π-0.402198\pi
0.302443 + 0.953167i 0.402198π0.402198\pi
3030 −1.91620 −0.349848
3131 0.658785 0.118321 0.0591607 0.998248i 0.481158π-0.481158\pi
0.0591607 + 0.998248i 0.481158π0.481158\pi
3232 5.85449 1.03494
3333 6.48930 1.12964
3434 −4.98356 −0.854673
3535 −2.55244 −0.431440
3636 −5.74248 −0.957080
3737 1.00000 0.164399
3838 −5.58384 −0.905818
3939 4.09694 0.656036
4040 2.52846 0.399785
4141 2.46863 0.385535 0.192768 0.981244i 0.438254π-0.438254\pi
0.192768 + 0.981244i 0.438254π0.438254\pi
4242 4.89097 0.754692
4343 10.9579 1.67107 0.835535 0.549438i 0.185158π-0.185158\pi
0.835535 + 0.549438i 0.185158π0.185158\pi
4444 −3.62551 −0.546566
4545 −3.91009 −0.582882
4646 −5.46715 −0.806088
4747 3.11521 0.454400 0.227200 0.973848i 0.427043π-0.427043\pi
0.227200 + 0.973848i 0.427043π0.427043\pi
4848 2.87617 0.415140
4949 −0.485072 −0.0692960
5050 0.728950 0.103089
5151 −17.9715 −2.51651
5252 −2.28892 −0.317416
5353 8.64184 1.18705 0.593524 0.804816i 0.297736π-0.297736\pi
0.593524 + 0.804816i 0.297736π0.297736\pi
5454 1.74391 0.237317
5555 −2.46863 −0.332870
5656 −6.45373 −0.862416
5757 −20.1362 −2.66710
5858 2.37449 0.311786
5959 −6.23634 −0.811903 −0.405951 0.913895i 0.633060π-0.633060\pi
−0.405951 + 0.913895i 0.633060π0.633060\pi
6060 3.86060 0.498401
6161 3.27808 0.419716 0.209858 0.977732i 0.432700π-0.432700\pi
0.209858 + 0.977732i 0.432700π0.432700\pi
6262 0.480222 0.0609882
6363 9.98026 1.25739
6464 2.07935 0.259919
6565 −1.55854 −0.193313
6666 4.73038 0.582270
6767 1.47764 0.180523 0.0902615 0.995918i 0.471230π-0.471230\pi
0.0902615 + 0.995918i 0.471230π0.471230\pi
6868 10.0405 1.21759
6969 −19.7154 −2.37345
7070 −1.86060 −0.222384
7171 −8.06686 −0.957360 −0.478680 0.877989i 0.658885π-0.658885\pi
−0.478680 + 0.877989i 0.658885π0.658885\pi
7272 −9.88651 −1.16514
7373 −4.96199 −0.580757 −0.290379 0.956912i 0.593781π-0.593781\pi
−0.290379 + 0.956912i 0.593781π0.593781\pi
7474 0.728950 0.0847388
7575 2.62871 0.303537
7676 11.2499 1.29045
7777 6.30102 0.718068
7878 2.98647 0.338151
7979 12.8206 1.44243 0.721214 0.692713i 0.243585π-0.243585\pi
0.721214 + 0.692713i 0.243585π0.243585\pi
8080 −1.09414 −0.122329
8181 −5.44146 −0.604607
8282 1.79951 0.198723
8383 1.14934 0.126157 0.0630784 0.998009i 0.479908π-0.479908\pi
0.0630784 + 0.998009i 0.479908π0.479908\pi
8484 −9.85393 −1.07515
8585 6.83662 0.741536
8686 7.98779 0.861346
8787 8.56277 0.918026
8888 −6.24184 −0.665382
8989 11.5207 1.22119 0.610596 0.791942i 0.290930π-0.290930\pi
0.610596 + 0.791942i 0.290930π0.290930\pi
9090 −2.85026 −0.300444
9191 3.97807 0.417015
9292 11.0148 1.14837
9393 1.73175 0.179574
9494 2.27083 0.234218
9595 7.66011 0.785911
9696 15.3897 1.57071
9797 17.2929 1.75583 0.877916 0.478815i 0.158933π-0.158933\pi
0.877916 + 0.478815i 0.158933π0.158933\pi
9898 −0.353594 −0.0357183
9999 9.65257 0.970120
100100 −1.46863 −0.146863
101101 −7.33253 −0.729614 −0.364807 0.931083i 0.618865π-0.618865\pi
−0.364807 + 0.931083i 0.618865π0.618865\pi
102102 −13.1003 −1.29712
103103 9.26962 0.913363 0.456681 0.889630i 0.349038π-0.349038\pi
0.456681 + 0.889630i 0.349038π0.349038\pi
104104 −3.94071 −0.386418
105105 −6.70960 −0.654790
106106 6.29947 0.611859
107107 −12.0987 −1.16962 −0.584811 0.811170i 0.698831π-0.698831\pi
−0.584811 + 0.811170i 0.698831π0.698831\pi
108108 −3.51350 −0.338086
109109 −2.24262 −0.214804 −0.107402 0.994216i 0.534253π-0.534253\pi
−0.107402 + 0.994216i 0.534253π0.534253\pi
110110 −1.79951 −0.171577
111111 2.62871 0.249506
112112 2.79272 0.263888
113113 −11.3787 −1.07042 −0.535210 0.844719i 0.679768π-0.679768\pi
−0.535210 + 0.844719i 0.679768π0.679768\pi
114114 −14.6783 −1.37475
115115 7.50003 0.699382
116116 −4.78394 −0.444177
117117 6.09403 0.563394
118118 −4.54598 −0.418492
119119 −17.4500 −1.59964
120120 6.64658 0.606747
121121 −4.90586 −0.445987
122122 2.38956 0.216341
123123 6.48930 0.585121
124124 −0.967513 −0.0868852
125125 −1.00000 −0.0894427
126126 7.27511 0.648118
127127 15.6642 1.38997 0.694985 0.719024i 0.255411π-0.255411\pi
0.694985 + 0.719024i 0.255411π0.255411\pi
128128 −10.1932 −0.900964
129129 28.8052 2.53615
130130 −1.13610 −0.0996424
131131 −13.6723 −1.19456 −0.597278 0.802034i 0.703751π-0.703751\pi
−0.597278 + 0.802034i 0.703751π0.703751\pi
132132 −9.53040 −0.829514
133133 −19.5519 −1.69537
134134 1.07713 0.0930498
135135 −2.39236 −0.205902
136136 17.2861 1.48227
137137 −14.2031 −1.21346 −0.606728 0.794910i 0.707518π-0.707518\pi
−0.606728 + 0.794910i 0.707518π0.707518\pi
138138 −14.3715 −1.22339
139139 −11.8416 −1.00440 −0.502198 0.864753i 0.667475π-0.667475\pi
−0.502198 + 0.864753i 0.667475π0.667475\pi
140140 3.74859 0.316813
141141 8.18896 0.689635
142142 −5.88034 −0.493467
143143 3.84746 0.321741
144144 4.27819 0.356516
145145 −3.25741 −0.270513
