Properties

Label 680.2.cq.b.193.11
Level $680$
Weight $2$
Character 680.193
Analytic conductor $5.430$
Analytic rank $0$
Dimension $112$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(97,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 0, 4, 13])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.cq (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [112] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(112\)
Relative dimension: \(14\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 193.11
Character \(\chi\) \(=\) 680.193
Dual form 680.2.cq.b.377.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.79298 + 1.19803i) q^{3} +(0.347966 + 2.20883i) q^{5} +(3.50030 + 0.696254i) q^{7} +(0.631450 + 1.52445i) q^{9} +(-0.584025 + 2.93609i) q^{11} -3.18928 q^{13} +(-2.02235 + 4.37726i) q^{15} +(1.66751 - 3.77086i) q^{17} +(-0.568477 + 1.37243i) q^{19} +(5.44184 + 5.44184i) q^{21} +(-1.75474 - 2.62616i) q^{23} +(-4.75784 + 1.53720i) q^{25} +(0.567911 - 2.85508i) q^{27} +(4.59419 - 6.87569i) q^{29} +(-1.30893 - 6.58044i) q^{31} +(-4.56468 + 4.56468i) q^{33} +(-0.319916 + 7.97384i) q^{35} +(-4.50472 + 6.74179i) q^{37} +(-5.71832 - 3.82086i) q^{39} +(5.17262 + 7.74137i) q^{41} +(1.33716 + 0.553869i) q^{43} +(-3.14753 + 1.92522i) q^{45} -2.76193i q^{47} +(5.30020 + 2.19541i) q^{49} +(7.50743 - 4.76335i) q^{51} +(2.77567 + 6.70106i) q^{53} +(-6.68854 - 0.268349i) q^{55} +(-2.66348 + 1.77968i) q^{57} +(7.46530 - 3.09223i) q^{59} +(-6.94772 + 4.64232i) q^{61} +(1.14886 + 5.77570i) q^{63} +(-1.10976 - 7.04457i) q^{65} +(-3.73919 - 3.73919i) q^{67} -6.81089i q^{69} +(1.37331 - 0.273168i) q^{71} +(3.16256 - 0.629073i) q^{73} +(-10.3723 - 2.94388i) q^{75} +(-4.08853 + 9.87059i) q^{77} +(-15.8369 - 3.15015i) q^{79} +(7.93903 - 7.93903i) q^{81} +(7.54667 - 3.12593i) q^{83} +(8.90942 + 2.37111i) q^{85} +(16.4746 - 6.82400i) q^{87} +(11.6488 - 11.6488i) q^{89} +(-11.1635 - 2.22055i) q^{91} +(5.53669 - 13.3667i) q^{93} +(-3.22926 - 0.778110i) q^{95} +(11.0705 - 2.20206i) q^{97} +(-4.84472 + 0.963675i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 112 q - 24 q^{15} + 16 q^{25} - 24 q^{27} + 8 q^{29} + 16 q^{31} + 48 q^{33} - 32 q^{35} - 16 q^{41} - 16 q^{43} - 24 q^{45} + 80 q^{49} + 32 q^{51} - 24 q^{53} - 24 q^{55} + 48 q^{57} + 80 q^{59} - 24 q^{61}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{15}{16}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.79298 + 1.19803i 1.03518 + 0.691684i 0.952390 0.304884i \(-0.0986175\pi\)
0.0827881 + 0.996567i \(0.473618\pi\)
\(4\) 0 0
\(5\) 0.347966 + 2.20883i 0.155615 + 0.987818i
\(6\) 0 0
\(7\) 3.50030 + 0.696254i 1.32299 + 0.263159i 0.805533 0.592550i \(-0.201879\pi\)
0.517457 + 0.855709i \(0.326879\pi\)
\(8\) 0 0
\(9\) 0.631450 + 1.52445i 0.210483 + 0.508151i
\(10\) 0 0
\(11\) −0.584025 + 2.93609i −0.176090 + 0.885265i 0.787178 + 0.616725i \(0.211541\pi\)
−0.963269 + 0.268540i \(0.913459\pi\)
\(12\) 0 0
\(13\) −3.18928 −0.884548 −0.442274 0.896880i \(-0.645828\pi\)
−0.442274 + 0.896880i \(0.645828\pi\)
\(14\) 0 0
\(15\) −2.02235 + 4.37726i −0.522168 + 1.13020i
\(16\) 0 0
\(17\) 1.66751 3.77086i 0.404431 0.914568i
\(18\) 0 0
\(19\) −0.568477 + 1.37243i −0.130418 + 0.314856i −0.975577 0.219659i \(-0.929506\pi\)
0.845159 + 0.534515i \(0.179506\pi\)
\(20\) 0 0
\(21\) 5.44184 + 5.44184i 1.18751 + 1.18751i
\(22\) 0 0
\(23\) −1.75474 2.62616i −0.365890 0.547593i 0.602152 0.798381i \(-0.294310\pi\)
−0.968042 + 0.250789i \(0.919310\pi\)
\(24\) 0 0
\(25\) −4.75784 + 1.53720i −0.951568 + 0.307439i
\(26\) 0 0
\(27\) 0.567911 2.85508i 0.109295 0.549461i
\(28\) 0 0
\(29\) 4.59419 6.87569i 0.853120 1.27678i −0.106167 0.994348i \(-0.533858\pi\)
0.959286 0.282435i \(-0.0911423\pi\)
\(30\) 0 0
\(31\) −1.30893 6.58044i −0.235091 1.18188i −0.900315 0.435239i \(-0.856664\pi\)
0.665224 0.746644i \(-0.268336\pi\)
\(32\) 0 0
\(33\) −4.56468 + 4.56468i −0.794608 + 0.794608i
\(34\) 0 0
\(35\) −0.319916 + 7.97384i −0.0540757 + 1.34782i
\(36\) 0 0
\(37\) −4.50472 + 6.74179i −0.740572 + 1.10834i 0.249581 + 0.968354i \(0.419707\pi\)
−0.990153 + 0.139990i \(0.955293\pi\)
\(38\) 0 0
\(39\) −5.71832 3.82086i −0.915664 0.611827i
\(40\) 0 0
\(41\) 5.17262 + 7.74137i 0.807827 + 1.20900i 0.974810 + 0.223038i \(0.0715975\pi\)
−0.166983 + 0.985960i \(0.553402\pi\)
\(42\) 0 0
\(43\) 1.33716 + 0.553869i 0.203915 + 0.0844642i 0.482303 0.876004i \(-0.339800\pi\)
−0.278389 + 0.960469i \(0.589800\pi\)
\(44\) 0 0
\(45\) −3.14753 + 1.92522i −0.469207 + 0.286995i
\(46\) 0 0
\(47\) 2.76193i 0.402869i −0.979502 0.201435i \(-0.935440\pi\)
0.979502 0.201435i \(-0.0645603\pi\)
\(48\) 0 0
\(49\) 5.30020 + 2.19541i 0.757171 + 0.313630i
\(50\) 0 0
\(51\) 7.50743 4.76335i 1.05125 0.667002i
\(52\) 0 0
\(53\) 2.77567 + 6.70106i 0.381267 + 0.920461i 0.991721 + 0.128409i \(0.0409871\pi\)
−0.610454 + 0.792052i \(0.709013\pi\)
\(54\) 0 0
\(55\) −6.68854 0.268349i −0.901883 0.0361842i
\(56\) 0 0
\(57\) −2.66348 + 1.77968i −0.352786 + 0.235724i
\(58\) 0 0
\(59\) 7.46530 3.09223i 0.971900 0.402574i 0.160481 0.987039i \(-0.448696\pi\)
0.811419 + 0.584465i \(0.198696\pi\)
\(60\) 0 0
\(61\) −6.94772 + 4.64232i −0.889564 + 0.594388i −0.914180 0.405309i \(-0.867164\pi\)
0.0246154 + 0.999697i \(0.492164\pi\)
\(62\) 0 0
\(63\) 1.14886 + 5.77570i 0.144743 + 0.727670i
\(64\) 0 0
\(65\) −1.10976 7.04457i −0.137649 0.873772i
\(66\) 0 0
\(67\) −3.73919 3.73919i −0.456815 0.456815i 0.440794 0.897608i \(-0.354697\pi\)
−0.897608 + 0.440794i \(0.854697\pi\)
