Properties

Label 680.2.cg.b.57.11
Level $680$
Weight $2$
Character 680.57
Analytic conductor $5.430$
Analytic rank $0$
Dimension $112$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(57,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 0, 4, 15])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.57"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.cg (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [112] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(112\)
Relative dimension: \(14\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 57.11
Character \(\chi\) \(=\) 680.57
Dual form 680.2.cg.b.513.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.19803 - 1.79298i) q^{3} +(-2.17385 + 0.523803i) q^{5} +(-0.696254 + 3.50030i) q^{7} +(-0.631450 - 1.52445i) q^{9} +(-0.584025 + 2.93609i) q^{11} +3.18928i q^{13} +(-1.66517 + 4.52521i) q^{15} +(3.77086 + 1.66751i) q^{17} +(0.568477 - 1.37243i) q^{19} +(5.44184 + 5.44184i) q^{21} +(-2.62616 + 1.75474i) q^{23} +(4.45126 - 2.27734i) q^{25} +(2.85508 + 0.567911i) q^{27} +(-4.59419 + 6.87569i) q^{29} +(-1.30893 - 6.58044i) q^{31} +(4.56468 + 4.56468i) q^{33} +(-0.319916 - 7.97384i) q^{35} +(-6.74179 - 4.50472i) q^{37} +(5.71832 + 3.82086i) q^{39} +(5.17262 + 7.74137i) q^{41} +(0.553869 - 1.33716i) q^{43} +(2.17119 + 2.98318i) q^{45} +2.76193 q^{47} +(-5.30020 - 2.19541i) q^{49} +(7.50743 - 4.76335i) q^{51} +(6.70106 - 2.77567i) q^{53} +(-0.268349 - 6.68854i) q^{55} +(-1.77968 - 2.66348i) q^{57} +(-7.46530 + 3.09223i) q^{59} +(-6.94772 + 4.64232i) q^{61} +(5.77570 - 1.14886i) q^{63} +(-1.67055 - 6.93303i) q^{65} +(3.73919 - 3.73919i) q^{67} +6.81089i q^{69} +(1.37331 - 0.273168i) q^{71} +(-0.629073 - 3.16256i) q^{73} +(1.24953 - 10.7093i) q^{75} +(-9.87059 - 4.08853i) q^{77} +(15.8369 + 3.15015i) q^{79} +(7.93903 - 7.93903i) q^{81} +(-3.12593 - 7.54667i) q^{83} +(-9.07074 - 1.64974i) q^{85} +(6.82400 + 16.4746i) q^{87} +(-11.6488 + 11.6488i) q^{89} +(-11.1635 - 2.22055i) q^{91} +(-13.3667 - 5.53669i) q^{93} +(-0.516905 + 3.28122i) q^{95} +(2.20206 + 11.0705i) q^{97} +(4.84472 - 0.963675i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 112 q + 16 q^{15} - 24 q^{27} - 8 q^{29} + 16 q^{31} - 48 q^{33} - 32 q^{35} - 16 q^{37} - 16 q^{41} + 48 q^{43} - 24 q^{45} - 16 q^{47} - 80 q^{49} + 32 q^{51} - 8 q^{53} + 24 q^{55} - 80 q^{59} - 24 q^{61}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{15}{16}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.19803 1.79298i 0.691684 1.03518i −0.304884 0.952390i \(-0.598618\pi\)
0.996567 0.0827881i \(-0.0263825\pi\)
\(4\) 0 0
\(5\) −2.17385 + 0.523803i −0.972176 + 0.234252i
\(6\) 0 0
\(7\) −0.696254 + 3.50030i −0.263159 + 1.32299i 0.592550 + 0.805533i \(0.298121\pi\)
−0.855709 + 0.517457i \(0.826879\pi\)
\(8\) 0 0
\(9\) −0.631450 1.52445i −0.210483 0.508151i
\(10\) 0 0
\(11\) −0.584025 + 2.93609i −0.176090 + 0.885265i 0.787178 + 0.616725i \(0.211541\pi\)
−0.963269 + 0.268540i \(0.913459\pi\)
\(12\) 0 0
\(13\) 3.18928i 0.884548i 0.896880 + 0.442274i \(0.145828\pi\)
−0.896880 + 0.442274i \(0.854172\pi\)
\(14\) 0 0
\(15\) −1.66517 + 4.52521i −0.429946 + 1.16840i
\(16\) 0 0
\(17\) 3.77086 + 1.66751i 0.914568 + 0.404431i
\(18\) 0 0
\(19\) 0.568477 1.37243i 0.130418 0.314856i −0.845159 0.534515i \(-0.820494\pi\)
0.975577 + 0.219659i \(0.0704944\pi\)
\(20\) 0 0
\(21\) 5.44184 + 5.44184i 1.18751 + 1.18751i
\(22\) 0 0
\(23\) −2.62616 + 1.75474i −0.547593 + 0.365890i −0.798381 0.602152i \(-0.794310\pi\)
0.250789 + 0.968042i \(0.419310\pi\)
\(24\) 0 0
\(25\) 4.45126 2.27734i 0.890252 0.455468i
\(26\) 0 0
\(27\) 2.85508 + 0.567911i 0.549461 + 0.109295i
\(28\) 0 0
\(29\) −4.59419 + 6.87569i −0.853120 + 1.27678i 0.106167 + 0.994348i \(0.466142\pi\)
−0.959286 + 0.282435i \(0.908858\pi\)
\(30\) 0 0
\(31\) −1.30893 6.58044i −0.235091 1.18188i −0.900315 0.435239i \(-0.856664\pi\)
0.665224 0.746644i \(-0.268336\pi\)
\(32\) 0 0
\(33\) 4.56468 + 4.56468i 0.794608 + 0.794608i
\(34\) 0 0
\(35\) −0.319916 7.97384i −0.0540757 1.34782i
\(36\) 0 0
\(37\) −6.74179 4.50472i −1.10834 0.740572i −0.139990 0.990153i \(-0.544707\pi\)
−0.968354 + 0.249581i \(0.919707\pi\)
\(38\) 0 0
\(39\) 5.71832 + 3.82086i 0.915664 + 0.611827i
\(40\) 0 0
\(41\) 5.17262 + 7.74137i 0.807827 + 1.20900i 0.974810 + 0.223038i \(0.0715975\pi\)
−0.166983 + 0.985960i \(0.553402\pi\)
\(42\) 0 0
\(43\) 0.553869 1.33716i 0.0844642 0.203915i −0.876004 0.482303i \(-0.839800\pi\)
0.960469 + 0.278389i \(0.0898003\pi\)
\(44\) 0 0
\(45\) 2.17119 + 2.98318i 0.323662 + 0.444707i
\(46\) 0 0
\(47\) 2.76193 0.402869 0.201435 0.979502i \(-0.435440\pi\)
0.201435 + 0.979502i \(0.435440\pi\)
\(48\) 0 0
\(49\) −5.30020 2.19541i −0.757171 0.313630i
\(50\) 0 0
\(51\) 7.50743 4.76335i 1.05125 0.667002i
\(52\) 0 0
\(53\) 6.70106 2.77567i 0.920461 0.381267i 0.128409 0.991721i \(-0.459013\pi\)
0.792052 + 0.610454i \(0.209013\pi\)
\(54\) 0 0
\(55\) −0.268349 6.68854i −0.0361842 0.901883i
\(56\) 0 0
\(57\) −1.77968 2.66348i −0.235724 0.352786i
\(58\) 0 0
\(59\) −7.46530 + 3.09223i −0.971900 + 0.402574i −0.811419 0.584465i \(-0.801304\pi\)
−0.160481 + 0.987039i \(0.551304\pi\)
\(60\) 0 0
\(61\) −6.94772 + 4.64232i −0.889564 + 0.594388i −0.914180 0.405309i \(-0.867164\pi\)
0.0246154 + 0.999697i \(0.492164\pi\)
\(62\) 0 0
\(63\) 5.77570 1.14886i 0.727670 0.144743i
\(64\) 0 0
\(65\) −1.67055 6.93303i −0.207207 0.859936i
\(66\) 0 0
\(67\) 3.73919 3.73919i 0.456815 0.456815i −0.440794 0.897608i \(-0.645303\pi\)
