Properties

Label 675.3.j.e.476.10
Level $675$
Weight $3$
Character 675.476
Analytic conductor $18.392$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,3,Mod(251,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.251"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 675.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,18,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3924178443\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 3 x^{18} - 19 x^{16} - 66 x^{14} + 109 x^{12} + 813 x^{10} + 981 x^{8} - 5346 x^{6} + \cdots + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{12} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 476.10
Root \(0.961330 + 1.44078i\) of defining polynomial
Character \(\chi\) \(=\) 675.476
Dual form 675.3.j.e.251.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.19328 - 1.84364i) q^{2} +(4.79800 - 8.31039i) q^{4} +(1.28370 + 2.22343i) q^{7} -20.6340i q^{8} +(8.51311 - 4.91505i) q^{11} +(6.03166 - 10.4471i) q^{13} +(8.19840 + 4.73335i) q^{14} +(-18.8497 - 32.6486i) q^{16} -4.28451i q^{17} -7.16698 q^{19} +(18.1231 - 31.3902i) q^{22} +(-0.442140 - 0.255270i) q^{23} -44.4808i q^{26} +24.6367 q^{28} +(-26.4589 + 15.2761i) q^{29} +(9.61361 - 16.6513i) q^{31} +(-48.9060 - 28.2359i) q^{32} +(-7.89910 - 13.6816i) q^{34} +1.31851 q^{37} +(-22.8862 + 13.2133i) q^{38} +(29.9735 + 17.3052i) q^{41} +(-25.9734 - 44.9872i) q^{43} -94.3297i q^{44} -1.88250 q^{46} +(-44.1078 + 25.4656i) q^{47} +(21.2042 - 36.7268i) q^{49} +(-57.8799 - 100.251i) q^{52} +86.6349i q^{53} +(45.8783 - 26.4879i) q^{56} +(-56.3270 + 97.5613i) q^{58} +(91.7656 + 52.9809i) q^{59} +(-15.6600 - 27.1239i) q^{61} -70.8961i q^{62} -57.4297 q^{64} +(-39.0271 + 67.5968i) q^{67} +(-35.6060 - 20.5571i) q^{68} +72.6762i q^{71} +30.3097 q^{73} +(4.21037 - 2.43086i) q^{74} +(-34.3872 + 59.5604i) q^{76} +(21.8565 + 12.6189i) q^{77} +(57.6398 + 99.8350i) q^{79} +127.618 q^{82} +(51.9734 - 30.0069i) q^{83} +(-165.880 - 95.7710i) q^{86} +(-101.417 - 175.660i) q^{88} +71.2992i q^{89} +30.9713 q^{91} +(-4.24278 + 2.44957i) q^{92} +(-93.8989 + 162.638i) q^{94} +(-63.9819 - 110.820i) q^{97} -156.372i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 18 q^{4} + 24 q^{11} + 30 q^{14} - 26 q^{16} + 8 q^{19} - 114 q^{29} + 28 q^{31} + 4 q^{34} - 102 q^{41} + 116 q^{46} + 40 q^{49} + 618 q^{56} + 120 q^{59} - 50 q^{61} - 140 q^{64} + 504 q^{74} - 96 q^{76}+ \cdots - 218 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.19328 1.84364i 1.59664 0.921819i 0.604509 0.796599i \(-0.293369\pi\)
0.992129 0.125221i \(-0.0399639\pi\)
\(3\) 0 0
\(4\) 4.79800 8.31039i 1.19950 2.07760i
\(5\) 0 0
\(6\) 0 0
\(7\) 1.28370 + 2.22343i 0.183385 + 0.317633i 0.943031 0.332704i \(-0.107961\pi\)
−0.759646 + 0.650337i \(0.774628\pi\)
\(8\) 20.6340i 2.57925i