\(68\) 0 0
\(69\) 6.81089i 0.819935i
\(70\) 0 0
\(71\) 1.37331 0.273168i 0.162982 0.0324191i −0.112925 0.993604i \(-0.536022\pi\)
0.275907 + 0.961184i \(0.411022\pi\)
\(72\) 0 0
\(73\) 3.16256 0.629073i 0.370150 0.0736274i −0.00651048 0.999979i \(-0.502072\pi\)
0.376660 + 0.926351i \(0.377072\pi\)
\(74\) 0 0
\(75\) −10.3723 2.94388i −1.19769 0.339930i
\(76\) 0 0
\(77\) −4.08853 + 9.87059i −0.465931 + 1.12486i
\(78\) 0 0
\(79\) −15.8369 3.15015i −1.78179 0.354420i −0.809305 0.587389i \(-0.800156\pi\)
−0.972484 + 0.232970i \(0.925156\pi\)
\(80\) 0 0
\(81\) 7.93903 7.93903i 0.882114 0.882114i
\(82\) 0 0
\(83\) 7.54667 3.12593i 0.828355 0.343116i 0.0721038 0.997397i \(-0.477029\pi\)
0.756251 + 0.654281i \(0.227029\pi\)
\(84\) 0 0
\(85\) 8.90942 + 2.37111i 0.966363 + 0.257184i
\(86\) 0 0
\(87\) 16.4746 6.82400i 1.76626 0.731609i
\(88\) 0 0
\(89\) 11.6488 11.6488i 1.23477 1.23477i 0.272663 0.962109i \(-0.412095\pi\)
0.962109 0.272663i \(-0.0879045\pi\)
\(90\) 0 0
\(91\) −11.1635 2.22055i −1.17025 0.232777i
\(92\) 0 0
\(93\) 5.53669 13.3667i 0.574128 1.38607i
\(94\) 0 0
\(95\) −3.22926 0.778110i −0.331315 0.0798324i
\(96\) 0 0
\(97\) 11.0705 2.20206i 1.12404 0.223585i 0.402137 0.915580i \(-0.368268\pi\)
0.721903 + 0.691994i \(0.243268\pi\)
\(98\) 0 0
\(99\) −4.84472 + 0.963675i −0.486913 + 0.0968530i
\(100\) 0 0
\(101\) 16.9816i 1.68973i 0.534978 + 0.844866i \(0.320320\pi\)
−0.534978 + 0.844866i \(0.679680\pi\)
\(102\) 0 0
\(103\) 3.64303 + 3.64303i 0.358959 + 0.358959i 0.863429 0.504470i \(-0.168312\pi\)
−0.504470 + 0.863429i \(0.668312\pi\)
\(104\) 0 0
\(105\) −10.1265 + 13.9137i −0.988246 + 1.35783i
\(106\) 0 0
\(107\) 0.187924 + 0.944757i 0.0181673 + 0.0913331i 0.988805 0.149212i \(-0.0476737\pi\)
−0.970638 + 0.240545i \(0.922674\pi\)
\(108\) 0 0
\(109\) −2.42146 + 1.61797i −0.231934 + 0.154973i −0.666107 0.745856i \(-0.732041\pi\)
0.434173 + 0.900829i \(0.357041\pi\)
\(110\) 0 0
\(111\) −16.1538 + 6.69110i −1.53325 + 0.635091i
\(112\) 0 0
\(113\) −0.265990 + 0.177729i −0.0250222 + 0.0167193i −0.568018 0.823016i \(-0.692290\pi\)
0.542996 + 0.839735i \(0.317290\pi\)
\(114\) 0 0
\(115\) 5.19015 4.78975i 0.483984 0.446646i
\(116\) 0 0
\(117\) −2.01387 4.86191i −0.186182 0.449484i
\(118\) 0 0
\(119\) 8.46228 12.0381i 0.775736 1.10354i
\(120\) 0 0
\(121\) 1.88312 + 0.780013i 0.171193 + 0.0709103i
\(122\) 0 0
\(123\) 20.0771i 1.81029i
\(124\) 0 0
\(125\) −5.05097 9.97435i −0.451772 0.892133i
\(126\) 0 0
\(127\) −3.78336 1.56712i −0.335719 0.139059i 0.208454 0.978032i \(-0.433157\pi\)
−0.544174 + 0.838973i \(0.683157\pi\)
\(128\) 0 0
\(129\) 1.73395 + 2.59503i 0.152665 + 0.228480i
\(130\) 0 0
\(131\) −14.6869 9.81350i −1.28320 0.857410i −0.288232 0.957561i \(-0.593067\pi\)
−0.994972 + 0.100151i \(0.968067\pi\)
\(132\) 0 0
\(133\) −2.94540 + 4.40810i −0.255398 + 0.382231i
\(134\) 0 0
\(135\) 6.50400 + 0.260945i 0.559775 + 0.0224586i
\(136\) 0 0
\(137\) −1.21496 + 1.21496i −0.103801 + 0.103801i −0.757100 0.653299i \(-0.773384\pi\)
0.653299 + 0.757100i \(0.273384\pi\)
\(138\) 0 0
\(139\) −1.13885 5.72536i −0.0965956 0.485619i −0.998552 0.0537921i \(-0.982869\pi\)
0.901957 0.431827i \(-0.142131\pi\)
\(140\) 0 0
\(141\) 3.30888 4.95209i 0.278658 0.417041i
\(142\) 0 0
\(143\) 1.86262 9.36403i 0.155760 0.783059i
\(144\) 0 0
\(145\) 16.7858 + 7.75526i 1.39399 + 0.644040i
\(146\) 0 0
\(147\) 6.87297 + 10.2861i 0.566873 + 0.848386i
\(148\) 0 0
\(149\) −14.3725 14.3725i −1.17744 1.17744i −0.980394 0.197045i \(-0.936865\pi\)
−0.197045 0.980394i \(-0.563135\pi\)
\(150\) 0 0
\(151\) 4.24187 10.2408i 0.345199 0.833384i −0.651974 0.758241i \(-0.726059\pi\)
0.997173 0.0751424i \(-0.0239411\pi\)
\(152\) 0 0
\(153\) 6.80146 + 0.160938i 0.549865 + 0.0130110i
\(154\) 0 0
\(155\) 14.0796 5.18098i 1.13090 0.416146i
\(156\) 0 0
\(157\) −12.2792 −0.979984 −0.489992 0.871727i \(-0.663000\pi\)
−0.489992 + 0.871727i \(0.663000\pi\)
\(158\) 0 0
\(159\) −3.05136 + 15.3402i −0.241988 + 1.21656i
\(160\) 0 0
\(161\) −4.31366 10.4141i −0.339964 0.820747i
\(162\) 0 0
\(163\) 3.55285 + 0.706706i 0.278281 + 0.0553535i 0.332257 0.943189i \(-0.392190\pi\)
−0.0539768 + 0.998542i \(0.517190\pi\)
\(164\) 0 0
\(165\) −11.6709 8.49423i −0.908581 0.661275i
\(166\) 0 0
\(167\) −14.8737 9.93826i −1.15096 0.769046i −0.174480 0.984661i \(-0.555824\pi\)
−0.976478 + 0.215615i \(0.930824\pi\)
\(168\) 0 0
\(169\) −2.82848 −0.217575
\(170\) 0 0
\(171\) −2.45116 −0.187445
\(172\) 0 0
\(173\) 16.7951 + 11.2221i 1.27691 + 0.853202i 0.994361 0.106052i \(-0.0338209\pi\)
0.282546 + 0.959254i \(0.408821\pi\)
\(174\) 0 0
\(175\) −17.7242 + 2.06799i −1.33982 + 0.156325i
\(176\) 0 0
\(177\) 17.0897 + 3.39936i 1.28454 + 0.255511i
\(178\) 0 0
\(179\) 9.66314 + 23.3289i 0.722257 + 1.74368i 0.666819 + 0.745220i \(0.267656\pi\)
0.0554380 + 0.998462i \(0.482344\pi\)
\(180\) 0 0
\(181\) 2.77423 13.9470i 0.206207 1.03667i −0.729523 0.683956i \(-0.760258\pi\)
0.935730 0.352717i \(-0.114742\pi\)
\(182\) 0 0
\(183\) −18.0188 −1.33199
\(184\) 0 0
\(185\) −16.4589 7.60423i −1.21009 0.559074i
\(186\) 0 0
\(187\) 10.0977 + 7.09825i 0.738419 + 0.519076i
\(188\) 0 0
\(189\) 3.97572 9.59824i 0.289191 0.698169i
\(190\) 0 0
\(191\) −16.6356 16.6356i −1.20371 1.20371i −0.973029 0.230682i \(-0.925904\pi\)
−0.230682 0.973029i \(-0.574096\pi\)
\(192\) 0 0
\(193\) −0.952095 1.42491i −0.0685333 0.102567i 0.795620 0.605796i \(-0.207145\pi\)
−0.864153 + 0.503229i \(0.832145\pi\)
\(194\) 0 0
\(195\) 6.44984 13.9603i 0.461882 0.999719i
\(196\) 0 0