0.897608 + 0.440794i \(0.145303\pi\)
\(68\) 0 0
\(69\) 6.81089i 0.819935i
\(70\) 0 0
\(71\) 1.37331 0.273168i 0.162982 0.0324191i −0.112925 0.993604i \(-0.536022\pi\)
0.275907 + 0.961184i \(0.411022\pi\)
\(72\) 0 0
\(73\) −0.629073 3.16256i −0.0736274 0.370150i 0.926351 0.376660i \(-0.122928\pi\)
−0.999979 + 0.00651048i \(0.997928\pi\)
\(74\) 0 0
\(75\) 1.24953 10.7093i 0.144283 1.23661i
\(76\) 0 0
\(77\) −9.87059 4.08853i −1.12486 0.465931i
\(78\) 0 0
\(79\) 15.8369 + 3.15015i 1.78179 + 0.354420i 0.972484 0.232970i \(-0.0748442\pi\)
0.809305 + 0.587389i \(0.199844\pi\)
\(80\) 0 0
\(81\) 7.93903 7.93903i 0.882114 0.882114i
\(82\) 0 0
\(83\) −3.12593 7.54667i −0.343116 0.828355i −0.997397 0.0721038i \(-0.977029\pi\)
0.654281 0.756251i \(-0.272971\pi\)
\(84\) 0 0
\(85\) −9.07074 1.64974i −0.983860 0.178939i
\(86\) 0 0
\(87\) 6.82400 + 16.4746i 0.731609 + 1.76626i
\(88\) 0 0
\(89\) −11.6488 + 11.6488i −1.23477 + 1.23477i −0.272663 + 0.962109i \(0.587905\pi\)
−0.962109 + 0.272663i \(0.912095\pi\)
\(90\) 0 0
\(91\) −11.1635 2.22055i −1.17025 0.232777i
\(92\) 0 0
\(93\) −13.3667 5.53669i −1.38607 0.574128i
\(94\) 0 0
\(95\) −0.516905 + 3.28122i −0.0530333 + 0.336646i
\(96\) 0 0
\(97\) 2.20206 + 11.0705i 0.223585 + 1.12404i 0.915580 + 0.402137i \(0.131732\pi\)
−0.691994 + 0.721903i \(0.743268\pi\)
\(98\) 0 0
\(99\) 4.84472 0.963675i 0.486913 0.0968530i
\(100\) 0 0
\(101\) 16.9816i 1.68973i 0.534978 + 0.844866i \(0.320320\pi\)
−0.534978 + 0.844866i \(0.679680\pi\)
\(102\) 0 0
\(103\) 3.64303 3.64303i 0.358959 0.358959i −0.504470 0.863429i \(-0.668312\pi\)
0.863429 + 0.504470i \(0.168312\pi\)
\(104\) 0 0
\(105\) −14.6802 8.97930i −1.43264 0.876290i
\(106\) 0 0
\(107\) −0.944757 + 0.187924i −0.0913331 + 0.0181673i −0.240545 0.970638i \(-0.577326\pi\)
0.149212 + 0.988805i \(0.452326\pi\)
\(108\) 0 0
\(109\) 2.42146 1.61797i 0.231934 0.154973i −0.434173 0.900829i \(-0.642959\pi\)
0.666107 + 0.745856i \(0.267959\pi\)
\(110\) 0 0
\(111\) −16.1538 + 6.69110i −1.53325 + 0.635091i
\(112\) 0 0
\(113\) 0.177729 + 0.265990i 0.0167193 + 0.0250222i 0.839735 0.542996i \(-0.182710\pi\)
−0.823016 + 0.568018i \(0.807710\pi\)
\(114\) 0 0
\(115\) 4.78975 5.19015i 0.446646 0.483984i
\(116\) 0 0
\(117\) 4.86191 2.01387i 0.449484 0.186182i
\(118\) 0 0
\(119\) −8.46228 + 12.0381i −0.775736 + 1.10354i
\(120\) 0 0
\(121\) 1.88312 + 0.780013i 0.171193 + 0.0709103i
\(122\) 0 0
\(123\) 20.0771 1.81029
\(124\) 0 0
\(125\) −8.48351 + 7.28218i −0.758788 + 0.651338i
\(126\) 0 0
\(127\) 1.56712 3.78336i 0.139059 0.335719i −0.838973 0.544174i \(-0.816843\pi\)
0.978032 + 0.208454i \(0.0668433\pi\)
\(128\) 0 0
\(129\) −1.73395 2.59503i −0.152665 0.228480i
\(130\) 0 0
\(131\) −14.6869 9.81350i −1.28320 0.857410i −0.288232 0.957561i \(-0.593067\pi\)
−0.994972 + 0.100151i \(0.968067\pi\)
\(132\) 0 0
\(133\) 4.40810 + 2.94540i 0.382231 + 0.255398i
\(134\) 0 0
\(135\) −6.50400 + 0.260945i −0.559775 + 0.0224586i
\(136\) 0 0
\(137\) −1.21496 1.21496i −0.103801 0.103801i 0.653299 0.757100i \(-0.273384\pi\)
−0.757100 + 0.653299i \(0.773384\pi\)
\(138\) 0 0
\(139\) 1.13885 + 5.72536i 0.0965956 + 0.485619i 0.998552 + 0.0537921i \(0.0171308\pi\)
−0.901957 + 0.431827i \(0.857869\pi\)
\(140\) 0 0
\(141\) 3.30888 4.95209i 0.278658 0.417041i
\(142\) 0 0
\(143\) −9.36403 1.86262i −0.783059 0.155760i
\(144\) 0 0
\(145\) 6.38558 17.3532i 0.530294 1.44110i
\(146\) 0 0
\(147\) −10.2861 + 6.87297i −0.848386 + 0.566873i
\(148\) 0 0
\(149\) 14.3725 + 14.3725i 1.17744 + 1.17744i 0.980394 + 0.197045i \(0.0631345\pi\)
0.197045 + 0.980394i \(0.436865\pi\)
\(150\) 0 0
\(151\) 4.24187 10.2408i 0.345199 0.833384i −0.651974 0.758241i \(-0.726059\pi\)
0.997173 0.0751424i \(-0.0239411\pi\)
\(152\) 0 0
\(153\) 0.160938 6.80146i 0.0130110 0.549865i
\(154\) 0 0
\(155\) 6.29228 + 13.6193i 0.505408 + 1.09393i
\(156\) 0 0
\(157\) 12.2792i 0.979984i −0.871727 0.489992i \(-0.837000\pi\)
0.871727 0.489992i \(-0.163000\pi\)
\(158\) 0 0
\(159\) 3.05136 15.3402i 0.241988 1.21656i
\(160\) 0 0
\(161\) −4.31366 10.4141i −0.339964 0.820747i
\(162\) 0 0
\(163\) 0.706706 3.55285i 0.0553535 0.278281i −0.943189 0.332257i \(-0.892190\pi\)
0.998542 + 0.0539768i \(0.0171897\pi\)
\(164\) 0 0
\(165\) −12.3139 7.53194i −0.958637 0.586361i
\(166\) 0 0
\(167\) 9.93826 14.8737i 0.769046 1.15096i −0.215615 0.976478i \(-0.569176\pi\)
0.984661 0.174480i \(-0.0558244\pi\)
\(168\) 0 0
\(169\) 2.82848 0.217575
\(170\) 0 0
\(171\) −2.45116 −0.187445
\(172\) 0 0
\(173\) 11.2221 16.7951i 0.853202 1.27691i −0.106052 0.994361i \(-0.533821\pi\)
0.959254 0.282546i \(-0.0911791\pi\)
\(174\) 0 0
\(175\) 4.87217 + 17.1664i 0.368301 + 1.29766i
\(176\) 0 0
\(177\) −3.39936 + 17.0897i −0.255511 + 1.28454i
\(178\) 0 0
\(179\) −9.66314 23.3289i −0.722257 1.74368i −0.666819 0.745220i \(-0.732344\pi\)
−0.0554380 0.998462i \(-0.517656\pi\)
\(180\) 0 0
\(181\) 2.77423 13.9470i 0.206207 1.03667i −0.729523 0.683956i \(-0.760258\pi\)
0.935730 0.352717i \(-0.114742\pi\)
\(182\) 0 0
\(183\) 18.0188i 1.33199i
\(184\) 0 0
\(185\) 17.0152 + 6.26123i 1.25099 + 0.460335i
\(186\) 0 0
\(187\) −7.09825 + 10.0977i −0.519076 + 0.738419i
\(188\) 0 0
\(189\) −3.97572 + 9.59824i −0.289191 + 0.698169i
\(190\) 0 0
\(191\) −16.6356 16.6356i −1.20371 1.20371i −0.973029 0.230682i \(-0.925904\pi\)
−0.230682 0.973029i \(-0.574096\pi\)
\(192\) 0 0
\(193\) −1.42491 + 0.952095i −0.102567 + 0.0685333i −0.605796 0.795620i \(-0.707145\pi\)
0.503229 + 0.864153i \(0.332145\pi\)
\(194\) 0 0