146146 −3.61705 −0.299349
147147 −1.27511 −0.105169
148148 −1.46863 −0.120721
149149 4.11726 0.337299 0.168649 0.985676i 0.446059π-0.446059\pi
0.168649 + 0.985676i 0.446059π0.446059\pi
150150 1.91620 0.156457
151151 16.9092 1.37605 0.688025 0.725687i 0.258478π-0.258478\pi
0.688025 + 0.725687i 0.258478π0.258478\pi
152152 19.3683 1.57097
153153 −26.7318 −2.16114
154154 4.59313 0.370125
155155 −0.658785 −0.0529149
156156 −6.01690 −0.481737
157157 4.02473 0.321208 0.160604 0.987019i 0.448656π-0.448656\pi
0.160604 + 0.987019i 0.448656π0.448656\pi
158158 9.34556 0.743493
159159 22.7169 1.80156
160160 −5.85449 −0.462838
161161 −19.1434 −1.50871
162162 −3.96655 −0.311642
163163 3.57756 0.280216 0.140108 0.990136i 0.455255π-0.455255\pi
0.140108 + 0.990136i 0.455255π0.455255\pi
164164 −3.62551 −0.283105
165165 −6.48930 −0.505192
166166 0.837814 0.0650270
167167 23.6674 1.83144 0.915720 0.401816i 0.131621π-0.131621\pi
0.915720 + 0.401816i 0.131621π0.131621\pi
168168 −16.9650 −1.30887
169169 −10.5710 −0.813150
170170 4.98356 0.382222
171171 −29.9517 −2.29047
172172 −16.0932 −1.22709
173173 −15.7383 −1.19656 −0.598279 0.801288i 0.704148π-0.704148\pi
−0.598279 + 0.801288i 0.704148π0.704148\pi
174174 6.24184 0.473192
175175 2.55244 0.192946
176176 2.70103 0.203598
177177 −16.3935 −1.23221
178178 8.39802 0.629459
179179 10.1749 0.760510 0.380255 0.924882i 0.375836π-0.375836\pi
0.380255 + 0.924882i 0.375836π0.375836\pi
180180 5.74248 0.428019
181181 −2.54781 −0.189377 −0.0946886 0.995507i 0.530186π-0.530186\pi
−0.0946886 + 0.995507i 0.530186π0.530186\pi
182182 2.89982 0.214949
183183 8.61711 0.636995
184184 18.9635 1.39801
185185 −1.00000 −0.0735215
186186 1.26236 0.0925608
187187 −16.8771 −1.23418
188188 −4.57509 −0.333673
189189 6.10635 0.444172
190190 5.58384 0.405094
191191 −10.4639 −0.757141 −0.378571 0.925572i 0.623584π-0.623584\pi
−0.378571 + 0.925572i 0.623584π0.623584\pi
192192 5.46601 0.394475
193193 −9.81172 −0.706263 −0.353131 0.935574i 0.614883π-0.614883\pi
−0.353131 + 0.935574i 0.614883π0.614883\pi
194194 12.6057 0.905036
195195 −4.09694 −0.293388
196196 0.712392 0.0508852
197197 13.3945 0.954317 0.477158 0.878817i 0.341667π-0.341667\pi
0.477158 + 0.878817i 0.341667π0.341667\pi
198198 7.03625 0.500044
199199 4.20221 0.297887 0.148943 0.988846i 0.452413π-0.452413\pi
0.148943 + 0.988846i 0.452413π0.452413\pi
200200 −2.52846 −0.178789
201201 3.88429 0.273977
202202 −5.34505 −0.376077
203203 8.31433 0.583552
204204 26.3935 1.84791
205205 −2.46863 −0.172417
206206 6.75709 0.470789
207207 −29.3258 −2.03829
208208 1.70526 0.118239
209209 −18.9100 −1.30803
210210 −4.89097 −0.337509
211211 20.0610 1.38106 0.690530 0.723304i 0.257377π-0.257377\pi
0.690530 + 0.723304i 0.257377π0.257377\pi
212212 −12.6917 −0.871668
213213 −21.2054 −1.45297
214214 −8.81932 −0.602876
215215 −10.9579 −0.747325
216216 −6.04899 −0.411582
217217 1.68151 0.114148
218218 −1.63476 −0.110720
219219 −13.0436 −0.881406
220220 3.62551 0.244432
221221 −10.6552 −0.716743
222222 1.91620 0.128607
223223 1.72511 0.115522 0.0577610 0.998330i 0.481604π-0.481604\pi
0.0577610 + 0.998330i 0.481604π0.481604\pi
224224 14.9432 0.998436
225225 3.91009 0.260673
226226 −8.29452 −0.551744
227227 4.59930 0.305266 0.152633 0.988283i 0.451225π-0.451225\pi
0.152633 + 0.988283i 0.451225π0.451225\pi
228228 29.5726 1.95849
229229 −23.4902 −1.55227 −0.776137 0.630565i 0.782823π-0.782823\pi
−0.776137 + 0.630565i 0.782823π0.782823\pi
230230 5.46715 0.360493
231231 16.5635 1.08980
232232 −8.23623 −0.540735
233233 2.43465 0.159499 0.0797496 0.996815i 0.474588π-0.474588\pi
0.0797496 + 0.996815i 0.474588π0.474588\pi
234234 4.44225 0.290399
235235 −3.11521 −0.203214
236236 9.15889 0.596193
237237 33.7015 2.18915
238238 −12.7202 −0.824529
239239 2.03195 0.131436 0.0657180 0.997838i 0.479066π-0.479066\pi
0.0657180 + 0.997838i 0.479066π0.479066\pi
240240 −2.87617 −0.185656
241241 −20.2246 −1.30278 −0.651390 0.758743i 0.725814π-0.725814\pi
−0.651390 + 0.758743i 0.725814π0.725814\pi
242242 −3.57613 −0.229882
243243 −21.4811 −1.37801
244244 −4.81430 −0.308204
245245 0.485072 0.0309901
246246 4.73038 0.301598
247247 −11.9386 −0.759634
248248 −1.66571 −0.105773
249249 3.02128 0.191466
250250 −0.728950 −0.0461029
251251 0.695568 0.0439038 0.0219519 0.999759i 0.493012π-0.493012\pi
0.0219519 + 0.999759i 0.493012π0.493012\pi
252252 −14.6573 −0.923324
253253 −18.5148 −1.16402
254254 11.4184 0.716454
255255 17.9715 1.12542
256256 −11.5891 −0.724317
257257 7.13610 0.445138 0.222569 0.974917i 0.428556π-0.428556\pi
0.222569 + 0.974917i 0.428556π0.428556\pi
258258 20.9975 1.30725
259259 2.55244 0.158601
260260 2.28892 0.141953
261261 12.7368 0.788386
262262 −9.96644 −0.615729
263263 21.2754 1.31190 0.655948 0.754806i 0.272269π-0.272269\pi