\(197\) 1.46726 7.37642i 0.104538 0.525548i −0.892659 0.450732i \(-0.851163\pi\)
0.997197 0.0748160i \(-0.0238370\pi\)
\(198\) 0 0
\(199\) 5.36549 8.03003i 0.380350 0.569234i −0.591064 0.806624i \(-0.701292\pi\)
0.971414 + 0.237391i \(0.0762921\pi\)
\(200\) 0 0
\(201\) −2.22463 11.1840i −0.156913 0.788856i
\(202\) 0 0
\(203\) 20.8683 20.8683i 1.46467 1.46467i
\(204\) 0 0
\(205\) −15.2994 + 14.1192i −1.06856 + 0.986124i
\(206\) 0 0
\(207\) 2.89543 4.33332i 0.201246 0.301186i
\(208\) 0 0
\(209\) −3.69756 2.47063i −0.255766 0.170897i
\(210\) 0 0
\(211\) −3.82382 5.72275i −0.263242 0.393970i 0.676177 0.736739i \(-0.263635\pi\)
−0.939420 + 0.342769i \(0.888635\pi\)
\(212\) 0 0
\(213\) 2.78958 + 1.15548i 0.191139 + 0.0791722i
\(214\) 0 0
\(215\) −0.758115 + 3.14628i −0.0517030 + 0.214574i
\(216\) 0 0
\(217\) 23.9449i 1.62549i
\(218\) 0 0
\(219\) 6.42406 + 2.66093i 0.434098 + 0.179809i
\(220\) 0 0
\(221\) −5.31817 + 12.0263i −0.357739 + 0.808979i
\(222\) 0 0
\(223\) 8.13956 + 19.6506i 0.545065 + 1.31590i 0.921110 + 0.389303i \(0.127284\pi\)
−0.376044 + 0.926602i \(0.622716\pi\)
\(224\) 0 0
\(225\) −5.34772 6.28244i −0.356515 0.418830i
\(226\) 0 0
\(227\) 13.8650 9.26430i 0.920252 0.614893i −0.00262106 0.999997i \(-0.500834\pi\)
0.922873 + 0.385104i \(0.125834\pi\)
\(228\) 0 0
\(229\) −1.26501 + 0.523985i −0.0835944 + 0.0346259i −0.424089 0.905621i \(-0.639406\pi\)
0.340494 + 0.940247i \(0.389406\pi\)
\(230\) 0 0
\(231\) −19.1559 + 12.7996i −1.26037 + 0.842150i
\(232\) 0 0
\(233\) 2.58715 + 13.0065i 0.169490 + 0.852082i 0.968164 + 0.250318i \(0.0805351\pi\)
−0.798674 + 0.601764i \(0.794465\pi\)
\(234\) 0 0
\(235\) 6.10063 0.961060i 0.397961 0.0626926i
\(236\) 0 0
\(237\) −24.6212 24.6212i −1.59932 1.59932i
\(238\) 0 0
\(239\) 2.74304i 0.177432i −0.996057 0.0887162i \(-0.971724\pi\)
0.996057 0.0887162i \(-0.0282764\pi\)
\(240\) 0 0
\(241\) −20.2804 + 4.03402i −1.30638 + 0.259854i −0.798719 0.601705i \(-0.794488\pi\)
−0.507657 + 0.861559i \(0.669488\pi\)
\(242\) 0 0
\(243\) 15.1805 3.01959i 0.973829 0.193707i
\(244\) 0 0
\(245\) −3.00500 + 12.4711i −0.191982 + 0.796752i
\(246\) 0 0
\(247\) 1.81303 4.37705i 0.115361 0.278505i
\(248\) 0 0
\(249\) 17.2760 + 3.43641i 1.09482 + 0.217774i
\(250\) 0 0
\(251\) 5.97237 5.97237i 0.376973 0.376973i −0.493036 0.870009i \(-0.664113\pi\)
0.870009 + 0.493036i \(0.164113\pi\)
\(252\) 0 0
\(253\) 8.73547 3.61835i 0.549194 0.227484i
\(254\) 0 0
\(255\) 13.1338 + 14.9251i 0.822467 + 0.934648i
\(256\) 0 0
\(257\) −13.6937 + 5.67211i −0.854189 + 0.353817i −0.766432 0.642325i \(-0.777970\pi\)
−0.0877570 + 0.996142i \(0.527970\pi\)
\(258\) 0 0
\(259\) −20.4619 + 20.4619i −1.27144 + 1.27144i
\(260\) 0 0
\(261\) 13.3827 + 2.66198i 0.828367 + 0.164772i
\(262\) 0 0
\(263\) −9.08824 + 21.9410i −0.560405 + 1.35294i 0.349038 + 0.937109i \(0.386508\pi\)
−0.909443 + 0.415829i \(0.863492\pi\)
\(264\) 0 0
\(265\) −13.8356 + 8.46272i −0.849917 + 0.519861i
\(266\) 0 0
\(267\) 34.8418 6.93046i 2.13228 0.424137i
\(268\) 0 0
\(269\) −6.27724 + 1.24862i −0.382730 + 0.0761297i −0.382706 0.923870i \(-0.625008\pi\)
−2.42140e−5 1.00000i \(0.500008\pi\)
\(270\) 0 0
\(271\) 1.45756i 0.0885406i 0.999020 + 0.0442703i \(0.0140963\pi\)
−0.999020 + 0.0442703i \(0.985904\pi\)
\(272\) 0 0
\(273\) −17.3556 17.3556i −1.05041 1.05041i
\(274\) 0 0
\(275\) −1.73465 14.8672i −0.104603 0.896527i
\(276\) 0 0
\(277\) −3.46646 17.4271i −0.208280 1.04709i −0.933501 0.358576i \(-0.883262\pi\)
0.725221 0.688516i \(-0.241738\pi\)
\(278\) 0 0
\(279\) 9.20506 6.15062i 0.551092 0.368228i
\(280\) 0 0
\(281\) −10.2518 + 4.24643i −0.611570 + 0.253321i −0.666900 0.745148i \(-0.732379\pi\)
0.0553296 + 0.998468i \(0.482379\pi\)
\(282\) 0 0
\(283\) −14.9426 + 9.98430i −0.888243 + 0.593505i −0.913798 0.406168i \(-0.866865\pi\)
0.0255551 + 0.999673i \(0.491865\pi\)
\(284\) 0 0
\(285\) −4.85780 5.26389i −0.287751 0.311806i
\(286\) 0 0
\(287\) 12.7158 + 30.6986i 0.750588 + 1.81208i
\(288\) 0 0
\(289\) −11.4388 12.5759i −0.672871 0.739760i
\(290\) 0 0
\(291\) 22.4873 + 9.31456i 1.31823 + 0.546029i
\(292\) 0 0
\(293\) 9.67627i 0.565294i 0.959224 + 0.282647i \(0.0912125\pi\)
−0.959224 + 0.282647i \(0.908788\pi\)
\(294\) 0 0
\(295\) 9.42788 + 15.4136i 0.548912 + 0.897413i
\(296\) 0 0
\(297\) 8.05111 + 3.33488i 0.467173 + 0.193509i
\(298\) 0 0
\(299\) 5.59638 + 8.37557i 0.323647 + 0.484372i
\(300\) 0 0
\(301\) 4.29482 + 2.86971i 0.247549 + 0.165407i
\(302\) 0 0
\(303\) −20.3445 + 30.4477i −1.16876 + 1.74917i
\(304\) 0 0
\(305\) −12.6717 13.7309i −0.725577 0.786231i
\(306\) 0 0
\(307\) −11.0018 + 11.0018i −0.627906 + 0.627906i −0.947541 0.319635i \(-0.896440\pi\)
0.319635 + 0.947541i \(0.396440\pi\)
\(308\) 0 0
\(309\) 2.16742 + 10.8964i 0.123300 + 0.619872i
\(310\) 0 0
\(311\) 3.14541 4.70744i 0.178360 0.266934i −0.731508 0.681833i \(-0.761183\pi\)
0.909868 + 0.414899i \(0.136183\pi\)
\(312\) 0 0
\(313\) −6.25022 + 31.4220i −0.353283 + 1.77607i 0.239687 + 0.970850i \(0.422955\pi\)
−0.592971 + 0.805224i \(0.702045\pi\)
\(314\) 0 0
\(315\) −12.3578 + 4.54738i −0.696281 + 0.256216i
\(316\) 0 0
\(317\) 8.39736 + 12.5675i 0.471643 + 0.705863i 0.988670 0.150106i \(-0.0479614\pi\)
−0.517027 + 0.855969i \(0.672961\pi\)
\(318\) 0 0
\(319\) 17.5045 + 17.5045i 0.980066 + 0.980066i
\(320\) 0 0
\(321\) −0.794905 + 1.91907i −0.0443673 + 0.107112i
\(322\) 0 0
\(323\) 4.22728 + 4.43219i 0.235212 + 0.246613i
\(324\) 0 0
\(325\) 15.1741 4.90255i 0.841707 0.271945i
\(326\) 0 0
\(327\) −6.28000 −0.347285