\(195\) −14.4322 5.31071i −1.03351 0.380308i
\(196\) 0 0
\(197\) 7.37642 + 1.46726i 0.525548 + 0.104538i 0.450732 0.892659i \(-0.351163\pi\)
0.0748160 + 0.997197i \(0.476163\pi\)
\(198\) 0 0
\(199\) −5.36549 + 8.03003i −0.380350 + 0.569234i −0.971414 0.237391i \(-0.923708\pi\)
0.591064 + 0.806624i \(0.298708\pi\)
\(200\) 0 0
\(201\) −2.22463 11.1840i −0.156913 0.788856i
\(202\) 0 0
\(203\) −20.8683 20.8683i −1.46467 1.46467i
\(204\) 0 0
\(205\) −15.2994 14.1192i −1.06856 0.986124i
\(206\) 0 0
\(207\) 4.33332 + 2.89543i 0.301186 + 0.201246i
\(208\) 0 0
\(209\) 3.69756 + 2.47063i 0.255766 + 0.170897i
\(210\) 0 0
\(211\) −3.82382 5.72275i −0.263242 0.393970i 0.676177 0.736739i \(-0.263635\pi\)
−0.939420 + 0.342769i \(0.888635\pi\)
\(212\) 0 0
\(213\) 1.15548 2.78958i 0.0791722 0.191139i
\(214\) 0 0
\(215\) −0.503622 + 3.19690i −0.0343467 + 0.218027i
\(216\) 0 0
\(217\) 23.9449 1.62549
\(218\) 0 0
\(219\) −6.42406 2.66093i −0.434098 0.179809i
\(220\) 0 0
\(221\) −5.31817 + 12.0263i −0.357739 + 0.808979i
\(222\) 0 0
\(223\) 19.6506 8.13956i 1.31590 0.545065i 0.389303 0.921110i \(-0.372716\pi\)
0.926602 + 0.376044i \(0.122716\pi\)
\(224\) 0 0
\(225\) −6.28244 5.34772i −0.418830 0.356515i
\(226\) 0 0
\(227\) 9.26430 + 13.8650i 0.614893 + 0.920252i 0.999997 0.00262106i \(-0.000834311\pi\)
−0.385104 + 0.922873i \(0.625834\pi\)
\(228\) 0 0
\(229\) 1.26501 0.523985i 0.0835944 0.0346259i −0.340494 0.940247i \(-0.610594\pi\)
0.424089 + 0.905621i \(0.360594\pi\)
\(230\) 0 0
\(231\) −19.1559 + 12.7996i −1.26037 + 0.842150i
\(232\) 0 0
\(233\) 13.0065 2.58715i 0.852082 0.169490i 0.250318 0.968164i \(-0.419465\pi\)
0.601764 + 0.798674i \(0.294465\pi\)
\(234\) 0 0
\(235\) −6.00403 + 1.44671i −0.391660 + 0.0943728i
\(236\) 0 0
\(237\) 24.6212 24.6212i 1.59932 1.59932i
\(238\) 0 0
\(239\) 2.74304i 0.177432i 0.996057 + 0.0887162i \(0.0282764\pi\)
−0.996057 + 0.0887162i \(0.971724\pi\)
\(240\) 0 0
\(241\) −20.2804 + 4.03402i −1.30638 + 0.259854i −0.798719 0.601705i \(-0.794488\pi\)
−0.507657 + 0.861559i \(0.669488\pi\)
\(242\) 0 0
\(243\) −3.01959 15.1805i −0.193707 0.973829i
\(244\) 0 0
\(245\) 12.6718 + 1.99625i 0.809572 + 0.127535i
\(246\) 0 0
\(247\) 4.37705 + 1.81303i 0.278505 + 0.115361i
\(248\) 0 0
\(249\) −17.2760 3.43641i −1.09482 0.217774i
\(250\) 0 0
\(251\) 5.97237 5.97237i 0.376973 0.376973i −0.493036 0.870009i \(-0.664113\pi\)
0.870009 + 0.493036i \(0.164113\pi\)
\(252\) 0 0
\(253\) −3.61835 8.73547i −0.227484 0.549194i
\(254\) 0 0
\(255\) −13.8250 + 14.2872i −0.865754 + 0.894701i
\(256\) 0 0
\(257\) −5.67211 13.6937i −0.353817 0.854189i −0.996142 0.0877570i \(-0.972030\pi\)
0.642325 0.766432i \(-0.277970\pi\)
\(258\) 0 0
\(259\) 20.4619 20.4619i 1.27144 1.27144i
\(260\) 0 0
\(261\) 13.3827 + 2.66198i 0.828367 + 0.164772i
\(262\) 0 0
\(263\) 21.9410 + 9.08824i 1.35294 + 0.560405i 0.937109 0.349038i \(-0.113492\pi\)
0.415829 + 0.909443i \(0.363492\pi\)
\(264\) 0 0
\(265\) −13.1132 + 9.54392i −0.805537 + 0.586278i
\(266\) 0 0
\(267\) 6.93046 + 34.8418i 0.424137 + 2.13228i
\(268\) 0 0
\(269\) 6.27724 1.24862i 0.382730 0.0761297i 2.42140e−5 1.00000i \(-0.499992\pi\)
0.382706 + 0.923870i \(0.374992\pi\)
\(270\) 0 0
\(271\) 1.45756i 0.0885406i 0.999020 + 0.0442703i \(0.0140963\pi\)
−0.999020 + 0.0442703i \(0.985904\pi\)
\(272\) 0 0
\(273\) −17.3556 + 17.3556i −1.05041 + 1.05041i
\(274\) 0 0
\(275\) 4.08683 + 14.3993i 0.246445 + 0.868313i
\(276\) 0 0
\(277\) 17.4271 3.46646i 1.04709 0.208280i 0.358576 0.933501i \(-0.383262\pi\)
0.688516 + 0.725221i \(0.258262\pi\)
\(278\) 0 0
\(279\) −9.20506 + 6.15062i −0.551092 + 0.368228i
\(280\) 0 0
\(281\) −10.2518 + 4.24643i −0.611570 + 0.253321i −0.666900 0.745148i \(-0.732379\pi\)
0.0553296 + 0.998468i \(0.482379\pi\)
\(282\) 0 0
\(283\) 9.98430 + 14.9426i 0.593505 + 0.888243i 0.999673 0.0255551i \(-0.00813533\pi\)
−0.406168 + 0.913798i \(0.633135\pi\)
\(284\) 0 0
\(285\) 5.26389 + 4.85780i 0.311806 + 0.287751i
\(286\) 0 0
\(287\) −30.6986 + 12.7158i −1.81208 + 0.750588i
\(288\) 0 0
\(289\) 11.4388 + 12.5759i 0.672871 + 0.739760i
\(290\) 0 0
\(291\) 22.4873 + 9.31456i 1.31823 + 0.546029i
\(292\) 0 0
\(293\) 9.67627 0.565294 0.282647 0.959224i \(-0.408788\pi\)
0.282647 + 0.959224i \(0.408788\pi\)
\(294\) 0 0
\(295\) 14.6087 10.6324i 0.850554 0.619042i
\(296\) 0 0
\(297\) −3.33488 + 8.05111i −0.193509 + 0.467173i
\(298\) 0 0
\(299\) −5.59638 8.37557i −0.323647 0.484372i
\(300\) 0 0
\(301\) 4.29482 + 2.86971i 0.247549 + 0.165407i
\(302\) 0 0
\(303\) 30.4477 + 20.3445i 1.74917 + 1.16876i
\(304\) 0 0
\(305\) 12.6717 13.7309i 0.725577 0.786231i
\(306\) 0 0
\(307\) −11.0018 11.0018i −0.627906 0.627906i 0.319635 0.947541i \(-0.396440\pi\)
−0.947541 + 0.319635i \(0.896440\pi\)
\(308\) 0 0
\(309\) −2.16742 10.8964i −0.123300 0.619872i
\(310\) 0 0
\(311\) 3.14541 4.70744i 0.178360 0.266934i −0.731508 0.681833i \(-0.761183\pi\)
0.909868 + 0.414899i \(0.136183\pi\)
\(312\) 0 0
\(313\) 31.4220 + 6.25022i 1.77607 + 0.353283i 0.970850 0.239687i \(-0.0770449\pi\)
0.805224 + 0.592971i \(0.202045\pi\)
\(314\) 0 0
\(315\) −11.9537 + 5.52277i −0.673517 + 0.311173i
\(316\) 0 0
\(317\) −12.5675 + 8.39736i −0.705863 + 0.471643i −0.855969 0.517027i \(-0.827039\pi\)
0.150106 + 0.988670i \(0.452039\pi\)
\(318\) 0 0
\(319\) −17.5045 17.5045i −0.980066 0.980066i
\(320\) 0 0
\(321\) −0.794905 + 1.91907i −0.0443673 + 0.107112i
\(322\) 0 0
\(323\) 4.43219 4.22728i 0.246613 0.235212i
\(324\) 0 0
\(325\) 7.26307 + 14.1963i 0.402883 + 0.787471i
\(326\) 0 0