0.655948 + 0.754806i 0.272269π0.272269\pi
264264 −16.4079 −1.00984
265265 −8.64184 −0.530864
266266 −14.2524 −0.873870
267267 30.2845 1.85338
268268 −2.17011 −0.132561
269269 18.3525 1.11897 0.559486 0.828840i 0.310998π-0.310998\pi
0.559486 + 0.828840i 0.310998π0.310998\pi
270270 −1.74391 −0.106131
271271 −23.2195 −1.41048 −0.705241 0.708967i 0.749161π-0.749161\pi
−0.705241 + 0.708967i 0.749161π0.749161\pi
272272 −7.48023 −0.453555
273273 10.4572 0.632897
274274 −10.3534 −0.625471
275275 2.46863 0.148864
276276 28.9546 1.74286
277277 5.65674 0.339880 0.169940 0.985454i 0.445643π-0.445643\pi
0.169940 + 0.985454i 0.445643π0.445643\pi
278278 −8.63197 −0.517711
279279 2.57591 0.154216
280280 6.45373 0.385684
281281 −24.4373 −1.45781 −0.728903 0.684616i 0.759970π-0.759970\pi
−0.728903 + 0.684616i 0.759970π0.759970\pi
282282 5.96935 0.355469
283283 20.8498 1.23939 0.619697 0.784841i 0.287256π-0.287256\pi
0.619697 + 0.784841i 0.287256π0.287256\pi
284284 11.8472 0.703005
285285 20.1362 1.19276
286286 2.80461 0.165840
287287 6.30102 0.371938
288288 22.8916 1.34890
289289 29.7394 1.74938
290290 −2.37449 −0.139435
291291 45.4580 2.66480
292292 7.28734 0.426459
293293 7.72199 0.451123 0.225562 0.974229i 0.427578π-0.427578\pi
0.225562 + 0.974229i 0.427578π0.427578\pi
294294 −0.929493 −0.0542091
295295 6.23634 0.363094
296296 −2.52846 −0.146964
297297 5.90586 0.342693
298298 3.00128 0.173859
299299 −11.6891 −0.675998
300300 −3.86060 −0.222892
301301 27.9694 1.61213
302302 12.3260 0.709280
303303 −19.2751 −1.10732
304304 −8.38124 −0.480697
305305 −3.27808 −0.187703
306306 −19.4862 −1.11395
307307 −9.01041 −0.514251 −0.257126 0.966378i 0.582775π-0.582775\pi
−0.257126 + 0.966378i 0.582775π0.582775\pi
308308 −9.25388 −0.527289
309309 24.3671 1.38620
310310 −0.480222 −0.0272748
311311 −32.1220 −1.82147 −0.910735 0.412991i 0.864484π-0.864484\pi
−0.910735 + 0.412991i 0.864484π0.864484\pi
312312 −10.3590 −0.586460
313313 19.8623 1.12268 0.561342 0.827584i 0.310285π-0.310285\pi
0.561342 + 0.827584i 0.310285π0.310285\pi
314314 2.93383 0.165565
315315 −9.98026 −0.562324
316316 −18.8287 −1.05920
317317 −8.58984 −0.482453 −0.241227 0.970469i 0.577550π-0.577550\pi
−0.241227 + 0.970469i 0.577550π0.577550\pi
318318 16.5595 0.928609
319319 8.04135 0.450229
320320 −2.07935 −0.116239
321321 −31.8038 −1.77512
322322 −13.9546 −0.777657
323323 52.3693 2.91390
324324 7.99150 0.443972
325325 1.55854 0.0864522
326326 2.60786 0.144436
327327 −5.89520 −0.326005
328328 −6.24184 −0.344648
329329 7.95137 0.438373
330330 −4.73038 −0.260399
331331 −22.9711 −1.26260 −0.631302 0.775537i 0.717479π-0.717479\pi
−0.631302 + 0.775537i 0.717479π0.717479\pi
332332 −1.68796 −0.0926389
333333 3.91009 0.214272
334334 17.2524 0.944008
335335 −1.47764 −0.0807323
336336 7.34125 0.400498
337337 26.2320 1.42895 0.714473 0.699663i 0.246666π-0.246666\pi
0.714473 + 0.699663i 0.246666π0.246666\pi
338338 −7.70570 −0.419135
339339 −29.9113 −1.62456
340340 −10.0405 −0.544521
341341 1.62630 0.0880690
342342 −21.8333 −1.18061
343343 −19.1052 −1.03158
344344 −27.7067 −1.49385
345345 19.7154 1.06144
346346 −11.4724 −0.616760
347347 −0.390348 −0.0209550 −0.0104775 0.999945i 0.503335π-0.503335\pi
−0.0104775 + 0.999945i 0.503335π0.503335\pi
348348 −12.5756 −0.674121
349349 −6.37205 −0.341088 −0.170544 0.985350i 0.554552π-0.554552\pi
−0.170544 + 0.985350i 0.554552π0.554552\pi
350350 1.86060 0.0994532
351351 3.72859 0.199017
352352 14.4526 0.770326
353353 −9.35970 −0.498167 −0.249083 0.968482i 0.580129π-0.580129\pi
−0.249083 + 0.968482i 0.580129π0.580129\pi
354354 −11.9501 −0.635138
355355 8.06686 0.428145
356356 −16.9197 −0.896741
357357 −45.8710 −2.42775
358358 7.41702 0.392002
359359 −5.38443 −0.284179 −0.142090 0.989854i 0.545382π-0.545382\pi
−0.142090 + 0.989854i 0.545382π0.545382\pi
360360 9.88651 0.521065
361361 39.6773 2.08828
362362 −1.85723 −0.0976137
363363 −12.8961 −0.676868
364364 −5.84232 −0.306221
365365 4.96199 0.259722
366366 6.28145 0.328337
367367 −22.1964 −1.15864 −0.579321 0.815099i 0.696682π-0.696682\pi
−0.579321 + 0.815099i 0.696682π0.696682\pi
368368 −8.20609 −0.427772
369369 9.65257 0.502493
370370 −0.728950 −0.0378963
371371 22.0577 1.14518
372372 −2.54331 −0.131864
373373 −31.6626 −1.63943 −0.819713 0.572774i 0.805867π-0.805867\pi
−0.819713 + 0.572774i 0.805867π0.805867\pi
374374 −12.3026 −0.636151
375375 −2.62871 −0.135746
376376 −7.87668 −0.406209
377377 5.07680 0.261469
378378 4.45123 0.228946
379379 −15.6622 −0.804515 −0.402257 0.915527i 0.631774π-0.631774\pi
−0.402257 + 0.915527i 0.631774π0.631774\pi
380380 −11.2499 −0.577106
381381 41.1765 2.10953
382382 −7.62766 −0.390265
383383 7.84825 0.401027 0.200513 0.979691i 0.435739π-0.435739\pi
0.200513 + 0.979691i 0.435739π0.435739\pi
384384 −26.7950 −1.36738