\(328\) 0 0
\(329\) 1.92301 9.66760i 0.106019 0.532992i
\(330\) 0 0
\(331\) −0.944647 2.28058i −0.0519225 0.125352i 0.895790 0.444478i \(-0.146611\pi\)
−0.947712 + 0.319126i \(0.896611\pi\)
\(332\) 0 0
\(333\) −13.1221 2.61014i −0.719084 0.143035i
\(334\) 0 0
\(335\) 6.95811 9.56034i 0.380162 0.522337i
\(336\) 0 0
\(337\) 14.8541 + 9.92520i 0.809155 + 0.540660i 0.889943 0.456071i \(-0.150744\pi\)
−0.0807881 + 0.996731i \(0.525744\pi\)
\(338\) 0 0
\(339\) −0.689840 −0.0374670
\(340\) 0 0
\(341\) 20.0852 1.08768
\(342\) 0 0
\(343\) −3.74817 2.50445i −0.202382 0.135227i
\(344\) 0 0
\(345\) 15.0441 2.36996i 0.809947 0.127595i
\(346\) 0 0
\(347\) 34.0157 + 6.76613i 1.82606 + 0.363225i 0.984282 0.176605i \(-0.0565115\pi\)
0.841774 + 0.539830i \(0.181511\pi\)
\(348\) 0 0
\(349\) 6.94292 + 16.7617i 0.371646 + 0.897233i 0.993472 + 0.114078i \(0.0363912\pi\)
−0.621826 + 0.783156i \(0.713609\pi\)
\(350\) 0 0
\(351\) −1.81123 + 9.10566i −0.0966762 + 0.486024i
\(352\) 0 0
\(353\) −2.72376 −0.144971 −0.0724855 0.997369i \(-0.523093\pi\)
−0.0724855 + 0.997369i \(0.523093\pi\)
\(354\) 0 0
\(355\) 1.08125 + 2.93835i 0.0573866 + 0.155951i
\(356\) 0 0
\(357\) 29.5948 11.4461i 1.56632 0.605791i
\(358\) 0 0
\(359\) 10.9942 26.5422i 0.580249 1.40085i −0.312338 0.949971i \(-0.601112\pi\)
0.892587 0.450875i \(-0.148888\pi\)
\(360\) 0 0
\(361\) 11.8746 + 11.8746i 0.624981 + 0.624981i
\(362\) 0 0
\(363\) 2.44191 + 3.65458i 0.128167 + 0.191816i
\(364\) 0 0
\(365\) 2.48998 + 6.76666i 0.130331 + 0.354183i
\(366\) 0 0
\(367\) −4.18549 + 21.0419i −0.218481 + 1.09838i 0.703367 + 0.710827i \(0.251679\pi\)
−0.921848 + 0.387551i \(0.873321\pi\)
\(368\) 0 0
\(369\) −8.53511 + 12.7737i −0.444320 + 0.664972i
\(370\) 0 0
\(371\) 5.05005 + 25.3883i 0.262185 + 1.31809i
\(372\) 0 0
\(373\) 19.6466 19.6466i 1.01726 1.01726i 0.0174135 0.999848i \(-0.494457\pi\)
0.999848 0.0174135i \(-0.00554318\pi\)
\(374\) 0 0
\(375\) 2.89330 23.9350i 0.149409 1.23600i
\(376\) 0 0
\(377\) −14.6522 + 21.9285i −0.754625 + 1.12938i
\(378\) 0 0
\(379\) −25.0333 16.7267i −1.28587 0.859194i −0.290653 0.956829i \(-0.593872\pi\)
−0.995222 + 0.0976345i \(0.968872\pi\)
\(380\) 0 0
\(381\) −4.90603 7.34240i −0.251344 0.376163i
\(382\) 0 0
\(383\) −8.73512 3.61821i −0.446344 0.184882i 0.148179 0.988961i \(-0.452659\pi\)
−0.594523 + 0.804079i \(0.702659\pi\)
\(384\) 0 0
\(385\) −23.2251 5.59623i −1.18366 0.285210i
\(386\) 0 0
\(387\) 2.38818i 0.121398i
\(388\) 0 0
\(389\) 1.74313 + 0.722027i 0.0883801 + 0.0366082i 0.426435 0.904518i \(-0.359769\pi\)
−0.338055 + 0.941126i \(0.609769\pi\)
\(390\) 0 0
\(391\) −12.8290 + 2.23774i −0.648788 + 0.113168i
\(392\) 0 0
\(393\) −14.5765 35.1908i −0.735288 1.77514i
\(394\) 0 0
\(395\) 1.44744 36.0771i 0.0728285 1.81524i
\(396\) 0 0
\(397\) −22.2437 + 14.8627i −1.11638 + 0.745940i −0.969956 0.243282i \(-0.921776\pi\)
−0.146422 + 0.989222i \(0.546776\pi\)
\(398\) 0 0
\(399\) −10.5621 + 4.37496i −0.528766 + 0.219022i
\(400\) 0 0
\(401\) −4.11241 + 2.74783i −0.205364 + 0.137220i −0.654000 0.756495i \(-0.726910\pi\)
0.448635 + 0.893715i \(0.351910\pi\)
\(402\) 0 0
\(403\) 4.17455 + 20.9869i 0.207949 + 1.04543i
\(404\) 0 0
\(405\) 20.2985 + 14.7734i 1.00864 + 0.734098i
\(406\) 0 0
\(407\) −17.1637 17.1637i −0.850771 0.850771i
\(408\) 0 0
\(409\) 9.36133i 0.462888i 0.972848 + 0.231444i \(0.0743450\pi\)
−0.972848 + 0.231444i \(0.925655\pi\)
\(410\) 0 0
\(411\) −3.63396 + 0.722840i −0.179250 + 0.0356551i
\(412\) 0 0
\(413\) 28.2838 5.62600i 1.39175 0.276837i
\(414\) 0 0
\(415\) 9.53064 + 15.5816i 0.467841 + 0.764870i
\(416\) 0 0
\(417\) 4.81723 11.6298i 0.235901 0.569515i
\(418\) 0 0
\(419\) −6.29873 1.25289i −0.307713 0.0612079i 0.0388184 0.999246i \(-0.487641\pi\)
−0.346531 + 0.938038i \(0.612641\pi\)
\(420\) 0 0
\(421\) −6.28214 + 6.28214i −0.306173 + 0.306173i −0.843423 0.537250i \(-0.819463\pi\)
0.537250 + 0.843423i \(0.319463\pi\)
\(422\) 0 0
\(423\) 4.21044 1.74402i 0.204719 0.0847972i
\(424\) 0 0
\(425\) −2.13720 + 20.5044i −0.103670 + 0.994612i
\(426\) 0 0
\(427\) −27.5514 + 11.4121i −1.33330 + 0.552272i
\(428\) 0 0
\(429\) 14.5580 14.5580i 0.702869 0.702869i
\(430\) 0 0
\(431\) 15.9001 + 3.16274i 0.765883 + 0.152344i 0.562547 0.826765i \(-0.309822\pi\)
0.203336 + 0.979109i \(0.434822\pi\)
\(432\) 0 0
\(433\) −5.42127 + 13.0881i −0.260530 + 0.628974i −0.998971 0.0453430i \(-0.985562\pi\)
0.738442 + 0.674317i \(0.235562\pi\)
\(434\) 0 0
\(435\) 20.8056 + 34.0150i 0.997554 + 1.63089i
\(436\) 0 0
\(437\) 4.60174 0.915344i 0.220131 0.0437868i
\(438\) 0 0
\(439\) −18.9806 + 3.77549i −0.905897 + 0.180194i −0.625988 0.779833i \(-0.715304\pi\)
−0.279909 + 0.960027i \(0.590304\pi\)
\(440\) 0 0
\(441\) 9.46620i 0.450771i
\(442\) 0 0
\(443\) 21.0038 + 21.0038i 0.997920 + 0.997920i 0.999998 0.00207769i \(-0.000661348\pi\)
−0.00207769 + 0.999998i \(0.500661\pi\)
\(444\) 0 0
\(445\) 29.7836 + 21.6768i 1.41188 + 1.02758i
\(446\) 0 0
\(447\) −8.55090 42.9883i −0.404444 2.03327i
\(448\) 0 0
\(449\) 6.79732 4.54183i 0.320786 0.214342i −0.384743 0.923024i \(-0.625710\pi\)
0.705528 + 0.708682i \(0.250710\pi\)
\(450\) 0 0
\(451\) −25.7503 + 10.6661i −1.21253 + 0.502248i
\(452\) 0 0
\(453\) 19.8744 13.2796i 0.933780 0.623932i
\(454\) 0 0
\(455\) 1.02030 25.4308i 0.0478325 1.19222i
\(456\) 0 0
\(457\) 0.0253079 + 0.0610986i 0.00118385 + 0.00285807i 0.924470 0.381254i \(-0.124508\pi\)
−0.923287 + 0.384112i \(0.874508\pi\)
\(458\) 0 0
\(459\) −9.81912 6.90240i −0.458317 0.322176i