\(327\) 6.28000i 0.347285i
\(328\) 0 0
\(329\) −1.92301 + 9.66760i −0.106019 + 0.532992i
\(330\) 0 0
\(331\) −0.944647 2.28058i −0.0519225 0.125352i 0.895790 0.444478i \(-0.146611\pi\)
−0.947712 + 0.319126i \(0.896611\pi\)
\(332\) 0 0
\(333\) −2.61014 + 13.1221i −0.143035 + 0.719084i
\(334\) 0 0
\(335\) −6.16985 + 10.0870i −0.337095 + 0.551114i
\(336\) 0 0
\(337\) −9.92520 + 14.8541i −0.540660 + 0.809155i −0.996731 0.0807881i \(-0.974256\pi\)
0.456071 + 0.889943i \(0.349256\pi\)
\(338\) 0 0
\(339\) 0.689840 0.0374670
\(340\) 0 0
\(341\) 20.0852 1.08768
\(342\) 0 0
\(343\) −2.50445 + 3.74817i −0.135227 + 0.202382i
\(344\) 0 0
\(345\) −3.56756 14.8059i −0.192071 0.797122i
\(346\) 0 0
\(347\) −6.76613 + 34.0157i −0.363225 + 1.82606i 0.176605 + 0.984282i \(0.443489\pi\)
−0.539830 + 0.841774i \(0.681511\pi\)
\(348\) 0 0
\(349\) −6.94292 16.7617i −0.371646 0.897233i −0.993472 0.114078i \(-0.963609\pi\)
0.621826 0.783156i \(-0.286391\pi\)
\(350\) 0 0
\(351\) −1.81123 + 9.10566i −0.0966762 + 0.486024i
\(352\) 0 0
\(353\) 2.72376i 0.144971i 0.997369 + 0.0724855i \(0.0230931\pi\)
−0.997369 + 0.0724855i \(0.976907\pi\)
\(354\) 0 0
\(355\) −2.84228 + 1.31317i −0.150853 + 0.0696958i
\(356\) 0 0
\(357\) 11.4461 + 29.5948i 0.605791 + 1.56632i
\(358\) 0 0
\(359\) −10.9942 + 26.5422i −0.580249 + 1.40085i 0.312338 + 0.949971i \(0.398888\pi\)
−0.892587 + 0.450875i \(0.851112\pi\)
\(360\) 0 0
\(361\) 11.8746 + 11.8746i 0.624981 + 0.624981i
\(362\) 0 0
\(363\) 3.65458 2.44191i 0.191816 0.128167i
\(364\) 0 0
\(365\) 3.02407 + 6.54543i 0.158287 + 0.342604i
\(366\) 0 0
\(367\) −21.0419 4.18549i −1.09838 0.218481i −0.387551 0.921848i \(-0.626679\pi\)
−0.710827 + 0.703367i \(0.751679\pi\)
\(368\) 0 0
\(369\) 8.53511 12.7737i 0.444320 0.664972i
\(370\) 0 0
\(371\) 5.05005 + 25.3883i 0.262185 + 1.31809i
\(372\) 0 0
\(373\) −19.6466 19.6466i −1.01726 1.01726i −0.999848 0.0174135i \(-0.994457\pi\)
−0.0174135 0.999848i \(-0.505543\pi\)
\(374\) 0 0
\(375\) 2.89330 + 23.9350i 0.149409 + 1.23600i
\(376\) 0 0
\(377\) −21.9285 14.6522i −1.12938 0.754625i
\(378\) 0 0
\(379\) 25.0333 + 16.7267i 1.28587 + 0.859194i 0.995222 0.0976345i \(-0.0311276\pi\)
0.290653 + 0.956829i \(0.406128\pi\)
\(380\) 0 0
\(381\) −4.90603 7.34240i −0.251344 0.376163i
\(382\) 0 0
\(383\) −3.61821 + 8.73512i −0.184882 + 0.446344i −0.988961 0.148179i \(-0.952659\pi\)
0.804079 + 0.594523i \(0.202659\pi\)
\(384\) 0 0
\(385\) 23.5988 + 3.71762i 1.20270 + 0.189467i
\(386\) 0 0
\(387\) −2.38818 −0.121398
\(388\) 0 0
\(389\) −1.74313 0.722027i −0.0883801 0.0366082i 0.338055 0.941126i \(-0.390231\pi\)
−0.426435 + 0.904518i \(0.640231\pi\)
\(390\) 0 0
\(391\) −12.8290 + 2.23774i −0.648788 + 0.113168i
\(392\) 0 0
\(393\) −35.1908 + 14.5765i −1.77514 + 0.735288i
\(394\) 0 0
\(395\) −36.0771 + 1.44744i −1.81524 + 0.0728285i
\(396\) 0 0
\(397\) −14.8627 22.2437i −0.745940 1.11638i −0.989222 0.146422i \(-0.953224\pi\)
0.243282 0.969956i \(-0.421776\pi\)
\(398\) 0 0
\(399\) 10.5621 4.37496i 0.528766 0.219022i
\(400\) 0 0
\(401\) −4.11241 + 2.74783i −0.205364 + 0.137220i −0.654000 0.756495i \(-0.726910\pi\)
0.448635 + 0.893715i \(0.351910\pi\)
\(402\) 0 0
\(403\) 20.9869 4.17455i 1.04543 0.207949i
\(404\) 0 0
\(405\) −13.0998 + 21.4168i −0.650934 + 1.06421i
\(406\) 0 0
\(407\) 17.1637 17.1637i 0.850771 0.850771i
\(408\) 0 0
\(409\) 9.36133i 0.462888i −0.972848 0.231444i \(-0.925655\pi\)
0.972848 0.231444i \(-0.0743450\pi\)
\(410\) 0 0
\(411\) −3.63396 + 0.722840i −0.179250 + 0.0356551i
\(412\) 0 0
\(413\) −5.62600 28.2838i −0.276837 1.39175i
\(414\) 0 0
\(415\) 10.7483 + 14.7680i 0.527613 + 0.724931i
\(416\) 0 0
\(417\) 11.6298 + 4.81723i 0.569515 + 0.235901i
\(418\) 0 0
\(419\) 6.29873 + 1.25289i 0.307713 + 0.0612079i 0.346531 0.938038i \(-0.387359\pi\)
−0.0388184 + 0.999246i \(0.512359\pi\)
\(420\) 0 0
\(421\) −6.28214 + 6.28214i −0.306173 + 0.306173i −0.843423 0.537250i \(-0.819463\pi\)
0.537250 + 0.843423i \(0.319463\pi\)
\(422\) 0 0
\(423\) −1.74402 4.21044i −0.0847972 0.204719i
\(424\) 0 0
\(425\) 20.5826 1.16499i 0.998402 0.0565104i
\(426\) 0 0
\(427\) −11.4121 27.5514i −0.552272 1.33330i
\(428\) 0 0
\(429\) −14.5580 + 14.5580i −0.702869 + 0.702869i
\(430\) 0 0
\(431\) 15.9001 + 3.16274i 0.765883 + 0.152344i 0.562547 0.826765i \(-0.309822\pi\)
0.203336 + 0.979109i \(0.434822\pi\)
\(432\) 0 0
\(433\) 13.0881 + 5.42127i 0.628974 + 0.260530i 0.674317 0.738442i \(-0.264438\pi\)
−0.0453430 + 0.998971i \(0.514438\pi\)
\(434\) 0 0
\(435\) −23.4638 32.2389i −1.12500 1.54574i
\(436\) 0 0
\(437\) 0.915344 + 4.60174i 0.0437868 + 0.220131i
\(438\) 0 0
\(439\) 18.9806 3.77549i 0.905897 0.180194i 0.279909 0.960027i \(-0.409696\pi\)
0.625988 + 0.779833i \(0.284696\pi\)
\(440\) 0 0
\(441\) 9.46620i 0.450771i
\(442\) 0 0
\(443\) 21.0038 21.0038i 0.997920 0.997920i −0.00207769 0.999998i \(-0.500661\pi\)
0.999998 + 0.00207769i \(0.000661348\pi\)
\(444\) 0 0
\(445\) 19.2211 31.4245i 0.911169 1.48966i
\(446\) 0 0
\(447\) 42.9883 8.55090i 2.03327 0.404444i
\(448\) 0 0
\(449\) −6.79732 + 4.54183i −0.320786 + 0.214342i −0.705528 0.708682i \(-0.749290\pi\)
0.384743 + 0.923024i \(0.374290\pi\)
\(450\) 0 0
\(451\) −25.7503 + 10.6661i −1.21253 + 0.502248i
\(452\) 0 0
\(453\) −13.2796 19.8744i −0.623932 0.933780i
\(454\) 0 0
\(455\) 25.4308 1.02030i 1.19222 0.0478325i
\(456\) 0 0
\(457\) −0.0610986 + 0.0253079i −0.00285807 + 0.00118385i −0.384112 0.923287i \(-0.625492\pi\)
0.381254 + 0.924470i \(0.375492\pi\)
\(458\) 0 0