385385 −6.30102 −0.321130
386386 −7.15226 −0.364040
387387 42.8465 2.17801
388388 −25.3970 −1.28933
389389 17.6518 0.894981 0.447491 0.894289i 0.352318π-0.352318\pi
0.447491 + 0.894289i 0.352318π0.352318\pi
390390 −2.98647 −0.151226
391391 51.2749 2.59308
392392 1.22649 0.0619469
393393 −35.9405 −1.81296
394394 9.76391 0.491899
395395 −12.8206 −0.645073
396396 −14.1761 −0.712374
397397 −22.7648 −1.14253 −0.571267 0.820765i 0.693548π-0.693548\pi
−0.571267 + 0.820765i 0.693548π0.693548\pi
398398 3.06320 0.153544
399399 −51.3963 −2.57303
400400 1.09414 0.0547070
401401 −0.168397 −0.00840934 −0.00420467 0.999991i 0.501338π-0.501338\pi
−0.00420467 + 0.999991i 0.501338π0.501338\pi
402402 2.83146 0.141220
403403 1.02674 0.0511457
404404 10.7688 0.535767
405405 5.44146 0.270388
406406 6.06073 0.300789
407407 2.46863 0.122366
408408 45.4401 2.24962
409409 −21.1075 −1.04370 −0.521850 0.853037i 0.674758π-0.674758\pi
−0.521850 + 0.853037i 0.674758π0.674758\pi
410410 −1.79951 −0.0888715
411411 −37.3359 −1.84164
412412 −13.6137 −0.670697
413413 −15.9179 −0.783267
414414 −21.3771 −1.05063
415415 −1.14934 −0.0564190
416416 9.12446 0.447364
417417 −31.1282 −1.52435
418418 −13.7844 −0.674219
419419 −22.3217 −1.09049 −0.545243 0.838278i 0.683563π-0.683563\pi
−0.545243 + 0.838278i 0.683563π0.683563\pi
420420 9.85393 0.480823
421421 −27.4605 −1.33835 −0.669173 0.743107i 0.733351π-0.733351\pi
−0.669173 + 0.743107i 0.733351π0.733351\pi
422422 14.6235 0.711861
423423 12.1807 0.592248
424424 −21.8506 −1.06116
425425 −6.83662 −0.331625
426426 −15.4577 −0.748927
427427 8.36710 0.404912
428428 17.7685 0.858871
429429 10.1138 0.488301
430430 −7.98779 −0.385205
431431 36.7380 1.76960 0.884802 0.465966i 0.154293π-0.154293\pi
0.884802 + 0.465966i 0.154293π0.154293\pi
432432 2.61758 0.125938
433433 0.370435 0.0178020 0.00890098 0.999960i 0.497167π-0.497167\pi
0.00890098 + 0.999960i 0.497167π0.497167\pi
434434 1.22574 0.0588372
435435 −8.56277 −0.410553
436436 3.29359 0.157734
437437 57.4511 2.74826
438438 −9.50815 −0.454317
439439 30.1768 1.44026 0.720130 0.693839i 0.244082π-0.244082\pi
0.720130 + 0.693839i 0.244082π0.244082\pi
440440 6.24184 0.297568
441441 −1.89668 −0.0903179
442442 −7.76708 −0.369442
443443 38.1789 1.81393 0.906966 0.421203i 0.138392π-0.138392\pi
0.906966 + 0.421203i 0.138392π0.138392\pi
444444 −3.86060 −0.183216
445445 −11.5207 −0.546134
446446 1.25752 0.0595454
447447 10.8231 0.511913
448448 5.30742 0.250752
449449 −3.77840 −0.178314 −0.0891569 0.996018i 0.528417π-0.528417\pi
−0.0891569 + 0.996018i 0.528417π0.528417\pi
450450 2.85026 0.134363
451451 6.09414 0.286962
452452 16.7111 0.786026
453453 44.4493 2.08841
454454 3.35266 0.157348
455455 −3.97807 −0.186495
456456 50.9135 2.38424
457457 25.3343 1.18509 0.592544 0.805538i 0.298124π-0.298124\pi
0.592544 + 0.805538i 0.298124π0.298124\pi
458458 −17.1232 −0.800113
459459 −16.3557 −0.763418
460460 −11.0148 −0.513567
461461 −14.7582 −0.687359 −0.343680 0.939087i 0.611673π-0.611673\pi
−0.343680 + 0.939087i 0.611673π0.611673\pi
462462 12.0740 0.561733
463463 8.63700 0.401395 0.200698 0.979653i 0.435679π-0.435679\pi
0.200698 + 0.979653i 0.435679π0.435679\pi
464464 3.56407 0.165458
465465 −1.73175 −0.0803081
466466 1.77474 0.0822132
467467 −1.64618 −0.0761762 −0.0380881 0.999274i 0.512127π-0.512127\pi
−0.0380881 + 0.999274i 0.512127π0.512127\pi
468468 −8.94989 −0.413709
469469 3.77159 0.174156
470470 −2.27083 −0.104746
471471 10.5798 0.487493
472472 15.7683 0.725797
473473 27.0511 1.24381
474474 24.5667 1.12839
475475 −7.66011 −0.351470
476476 25.6277 1.17464
477477 33.7904 1.54716
478478 1.48119 0.0677482
479479 16.0571 0.733669 0.366835 0.930286i 0.380442π-0.380442\pi
0.366835 + 0.930286i 0.380442π0.380442\pi
480480 −15.3897 −0.702442
481481 1.55854 0.0710633
482482 −14.7427 −0.671513
483483 −50.3222 −2.28974
484484 7.20490 0.327495
485485 −17.2929 −0.785232
486486 −15.6586 −0.710290
487487 −6.60786 −0.299431 −0.149715 0.988729i 0.547836π-0.547836\pi
−0.149715 + 0.988729i 0.547836π0.547836\pi
488488 −8.28850 −0.375203
489489 9.40435 0.425279
490490 0.353594 0.0159737
491491 −18.2039 −0.821532 −0.410766 0.911741i 0.634739π-0.634739\pi
−0.410766 + 0.911741i 0.634739π0.634739\pi
492492 −9.53040 −0.429663
493493 −22.2697 −1.00298
494494 −8.70264 −0.391550
495495 −9.65257 −0.433851
496496 0.720804 0.0323650
497497 −20.5901 −0.923594
498498 2.20237 0.0986904
499499 −26.1795 −1.17196 −0.585978 0.810327i 0.699289π-0.699289\pi
−0.585978 + 0.810327i 0.699289π0.699289\pi
500500 1.46863 0.0656792
501501 62.2147 2.77955
502502 0.507034 0.0226301
503503 0.546197 0.0243537 0.0121769 0.999926i 0.496124π-0.496124\pi
0.0121769 + 0.999926i 0.496124π0.496124\pi
504504 −25.2347 −1.12404
505505 7.33253 0.326293