\(9\) 0 0
\(10\) 0 0
\(11\) 8.51311 4.91505i 0.773919 0.446823i −0.0603516 0.998177i \(-0.519222\pi\)
0.834271 + 0.551355i \(0.185889\pi\)
\(12\) 0 0
\(13\) 6.03166 10.4471i 0.463974 0.803626i −0.535181 0.844738i \(-0.679757\pi\)
0.999155 + 0.0411114i \(0.0130898\pi\)
\(14\) 8.19840 + 4.73335i 0.585600 + 0.338096i
\(15\) 0 0
\(16\) −18.8497 32.6486i −1.17810 2.04054i
\(17\) 4.28451i 0.252030i −0.992028 0.126015i \(-0.959781\pi\)
0.992028 0.126015i \(-0.0402188\pi\)
\(18\) 0 0
\(19\) −7.16698 −0.377210 −0.188605 0.982053i \(-0.560397\pi\)
−0.188605 + 0.982053i \(0.560397\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 18.1231 31.3902i 0.823779 1.42683i
\(23\) −0.442140 0.255270i −0.0192235 0.0110987i 0.490357 0.871521i \(-0.336866\pi\)
−0.509581 + 0.860423i \(0.670200\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 44.4808i 1.71080i
\(27\) 0 0
\(28\) 24.6367 0.879884
\(29\) −26.4589 + 15.2761i −0.912376 + 0.526760i −0.881195 0.472753i \(-0.843260\pi\)
−0.0311810 + 0.999514i \(0.509927\pi\)
\(30\) 0 0
\(31\) 9.61361 16.6513i 0.310116 0.537137i −0.668271 0.743918i \(-0.732965\pi\)
0.978387 + 0.206781i \(0.0662986\pi\)
\(32\) −48.9060 28.2359i −1.52831 0.882372i
\(33\) 0 0
\(34\) −7.89910 13.6816i −0.232326 0.402401i
\(35\) 0 0
\(36\) 0 0
\(37\) 1.31851 0.0356355 0.0178177 0.999841i \(-0.494328\pi\)
0.0178177 + 0.999841i \(0.494328\pi\)
\(38\) −22.8862 + 13.2133i −0.602267 + 0.347719i
\(39\) 0 0
\(40\) 0 0
\(41\) 29.9735 + 17.3052i 0.731061 + 0.422078i 0.818810 0.574064i \(-0.194634\pi\)
−0.0877493 + 0.996143i \(0.527967\pi\)
\(42\) 0 0
\(43\) −25.9734 44.9872i −0.604032 1.04621i −0.992204 0.124627i \(-0.960227\pi\)
0.388172 0.921587i \(-0.373107\pi\)
\(44\) 94.3297i 2.14386i
\(45\) 0 0
\(46\) −1.88250 −0.0409239
\(47\) −44.1078 + 25.4656i −0.938463 + 0.541822i −0.889478 0.456977i \(-0.848932\pi\)
−0.0489851 + 0.998800i \(0.515599\pi\)
\(48\) 0 0
\(49\) 21.2042 36.7268i 0.432740 0.749527i
\(50\) 0 0
\(51\) 0 0
\(52\) −57.8799 100.251i −1.11307 1.92790i
\(53\) 86.6349i 1.63462i 0.576197 + 0.817311i \(0.304536\pi\)
−0.576197 + 0.817311i \(0.695464\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 45.8783 26.4879i 0.819255 0.472997i
\(57\) 0 0
\(58\) −56.3270 + 97.5613i −0.971156 + 1.68209i
\(59\) 91.7656 + 52.9809i 1.55535 + 0.897982i 0.997691 + 0.0679111i \(0.0216334\pi\)
0.557658 + 0.830071i \(0.311700\pi\)
\(60\) 0 0
\(61\) −15.6600 27.1239i −0.256721 0.444655i 0.708640 0.705570i \(-0.249309\pi\)
−0.965362 + 0.260915i \(0.915976\pi\)
\(62\) 70.8961i 1.14348i
\(63\) 0 0
\(64\) −57.4297 −0.897339
\(65\) 0 0
\(66\) 0 0
\(67\) −39.0271 + 67.5968i −0.582493 + 1.00891i 0.412689 + 0.910872i \(0.364589\pi\)
−0.995183 + 0.0980363i \(0.968744\pi\)
\(68\) −35.6060 20.5571i −0.523617 0.302311i
\(69\) 0 0
\(70\) 0 0