\(459\) 9.81912 + 6.90240i 0.458317 + 0.322176i
\(460\) 0 0
\(461\) 30.9050 + 12.8013i 1.43939 + 0.596215i 0.959650 0.281197i \(-0.0907313\pi\)
0.479739 + 0.877411i \(0.340731\pi\)
\(462\) 0 0
\(463\) 9.16247 0.425816 0.212908 0.977072i \(-0.431707\pi\)
0.212908 + 0.977072i \(0.431707\pi\)
\(464\) 0 0
\(465\) 31.9575 + 5.03440i 1.48199 + 0.233465i
\(466\) 0 0
\(467\) 13.0930 31.6094i 0.605874 1.46271i −0.261576 0.965183i \(-0.584242\pi\)
0.867450 0.497525i \(-0.165758\pi\)
\(468\) 0 0
\(469\) 10.4849 + 15.6917i 0.484146 + 0.724576i
\(470\) 0 0
\(471\) −22.0163 14.7108i −1.01446 0.677839i
\(472\) 0 0
\(473\) 3.60255 + 2.40714i 0.165645 + 0.110681i
\(474\) 0 0
\(475\) −0.595036 7.40364i −0.0273021 0.339702i
\(476\) 0 0
\(477\) −8.46276 8.46276i −0.387483 0.387483i
\(478\) 0 0
\(479\) 5.82737 + 29.2962i 0.266259 + 1.33858i 0.850063 + 0.526681i \(0.176564\pi\)
−0.583804 + 0.811895i \(0.698436\pi\)
\(480\) 0 0
\(481\) 14.3668 21.5015i 0.655071 0.980383i
\(482\) 0 0
\(483\) −23.8402 4.74211i −1.08477 0.215773i
\(484\) 0 0
\(485\) −10.5857 22.9122i −0.480672 1.04039i
\(486\) 0 0
\(487\) −15.8788 + 10.6099i −0.719537 + 0.480779i −0.860639 0.509216i \(-0.829936\pi\)
0.141102 + 0.989995i \(0.454936\pi\)
\(488\) 0 0
\(489\) −5.52353 5.52353i −0.249783 0.249783i
\(490\) 0 0
\(491\) −3.23201 + 7.80276i −0.145859 + 0.352134i −0.979877 0.199603i \(-0.936035\pi\)
0.834018 + 0.551737i \(0.186035\pi\)
\(492\) 0 0
\(493\) −28.7894 + 18.2664i −1.29661 + 0.822678i
\(494\) 0 0
\(495\) −10.0269 + 4.63256i −0.450677 + 0.208218i
\(496\) 0 0
\(497\) 4.99719i 0.224154i
\(498\) 0 0
\(499\) 1.09321 5.49594i 0.0489388 0.246032i −0.948571 0.316566i \(-0.897470\pi\)
0.997509 + 0.0705337i \(0.0224702\pi\)
\(500\) 0 0
\(501\) −14.7618 35.6382i −0.659510 1.59220i
\(502\) 0 0
\(503\) −5.77203 + 29.0180i −0.257362 + 1.29385i 0.608496 + 0.793557i \(0.291773\pi\)
−0.865858 + 0.500290i \(0.833227\pi\)
\(504\) 0 0
\(505\) −8.89500 36.9155i −0.395822 1.64272i
\(506\) 0 0
\(507\) 3.38861 5.07141i 0.150493 0.225229i
\(508\) 0 0
\(509\) 31.9241 1.41501 0.707506 0.706708i \(-0.249820\pi\)
0.707506 + 0.706708i \(0.249820\pi\)
\(510\) 0 0
\(511\) 11.5079 0.509080
\(512\) 0 0
\(513\) 2.40246 3.59554i 0.106071 0.158747i
\(514\) 0 0
\(515\) −6.01119 + 9.82765i −0.264884 + 0.433058i
\(516\) 0 0
\(517\) −1.61304 + 8.10929i −0.0709413 + 0.356646i
\(518\) 0 0
\(519\) −16.6688 40.2421i −0.731680 1.76643i
\(520\) 0 0
\(521\) 4.13347 20.7803i 0.181090 0.910403i −0.778208 0.628007i \(-0.783871\pi\)
0.959298 0.282396i \(-0.0911292\pi\)
\(522\) 0 0
\(523\) 15.7160i 0.687211i −0.939114 0.343605i \(-0.888352\pi\)
0.939114 0.343605i \(-0.111648\pi\)
\(524\) 0 0
\(525\) 36.6160 + 11.8301i 1.59805 + 0.516310i
\(526\) 0 0
\(527\) 6.03717 26.9966i 0.262983 1.17599i
\(528\) 0 0
\(529\) −4.98413 + 12.0327i −0.216701 + 0.523163i
\(530\) 0 0
\(531\) 9.42792 + 9.42792i 0.409137 + 0.409137i
\(532\) 0 0
\(533\) −24.6894 + 16.4969i −1.06942 + 0.714561i
\(534\) 0 0
\(535\) 1.95533 0.903385i 0.0845362 0.0390567i
\(536\) 0 0
\(537\) −53.4050 10.6229i −2.30459 0.458412i
\(538\) 0 0
\(539\) 9.54138 14.2797i 0.410976 0.615070i
\(540\) 0 0
\(541\) 4.63140 + 23.2836i 0.199119 + 1.00104i 0.943016 + 0.332746i \(0.107975\pi\)
−0.743897 + 0.668294i \(0.767025\pi\)
\(542\) 0 0
\(543\) −21.6831 21.6831i −0.930510 0.930510i
\(544\) 0 0
\(545\) −4.41640 + 4.78559i −0.189178 + 0.204992i
\(546\) 0 0
\(547\) −3.57141 2.38634i −0.152702 0.102032i 0.476872 0.878973i \(-0.341771\pi\)
−0.629574 + 0.776940i \(0.716771\pi\)
\(548\) 0 0
\(549\) 11.4641 + 7.66009i 0.489277 + 0.326925i
\(550\) 0 0
\(551\) 6.82468 + 10.2139i 0.290741 + 0.435125i
\(552\) 0 0
\(553\) −22.0530 + 53.2406i −0.937788 + 2.26402i
\(554\) 0 0
\(555\) 31.6110 23.0068i 1.34181 0.976586i
\(556\) 0 0
\(557\) −13.8976 −0.588861 −0.294430 0.955673i \(-0.595130\pi\)
−0.294430 + 0.955673i \(0.595130\pi\)
\(558\) 0 0
\(559\) 4.26457 + 1.76644i 0.180372 + 0.0747126i
\(560\) 0 0
\(561\) 9.60111 + 24.8244i 0.405359 + 1.04809i
\(562\) 0 0
\(563\) −21.0126 + 8.70372i −0.885577 + 0.366818i −0.778657 0.627450i \(-0.784099\pi\)
−0.106920 + 0.994268i \(0.534099\pi\)
\(564\) 0 0
\(565\) −0.525683 0.485128i −0.0221156 0.0204095i
\(566\) 0 0
\(567\) 22.2614 + 33.3166i 0.934892 + 1.39917i
\(568\) 0 0
\(569\) 26.9528 11.1642i 1.12992 0.468029i 0.262167 0.965023i \(-0.415563\pi\)
0.867754 + 0.496994i \(0.165563\pi\)
\(570\) 0 0
\(571\) 27.8405 18.6024i 1.16509 0.778488i 0.186127 0.982526i \(-0.440406\pi\)
0.978963 + 0.204037i \(0.0654064\pi\)
\(572\) 0 0
\(573\) −49.7573 + 9.89735i −2.07864 + 0.413468i
\(574\) 0 0
\(575\) −7.69358 + 13.7915i −0.320845 + 0.575145i
\(576\) 0 0
\(577\) 23.5100 23.5100i 0.978732 0.978732i −0.0210461 0.999779i \(-0.506700\pi\)
0.999779 + 0.0210461i \(0.00669969\pi\)
\(578\) 0 0
\(579\) 3.69548i 0.153579i
\(580\) 0 0
\(581\) 28.5921 5.68732i 1.18620 0.235950i
\(582\) 0 0
\(583\) 4.23603 + 21.2960i 0.175439 + 0.881990i
\(584\) 0 0
\(585\) −9.51421 + 6.92454i −0.393364 + 0.286294i
\(586\) 0 0
\(587\) −7.28609 3.01800i −0.300729 0.124566i 0.227217 0.973844i \(-0.427037\pi\)
−0.527945 + 0.849278i \(0.677037\pi\)
\(588\) 0 0
\(589\) −9.77526 1.94442i −0.402783 0.0801185i
\(590\) 0 0
\(591\) 11.4679 11.4679i 0.471728 0.471728i
\(592\) 0 0
\(593\) 4.93059 + 11.9035i 0.202475 + 0.488819i 0.992202 0.124640i \(-0.0397777\pi\)
−0.789727 + 0.613459i \(0.789778\pi\)
\(594\) 0 0
\(595\) 12.0901 30.6017i 0.495647 1.25455i
\(596\) 0 0
\(597\) 7.96966 + 19.2405i 0.326176 + 0.787459i
\(598\) 0 0