506506 −13.4964 −0.599988
507507 −27.7879 −1.23410
508508 −23.0049 −1.02068
509509 −27.4237 −1.21553 −0.607767 0.794115i 0.707935π-0.707935\pi
−0.607767 + 0.794115i 0.707935π0.707935\pi
510510 13.1003 0.580091
511511 −12.6652 −0.560274
512512 11.9386 0.527618
513513 −18.3258 −0.809102
514514 5.20186 0.229444
515515 −9.26962 −0.408468
516516 −42.3042 −1.86234
517517 7.69030 0.338219
518518 1.86060 0.0817500
519519 −41.3712 −1.81600
520520 3.94071 0.172811
521521 39.2211 1.71831 0.859154 0.511717i 0.170990π-0.170990\pi
0.859154 + 0.511717i 0.170990π0.170990\pi
522522 9.28448 0.406370
523523 −2.89217 −0.126466 −0.0632329 0.997999i 0.520141π-0.520141\pi
−0.0632329 + 0.997999i 0.520141π0.520141\pi
524524 20.0796 0.877181
525525 6.70960 0.292831
526526 15.5087 0.676212
527527 −4.50387 −0.196191
528528 7.10021 0.308997
529529 33.2505 1.44567
530530 −6.29947 −0.273632
531531 −24.3847 −1.05820
532532 28.7146 1.24494
533533 3.84746 0.166652
534534 22.0759 0.955319
535535 12.0987 0.523071
536536 −3.73616 −0.161378
537537 26.7469 1.15421
538538 13.3781 0.576770
539539 −1.19746 −0.0515784
540540 3.51350 0.151197
541541 −30.3727 −1.30582 −0.652912 0.757434i 0.726453π-0.726453\pi
−0.652912 + 0.757434i 0.726453π0.726453\pi
542542 −16.9258 −0.727027
543543 −6.69744 −0.287415
544544 −40.0250 −1.71606
545545 2.24262 0.0960635
546546 7.62277 0.326224
547547 18.8597 0.806384 0.403192 0.915115i 0.367901π-0.367901\pi
0.403192 + 0.915115i 0.367901π0.367901\pi
548548 20.8592 0.891060
549549 12.8176 0.547042
550550 1.79951 0.0767314
551551 −24.9521 −1.06300
552552 49.8496 2.12174
553553 32.7237 1.39155
554554 4.12348 0.175190
555555 −2.62871 −0.111582
556556 17.3910 0.737543
557557 24.2064 1.02566 0.512828 0.858491i 0.328598π-0.328598\pi
0.512828 + 0.858491i 0.328598π0.328598\pi
558558 1.87771 0.0794898
559559 17.0784 0.722339
560560 −2.79272 −0.118014
561561 −44.3649 −1.87309
562562 −17.8136 −0.751420
563563 5.13444 0.216391 0.108196 0.994130i 0.465493π-0.465493\pi
0.108196 + 0.994130i 0.465493π0.465493\pi
564564 −12.0266 −0.506410
565565 11.3787 0.478706
566566 15.1985 0.638840
567567 −13.8890 −0.583282
568568 20.3967 0.855828
569569 −11.9797 −0.502214 −0.251107 0.967959i 0.580795π-0.580795\pi
−0.251107 + 0.967959i 0.580795π0.580795\pi
570570 14.6783 0.614805
571571 −25.5874 −1.07080 −0.535399 0.844599i 0.679839π-0.679839\pi
−0.535399 + 0.844599i 0.679839π0.679839\pi
572572 −5.65050 −0.236259
573573 −27.5065 −1.14910
574574 4.59313 0.191714
575575 −7.50003 −0.312773
576576 8.13047 0.338769
577577 −40.3272 −1.67884 −0.839421 0.543481i 0.817106π-0.817106\pi
−0.839421 + 0.543481i 0.817106π0.817106\pi
578578 21.6786 0.901709
579579 −25.7921 −1.07188
580580 4.78394 0.198642
581581 2.93362 0.121707
582582 33.1367 1.37356
583583 21.3335 0.883544
584584 12.5462 0.519165
585585 −6.09403 −0.251957
586586 5.62894 0.232530
587587 −31.6751 −1.30737 −0.653686 0.756766i 0.726778π-0.726778\pi
−0.653686 + 0.756766i 0.726778π0.726778\pi
588588 1.87267 0.0772276
589589 −5.04637 −0.207932
590590 4.54598 0.187155
591591 35.2101 1.44835
592592 1.09414 0.0449689
593593 6.26075 0.257098 0.128549 0.991703i 0.458968π-0.458968\pi
0.128549 + 0.991703i 0.458968π0.458968\pi
594594 4.30508 0.176640
595595 17.4500 0.715382
596596 −6.04673 −0.247684
597597 11.0464 0.452098
598598 −8.52078 −0.348440
599599 34.4197 1.40635 0.703175 0.711017i 0.251765π-0.251765\pi
0.703175 + 0.711017i 0.251765π0.251765\pi
600600 −6.64658 −0.271345
601601 12.2491 0.499650 0.249825 0.968291i 0.419627π-0.419627\pi
0.249825 + 0.968291i 0.419627π0.419627\pi
602602 20.3883 0.830966
603603 5.77772 0.235287
604604 −24.8334 −1.01046
605605 4.90586 0.199452
606606 −14.0506 −0.570765
607607 −31.0932 −1.26204 −0.631018 0.775768i 0.717363π-0.717363\pi
−0.631018 + 0.775768i 0.717363π0.717363\pi
608608 −44.8461 −1.81875
609609 21.8559 0.885647
610610 −2.38956 −0.0967505
611611 4.85518 0.196419
612612 39.2592 1.58696
613613 15.0998 0.609876 0.304938 0.952372i 0.401364π-0.401364\pi
0.304938 + 0.952372i 0.401364π0.401364\pi
614614 −6.56814 −0.265069
615615 −6.48930 −0.261674
616616 −15.9319 −0.641914
617617 −27.3635 −1.10161 −0.550807 0.834632i 0.685680π-0.685680\pi
−0.550807 + 0.834632i 0.685680π0.685680\pi
618618 17.7624 0.714509
619619 −11.1466 −0.448021 −0.224010 0.974587i 0.571915π-0.571915\pi
−0.224010 + 0.974587i 0.571915π0.571915\pi
620620 0.967513 0.0388562
621621 −17.9428 −0.720020
622622 −23.4153 −0.938869
623623 29.4059 1.17812
624624 4.48263 0.179449
625625 1.00000 0.0400000
626626 14.4786 0.578683
627627 −49.7088 −1.98518
628628 −5.91084 −0.235868
629629 −6.83662 −0.272594
630630 −7.27511 −0.289847
631631 11.9459 0.475558 0.237779 0.971319i 0.423581π-0.423581\pi
0.237779 + 0.971319i 0.423581π0.423581\pi
632632 −32.4163 −1.28945