\(71\) 72.6762i 1.02361i 0.859102 + 0.511804i \(0.171023\pi\)
−0.859102 + 0.511804i \(0.828977\pi\)
\(72\) 0 0
\(73\) 30.3097 0.415201 0.207601 0.978214i \(-0.433435\pi\)
0.207601 + 0.978214i \(0.433435\pi\)
\(74\) 4.21037 2.43086i 0.0568969 0.0328494i
\(75\) 0 0
\(76\) −34.3872 + 59.5604i −0.452463 + 0.783690i
\(77\) 21.8565 + 12.6189i 0.283851 + 0.163881i
\(78\) 0 0
\(79\) 57.6398 + 99.8350i 0.729617 + 1.26373i 0.957045 + 0.289940i \(0.0936352\pi\)
−0.227428 + 0.973795i \(0.573031\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 127.618 1.55632
\(83\) 51.9734 30.0069i 0.626186 0.361529i −0.153087 0.988213i \(-0.548922\pi\)
0.779274 + 0.626684i \(0.215588\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −165.880 95.7710i −1.92884 1.11362i
\(87\) 0 0
\(88\) −101.417 175.660i −1.15247 1.99613i
\(89\) 71.2992i 0.801115i 0.916272 + 0.400558i \(0.131184\pi\)
−0.916272 + 0.400558i \(0.868816\pi\)
\(90\) 0 0
\(91\) 30.9713 0.340344
\(92\) −4.24278 + 2.44957i −0.0461171 + 0.0266257i
\(93\) 0 0
\(94\) −93.8989 + 162.638i −0.998924 + 1.73019i
\(95\) 0 0
\(96\) 0 0
\(97\) −63.9819 110.820i −0.659607 1.14247i −0.980717 0.195431i \(-0.937389\pi\)
0.321111 0.947042i \(-0.395944\pi\)
\(98\) 156.372i 1.59563i
\(99\) 0 0
\(100\) 0 0
\(101\) −74.5445 + 43.0383i −0.738065 + 0.426122i −0.821365 0.570403i \(-0.806787\pi\)
0.0833005 + 0.996524i \(0.473454\pi\)
\(102\) 0 0
\(103\) −20.4416 + 35.4060i −0.198463 + 0.343747i −0.948030 0.318181i \(-0.896928\pi\)
0.749568 + 0.661928i \(0.230261\pi\)
\(104\) −215.567 124.457i −2.07276 1.19671i
\(105\) 0 0
\(106\) 159.723 + 276.649i 1.50683 + 2.60990i
\(107\) 1.66026i 0.0155165i −0.999970 0.00775823i \(-0.997530\pi\)
0.999970 0.00775823i \(-0.00246955\pi\)
\(108\) 0 0
\(109\) 148.641 1.36368 0.681839 0.731502i \(-0.261180\pi\)
0.681839 + 0.731502i \(0.261180\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 48.3946 83.8218i 0.432094 0.748409i
\(113\) −113.845 65.7284i −1.00748 0.581667i −0.0970249 0.995282i \(-0.530933\pi\)
−0.910452 + 0.413615i \(0.864266\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 293.178i 2.52740i
\(117\) 0 0
\(118\) 390.711 3.31111
\(119\) 9.52631 5.50002i 0.0800531 0.0462187i
\(120\) 0 0
\(121\) −12.1846 + 21.1044i −0.100699 + 0.174416i
\(122\) −100.013 57.7428i −0.819782 0.473301i
\(123\) 0 0
\(124\) −92.2523 159.786i −0.743970 1.28859i
\(125\) 0 0
\(126\) 0 0
\(127\) 101.150 0.796460 0.398230 0.917286i \(-0.369625\pi\)
0.398230 + 0.917286i \(0.369625\pi\)
\(128\) 12.2351 7.06394i 0.0955867 0.0551870i
\(129\) 0 0
\(130\) 0 0
\(131\) 74.3023 + 42.8985i 0.567193 + 0.327469i 0.756028 0.654540i \(-0.227138\pi\)
−0.188834 + 0.982009i \(0.560471\pi\)
\(132\) 0 0
\(133\) −9.20024 15.9353i −0.0691747 0.119814i
\(134\) 287.807i 2.14781i
\(135\) 0 0
\(136\) −88.4068 −0.650050