\(599\) −13.5320 + 13.5320i −0.552902 + 0.552902i −0.927277 0.374375i \(-0.877857\pi\)
0.374375 + 0.927277i \(0.377857\pi\)
\(600\) 0 0
\(601\) −37.8568 7.53019i −1.54421 0.307163i −0.651802 0.758389i \(-0.725987\pi\)
−0.892409 + 0.451227i \(0.850987\pi\)
\(602\) 0 0
\(603\) −8.06133 3.33911i −0.328283 0.135979i
\(604\) 0 0
\(605\) −4.50219 0.709250i −0.183040 0.0288351i
\(606\) 0 0
\(607\) −9.29925 46.7505i −0.377445 1.89754i −0.437262 0.899334i \(-0.644052\pi\)
0.0598176 0.998209i \(-0.480948\pi\)
\(608\) 0 0
\(609\) −62.4173 + 12.4156i −2.52928 + 0.503104i
\(610\) 0 0
\(611\) 8.80858i 0.356357i
\(612\) 0 0
\(613\) −14.3208 + 14.3208i −0.578410 + 0.578410i −0.934465 0.356055i \(-0.884121\pi\)
0.356055 + 0.934465i \(0.384121\pi\)
\(614\) 0 0
\(615\) −43.6446 + 10.5164i −1.75992 + 0.424063i
\(616\) 0 0
\(617\) −31.5294 + 6.27158i −1.26932 + 0.252484i −0.783401 0.621517i \(-0.786517\pi\)
−0.485924 + 0.874001i \(0.661517\pi\)
\(618\) 0 0
\(619\) −25.3671 + 16.9498i −1.01959 + 0.681269i −0.948688 0.316214i \(-0.897588\pi\)
−0.0709038 + 0.997483i \(0.522588\pi\)
\(620\) 0 0
\(621\) −8.49444 + 3.51851i −0.340870 + 0.141193i
\(622\) 0 0
\(623\) −32.6639 48.8850i −1.30865 1.95853i
\(624\) 0 0
\(625\) 14.6275 20.2741i 0.585098 0.810962i
\(626\) 0 0
\(627\) 8.85959 3.66976i 0.353818 0.146556i
\(628\) 0 0
\(629\) −17.9107 28.2287i −0.714146 1.12555i
\(630\) 0 0
\(631\) 32.5727 + 13.4921i 1.29670 + 0.537111i 0.920976 0.389620i \(-0.127394\pi\)
0.375725 + 0.926731i \(0.377394\pi\)
\(632\) 0 0
\(633\) −14.8418 −0.589909
\(634\) 0 0
\(635\) −1.42495 + 9.04533i −0.0565475 + 0.358953i
\(636\) 0 0
\(637\) 7.00179 16.9038i 0.277421 0.669754i
\(638\) 0 0
\(639\) −1.28361 1.92105i −0.0507787 0.0759957i
\(640\) 0 0
\(641\) 17.4144 + 11.6359i 0.687827 + 0.459592i 0.849732 0.527215i \(-0.176764\pi\)
−0.161905 + 0.986806i \(0.551764\pi\)
\(642\) 0 0
\(643\) −25.8230 17.2544i −1.01836 0.680445i −0.0699674 0.997549i \(-0.522290\pi\)
−0.948391 + 0.317104i \(0.897290\pi\)
\(644\) 0 0
\(645\) 5.12862 + 4.73297i 0.201939 + 0.186361i
\(646\) 0 0
\(647\) 2.86127 + 2.86127i 0.112488 + 0.112488i 0.761111 0.648622i \(-0.224654\pi\)
−0.648622 + 0.761111i \(0.724654\pi\)
\(648\) 0 0
\(649\) −4.71915 23.7248i −0.185243 0.931278i
\(650\) 0 0
\(651\) 28.6867 42.9327i 1.12432 1.68267i
\(652\) 0 0
\(653\) 16.6024 + 3.30242i 0.649702 + 0.129234i 0.508929 0.860808i \(-0.330041\pi\)
0.140772 + 0.990042i \(0.455041\pi\)
\(654\) 0 0
\(655\) 37.0676 + 13.6400i 1.44835 + 0.532960i
\(656\) 0 0
\(657\) −4.42395 + 2.95599i −0.172595 + 0.115324i
\(658\) 0 0
\(659\) 10.2584 + 10.2584i 0.399609 + 0.399609i 0.878095 0.478486i \(-0.158814\pi\)
−0.478486 + 0.878095i \(0.658814\pi\)
\(660\) 0 0
\(661\) −4.25104 + 10.2629i −0.165346 + 0.399181i −0.984736 0.174056i \(-0.944313\pi\)
0.819389 + 0.573237i \(0.194313\pi\)
\(662\) 0 0
\(663\) 15.1917 + 23.9433i 0.589995 + 0.929881i
\(664\) 0 0
\(665\) −11.1254 4.09388i −0.431423 0.158754i
\(666\) 0 0
\(667\) 26.1183i 1.01130i
\(668\) 0 0
\(669\) 8.94801 44.9847i 0.345950 1.73921i
\(670\) 0 0
\(671\) −9.57263 23.1104i −0.369547 0.892166i
\(672\) 0 0
\(673\) 4.21841 21.2074i 0.162608 0.817484i −0.810251 0.586083i \(-0.800669\pi\)
0.972858 0.231401i \(-0.0743309\pi\)
\(674\) 0 0
\(675\) 14.0020 3.97407i 0.538939 0.152962i
\(676\) 0 0
\(677\) 4.46590 6.68370i 0.171639 0.256875i −0.735670 0.677340i \(-0.763133\pi\)
0.907309 + 0.420464i \(0.138133\pi\)
\(678\) 0 0
\(679\) −40.2833 −1.54593
\(680\) 0 0
\(681\) 35.9586 1.37794
\(682\) 0 0
\(683\) −11.6381 + 17.4176i −0.445319 + 0.666467i −0.984432 0.175767i \(-0.943760\pi\)
0.539113 + 0.842233i \(0.318760\pi\)
\(684\) 0 0
\(685\) 3.27754 + 2.00474i 0.125228 + 0.0765973i
\(686\) 0 0
\(687\) 0.576029 2.89589i 0.0219769 0.110485i
\(688\) 0 0
\(689\) 8.85239 + 21.3716i 0.337249 + 0.814192i
\(690\) 0 0
\(691\) −7.00516 + 35.2173i −0.266489 + 1.33973i 0.583150 + 0.812364i \(0.301820\pi\)
−0.849639 + 0.527365i \(0.823180\pi\)
\(692\) 0 0
\(693\) 17.6290i 0.669669i
\(694\) 0 0
\(695\) −5.47464 11.8496i −0.207665 0.449479i
\(696\) 0 0
\(697\) 6.59639 + 37.8170i 0.249856 + 1.43242i
\(698\) 0 0
\(699\) 10.9434 26.4198i 0.413919 0.999289i
\(700\) 0 0
\(701\) −28.5896 28.5896i −1.07981 1.07981i −0.996526 0.0832873i \(-0.973458\pi\)
−0.0832873 0.996526i \(-0.526542\pi\)
\(702\) 0 0
\(703\) −10.0149 + 6.69177i −0.377721 + 0.252385i
\(704\) 0 0
\(705\) −4.59910 + 12.4983i −0.173212 + 0.470714i
\(706\) 0 0
\(707\) −59.4407 11.8235i −2.23550 0.444668i
\(708\) 0 0
\(709\) 2.69657 4.03571i 0.101272 0.151564i −0.777373 0.629040i \(-0.783448\pi\)
0.878645 + 0.477476i \(0.158448\pi\)
\(710\) 0 0
\(711\) −5.19793 26.1318i −0.194938 0.980018i
\(712\) 0 0
\(713\) 14.9845 + 14.9845i 0.561173 + 0.561173i
\(714\) 0 0
\(715\) 21.3317 0.855841i 0.797759 0.0320066i
\(716\) 0 0
\(717\) 4.91821 + 3.28624i 0.183674 + 0.122727i
\(718\) 0 0
\(719\) −33.2804 22.2373i −1.24115 0.829311i −0.250820 0.968034i \(-0.580700\pi\)
−0.990331 + 0.138723i \(0.955700\pi\)
\(720\) 0 0
\(721\) 10.2152 + 15.2882i 0.380436 + 0.569362i
\(722\) 0 0
\(723\) −17.0636 + 41.1953i −0.634604 + 1.53207i
\(724\) 0 0
\(725\) −4.79167 + 41.0680i −0.177958 + 1.52523i
\(726\) 0 0
\(727\) 21.2943 0.789761 0.394881 0.918732i \(-0.370786\pi\)
0.394881 + 0.918732i \(0.370786\pi\)
\(728\) 0 0
\(729\) 0.282656 + 0.117080i 0.0104687 + 0.00433629i
\(730\) 0 0
\(731\) 4.31829 4.11865i 0.159718 0.152334i
\(732\) 0 0
\(733\) 25.7969 10.6854i 0.952829 0.394675i 0.148536 0.988907i \(-0.452544\pi\)