633633 52.7346 2.09601
634634 −6.26156 −0.248679
635635 −15.6642 −0.621613
636636 −33.3627 −1.32292
637637 −0.756004 −0.0299540
638638 5.86174 0.232069
639639 −31.5422 −1.24779
640640 10.1932 0.402923
641641 27.9313 1.10322 0.551609 0.834103i 0.314014π-0.314014\pi
0.551609 + 0.834103i 0.314014π0.314014\pi
642642 −23.1834 −0.914976
643643 39.0497 1.53997 0.769984 0.638063i 0.220264π-0.220264\pi
0.769984 + 0.638063i 0.220264π0.220264\pi
644644 28.1145 1.10787
645645 −28.8052 −1.13420
646646 38.1746 1.50196
647647 −3.60562 −0.141752 −0.0708759 0.997485i 0.522579π-0.522579\pi
−0.0708759 + 0.997485i 0.522579π0.522579\pi
648648 13.7585 0.540485
649649 −15.3952 −0.604316
650650 1.13610 0.0445614
651651 4.42019 0.173241
652652 −5.25411 −0.205767
653653 −16.9343 −0.662691 −0.331345 0.943510i 0.607503π-0.607503\pi
−0.331345 + 0.943510i 0.607503π0.607503\pi
654654 −4.29731 −0.168038
655655 13.6723 0.534222
656656 2.70103 0.105458
657657 −19.4018 −0.756938
658658 5.79615 0.225958
659659 31.2664 1.21797 0.608983 0.793183i 0.291578π-0.291578\pi
0.608983 + 0.793183i 0.291578π0.291578\pi
660660 9.53040 0.370970
661661 −39.2941 −1.52836 −0.764181 0.645002i 0.776857π-0.776857\pi
−0.764181 + 0.645002i 0.776857π0.776857\pi
662662 −16.7448 −0.650804
663663 −28.0093 −1.08779
664664 −2.90607 −0.112777
665665 19.5519 0.758192
666666 2.85026 0.110445
667667 −24.4307 −0.945960
668668 −34.7587 −1.34486
669669 4.53481 0.175326
670670 −1.07713 −0.0416131
671671 8.09238 0.312403
672672 39.2813 1.51531
673673 33.7258 1.30004 0.650018 0.759919i 0.274762π-0.274762\pi
0.650018 + 0.759919i 0.274762π0.274762\pi
674674 19.1218 0.736544
675675 2.39236 0.0920820
676676 15.5248 0.597109
677677 −20.4385 −0.785515 −0.392758 0.919642i 0.628479π-0.628479\pi
−0.392758 + 0.919642i 0.628479π0.628479\pi
678678 −21.8039 −0.837372
679679 44.1391 1.69390
680680 −17.2861 −0.662893
681681 12.0902 0.463298
682682 1.18549 0.0453948
683683 −31.0965 −1.18988 −0.594938 0.803771i 0.702823π-0.702823\pi
−0.594938 + 0.803771i 0.702823π0.702823\pi
684684 43.9880 1.68192
685685 14.2031 0.542674
686686 −13.9267 −0.531725
687687 −61.7487 −2.35586
688688 11.9895 0.457096
689689 13.4687 0.513115
690690 14.3715 0.547115
691691 10.8292 0.411960 0.205980 0.978556i 0.433962π-0.433962\pi
0.205980 + 0.978556i 0.433962π0.433962\pi
692692 23.1137 0.878651
693693 24.6376 0.935904
694694 −0.284545 −0.0108012
695695 11.8416 0.449179
696696 −21.6506 −0.820665
697697 −16.8771 −0.639266
698698 −4.64491 −0.175812
699699 6.39998 0.242069
700700 −3.74859 −0.141683
701701 3.32122 0.125441 0.0627204 0.998031i 0.480022π-0.480022\pi
0.0627204 + 0.998031i 0.480022π0.480022\pi
702702 2.71796 0.102583
703703 −7.66011 −0.288906
704704 5.13316 0.193463
705705 −8.18896 −0.308414
706706 −6.82276 −0.256778
707707 −18.7158 −0.703881
708708 24.0760 0.904832
709709 17.6659 0.663458 0.331729 0.943375i 0.392368π-0.392368\pi
0.331729 + 0.943375i 0.392368π0.392368\pi
710710 5.88034 0.220685
711711 50.1296 1.88001
712712 −29.1296 −1.09168
713713 −4.94091 −0.185039
714714 −33.4377 −1.25137
715715 −3.84746 −0.143887
716716 −14.9432 −0.558454
717717 5.34140 0.199478
718718 −3.92498 −0.146479
719719 −17.4938 −0.652410 −0.326205 0.945299i 0.605770π-0.605770\pi
−0.326205 + 0.945299i 0.605770π0.605770\pi
720720 −4.27819 −0.159439
721721 23.6601 0.881148
722722 28.9228 1.07639
723723 −53.1645 −1.97721
724724 3.74179 0.139063
725725 3.25741 0.120977
726726 −9.40059 −0.348888
727727 19.2435 0.713701 0.356851 0.934161i 0.383851π-0.383851\pi
0.356851 + 0.934161i 0.383851π0.383851\pi
728728 −10.0584 −0.372789
729729 −40.1430 −1.48678
730730 3.61705 0.133873
731731 −74.9153 −2.77084
732732 −12.6554 −0.467756
733733 −17.2213 −0.636082 −0.318041 0.948077i 0.603025π-0.603025\pi
−0.318041 + 0.948077i 0.603025π0.603025\pi
734734 −16.1801 −0.597217
735735 1.27511 0.0470332
736736 −43.9089 −1.61850
737737 3.64776 0.134367
738738 7.03625 0.259008
739739 44.1590 1.62442 0.812208 0.583368i 0.198265π-0.198265\pi
0.812208 + 0.583368i 0.198265π0.198265\pi
740740 1.46863 0.0539880
741741 −31.3830 −1.15288
742742 16.0790 0.590279
743743 −15.8768 −0.582461 −0.291231 0.956653i 0.594065π-0.594065\pi
−0.291231 + 0.956653i 0.594065π0.594065\pi
744744 −4.37867 −0.160530
745745 −4.11726 −0.150845
746746 −23.0805 −0.845035
747747 4.49404 0.164428
748748 24.7862 0.906275
749749 −30.8811 −1.12837
750750 −1.91620 −0.0699696
751751 20.6030 0.751815 0.375907 0.926657i 0.377331π-0.377331\pi
0.375907 + 0.926657i 0.377331π0.377331\pi
752752 3.40848 0.124294
753753 1.82844 0.0666322
754754 3.70074 0.134773
755755 −16.9092 −0.615389
756756 −8.96798 −0.326162
757757 −21.6914 −0.788387 −0.394194 0.919027i 0.628976π-0.628976\pi
−0.394194 + 0.919027i 0.628976π0.628976\pi
758758 −11.4170 −0.414684