\(460\) 0 0
\(461\) 30.9050 + 12.8013i 1.43939 + 0.596215i 0.959650 0.281197i \(-0.0907313\pi\)
0.479739 + 0.877411i \(0.340731\pi\)
\(462\) 0 0
\(463\) 9.16247i 0.425816i 0.977072 + 0.212908i \(0.0682935\pi\)
−0.977072 + 0.212908i \(0.931707\pi\)
\(464\) 0 0
\(465\) 31.4514 + 7.57841i 1.45852 + 0.351440i
\(466\) 0 0
\(467\) −31.6094 13.0930i −1.46271 0.605874i −0.497525 0.867450i \(-0.665758\pi\)
−0.965183 + 0.261576i \(0.915758\pi\)
\(468\) 0 0
\(469\) −10.4849 15.6917i −0.484146 0.724576i
\(470\) 0 0
\(471\) −22.0163 14.7108i −1.01446 0.677839i
\(472\) 0 0
\(473\) −2.40714 + 3.60255i −0.110681 + 0.165645i
\(474\) 0 0
\(475\) 0.595036 7.40364i 0.0273021 0.339702i
\(476\) 0 0
\(477\) −8.46276 + 8.46276i −0.387483 + 0.387483i
\(478\) 0 0
\(479\) −5.82737 29.2962i −0.266259 1.33858i −0.850063 0.526681i \(-0.823436\pi\)
0.583804 0.811895i \(-0.301564\pi\)
\(480\) 0 0
\(481\) 14.3668 21.5015i 0.655071 0.980383i
\(482\) 0 0
\(483\) 4.74211 23.8402i 0.215773 1.08477i
\(484\) 0 0
\(485\) 8.71614 + 23.6866i 0.395779 + 1.07555i
\(486\) 0 0
\(487\) 10.6099 + 15.8788i 0.480779 + 0.719537i 0.989995 0.141102i \(-0.0450644\pi\)
−0.509216 + 0.860639i \(0.670064\pi\)
\(488\) 0 0
\(489\) 5.52353 + 5.52353i 0.249783 + 0.249783i
\(490\) 0 0
\(491\) −3.23201 + 7.80276i −0.145859 + 0.352134i −0.979877 0.199603i \(-0.936035\pi\)
0.834018 + 0.551737i \(0.186035\pi\)
\(492\) 0 0
\(493\) −18.2664 28.7894i −0.822678 1.29661i
\(494\) 0 0
\(495\) −3.81439 10.3658i −0.171444 0.465909i
\(496\) 0 0
\(497\) 4.99719 0.224154
\(498\) 0 0
\(499\) −1.09321 + 5.49594i −0.0489388 + 0.246032i −0.997509 0.0705337i \(-0.977530\pi\)
0.948571 + 0.316566i \(0.102530\pi\)
\(500\) 0 0
\(501\) −14.7618 35.6382i −0.659510 1.59220i
\(502\) 0 0
\(503\) −29.0180 5.77203i −1.29385 0.257362i −0.500290 0.865858i \(-0.666773\pi\)
−0.793557 + 0.608496i \(0.791773\pi\)
\(504\) 0 0
\(505\) −37.5094 + 5.90902i −1.66915 + 0.262948i
\(506\) 0 0
\(507\) −5.07141 3.38861i −0.225229 0.150493i
\(508\) 0 0
\(509\) −31.9241 −1.41501 −0.707506 0.706708i \(-0.750180\pi\)
−0.707506 + 0.706708i \(0.750180\pi\)
\(510\) 0 0
\(511\) 11.5079 0.509080
\(512\) 0 0
\(513\) 3.59554 + 2.40246i 0.158747 + 0.106071i
\(514\) 0 0
\(515\) −6.77918 + 9.31449i −0.298726 + 0.410445i
\(516\) 0 0
\(517\) 8.10929 + 1.61304i 0.356646 + 0.0709413i
\(518\) 0 0
\(519\) 16.6688 + 40.2421i 0.731680 + 1.76643i
\(520\) 0 0
\(521\) 4.13347 20.7803i 0.181090 0.910403i −0.778208 0.628007i \(-0.783871\pi\)
0.959298 0.282396i \(-0.0911292\pi\)
\(522\) 0 0
\(523\) 15.7160 0.687211 0.343605 0.939114i \(-0.388352\pi\)
0.343605 + 0.939114i \(0.388352\pi\)
\(524\) 0 0
\(525\) −34.2566 17.5262i −1.49508 0.764907i
\(526\) 0 0
\(527\) −26.9966 6.03717i −1.17599 0.262983i
\(528\) 0 0
\(529\) 4.98413 12.0327i 0.216701 0.523163i
\(530\) 0 0
\(531\) 9.42792 + 9.42792i 0.409137 + 0.409137i
\(532\) 0 0
\(533\) −16.4969 24.6894i −0.714561 1.06942i
\(534\) 0 0
\(535\) −2.02141 + 0.743835i −0.0873934 + 0.0321588i
\(536\) 0 0
\(537\) −10.6229 + 53.4050i −0.458412 + 2.30459i
\(538\) 0 0
\(539\) −9.54138 + 14.2797i −0.410976 + 0.615070i
\(540\) 0 0
\(541\) 4.63140 + 23.2836i 0.199119 + 1.00104i 0.943016 + 0.332746i \(0.107975\pi\)
−0.743897 + 0.668294i \(0.767025\pi\)
\(542\) 0 0
\(543\) 21.6831 21.6831i 0.930510 0.930510i
\(544\) 0 0
\(545\) −4.41640 4.78559i −0.189178 0.204992i
\(546\) 0 0
\(547\) −2.38634 + 3.57141i −0.102032 + 0.152702i −0.878973 0.476872i \(-0.841771\pi\)
0.776940 + 0.629574i \(0.216771\pi\)
\(548\) 0 0
\(549\) −11.4641 7.66009i −0.489277 0.326925i
\(550\) 0 0
\(551\) 6.82468 + 10.2139i 0.290741 + 0.435125i
\(552\) 0 0
\(553\) −53.2406 22.0530i −2.26402 0.937788i
\(554\) 0 0
\(555\) −20.4005 33.3526i −0.865951 1.41574i
\(556\) 0 0
\(557\) 13.8976i 0.588861i 0.955673 + 0.294430i \(0.0951299\pi\)
−0.955673 + 0.294430i \(0.904870\pi\)
\(558\) 0 0
\(559\) −4.26457 1.76644i −0.180372 0.0747126i
\(560\) 0 0
\(561\) 9.60111 + 24.8244i 0.405359 + 1.04809i
\(562\) 0 0
\(563\) −8.70372 21.0126i −0.366818 0.885577i −0.994268 0.106920i \(-0.965901\pi\)
0.627450 0.778657i \(-0.284099\pi\)
\(564\) 0 0
\(565\) −0.485128 0.525683i −0.0204095 0.0221156i
\(566\) 0 0
\(567\) 33.3166 22.2614i 1.39917 0.934892i
\(568\) 0 0
\(569\) −26.9528 + 11.1642i −1.12992 + 0.468029i −0.867754 0.496994i \(-0.834437\pi\)
−0.262167 + 0.965023i \(0.584437\pi\)
\(570\) 0 0
\(571\) 27.8405 18.6024i 1.16509 0.778488i 0.186127 0.982526i \(-0.440406\pi\)
0.978963 + 0.204037i \(0.0654064\pi\)
\(572\) 0 0
\(573\) −9.89735 49.7573i −0.413468 2.07864i
\(574\) 0 0
\(575\) 12.3857 + 9.79747i 0.516520 + 0.408583i
\(576\) 0 0
\(577\) −23.5100 23.5100i −0.978732 0.978732i 0.0210461 0.999779i \(-0.493300\pi\)
−0.999779 + 0.0210461i \(0.993300\pi\)
\(578\) 0 0
\(579\) 3.69548i 0.153579i
\(580\) 0 0
\(581\) 28.5921 5.68732i 1.18620 0.235950i
\(582\) 0 0
\(583\) −21.2960 + 4.23603i −0.881990 + 0.175439i
\(584\) 0 0
\(585\) 10.0384 6.14008i 0.415036 0.253861i
\(586\) 0 0
\(587\) −3.01800 + 7.28609i −0.124566 + 0.300729i −0.973844 0.227217i \(-0.927037\pi\)
0.849278 + 0.527945i \(0.177037\pi\)
\(588\) 0 0
\(589\) 9.77526 + 1.94442i 0.402783 + 0.0801185i
\(590\) 0 0
\(591\) 11.4679 11.4679i 0.471728 0.471728i
\(592\) 0 0
\(593\) −11.9035 + 4.93059i −0.488819 + 0.202475i −0.613459 0.789727i \(-0.710222\pi\)
0.124640 + 0.992202i \(0.460222\pi\)
\(594\) 0 0
\(595\) 29.5348 + 14.5028i 1.21081 + 0.594558i
\(596\) 0 0
\(597\) 19.2405 7.96966i 0.787459 0.326176i
\(598\) 0 0