\(137\) 60.3847 34.8631i 0.440764 0.254475i −0.263158 0.964753i \(-0.584764\pi\)
0.703922 + 0.710278i \(0.251431\pi\)
\(138\) 0 0
\(139\) 69.4587 120.306i 0.499703 0.865511i −0.500297 0.865854i \(-0.666776\pi\)
1.00000 0.000342926i \(0.000109157\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 133.989 + 232.075i 0.943582 + 1.63433i
\(143\) 118.584i 0.829256i
\(144\) 0 0
\(145\) 0 0
\(146\) 96.7872 55.8801i 0.662926 0.382740i
\(147\) 0 0
\(148\) 6.32622 10.9573i 0.0427448 0.0740361i
\(149\) 41.3586 + 23.8784i 0.277574 + 0.160258i 0.632325 0.774703i \(-0.282101\pi\)
−0.354750 + 0.934961i \(0.615434\pi\)
\(150\) 0 0
\(151\) −27.7457 48.0569i −0.183746 0.318258i 0.759407 0.650616i \(-0.225489\pi\)
−0.943153 + 0.332358i \(0.892156\pi\)
\(152\) 147.884i 0.972920i
\(153\) 0 0
\(154\) 93.0585 0.604276
\(155\) 0 0
\(156\) 0 0
\(157\) −5.53607 + 9.58875i −0.0352616 + 0.0610749i −0.883118 0.469152i \(-0.844560\pi\)
0.847856 + 0.530226i \(0.177893\pi\)
\(158\) 368.119 + 212.534i 2.32987 + 1.34515i
\(159\) 0 0
\(160\) 0 0
\(161\) 1.31076i 0.00814134i
\(162\) 0 0
\(163\) −216.230 −1.32656 −0.663282 0.748370i \(-0.730837\pi\)
−0.663282 + 0.748370i \(0.730837\pi\)
\(164\) 287.626 166.061i 1.75382 1.01257i
\(165\) 0 0
\(166\) 110.644 191.640i 0.666528 1.15446i
\(167\) −53.6475 30.9734i −0.321242 0.185469i 0.330704 0.943735i \(-0.392714\pi\)
−0.651946 + 0.758265i \(0.726047\pi\)
\(168\) 0 0
\(169\) 11.7382 + 20.3311i 0.0694567 + 0.120302i
\(170\) 0 0
\(171\) 0 0
\(172\) −498.481 −2.89815
\(173\) −288.794 + 166.735i −1.66933 + 0.963788i −0.701330 + 0.712837i \(0.747410\pi\)
−0.968000 + 0.250951i \(0.919257\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −320.939 185.294i −1.82352 1.05281i
\(177\) 0 0
\(178\) 131.450 + 227.678i 0.738483 + 1.27909i
\(179\) 193.521i 1.08112i 0.841304 + 0.540562i \(0.181788\pi\)
−0.841304 + 0.540562i \(0.818212\pi\)
\(180\) 0 0
\(181\) 243.865 1.34732 0.673661 0.739041i \(-0.264721\pi\)
0.673661 + 0.739041i \(0.264721\pi\)
\(182\) 98.8999 57.0999i 0.543406 0.313736i
\(183\) 0 0
\(184\) −5.26724 + 9.12313i −0.0286263 + 0.0495822i
\(185\) 0 0
\(186\) 0 0
\(187\) −21.0586 36.4746i −0.112613 0.195051i
\(188\) 488.737i 2.59966i
\(189\) 0 0
\(190\) 0 0
\(191\) 122.599 70.7825i 0.641879 0.370589i −0.143459 0.989656i \(-0.545823\pi\)
0.785338 + 0.619067i \(0.212489\pi\)
\(192\) 0 0
\(193\) −110.711 + 191.757i −0.573633 + 0.993561i 0.422556 + 0.906337i \(0.361133\pi\)
−0.996189 + 0.0872244i \(0.972200\pi\)
\(194\) −408.623 235.919i −2.10631 1.21608i
\(195\) 0 0
\(196\) −203.476 352.431i −1.03814 1.79812i
\(197\) 28.4424i 0.144378i 0.997391 + 0.0721889i \(0.0229984\pi\)
−0.997391 + 0.0721889i \(0.977002\pi\)
\(198\) 0 0
\(199\) −153.875 −0.773244 −0.386622 0.922238i \(-0.626358\pi\)
−0.386622 + 0.922238i \(0.626358\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −158.694 + 274.866i −0.785615 + 1.36072i