759759 −48.6700 −1.76661
760760 −19.3683 −0.702561
761761 22.5166 0.816225 0.408113 0.912932i 0.366187π-0.366187\pi
0.408113 + 0.912932i 0.366187π0.366187\pi
762762 30.0156 1.08735
763763 −5.72415 −0.207228
764764 15.3676 0.555981
765765 26.7318 0.966491
766766 5.72098 0.206708
767767 −9.71959 −0.350954
768768 −30.4643 −1.09928
769769 −0.975961 −0.0351941 −0.0175970 0.999845i 0.505602π-0.505602\pi
−0.0175970 + 0.999845i 0.505602π0.505602\pi
770770 −4.59313 −0.165525
771771 18.7587 0.675578
772772 14.4098 0.518620
773773 15.6271 0.562066 0.281033 0.959698i 0.409323π-0.409323\pi
0.281033 + 0.959698i 0.409323π0.409323\pi
774774 31.2330 1.12265
775775 0.658785 0.0236643
776776 −43.7245 −1.56962
777777 6.70960 0.240706
778778 12.8673 0.461314
779779 −18.9100 −0.677521
780780 6.01690 0.215440
781781 −19.9141 −0.712583
782782 37.3769 1.33659
783783 7.79290 0.278496
784784 −0.530737 −0.0189549
785785 −4.02473 −0.143649
786786 −26.1988 −0.934482
787787 44.8503 1.59874 0.799370 0.600840i 0.205167π-0.205167\pi
0.799370 + 0.600840i 0.205167π0.205167\pi
788788 −19.6715 −0.700770
789789 55.9267 1.99104
790790 −9.34556 −0.332500
791791 −29.0435 −1.03267
792792 −24.4061 −0.867235
793793 5.10902 0.181427
794794 −16.5944 −0.588914
795795 −22.7169 −0.805684
796796 −6.17149 −0.218743
797797 12.4685 0.441658 0.220829 0.975313i 0.429124π-0.429124\pi
0.220829 + 0.975313i 0.429124π0.429124\pi
798798 −37.4653 −1.32626
799799 −21.2975 −0.753451
800800 5.85449 0.206988
801801 45.0470 1.59166
802802 −0.122753 −0.00433456
803803 −12.2493 −0.432269
804804 −5.70459 −0.201185
805805 19.1434 0.674715
806806 0.748445 0.0263628
807807 48.2434 1.69825
808808 18.5400 0.652236
809809 18.8505 0.662748 0.331374 0.943500i 0.392488π-0.392488\pi
0.331374 + 0.943500i 0.392488π0.392488\pi
810810 3.96655 0.139371
811811 29.8244 1.04728 0.523638 0.851941i 0.324575π-0.324575\pi
0.523638 + 0.851941i 0.324575π0.324575\pi
812812 −12.2107 −0.428511
813813 −61.0371 −2.14067
814814 1.79951 0.0630728
815815 −3.57756 −0.125316
816816 −19.6633 −0.688354
817817 −83.9390 −2.93665
818818 −15.3863 −0.537971
819819 15.5546 0.543523
820820 3.62551 0.126608
821821 11.9059 0.415517 0.207759 0.978180i 0.433383π-0.433383\pi
0.207759 + 0.978180i 0.433383π0.433383\pi
822822 −27.2160 −0.949267
823823 41.2544 1.43804 0.719020 0.694990i 0.244591π-0.244591\pi
0.719020 + 0.694990i 0.244591π0.244591\pi
824824 −23.4379 −0.816497
825825 6.48930 0.225929
826826 −11.6033 −0.403732
827827 27.0596 0.940953 0.470477 0.882412i 0.344082π-0.344082\pi
0.470477 + 0.882412i 0.344082π0.344082\pi
828828 43.0688 1.49674
829829 −20.6787 −0.718200 −0.359100 0.933299i 0.616916π-0.616916\pi
−0.359100 + 0.933299i 0.616916π0.616916\pi
830830 −0.837814 −0.0290810
831831 14.8699 0.515831
832832 3.24076 0.112353
833833 3.31626 0.114901
834834 −22.6909 −0.785722
835835 −23.6674 −0.819045
836836 27.7718 0.960508
837837 1.57605 0.0544763
838838 −16.2714 −0.562086
839839 −0.0974789 −0.00336534 −0.00168267 0.999999i 0.500536π-0.500536\pi
−0.00168267 + 0.999999i 0.500536π0.500536\pi
840840 16.9650 0.585347
841841 −18.3893 −0.634113
842842 −20.0174 −0.689844
843843 −64.2385 −2.21249
844844 −29.4623 −1.01413
845845 10.5710 0.363652
846846 8.87916 0.305272
847847 −12.5219 −0.430257
848848 9.45539 0.324700
849849 54.8080 1.88101
850850 −4.98356 −0.170935
851851 −7.50003 −0.257098
852852 31.1429 1.06694
853853 0.919899 0.0314967 0.0157484 0.999876i 0.494987π-0.494987\pi
0.0157484 + 0.999876i 0.494987π0.494987\pi
854854 6.09920 0.208710
855855 29.9517 1.02433
856856 30.5910 1.04558
857857 20.3344 0.694608 0.347304 0.937753i 0.387097π-0.387097\pi
0.347304 + 0.937753i 0.387097π0.387097\pi
858858 7.37249 0.251693
859859 15.8959 0.542360 0.271180 0.962529i 0.412586π-0.412586\pi
0.271180 + 0.962529i 0.412586π0.412586\pi
860860 16.0932 0.548772
861861 16.5635 0.564484
862862 26.7801 0.912135
863863 −37.0558 −1.26139 −0.630697 0.776029i 0.717231π-0.717231\pi
−0.630697 + 0.776029i 0.717231π0.717231\pi
864864 14.0061 0.476496
865865 15.7383 0.535117
866866 0.270029 0.00917595
867867 78.1762 2.65500
868868 −2.46951 −0.0838208
869869 31.6493 1.07363
870870 −6.24184 −0.211618
871871 2.30297 0.0780331
872872 5.67039 0.192024
873873 67.6170 2.28849
874874 41.8790 1.41658
875875 −2.55244 −0.0862881
876876 19.1563 0.647230
877877 −25.4103 −0.858045 −0.429022 0.903294i 0.641142π-0.641142\pi
−0.429022 + 0.903294i 0.641142π0.641142\pi
878878 21.9974 0.742376
879879 20.2988 0.684662
880880 −2.70103 −0.0910517
881881 1.37793 0.0464238 0.0232119 0.999731i 0.492611π-0.492611\pi
0.0232119 + 0.999731i 0.492611π0.492611\pi
882882 −1.38258 −0.0465540
883883 −54.5280 −1.83501 −0.917506 0.397722i 0.869801π-0.869801\pi
−0.917506 + 0.397722i 0.869801π0.869801\pi
884884 15.6485 0.526316