\(599\) 13.5320 13.5320i 0.552902 0.552902i −0.374375 0.927277i \(-0.622143\pi\)
0.927277 + 0.374375i \(0.122143\pi\)
\(600\) 0 0
\(601\) −37.8568 7.53019i −1.54421 0.307163i −0.651802 0.758389i \(-0.725987\pi\)
−0.892409 + 0.451227i \(0.850987\pi\)
\(602\) 0 0
\(603\) 3.33911 8.06133i 0.135979 0.328283i
\(604\) 0 0
\(605\) −1.06765 + 4.43090i −0.0434062 + 0.180142i
\(606\) 0 0
\(607\) −46.7505 + 9.29925i −1.89754 + 0.377445i −0.998209 0.0598176i \(-0.980948\pi\)
−0.899334 + 0.437262i \(0.855948\pi\)
\(608\) 0 0
\(609\) 62.4173 12.4156i 2.52928 0.503104i
\(610\) 0 0
\(611\) 8.80858i 0.356357i
\(612\) 0 0
\(613\) −14.3208 14.3208i −0.578410 0.578410i 0.356055 0.934465i \(-0.384121\pi\)
−0.934465 + 0.356055i \(0.884121\pi\)
\(614\) 0 0
\(615\) −44.3468 + 6.98615i −1.78824 + 0.281709i
\(616\) 0 0
\(617\) 6.27158 + 31.5294i 0.252484 + 1.26932i 0.874001 + 0.485924i \(0.161517\pi\)
−0.621517 + 0.783401i \(0.713483\pi\)
\(618\) 0 0
\(619\) 25.3671 16.9498i 1.01959 0.681269i 0.0709038 0.997483i \(-0.477412\pi\)
0.948688 + 0.316214i \(0.102412\pi\)
\(620\) 0 0
\(621\) −8.49444 + 3.51851i −0.340870 + 0.141193i
\(622\) 0 0
\(623\) 48.8850 32.6639i 1.95853 1.30865i
\(624\) 0 0
\(625\) 20.2741 14.6275i 0.810962 0.585098i
\(626\) 0 0
\(627\) −3.66976 8.85959i −0.146556 0.353818i
\(628\) 0 0
\(629\) 17.9107 + 28.2287i 0.714146 + 1.12555i
\(630\) 0 0
\(631\) 32.5727 + 13.4921i 1.29670 + 0.537111i 0.920976 0.389620i \(-0.127394\pi\)
0.375725 + 0.926731i \(0.377394\pi\)
\(632\) 0 0
\(633\) 14.8418i 0.589909i
\(634\) 0 0
\(635\) 2.14501 8.90210i 0.0851223 0.353269i
\(636\) 0 0
\(637\) −16.9038 7.00179i −0.669754 0.277421i
\(638\) 0 0
\(639\) 1.28361 + 1.92105i 0.0507787 + 0.0759957i
\(640\) 0 0
\(641\) 17.4144 + 11.6359i 0.687827 + 0.459592i 0.849732 0.527215i \(-0.176764\pi\)
−0.161905 + 0.986806i \(0.551764\pi\)
\(642\) 0 0
\(643\) 17.2544 25.8230i 0.680445 1.01836i −0.317104 0.948391i \(-0.602710\pi\)
0.997549 0.0699674i \(-0.0222895\pi\)
\(644\) 0 0
\(645\) −5.12862 + 4.73297i −0.201939 + 0.186361i
\(646\) 0 0
\(647\) 2.86127 2.86127i 0.112488 0.112488i −0.648622 0.761111i \(-0.724654\pi\)
0.761111 + 0.648622i \(0.224654\pi\)
\(648\) 0 0
\(649\) 4.71915 + 23.7248i 0.185243 + 0.931278i
\(650\) 0 0
\(651\) 28.6867 42.9327i 1.12432 1.68267i
\(652\) 0 0
\(653\) −3.30242 + 16.6024i −0.129234 + 0.649702i 0.860808 + 0.508929i \(0.169959\pi\)
−0.990042 + 0.140772i \(0.955041\pi\)
\(654\) 0 0
\(655\) 16.5658 35.8557i 0.647278 1.40100i
\(656\) 0 0
\(657\) 2.95599 + 4.42395i 0.115324 + 0.172595i
\(658\) 0 0
\(659\) −10.2584 10.2584i −0.399609 0.399609i 0.478486 0.878095i \(-0.341186\pi\)
−0.878095 + 0.478486i \(0.841186\pi\)
\(660\) 0 0
\(661\) −4.25104 + 10.2629i −0.165346 + 0.399181i −0.984736 0.174056i \(-0.944313\pi\)
0.819389 + 0.573237i \(0.194313\pi\)
\(662\) 0 0
\(663\) −23.9433 + 15.1917i −0.929881 + 0.589995i
\(664\) 0 0
\(665\) −10.7616 4.97201i −0.417318 0.192806i
\(666\) 0 0
\(667\) −26.1183 −1.01130
\(668\) 0 0
\(669\) −8.94801 + 44.9847i −0.345950 + 1.73921i
\(670\) 0 0
\(671\) −9.57263 23.1104i −0.369547 0.892166i
\(672\) 0 0
\(673\) 21.2074 + 4.21841i 0.817484 + 0.162608i 0.586083 0.810251i \(-0.300669\pi\)
0.231401 + 0.972858i \(0.425669\pi\)
\(674\) 0 0
\(675\) 1.68679 + 14.4570i 0.0649246 + 0.556450i
\(676\) 0 0
\(677\) −6.68370 4.46590i −0.256875 0.171639i 0.420464 0.907309i \(-0.361867\pi\)
−0.677340 + 0.735670i \(0.736867\pi\)
\(678\) 0 0
\(679\) 40.2833 1.54593
\(680\) 0 0
\(681\) 35.9586 1.37794
\(682\) 0 0
\(683\) −17.4176 11.6381i −0.666467 0.445319i 0.175767 0.984432i \(-0.443760\pi\)
−0.842233 + 0.539113i \(0.818760\pi\)
\(684\) 0 0
\(685\) −3.10640 2.26087i −0.118690 0.0863835i
\(686\) 0 0
\(687\) −2.89589 0.576029i −0.110485 0.0219769i
\(688\) 0 0
\(689\) −8.85239 21.3716i −0.337249 0.814192i
\(690\) 0 0
\(691\) −7.00516 + 35.2173i −0.266489 + 1.33973i 0.583150 + 0.812364i \(0.301820\pi\)
−0.849639 + 0.527365i \(0.823180\pi\)
\(692\) 0 0
\(693\) −17.6290 −0.669669
\(694\) 0 0
\(695\) 12.2501 4.50775i 0.464671 0.170989i
\(696\) 0 0
\(697\) 37.8170 6.59639i 1.43242 0.249856i
\(698\) 0 0
\(699\) −10.9434 + 26.4198i −0.413919 + 0.999289i
\(700\) 0 0
\(701\) −28.5896 28.5896i −1.07981 1.07981i −0.996526 0.0832873i \(-0.973458\pi\)
−0.0832873 0.996526i \(-0.526542\pi\)
\(702\) 0 0
\(703\) −6.69177 10.0149i −0.252385 0.377721i
\(704\) 0 0
\(705\) 12.0897 + 5.58559i 0.455324 + 0.210365i
\(706\) 0 0
\(707\) −11.8235 + 59.4407i −0.444668 + 2.23550i
\(708\) 0 0
\(709\) −2.69657 + 4.03571i −0.101272 + 0.151564i −0.878645 0.477476i \(-0.841552\pi\)
0.777373 + 0.629040i \(0.216552\pi\)
\(710\) 0 0
\(711\) −5.19793 26.1318i −0.194938 0.980018i
\(712\) 0 0
\(713\) −14.9845 + 14.9845i −0.561173 + 0.561173i
\(714\) 0 0
\(715\) 21.3317 + 0.855841i 0.797759 + 0.0320066i
\(716\) 0 0
\(717\) 3.28624 4.91821i 0.122727 0.183674i
\(718\) 0 0
\(719\) 33.2804 + 22.2373i 1.24115 + 0.829311i 0.990331 0.138723i \(-0.0442999\pi\)
0.250820 + 0.968034i \(0.419300\pi\)
\(720\) 0 0
\(721\) 10.2152 + 15.2882i 0.380436 + 0.569362i
\(722\) 0 0
\(723\) −41.1953 17.0636i −1.53207 0.634604i
\(724\) 0 0
\(725\) −11.2891 + 39.7756i −0.419268 + 1.47723i
\(726\) 0 0
\(727\) 21.2943i 0.789761i −0.918732 0.394881i \(-0.870786\pi\)
0.918732 0.394881i \(-0.129214\pi\)
\(728\) 0 0
\(729\) −0.282656 0.117080i −0.0104687 0.00433629i
\(730\) 0 0
\(731\) 4.31829 4.11865i 0.159718 0.152334i
\(732\) 0 0
\(733\) 10.6854 + 25.7969i 0.394675 + 0.952829i 0.988907 + 0.148536i \(0.0474560\pi\)
−0.594232 + 0.804293i \(0.702544\pi\)