\(203\) −67.9304 39.2197i −0.334633 0.193200i
\(204\) 0 0
\(205\) 0 0
\(206\) 150.748i 0.731786i
\(207\) 0 0
\(208\) −454.779 −2.18644
\(209\) −61.0133 + 35.2261i −0.291930 + 0.168546i
\(210\) 0 0
\(211\) −90.0891 + 156.039i −0.426962 + 0.739521i −0.996601 0.0823744i \(-0.973750\pi\)
0.569639 + 0.821895i \(0.307083\pi\)
\(212\) 719.970 + 415.675i 3.39608 + 1.96073i
\(213\) 0 0
\(214\) −3.06092 5.30167i −0.0143034 0.0247742i
\(215\) 0 0
\(216\) 0 0
\(217\) 49.3638 0.227483
\(218\) 474.651 274.040i 2.17730 1.25706i
\(219\) 0 0
\(220\) 0 0
\(221\) −44.7609 25.8427i −0.202538 0.116935i
\(222\) 0 0
\(223\) −107.701 186.544i −0.482966 0.836521i 0.516843 0.856080i \(-0.327107\pi\)
−0.999809 + 0.0195592i \(0.993774\pi\)
\(224\) 144.985i 0.647256i
\(225\) 0 0
\(226\) −484.717 −2.14477
\(227\) −43.6615 + 25.2080i −0.192341 + 0.111048i −0.593078 0.805145i \(-0.702088\pi\)
0.400737 + 0.916193i \(0.368754\pi\)
\(228\) 0 0
\(229\) −3.08352 + 5.34081i −0.0134652 + 0.0233223i −0.872679 0.488294i \(-0.837620\pi\)
0.859214 + 0.511616i \(0.170953\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 315.207 + 545.954i 1.35865 + 2.35325i
\(233\) 52.5336i 0.225466i 0.993625 + 0.112733i \(0.0359605\pi\)
−0.993625 + 0.112733i \(0.964040\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 880.584 508.405i 3.73129 2.15426i
\(237\) 0 0
\(238\) 20.2801 35.1262i 0.0852105 0.147589i
\(239\) 84.5102 + 48.7920i 0.353599 + 0.204151i 0.666269 0.745711i \(-0.267890\pi\)
−0.312670 + 0.949862i \(0.601223\pi\)
\(240\) 0 0
\(241\) 71.3647 + 123.607i 0.296119 + 0.512893i 0.975245 0.221129i \(-0.0709742\pi\)
−0.679126 + 0.734022i \(0.737641\pi\)
\(242\) 89.8560i 0.371306i
\(243\) 0 0
\(244\) −300.547 −1.23175
\(245\) 0 0
\(246\) 0 0
\(247\) −43.2288 + 74.8745i −0.175015 + 0.303136i
\(248\) −343.583 198.367i −1.38541 0.799869i
\(249\) 0 0
\(250\) 0 0
\(251\) 254.631i 1.01447i −0.861809 0.507233i \(-0.830668\pi\)
0.861809 0.507233i \(-0.169332\pi\)
\(252\) 0 0
\(253\) −5.01865 −0.0198366
\(254\) 323.001 186.485i 1.27166 0.734192i
\(255\) 0 0
\(256\) 140.906 244.057i 0.550415 0.953346i
\(257\) −123.613 71.3682i −0.480986 0.277697i 0.239841 0.970812i \(-0.422905\pi\)
−0.720827 + 0.693115i \(0.756238\pi\)
\(258\) 0 0
\(259\) 1.69257 + 2.93162i 0.00653502 + 0.0113190i
\(260\) 0 0
\(261\) 0 0
\(262\) 316.357 1.20747
\(263\) −218.644 + 126.234i −0.831347 + 0.479979i −0.854314 0.519758i \(-0.826022\pi\)
0.0229665 + 0.999736i \(0.492689\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −58.7578 33.9238i −0.220894 0.127533i
\(267\) 0 0
\(268\) 374.504 + 648.660i 1.39740 + 2.42037i
\(269\) 388.672i 1.44488i −0.691435 0.722439i \(-0.743021\pi\)
0.691435 0.722439i \(-0.256979\pi\)
\(270\) 0 0
\(271\) −163.253 −0.602410 −0.301205 0.953559i \(-0.597389\pi\)