0.804293 + 0.594232i \(0.202544\pi\)
\(734\) 0 0
\(735\) 18.7604 20.3287i 0.691989 0.749836i
\(736\) 0 0
\(737\) 8.79483 + 13.1624i 0.323962 + 0.484843i
\(738\) 0 0
\(739\) 19.2440 7.97111i 0.707901 0.293222i 0.000465157 1.00000i \(-0.499852\pi\)
0.707436 + 0.706778i \(0.249852\pi\)
\(740\) 0 0
\(741\) 8.49458 5.67590i 0.312056 0.208509i
\(742\) 0 0
\(743\) 8.87467 1.76528i 0.325580 0.0647619i −0.0295943 0.999562i \(-0.509422\pi\)
0.355174 + 0.934800i \(0.384422\pi\)
\(744\) 0 0
\(745\) −38.7720 23.7153i −1.42050 0.868861i
\(746\) 0 0
\(747\) −9.53069 + 9.53069i −0.348710 + 0.348710i
\(748\) 0 0
\(749\) 3.43778i 0.125614i
\(750\) 0 0
\(751\) −3.50805 + 0.697795i −0.128011 + 0.0254629i −0.258680 0.965963i \(-0.583287\pi\)
0.130669 + 0.991426i \(0.458287\pi\)
\(752\) 0 0
\(753\) −3.55326 17.8634i −0.129488 0.650979i
\(754\) 0 0
\(755\) −3.85705 + 24.4839i −0.140373 + 0.891059i
\(756\) 0 0
\(757\) 38.6967 + 16.0287i 1.40645 + 0.582573i 0.951419 0.307900i \(-0.0996263\pi\)
0.455036 + 0.890473i \(0.349626\pi\)
\(758\) 0 0
\(759\) −19.9974 3.97773i −0.725860 0.144383i
\(760\) 0 0
\(761\) 13.8766 13.8766i 0.503028 0.503028i −0.409350 0.912378i \(-0.634244\pi\)
0.912378 + 0.409350i \(0.134244\pi\)
\(762\) 0 0
\(763\) 3.97743 + 9.60235i 0.143992 + 0.347629i
\(764\) 0 0
\(765\) 3.21277 + 14.8697i 0.116158 + 0.537614i
\(766\) 0 0
\(767\) −9.86199 23.8090i −0.356096 0.859692i
\(768\) 0 0
\(769\) −31.1138 + 31.1138i −1.12199 + 1.12199i −0.130551 + 0.991442i \(0.541675\pi\)
−0.991442 + 0.130551i \(0.958325\pi\)
\(770\) 0 0
\(771\) −31.3479 6.23548i −1.12897 0.224565i
\(772\) 0 0
\(773\) 11.5956 + 4.80306i 0.417065 + 0.172754i 0.581340 0.813661i \(-0.302529\pi\)
−0.164275 + 0.986415i \(0.552529\pi\)
\(774\) 0 0
\(775\) −20.8123 26.3104i −0.747600 0.945097i
\(776\) 0 0
\(777\) −12.1738 61.2017i −0.436732 2.19560i
\(778\) 0 0
\(779\) 13.5650 2.69824i 0.486015 0.0966744i
\(780\) 0 0
\(781\) 4.19170i 0.149991i
\(782\) 0 0
\(783\) −17.0216 + 17.0216i −0.608301 + 0.608301i
\(784\) 0 0
\(785\) 6.43186 + 26.6931i 0.229563 + 0.952717i
\(786\) 0 0
\(787\) 44.3586 8.82347i 1.58121 0.314523i 0.675155 0.737676i \(-0.264077\pi\)
0.906058 + 0.423154i \(0.139077\pi\)
\(788\) 0 0
\(789\) 42.5810 28.4517i 1.51592 1.01291i
\(790\) 0 0
\(791\) −1.05479 + 0.436909i −0.0375040 + 0.0155347i
\(792\) 0 0
\(793\) −14.8057 22.1582i −0.525764 0.786862i
\(794\) 0 0
\(795\) 1.40204 + 34.9456i 0.0497253 + 1.23939i
\(796\) 0 0
\(797\) −27.2550 + 11.2894i −0.965423 + 0.399891i −0.809006 0.587800i \(-0.799994\pi\)
−0.156417 + 0.987691i \(0.549994\pi\)
\(798\) 0 0
\(799\) 10.4149 + 4.60556i 0.368451 + 0.162933i
\(800\) 0 0
\(801\) 25.1137 + 10.4025i 0.887350 + 0.367553i
\(802\) 0 0
\(803\) 9.65297 0.340646
\(804\) 0 0
\(805\) 14.8322 + 20.3792i 0.522767 + 0.718273i
\(806\) 0 0
\(807\) 5.28158 12.7509i 0.185920 0.448851i
\(808\) 0 0
\(809\) 5.88904 + 8.81358i 0.207048 + 0.309869i 0.920431 0.390905i \(-0.127838\pi\)
−0.713383 + 0.700774i \(0.752838\pi\)
\(810\) 0 0
\(811\) −43.8676 29.3114i −1.54040 1.02926i −0.979515 0.201369i \(-0.935461\pi\)
−0.560885 0.827894i \(-0.689539\pi\)
\(812\) 0 0
\(813\) 2.61338 + 1.74620i 0.0916552 + 0.0612421i
\(814\) 0 0
\(815\) 0.324718 + 8.09354i 0.0113744 + 0.283504i
\(816\) 0 0
\(817\) −1.52029 1.52029i −0.0531881 0.0531881i
\(818\) 0 0
\(819\) 3.66403 + 18.4203i 0.128032 + 0.643659i
\(820\) 0 0
\(821\) −10.1260 + 15.1546i −0.353399 + 0.528900i −0.964994 0.262272i \(-0.915528\pi\)
0.611595 + 0.791171i \(0.290528\pi\)
\(822\) 0 0
\(823\) −27.5076 5.47160i −0.958854 0.190728i −0.309233 0.950986i \(-0.600072\pi\)
−0.649621 + 0.760258i \(0.725072\pi\)
\(824\) 0 0
\(825\) 30.7139 + 9.92326i 1.06932 + 0.345483i
\(826\) 0 0
\(827\) −34.9529 + 23.3548i −1.21543 + 0.812125i −0.986888 0.161409i \(-0.948396\pi\)
−0.228543 + 0.973534i \(0.573396\pi\)
\(828\) 0 0
\(829\) −29.9305 29.9305i −1.03953 1.03953i −0.999186 0.0403449i \(-0.987154\pi\)
−0.0403449 0.999186i \(-0.512846\pi\)
\(830\) 0 0
\(831\) 14.6629 35.3993i 0.508650 1.22799i
\(832\) 0 0
\(833\) −16.3254 17.1167i −0.565643 0.593060i
\(834\) 0 0
\(835\) −13.8134 + 37.5388i −0.478034 + 1.29908i
\(836\) 0 0
\(837\) 19.5311i 0.675092i
\(838\) 0 0
\(839\) 6.98750 35.1285i 0.241235 1.21277i −0.650249 0.759721i \(-0.725336\pi\)
0.891485 0.453051i \(-0.149664\pi\)
\(840\) 0 0
\(841\) −15.0707 36.3840i −0.519680 1.25462i
\(842\) 0 0
\(843\) −4.66819 + 23.4686i −0.160781 + 0.808301i
\(844\) 0 0
\(845\) −6.14869 + 1.48156i −0.211521 + 0.0509674i
\(846\) 0 0
\(847\) −4.04141 + 6.04840i −0.138864 + 0.207825i
\(848\) 0 0
\(849\) 38.7532 1.33001
\(850\) 0 0
\(851\) 25.6097 0.877888
\(852\) 0 0
\(853\) −15.9963 + 23.9402i −0.547704 + 0.819697i −0.997292 0.0735388i \(-0.976571\pi\)
0.449588 + 0.893236i \(0.351571\pi\)
\(854\) 0 0
\(855\) 5.32847 1.28393i 0.182230 0.0439093i
\(856\) 0 0
\(857\) 2.46498 12.3923i 0.0842022 0.423313i −0.915574 0.402150i \(-0.868263\pi\)
0.999776 0.0211631i \(-0.00673694\pi\)
\(858\) 0 0
\(859\) 2.93187 + 7.07817i 0.100034 + 0.241504i 0.965971 0.258649i \(-0.0832772\pi\)
−0.865937 + 0.500153i \(0.833277\pi\)
\(860\) 0 0
\(861\) −13.9787 + 70.2758i −0.476394 + 2.39499i
\(862\) 0 0
\(863\) 24.1609i 0.822445i −0.911535 0.411223i \(-0.865102\pi\)
0.911535 0.411223i \(-0.134898\pi\)
\(864\) 0 0
\(865\) −15.5979 + 42.3882i −0.530345 + 1.44124i
\(866\) 0 0
\(867\) 36.2524 5.44320i 1.23120 0.184861i
\(868\) 0 0
\(869\) −18.4983 + 44.6588i −0.627511 + 1.51495i
\(870\) 0 0