\(734\) 0 0
\(735\) −20.3287 + 18.7604i −0.749836 + 0.691989i
\(736\) 0 0
\(737\) 13.1624 8.79483i 0.484843 0.323962i
\(738\) 0 0
\(739\) −19.2440 + 7.97111i −0.707901 + 0.293222i −0.707436 0.706778i \(-0.750148\pi\)
−0.000465157 1.00000i \(0.500148\pi\)
\(740\) 0 0
\(741\) 8.49458 5.67590i 0.312056 0.208509i
\(742\) 0 0
\(743\) 1.76528 + 8.87467i 0.0647619 + 0.325580i 0.999562 0.0295943i \(-0.00942152\pi\)
−0.934800 + 0.355174i \(0.884422\pi\)
\(744\) 0 0
\(745\) 26.7452 36.7475i 0.979868 1.34632i
\(746\) 0 0
\(747\) 9.53069 + 9.53069i 0.348710 + 0.348710i
\(748\) 0 0
\(749\) 3.43778i 0.125614i
\(750\) 0 0
\(751\) −3.50805 + 0.697795i −0.128011 + 0.0254629i −0.258680 0.965963i \(-0.583287\pi\)
0.130669 + 0.991426i \(0.458287\pi\)
\(752\) 0 0
\(753\) 17.8634 3.55326i 0.650979 0.129488i
\(754\) 0 0
\(755\) 24.0962 + 5.80612i 0.876950 + 0.211306i
\(756\) 0 0
\(757\) 16.0287 38.6967i 0.582573 1.40645i −0.307900 0.951419i \(-0.599626\pi\)
0.890473 0.455036i \(-0.150374\pi\)
\(758\) 0 0
\(759\) 19.9974 + 3.97773i 0.725860 + 0.144383i
\(760\) 0 0
\(761\) 13.8766 13.8766i 0.503028 0.503028i −0.409350 0.912378i \(-0.634244\pi\)
0.912378 + 0.409350i \(0.134244\pi\)
\(762\) 0 0
\(763\) −9.60235 + 3.97743i −0.347629 + 0.143992i
\(764\) 0 0
\(765\) 2.01120 + 15.0792i 0.0727149 + 0.545191i
\(766\) 0 0
\(767\) −23.8090 + 9.86199i −0.859692 + 0.356096i
\(768\) 0 0
\(769\) 31.1138 31.1138i 1.12199 1.12199i 0.130551 0.991442i \(-0.458325\pi\)
0.991442 0.130551i \(-0.0416747\pi\)
\(770\) 0 0
\(771\) −31.3479 6.23548i −1.12897 0.224565i
\(772\) 0 0
\(773\) −4.80306 + 11.5956i −0.172754 + 0.417065i −0.986415 0.164275i \(-0.947471\pi\)
0.813661 + 0.581340i \(0.197471\pi\)
\(774\) 0 0
\(775\) 16.3431 + 29.2966i 0.587062 + 1.05236i
\(776\) 0 0
\(777\) −61.2017 + 12.1738i −2.19560 + 0.436732i
\(778\) 0 0
\(779\) −13.5650 + 2.69824i −0.486015 + 0.0966744i
\(780\) 0 0
\(781\) 4.19170i 0.149991i
\(782\) 0 0
\(783\) −17.0216 17.0216i −0.608301 0.608301i
\(784\) 0 0
\(785\) −4.27274 27.1226i −0.152501 0.968046i
\(786\) 0 0
\(787\) −8.82347 44.3586i −0.314523 1.58121i −0.737676 0.675155i \(-0.764077\pi\)
0.423154 0.906058i \(-0.360923\pi\)
\(788\) 0 0
\(789\) −42.5810 + 28.4517i −1.51592 + 1.01291i
\(790\) 0 0
\(791\) −1.05479 + 0.436909i −0.0375040 + 0.0155347i
\(792\) 0 0
\(793\) 22.1582 14.8057i 0.786862 0.525764i
\(794\) 0 0
\(795\) −34.9456 1.40204i −1.23939 0.0497253i
\(796\) 0 0
\(797\) 11.2894 + 27.2550i 0.399891 + 0.965423i 0.987691 + 0.156417i \(0.0499943\pi\)
−0.587800 + 0.809006i \(0.700006\pi\)
\(798\) 0 0
\(799\) −10.4149 4.60556i −0.368451 0.162933i
\(800\) 0 0
\(801\) 25.1137 + 10.4025i 0.887350 + 0.367553i
\(802\) 0 0
\(803\) 9.65297i 0.340646i
\(804\) 0 0
\(805\) 21.5020 13.1519i 0.757844 0.463544i
\(806\) 0 0
\(807\) −12.7509 5.28158i −0.448851 0.185920i
\(808\) 0 0
\(809\) −5.88904 8.81358i −0.207048 0.309869i 0.713383 0.700774i \(-0.247162\pi\)
−0.920431 + 0.390905i \(0.872162\pi\)
\(810\) 0 0
\(811\) −43.8676 29.3114i −1.54040 1.02926i −0.979515 0.201369i \(-0.935461\pi\)
−0.560885 0.827894i \(-0.689539\pi\)
\(812\) 0 0
\(813\) −1.74620 + 2.61338i −0.0612421 + 0.0916552i
\(814\) 0 0
\(815\) −0.324718 + 8.09354i −0.0113744 + 0.283504i
\(816\) 0 0
\(817\) −1.52029 + 1.52029i −0.0531881 + 0.0531881i
\(818\) 0 0
\(819\) −3.66403 18.4203i −0.128032 0.643659i
\(820\) 0 0
\(821\) −10.1260 + 15.1546i −0.353399 + 0.528900i −0.964994 0.262272i \(-0.915528\pi\)
0.611595 + 0.791171i \(0.290528\pi\)
\(822\) 0 0
\(823\) 5.47160 27.5076i 0.190728 0.958854i −0.760258 0.649621i \(-0.774928\pi\)
0.950986 0.309233i \(-0.100072\pi\)
\(824\) 0 0
\(825\) 14.7012 28.7348i 0.511830 1.00042i
\(826\) 0 0
\(827\) 23.3548 + 34.9529i 0.812125 + 1.21543i 0.973534 + 0.228543i \(0.0733962\pi\)
−0.161409 + 0.986888i \(0.551604\pi\)
\(828\) 0 0
\(829\) 29.9305 + 29.9305i 1.03953 + 1.03953i 0.999186 + 0.0403449i \(0.0128457\pi\)
0.0403449 + 0.999186i \(0.487154\pi\)
\(830\) 0 0
\(831\) 14.6629 35.3993i 0.508650 1.22799i
\(832\) 0 0
\(833\) 17.1167 16.3254i 0.593060 0.565643i
\(834\) 0 0
\(835\) 16.7764 36.3115i 0.580570 1.25661i
\(836\) 0 0
\(837\) −19.5311 −0.675092
\(838\) 0 0
\(839\) −6.98750 + 35.1285i −0.241235 + 1.21277i 0.650249 + 0.759721i \(0.274664\pi\)
−0.891485 + 0.453051i \(0.850336\pi\)
\(840\) 0 0
\(841\) −15.0707 36.3840i −0.519680 1.25462i
\(842\) 0 0
\(843\) −23.4686 4.66819i −0.808301 0.160781i
\(844\) 0 0
\(845\) −0.984216 6.24762i −0.0338580 0.214925i
\(846\) 0 0
\(847\) 6.04840 + 4.04141i 0.207825 + 0.138864i
\(848\) 0 0
\(849\) −38.7532 −1.33001
\(850\) 0 0
\(851\) 25.6097 0.877888
\(852\) 0 0
\(853\) −23.9402 15.9963i −0.819697 0.547704i 0.0735388 0.997292i \(-0.476571\pi\)
−0.893236 + 0.449588i \(0.851571\pi\)
\(854\) 0 0
\(855\) −0.852923 5.41420i −0.0291694 0.185162i
\(856\) 0 0
\(857\) −12.3923 2.46498i −0.423313 0.0842022i −0.0211631 0.999776i \(-0.506737\pi\)
−0.402150 + 0.915574i \(0.631737\pi\)
\(858\) 0 0
\(859\) −2.93187 7.07817i −0.100034 0.241504i 0.865937 0.500153i \(-0.166723\pi\)
−0.965971 + 0.258649i \(0.916723\pi\)
\(860\) 0 0
\(861\) −13.9787 + 70.2758i −0.476394 + 2.39499i
\(862\) 0 0
\(863\) 24.1609 0.822445 0.411223 0.911535i \(-0.365102\pi\)
0.411223 + 0.911535i \(0.365102\pi\)
\(864\) 0 0
\(865\) −18.9436 + 41.0024i −0.644102 + 1.39412i
\(866\) 0 0
\(867\) −5.44320 36.2524i −0.184861 1.23120i
\(868\) 0 0
\(869\) 18.4983 44.6588i 0.627511 1.51495i
\(870\) 0 0
\(871\) 11.9253 + 11.9253i 0.404074 + 0.404074i
\(872\) 0 0