−0.301205 + 0.953559i \(0.597389\pi\)
\(272\) −139.883 + 80.7617i −0.514277 + 0.296918i
\(273\) 0 0
\(274\) 128.550 222.655i 0.469160 0.812610i
\(275\) 0 0
\(276\) 0 0
\(277\) −241.912 419.003i −0.873328 1.51265i −0.858534 0.512757i \(-0.828624\pi\)
−0.0147939 0.999891i \(-0.504709\pi\)
\(278\) 512.227i 1.84254i
\(279\) 0 0
\(280\) 0 0
\(281\) −231.798 + 133.829i −0.824906 + 0.476260i −0.852105 0.523371i \(-0.824674\pi\)
0.0271995 + 0.999630i \(0.491341\pi\)
\(282\) 0 0
\(283\) 245.898 425.908i 0.868898 1.50498i 0.00577475 0.999983i \(-0.498162\pi\)
0.863124 0.504993i \(-0.168505\pi\)
\(284\) 603.967 + 348.701i 2.12664 + 1.22782i
\(285\) 0 0
\(286\) −218.625 378.670i −0.764424 1.32402i
\(287\) 88.8586i 0.309612i
\(288\) 0 0
\(289\) 270.643 0.936481
\(290\) 0 0
\(291\) 0 0
\(292\) 145.426 251.885i 0.498034 0.862621i
\(293\) 278.986 + 161.073i 0.952172 + 0.549737i 0.893755 0.448555i \(-0.148061\pi\)
0.0584171 + 0.998292i \(0.481395\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 27.2062i 0.0919129i
\(297\) 0 0
\(298\) 176.092 0.590914
\(299\) −5.33367 + 3.07940i −0.0178384 + 0.0102990i
\(300\) 0 0
\(301\) 66.6839 115.500i 0.221541 0.383720i
\(302\) −177.199 102.306i −0.586752 0.338762i
\(303\) 0 0
\(304\) 135.095 + 233.992i 0.444392 + 0.769710i
\(305\) 0 0
\(306\) 0 0
\(307\) 426.031 1.38772 0.693861 0.720109i \(-0.255908\pi\)
0.693861 + 0.720109i \(0.255908\pi\)
\(308\) 209.735 121.091i 0.680959 0.393152i
\(309\) 0 0
\(310\) 0 0
\(311\) 1.01150 + 0.583987i 0.00325240 + 0.00187777i 0.501625 0.865085i \(-0.332736\pi\)
−0.498373 + 0.866963i \(0.666069\pi\)
\(312\) 0 0
\(313\) −130.475 225.989i −0.416852 0.722009i 0.578769 0.815492i \(-0.303533\pi\)
−0.995621 + 0.0934824i \(0.970200\pi\)
\(314\) 40.8260i 0.130019i
\(315\) 0 0
\(316\) 1106.22 3.50071
\(317\) −113.480 + 65.5178i −0.357981 + 0.206681i −0.668195 0.743986i \(-0.732933\pi\)
0.310213 + 0.950667i \(0.399599\pi\)
\(318\) 0 0
\(319\) −150.165 + 260.094i −0.470737 + 0.815340i
\(320\) 0 0
\(321\) 0 0
\(322\) −2.41656 4.18560i −0.00750484 0.0129988i
\(323\) 30.7071i 0.0950683i
\(324\) 0 0
\(325\) 0 0
\(326\) −690.482 + 398.650i −2.11804 + 1.22285i
\(327\) 0 0
\(328\) 357.076 618.474i 1.08865 1.88559i
\(329\) −113.242 65.3803i −0.344201 0.198724i
\(330\) 0 0
\(331\) −96.7419 167.562i −0.292272 0.506229i 0.682075 0.731282i \(-0.261078\pi\)
−0.974347 + 0.225053i \(0.927745\pi\)
\(332\) 575.893i 1.73462i
\(333\) 0 0
\(334\) −228.415 −0.683877
\(335\) 0 0
\(336\) 0 0
\(337\) −231.798 + 401.485i −0.687827 + 1.19135i 0.284712 + 0.958613i \(0.408102\pi\)
−0.972539 + 0.232738i \(0.925231\pi\)
\(338\) 74.9664 + 43.2819i 0.221794 + 0.128053i
\(339\) 0 0
\(340\) 0 0
\(341\) 189.005i 0.554268i
\(342\) 0 0
\(343\) 234.682 0.684203
\(344\) −928.267 + 535.935i −2.69845 + 1.55795i