885885 16.3935 0.551062
886886 27.8305 0.934984
887887 −6.43212 −0.215969 −0.107985 0.994153i 0.534440π-0.534440\pi
−0.107985 + 0.994153i 0.534440π0.534440\pi
888888 −6.64658 −0.223045
889889 39.9818 1.34095
890890 −8.39802 −0.281502
891891 −13.4330 −0.450021
892892 −2.53355 −0.0848297
893893 −23.8628 −0.798539
894894 7.88947 0.263863
895895 −10.1749 −0.340110
896896 −26.0176 −0.869187
897897 −30.7272 −1.02595
898898 −2.75427 −0.0919111
899899 2.14593 0.0715709
900900 −5.74248 −0.191416
901901 −59.0810 −1.96827
902902 4.44233 0.147913
903903 73.5234 2.44670
904904 28.7706 0.956897
905905 2.54781 0.0846921
906906 32.4013 1.07646
907907 −33.4197 −1.10968 −0.554841 0.831957i 0.687221π-0.687221\pi
−0.554841 + 0.831957i 0.687221π0.687221\pi
908908 −6.75468 −0.224162
909909 −28.6709 −0.950953
910910 −2.89982 −0.0961280
911911 52.4122 1.73649 0.868247 0.496132i 0.165247π-0.165247\pi
0.868247 + 0.496132i 0.165247π0.165247\pi
912912 −22.0318 −0.729546
913913 2.83730 0.0939011
914914 18.4674 0.610849
915915 −8.61711 −0.284873
916916 34.4984 1.13986
917917 −34.8977 −1.15242
918918 −11.9225 −0.393500
919919 −11.6967 −0.385838 −0.192919 0.981215i 0.561795π-0.561795\pi
−0.192919 + 0.981215i 0.561795π0.561795\pi
920920 −18.9635 −0.625209
921921 −23.6857 −0.780470
922922 −10.7580 −0.354297
923923 −12.5725 −0.413830
924924 −24.3257 −0.800257
925925 1.00000 0.0328798
926926 6.29594 0.206898
927927 36.2451 1.19044
928928 19.0705 0.626020
929929 −10.4868 −0.344059 −0.172030 0.985092i 0.555032π-0.555032\pi
−0.172030 + 0.985092i 0.555032π0.555032\pi
930930 −1.26236 −0.0413945
931931 3.71571 0.121777
932932 −3.57560 −0.117123
933933 −84.4392 −2.76442
934934 −1.19999 −0.0392647
935935 16.8771 0.551940
936936 −15.4085 −0.503643
937937 38.3244 1.25200 0.626002 0.779821i 0.284690π-0.284690\pi
0.626002 + 0.779821i 0.284690π0.284690\pi
938938 2.74930 0.0897679
939939 52.2122 1.70388
940940 4.57509 0.149223
941941 33.4866 1.09163 0.545816 0.837905i 0.316220π-0.316220\pi
0.545816 + 0.837905i 0.316220π0.316220\pi
942942 7.71217 0.251276
943943 −18.5148 −0.602926
944944 −6.82344 −0.222084
945945 −6.10635 −0.198640
946946 19.7189 0.641117
947947 −40.2997 −1.30956 −0.654782 0.755818i 0.727240π-0.727240\pi
−0.654782 + 0.755818i 0.727240π0.727240\pi
948948 −49.4951 −1.60753
949949 −7.73346 −0.251039
950950 −5.58384 −0.181164
951951 −22.5801 −0.732211
952952 44.1217 1.42999
953953 10.8028 0.349939 0.174969 0.984574i 0.444017π-0.444017\pi
0.174969 + 0.984574i 0.444017π0.444017\pi
954954 24.6315 0.797475
955955 10.4639 0.338604
956956 −2.98419 −0.0965156
957957 21.1383 0.683305
958958 11.7049 0.378167
959959 −36.2526 −1.17066
960960 −5.46601 −0.176415
961961 −30.5660 −0.986000
962962 1.13610 0.0366293
963963 −47.3069 −1.52444
964964 29.7025 0.956652
965965 9.81172 0.315850
966966 −36.6824 −1.18024
967967 46.0540 1.48100 0.740499 0.672058i 0.234589π-0.234589\pi
0.740499 + 0.672058i 0.234589π0.234589\pi
968968 12.4043 0.398688
969969 137.663 4.42239
970970 −12.6057 −0.404744
971971 −0.231513 −0.00742961 −0.00371481 0.999993i 0.501182π-0.501182\pi
−0.00371481 + 0.999993i 0.501182π0.501182\pi
972972 31.5478 1.01190
973973 −30.2250 −0.968970
974974 −4.81680 −0.154340
975975 4.09694 0.131207
976976 3.58668 0.114807
977977 8.81121 0.281896 0.140948 0.990017i 0.454985π-0.454985\pi
0.140948 + 0.990017i 0.454985π0.454985\pi
978978 6.85530 0.219208
979979 28.4404 0.908958
980980 −0.712392 −0.0227565
981981 −8.76887 −0.279968
982982 −13.2698 −0.423455
983983 18.8943 0.602634 0.301317 0.953524i 0.402574π-0.402574\pi
0.301317 + 0.953524i 0.402574π0.402574\pi
984984 −16.4079 −0.523066
985985 −13.3945 −0.426783
986986 −16.2335 −0.516980
987987 20.9018 0.665312
988988 17.5334 0.557811
989989 −82.1849 −2.61333
990990 −7.03625 −0.223627
991991 30.3969 0.965589 0.482794 0.875734i 0.339622π-0.339622\pi
0.482794 + 0.875734i 0.339622π0.339622\pi
992992 3.85685 0.122455
993993 −60.3842 −1.91623
994994 −15.0092 −0.476063
995995 −4.20221 −0.133219
996996 −4.43715 −0.140597
997997 35.2291 1.11572 0.557859 0.829936i 0.311623π-0.311623\pi
0.557859 + 0.829936i 0.311623π0.311623\pi
998998 −19.0836 −0.604079
999999 2.39236 0.0756910
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 185.2.a.e.1.3 5
3.2 odd 2 1665.2.a.p.1.3 5
4.3 odd 2 2960.2.a.w.1.1 5
5.2 odd 4 925.2.b.f.149.6 10
5.3 odd 4 925.2.b.f.149.5 10
5.4 even 2 925.2.a.f.1.3 5
7.6 odd 2 9065.2.a.k.1.3 5
15.14 odd 2 8325.2.a.ch.1.3 5
37.36 even 2 6845.2.a.f.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.a.e.1.3 5 1.1 even 1 trivial
925.2.a.f.1.3 5 5.4 even 2
925.2.b.f.149.5 10 5.3 odd 4
925.2.b.f.149.6 10 5.2 odd 4
1665.2.a.p.1.3 5 3.2 odd 2
2960.2.a.w.1.1 5 4.3 odd 2
6845.2.a.f.1.3 5 37.36 even 2
8325.2.a.ch.1.3 5 15.14 odd 2
9065.2.a.k.1.3 5 7.6 odd 2