\(873\) 10.3474 + 15.4860i 0.350207 + 0.524121i
\(874\) 0 0
\(875\) −10.7352 38.4300i −0.362918 1.29917i
\(876\) 0 0
\(877\) 5.38016 27.0479i 0.181675 0.913342i −0.777144 0.629323i \(-0.783332\pi\)
0.958819 0.284019i \(-0.0916679\pi\)
\(878\) 0 0
\(879\) −11.5925 + 17.3494i −0.391004 + 0.585180i
\(880\) 0 0
\(881\) 3.30989 + 16.6399i 0.111513 + 0.560614i 0.995633 + 0.0933539i \(0.0297588\pi\)
−0.884120 + 0.467260i \(0.845241\pi\)
\(882\) 0 0
\(883\) −36.7432 + 36.7432i −1.23651 + 1.23651i −0.275089 + 0.961419i \(0.588707\pi\)
−0.961419 + 0.275089i \(0.911293\pi\)
\(884\) 0 0
\(885\) −1.56194 + 38.9311i −0.0525042 + 1.30866i
\(886\) 0 0
\(887\) −11.6953 + 17.5033i −0.392690 + 0.587702i −0.974158 0.225867i \(-0.927479\pi\)
0.581468 + 0.813569i \(0.302479\pi\)
\(888\) 0 0
\(889\) −12.1518 8.11957i −0.407558 0.272322i
\(890\) 0 0
\(891\) 18.6731 + 27.9463i 0.625574 + 0.936237i
\(892\) 0 0
\(893\) 3.79055 + 1.57010i 0.126846 + 0.0525412i
\(894\) 0 0
\(895\) −48.1670 + 29.4619i −1.61005 + 0.984802i
\(896\) 0 0
\(897\) 21.7219i 0.725272i
\(898\) 0 0
\(899\) −51.2586 21.2320i −1.70957 0.708127i
\(900\) 0 0
\(901\) 29.8972 + 0.707435i 0.996021 + 0.0235681i
\(902\) 0 0
\(903\) 4.26253 + 10.2907i 0.141848 + 0.342452i
\(904\) 0 0
\(905\) 31.7719 + 1.27471i 1.05613 + 0.0423728i
\(906\) 0 0
\(907\) 7.28057 4.86472i 0.241747 0.161530i −0.428795 0.903402i \(-0.641062\pi\)
0.670542 + 0.741872i \(0.266062\pi\)
\(908\) 0 0
\(909\) −25.8877 + 10.7230i −0.858639 + 0.355660i
\(910\) 0 0
\(911\) 40.6501 27.1615i 1.34680 0.899902i 0.347512 0.937675i \(-0.387026\pi\)
0.999286 + 0.0377733i \(0.0120265\pi\)
\(912\) 0 0
\(913\) 4.77059 + 23.9834i 0.157883 + 0.793733i
\(914\) 0 0
\(915\) −6.26993 39.8003i −0.207277 1.31576i
\(916\) 0 0
\(917\) −44.5761 44.5761i −1.47203 1.47203i
\(918\) 0 0
\(919\) 40.5315i 1.33701i −0.743707 0.668506i \(-0.766934\pi\)
0.743707 0.668506i \(-0.233066\pi\)
\(920\) 0 0
\(921\) −32.9065 + 6.54552i −1.08431 + 0.215682i
\(922\) 0 0
\(923\) −4.37987 + 0.871209i −0.144165 + 0.0286762i
\(924\) 0 0
\(925\) 11.0693 39.0010i 0.363956 1.28234i
\(926\) 0 0
\(927\) −3.25325 + 7.85403i −0.106851 + 0.257960i
\(928\) 0 0
\(929\) 46.4806 + 9.24556i 1.52498 + 0.303337i 0.885195 0.465219i \(-0.154025\pi\)
0.639782 + 0.768556i \(0.279025\pi\)
\(930\) 0 0
\(931\) −6.02608 + 6.02608i −0.197497 + 0.197497i
\(932\) 0 0
\(933\) 11.2793 4.67205i 0.369268 0.152956i
\(934\) 0 0
\(935\) −12.1651 + 24.7741i −0.397843 + 0.810200i
\(936\) 0 0
\(937\) 5.96345 2.47014i 0.194818 0.0806961i −0.283142 0.959078i \(-0.591377\pi\)
0.477959 + 0.878382i \(0.341377\pi\)
\(938\) 0 0
\(939\) −48.8510 + 48.8510i −1.59419 + 1.59419i
\(940\) 0 0
\(941\) −54.0330 10.7478i −1.76143 0.350370i −0.794862 0.606790i \(-0.792457\pi\)
−0.966565 + 0.256421i \(0.917457\pi\)
\(942\) 0 0
\(943\) 11.2535 27.1682i 0.366463 0.884720i
\(944\) 0 0
\(945\) 22.5843 + 5.44182i 0.734666 + 0.177022i
\(946\) 0 0
\(947\) 15.6118 3.10538i 0.507316 0.100911i 0.0652053 0.997872i \(-0.479230\pi\)
0.442111 + 0.896960i \(0.354230\pi\)
\(948\) 0 0
\(949\) −10.0863 + 2.00629i −0.327415 + 0.0651270i
\(950\) 0 0
\(951\) 32.5937i 1.05692i
\(952\) 0 0
\(953\) 4.56692 + 4.56692i 0.147937 + 0.147937i 0.777196 0.629259i \(-0.216641\pi\)
−0.629259 + 0.777196i \(0.716641\pi\)
\(954\) 0 0
\(955\) 30.9566 42.5338i 1.00173 1.37636i
\(956\) 0 0
\(957\) 10.4143 + 52.3563i 0.336647 + 1.69244i
\(958\) 0 0
\(959\) −5.09865 + 3.40681i −0.164644 + 0.110012i
\(960\) 0 0
\(961\) −12.9487 + 5.36351i −0.417699 + 0.173016i
\(962\) 0 0
\(963\) −1.32157 + 0.883048i −0.0425872 + 0.0284558i
\(964\) 0 0
\(965\) 2.81609 2.59884i 0.0906530 0.0836595i
\(966\) 0 0
\(967\) −2.88260 6.95922i −0.0926982 0.223793i 0.870729 0.491763i \(-0.163647\pi\)
−0.963427 + 0.267970i \(0.913647\pi\)
\(968\) 0 0
\(969\) 2.26954 + 13.0112i 0.0729081 + 0.417981i
\(970\) 0 0
\(971\) −0.743896 0.308132i −0.0238728 0.00988843i 0.370715 0.928747i \(-0.379113\pi\)
−0.394588 + 0.918858i \(0.629113\pi\)
\(972\) 0 0
\(973\) 20.8334i 0.667889i
\(974\) 0 0
\(975\) 33.0803 + 9.38885i 1.05942 + 0.300684i
\(976\) 0 0
\(977\) −10.8565 4.49689i −0.347329 0.143868i 0.202197 0.979345i \(-0.435192\pi\)
−0.549526 + 0.835476i \(0.685192\pi\)
\(978\) 0 0
\(979\) 27.3988 + 41.0052i 0.875670 + 1.31053i
\(980\) 0 0
\(981\) −3.99555 2.66974i −0.127568 0.0852382i
\(982\) 0 0
\(983\) −27.0070 + 40.4189i −0.861390 + 1.28916i 0.0945262 + 0.995522i \(0.469866\pi\)
−0.955916 + 0.293639i \(0.905134\pi\)
\(984\) 0 0
\(985\) 16.8038 + 0.674180i 0.535413 + 0.0214812i
\(986\) 0 0
\(987\) 15.0300 15.0300i 0.478410 0.478410i
\(988\) 0 0
\(989\) −0.891822 4.48349i −0.0283583 0.142567i
\(990\) 0 0
\(991\) −20.6524 + 30.9084i −0.656044 + 0.981839i 0.343052 + 0.939316i \(0.388539\pi\)
−0.999096 + 0.0425222i \(0.986461\pi\)
\(992\) 0 0
\(993\) 1.03847 5.22075i 0.0329549 0.165675i
\(994\) 0 0
\(995\) 19.6040 + 9.05727i 0.621487 + 0.287135i
\(996\) 0 0
\(997\) 29.9899 + 44.8830i 0.949789 + 1.42146i 0.906409 + 0.422400i \(0.138812\pi\)
0.0433793 + 0.999059i \(0.486188\pi\)
\(998\) 0 0
\(999\) 16.6901 + 16.6901i 0.528051 + 0.528051i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.cq.b.193.11 yes 112
5.2 odd 4 680.2.cg.b.57.11 112
17.3 odd 16 680.2.cg.b.513.11 yes 112
85.37 even 16 inner 680.2.cq.b.377.11 yes 112
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.cg.b.57.11 112 5.2 odd 4
680.2.cg.b.513.11 yes 112 17.3 odd 16
680.2.cq.b.193.11 yes 112 1.1 even 1 trivial
680.2.cq.b.377.11 yes 112 85.37 even 16 inner