\(345\) 0 0
\(346\) −614.799 + 1064.86i −1.77688 + 3.07764i
\(347\) −8.41662 4.85934i −0.0242554 0.0140039i 0.487823 0.872942i \(-0.337791\pi\)
−0.512079 + 0.858939i \(0.671124\pi\)
\(348\) 0 0
\(349\) −24.6679 42.7260i −0.0706816 0.122424i 0.828519 0.559962i \(-0.189184\pi\)
−0.899200 + 0.437537i \(0.855851\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −555.123 −1.57705
\(353\) −82.5859 + 47.6810i −0.233954 + 0.135074i −0.612395 0.790552i \(-0.709794\pi\)
0.378441 + 0.925626i \(0.376460\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 592.524 + 342.094i 1.66439 + 0.960938i
\(357\) 0 0
\(358\) 356.783 + 617.966i 0.996600 + 1.72616i
\(359\) 539.284i 1.50219i −0.660197 0.751093i \(-0.729527\pi\)
0.660197 0.751093i \(-0.270473\pi\)
\(360\) 0 0
\(361\) −309.634 −0.857713
\(362\) 778.729 449.599i 2.15118 1.24199i
\(363\) 0 0
\(364\) 148.600 257.383i 0.408243 0.707098i
\(365\) 0 0
\(366\) 0 0
\(367\) −151.544 262.482i −0.412927 0.715211i 0.582281 0.812987i \(-0.302160\pi\)
−0.995208 + 0.0977766i \(0.968827\pi\)
\(368\) 19.2470i 0.0523016i
\(369\) 0 0
\(370\) 0 0
\(371\) −192.627 + 111.213i −0.519209 + 0.299766i
\(372\) 0 0
\(373\) −65.3325 + 113.159i −0.175154 + 0.303376i −0.940215 0.340582i \(-0.889376\pi\)
0.765060 + 0.643959i \(0.222709\pi\)
\(374\) −134.492 77.6489i −0.359604 0.207617i
\(375\) 0 0
\(376\) 525.459 + 910.121i 1.39750 + 2.42054i
\(377\) 368.560i 0.977612i
\(378\) 0 0
\(379\) −545.141 −1.43837 −0.719183 0.694821i \(-0.755484\pi\)
−0.719183 + 0.694821i \(0.755484\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 260.995 452.056i 0.683232 1.18339i
\(383\) −1.07950 0.623248i −0.00281853 0.00162728i 0.498590 0.866838i \(-0.333851\pi\)
−0.501409 + 0.865211i \(0.667185\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 816.445i 2.11514i
\(387\) 0 0
\(388\) −1227.94 −3.16480
\(389\) −345.001 + 199.187i −0.886893 + 0.512048i −0.872925 0.487855i \(-0.837780\pi\)
−0.0139679 + 0.999902i \(0.504446\pi\)
\(390\) 0 0
\(391\) −1.09371 + 1.89435i −0.00279720 + 0.00484490i
\(392\) −757.822 437.529i −1.93322 1.11615i
\(393\) 0 0
\(394\) 52.4376 + 90.8245i 0.133090 + 0.230519i
\(395\) 0 0
\(396\) 0 0
\(397\) −685.998 −1.72795 −0.863977 0.503531i \(-0.832034\pi\)
−0.863977 + 0.503531i \(0.832034\pi\)
\(398\) −491.367 + 283.691i −1.23459 + 0.712791i
\(399\) 0 0
\(400\) 0 0
\(401\) −44.9212 25.9353i −0.112023 0.0646764i 0.442942 0.896550i \(-0.353935\pi\)
−0.554965 + 0.831874i \(0.687268\pi\)
\(402\) 0 0
\(403\) −115.972 200.869i −0.287772 0.498435i
\(404\) 825.992i 2.04453i
\(405\) 0 0
\(406\) −289.227 −0.712383
\(407\) 11.2246 6.48055i 0.0275790 0.0159227i
\(408\) 0 0
\(409\) −135.648 + 234.950i −0.331658 + 0.574449i −0.982837 0.184475i \(-0.940941\pi\)