\(871\) 11.9253 + 11.9253i 0.404074 + 0.404074i
\(872\) 0 0
\(873\) 15.4860 10.3474i 0.524121 0.350207i
\(874\) 0 0
\(875\) −19.5832 34.7651i −0.662032 1.17527i
\(876\) 0 0
\(877\) 27.0479 + 5.38016i 0.913342 + 0.181675i 0.629323 0.777144i \(-0.283332\pi\)
0.284019 + 0.958819i \(0.408332\pi\)
\(878\) 0 0
\(879\) 11.5925 17.3494i 0.391004 0.585180i
\(880\) 0 0
\(881\) 3.30989 + 16.6399i 0.111513 + 0.560614i 0.995633 + 0.0933539i \(0.0297588\pi\)
−0.884120 + 0.467260i \(0.845241\pi\)
\(882\) 0 0
\(883\) 36.7432 + 36.7432i 1.23651 + 1.23651i 0.961419 + 0.275089i \(0.0887073\pi\)
0.275089 + 0.961419i \(0.411293\pi\)
\(884\) 0 0
\(885\) −1.56194 38.9311i −0.0525042 1.30866i
\(886\) 0 0
\(887\) −17.5033 11.6953i −0.587702 0.392690i 0.225867 0.974158i \(-0.427479\pi\)
−0.813569 + 0.581468i \(0.802479\pi\)
\(888\) 0 0
\(889\) 12.1518 + 8.11957i 0.407558 + 0.272322i
\(890\) 0 0
\(891\) 18.6731 + 27.9463i 0.625574 + 0.936237i
\(892\) 0 0
\(893\) 1.57010 3.79055i 0.0525412 0.126846i
\(894\) 0 0
\(895\) 33.2260 + 45.6519i 1.11062 + 1.52598i
\(896\) 0 0
\(897\) −21.7219 −0.725272
\(898\) 0 0
\(899\) 51.2586 + 21.2320i 1.70957 + 0.708127i
\(900\) 0 0
\(901\) 29.8972 + 0.707435i 0.996021 + 0.0235681i
\(902\) 0 0
\(903\) 10.2907 4.26253i 0.342452 0.141848i
\(904\) 0 0
\(905\) 1.27471 + 31.7719i 0.0423728 + 1.05613i
\(906\) 0 0
\(907\) 4.86472 + 7.28057i 0.161530 + 0.241747i 0.903402 0.428795i \(-0.141062\pi\)
−0.741872 + 0.670542i \(0.766062\pi\)
\(908\) 0 0
\(909\) 25.8877 10.7230i 0.858639 0.355660i
\(910\) 0 0
\(911\) 40.6501 27.1615i 1.34680 0.899902i 0.347512 0.937675i \(-0.387026\pi\)
0.999286 + 0.0377733i \(0.0120265\pi\)
\(912\) 0 0
\(913\) 23.9834 4.77059i 0.793733 0.157883i
\(914\) 0 0
\(915\) −9.43828 39.1701i −0.312020 1.29492i
\(916\) 0 0
\(917\) 44.5761 44.5761i 1.47203 1.47203i
\(918\) 0 0
\(919\) 40.5315i 1.33701i 0.743707 + 0.668506i \(0.233066\pi\)
−0.743707 + 0.668506i \(0.766934\pi\)
\(920\) 0 0
\(921\) −32.9065 + 6.54552i −1.08431 + 0.215682i
\(922\) 0 0
\(923\) 0.871209 + 4.37987i 0.0286762 + 0.144165i
\(924\) 0 0
\(925\) −40.2682 4.69835i −1.32401 0.154481i
\(926\) 0 0
\(927\) −7.85403 3.25325i −0.257960 0.106851i
\(928\) 0 0
\(929\) −46.4806 9.24556i −1.52498 0.303337i −0.639782 0.768556i \(-0.720975\pi\)
−0.885195 + 0.465219i \(0.845975\pi\)
\(930\) 0 0
\(931\) −6.02608 + 6.02608i −0.197497 + 0.197497i
\(932\) 0 0
\(933\) −4.67205 11.2793i −0.152956 0.369268i
\(934\) 0 0
\(935\) 10.1413 25.6691i 0.331657 0.839468i
\(936\) 0 0
\(937\) 2.47014 + 5.96345i 0.0806961 + 0.194818i 0.959078 0.283142i \(-0.0913767\pi\)
−0.878382 + 0.477959i \(0.841377\pi\)
\(938\) 0 0
\(939\) 48.8510 48.8510i 1.59419 1.59419i
\(940\) 0 0
\(941\) −54.0330 10.7478i −1.76143 0.350370i −0.794862 0.606790i \(-0.792457\pi\)
−0.966565 + 0.256421i \(0.917457\pi\)
\(942\) 0 0
\(943\) −27.1682 11.2535i −0.884720 0.366463i
\(944\) 0 0
\(945\) 3.61504 22.9476i 0.117597 0.746487i
\(946\) 0 0
\(947\) 3.10538 + 15.6118i 0.100911 + 0.507316i 0.997872 + 0.0652053i \(0.0207702\pi\)
−0.896960 + 0.442111i \(0.854230\pi\)
\(948\) 0 0
\(949\) 10.0863 2.00629i 0.327415 0.0651270i
\(950\) 0 0
\(951\) 32.5937i 1.05692i
\(952\) 0 0
\(953\) 4.56692 4.56692i 0.147937 0.147937i −0.629259 0.777196i \(-0.716641\pi\)
0.777196 + 0.629259i \(0.216641\pi\)
\(954\) 0 0
\(955\) 44.8771 + 27.4496i 1.45219 + 0.888248i
\(956\) 0 0
\(957\) −52.3563 + 10.4143i −1.69244 + 0.336647i
\(958\) 0 0
\(959\) 5.09865 3.40681i 0.164644 0.110012i
\(960\) 0 0
\(961\) −12.9487 + 5.36351i −0.417699 + 0.173016i
\(962\) 0 0
\(963\) 0.883048 + 1.32157i 0.0284558 + 0.0425872i
\(964\) 0 0
\(965\) 2.59884 2.81609i 0.0836595 0.0906530i
\(966\) 0 0
\(967\) 6.95922 2.88260i 0.223793 0.0926982i −0.267970 0.963427i \(-0.586353\pi\)
0.491763 + 0.870729i \(0.336353\pi\)
\(968\) 0 0
\(969\) −2.26954 13.0112i −0.0729081 0.417981i
\(970\) 0 0
\(971\) −0.743896 0.308132i −0.0238728 0.00988843i 0.370715 0.928747i \(-0.379113\pi\)
−0.394588 + 0.918858i \(0.629113\pi\)
\(972\) 0 0
\(973\) −20.8334 −0.667889
\(974\) 0 0
\(975\) 34.1551 + 3.98510i 1.09384 + 0.127625i
\(976\) 0 0
\(977\) 4.49689 10.8565i 0.143868 0.347329i −0.835476 0.549526i \(-0.814808\pi\)
0.979345 + 0.202197i \(0.0648082\pi\)
\(978\) 0 0
\(979\) −27.3988 41.0052i −0.875670 1.31053i
\(980\) 0 0
\(981\) −3.99555 2.66974i −0.127568 0.0852382i
\(982\) 0 0
\(983\) 40.4189 + 27.0070i 1.28916 + 0.861390i 0.995522 0.0945262i \(-0.0301336\pi\)
0.293639 + 0.955916i \(0.405134\pi\)
\(984\) 0 0
\(985\) −16.8038 + 0.674180i −0.535413 + 0.0214812i
\(986\) 0 0
\(987\) 15.0300 + 15.0300i 0.478410 + 0.478410i
\(988\) 0 0
\(989\) 0.891822 + 4.48349i 0.0283583 + 0.142567i
\(990\) 0 0
\(991\) −20.6524 + 30.9084i −0.656044 + 0.981839i 0.343052 + 0.939316i \(0.388539\pi\)
−0.999096 + 0.0425222i \(0.986461\pi\)
\(992\) 0 0
\(993\) −5.22075 1.03847i −0.165675 0.0329549i
\(994\) 0 0
\(995\) 7.45764 20.2666i 0.236423 0.642493i
\(996\) 0 0
\(997\) −44.8830 + 29.9899i −1.42146 + 0.949789i −0.422400 + 0.906409i \(0.638812\pi\)
−0.999059 + 0.0433793i \(0.986188\pi\)
\(998\) 0 0
\(999\) −16.6901 16.6901i −0.528051 0.528051i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.cg.b.57.11 112
5.3 odd 4 680.2.cq.b.193.11 yes 112
17.3 odd 16 680.2.cq.b.377.11 yes 112
85.3 even 16 inner 680.2.cg.b.513.11 yes 112
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.cg.b.57.11 112 1.1 even 1 trivial
680.2.cg.b.513.11 yes 112 85.3 even 16 inner
680.2.cq.b.193.11 yes 112 5.3 odd 4
680.2.cq.b.377.11 yes 112 17.3 odd 16