Properties

Label 680.2.cg
Level $680$
Weight $2$
Character orbit 680.cg
Rep. character $\chi_{680}(57,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $216$
Newform subspaces $2$
Sturm bound $216$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.cg (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 85 \)
Character field: \(\Q(\zeta_{16})\)
Newform subspaces: \( 2 \)
Sturm bound: \(216\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(680, [\chi])\).

Total New Old
Modular forms 928 216 712
Cusp forms 800 216 584
Eisenstein series 128 0 128

Trace form

\( 216 q + 48 q^{27} + 32 q^{31} - 32 q^{37} + 40 q^{41} + 24 q^{53} + 48 q^{55} - 96 q^{59} - 144 q^{63} - 96 q^{67} - 32 q^{73} + 48 q^{77} + 32 q^{79} - 48 q^{83} + 32 q^{85} - 96 q^{93} + 16 q^{95} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(680, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
680.2.cg.a 680.cg 85.o $104$ $5.430$ None 680.2.cg.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{16}]$
680.2.cg.b 680.cg 85.o $112$ $5.430$ None 680.2.cg.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{16}]$

Decomposition of \(S_{2}^{\mathrm{old}}(680, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(680, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 2}\)