gp: [N,k,chi] = [680,2,Mod(57,680)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(680, base_ring=CyclotomicField(16))
chi = DirichletCharacter(H, H._module([0, 0, 4, 15]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("680.57");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [112]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{112} + 8 T_{3}^{109} - 96 T_{3}^{107} + 216 T_{3}^{106} + 184 T_{3}^{105} - 768 T_{3}^{104} + \cdots + 592973922304 \)
T3^112 + 8*T3^109 - 96*T3^107 + 216*T3^106 + 184*T3^105 - 768*T3^104 + 224*T3^103 - 11240*T3^102 + 94232*T3^101 - 95056*T3^100 - 1376472*T3^99 - 149576*T3^98 - 5823256*T3^97 + 133526009*T3^96 - 45895176*T3^95 + 2269552*T3^94 - 399878048*T3^93 - 1687387452*T3^92 - 2102794296*T3^91 + 14527267608*T3^90 + 55282720512*T3^89 - 13591000960*T3^88 - 500141381240*T3^87 - 690801147232*T3^86 + 2767895439664*T3^85 + 4656420240332*T3^84 - 15014396466704*T3^83 - 74898885248704*T3^82 + 2830970133328*T3^81 + 1555625257303764*T3^80 - 106636455459120*T3^79 - 4233555437688368*T3^78 - 5462717000260032*T3^77 + 2825281573660128*T3^76 + 26188311035282624*T3^75 + 27965170808741712*T3^74 - 158599507518606832*T3^73 - 29302653505849976*T3^72 + 641481022417350832*T3^71 - 1150897785585419024*T3^70 - 104321348947397712*T3^69 - 858845127708143792*T3^68 - 4273004831642363760*T3^67 - 4803203171019003296*T3^66 + 19839037550599485600*T3^65 + 1121592788857692035776*T3^64 - 47690708359387566480*T3^63 - 2466331338098931315360*T3^62 - 4018764134013563270752*T3^61 - 2803095189743783583144*T3^60 + 15613046229634953586784*T3^59 - 20865669778226578866784*T3^58 - 106599784061556324399616*T3^57 + 61447936388364515433344*T3^56 + 663833700831936282199680*T3^55 + 705102964901057599457824*T3^54 - 1224506409101530847675840*T3^53 - 1484824841798908037293248*T3^52 + 876819149769774169253856*T3^51 + 2358851338165592961270272*T3^50 - 3642999563861270247410560*T3^49 + 15672033569001681215764420*T3^48 - 1114960534083362733345888*T3^47 - 28531119589204776811679392*T3^46 - 31019410423401664002572960*T3^45 + 38770285286183192033638944*T3^44 + 72441826731714839880358144*T3^43 - 6367077047763640442262176*T3^42 + 28634429052442651820382336*T3^41 + 106164293186891028450709760*T3^40 + 124028706819309948682593152*T3^39 + 249602130262017443726290368*T3^38 + 445192313164987369139226176*T3^37 + 681836145350188755253006400*T3^36 + 792205818047813274741123840*T3^35 + 1097347246163688264680095168*T3^34 + 1352405207860182033739174784*T3^33 + 1685555440674276978335570208*T3^32 + 1865624650915189551517059072*T3^31 + 2223547406743480677430392064*T3^30 + 2415093044111997259158466432*T3^29 + 2586755373456005389476166144*T3^28 + 2544169804751055257310185984*T3^27 + 2289814192601321154886264704*T3^26 + 1884144327525492803218872832*T3^25 + 1403744830976932329677072896*T3^24 + 922307859236748065906999808*T3^23 + 526131737405854650247021824*T3^22 + 240767881410987145971114240*T3^21 + 65764982082393345525874944*T3^20 - 14064659118476127972529664*T3^19 - 34499474670400377884039424*T3^18 - 26349484100727694802119168*T3^17 - 12017279917467608028458944*T3^16 - 2652653801618086754455040*T3^15 + 1036750073978585443012096*T3^14 + 1527441036305315256123392*T3^13 + 1009017621550892223489024*T3^12 + 511816772235359394357248*T3^11 + 222380637238280023228416*T3^10 + 83875933692917971845120*T3^9 + 27273084092151813120000*T3^8 + 7602530667251792478208*T3^7 + 1810145231153859919872*T3^6 + 349744358212446978048*T3^5 + 49338572478793908224*T3^4 + 4162037303650287616*T3^3 + 160480313305202688*T3^2 - 618963843153920*T3 + 592973922304
acting on \(S_{2}^{\mathrm{new}}(680, [\chi])\).