0.651179 + 0.758924i \(0.274275\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 196.158 + 339.756i 0.476112 + 0.824650i
\(413\) 272.046i 0.658707i
\(414\) 0 0
\(415\) 0 0
\(416\) −589.969 + 340.619i −1.41819 + 0.818795i
\(417\) 0 0
\(418\) −129.888 + 224.973i −0.310738 + 0.538213i
\(419\) 23.9467 + 13.8256i 0.0571520 + 0.0329967i 0.528304 0.849055i \(-0.322828\pi\)
−0.471152 + 0.882052i \(0.656162\pi\)
\(420\) 0 0
\(421\) 218.613 + 378.649i 0.519271 + 0.899403i 0.999749 + 0.0223967i \(0.00712970\pi\)
−0.480478 + 0.877007i \(0.659537\pi\)
\(422\) 664.367i 1.57433i
\(423\) 0 0
\(424\) 1787.63 4.21610
\(425\) 0 0
\(426\) 0 0
\(427\) 40.2054 69.6378i 0.0941579 0.163086i
\(428\) −13.7974 7.96594i −0.0322369 0.0186120i
\(429\) 0 0
\(430\) 0 0
\(431\) 54.3602i 0.126126i −0.998010 0.0630629i \(-0.979913\pi\)
0.998010 0.0630629i \(-0.0200869\pi\)
\(432\) 0 0
\(433\) −526.426 −1.21576 −0.607882 0.794028i \(-0.707981\pi\)
−0.607882 + 0.794028i \(0.707981\pi\)
\(434\) 157.632 91.0091i 0.363208 0.209698i
\(435\) 0 0
\(436\) 713.180 1235.26i 1.63573 2.83317i
\(437\) 3.16881 + 1.82951i 0.00725128 + 0.00418653i
\(438\) 0 0
\(439\) −208.124 360.481i −0.474087 0.821142i 0.525473 0.850810i \(-0.323888\pi\)
−0.999560 + 0.0296681i \(0.990555\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −190.579 −0.431173
\(443\) 369.935 213.582i 0.835069 0.482127i −0.0205163 0.999790i \(-0.506531\pi\)
0.855585 + 0.517662i \(0.173198\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −687.840 397.125i −1.54224 0.890414i
\(447\) 0 0
\(448\) −73.7224 127.691i −0.164559 0.285024i
\(449\) 236.730i 0.527239i −0.964627 0.263620i \(-0.915084\pi\)
0.964627 0.263620i \(-0.0849164\pi\)
\(450\) 0 0
\(451\) 340.224 0.754376
\(452\) −1092.46 + 630.730i −2.41694 + 1.39542i
\(453\) 0 0
\(454\) −92.9488 + 160.992i −0.204733 + 0.354608i
\(455\) 0 0
\(456\) 0 0
\(457\) 348.891 + 604.296i 0.763437 + 1.32231i 0.941069 + 0.338214i \(0.109823\pi\)
−0.177633 + 0.984097i \(0.556844\pi\)
\(458\) 22.7396i 0.0496497i
\(459\) 0 0
\(460\) 0 0
\(461\) 332.339 191.876i 0.720910 0.416217i −0.0941777 0.995555i \(-0.530022\pi\)
0.815087 + 0.579338i \(0.196689\pi\)
\(462\) 0 0
\(463\) −135.056 + 233.924i −0.291698 + 0.505235i −0.974211 0.225638i \(-0.927553\pi\)
0.682514 + 0.730873i \(0.260887\pi\)
\(464\) 997.483 + 575.897i 2.14975 + 1.24116i
\(465\) 0 0
\(466\) 96.8529 + 167.754i 0.207839 + 0.359987i
\(467\) 777.952i 1.66585i −0.553385 0.832926i \(-0.686664\pi\)
0.553385 0.832926i \(-0.313336\pi\)
\(468\) 0 0
\(469\) −200.396 −0.427283
\(470\) 0 0
\(471\) 0 0
\(472\) 1093.21 1893.50i 2.31612 4.01164i
\(473\) −442.228 255.321i −0.934943 0.539790i
\(474\) 0 0
\(475\) 0 0
\(476\) 105.556i 0.221757i
\(477\) 0 0
\(478\) 359.819 0.752760
\(479\) 62.8429 36.2824i 0.131196 0.0757460i −0.432966 0.901410i \(-0.642533\pi\)
0.564162 + 0.825664i \(0.309200\pi\)
\(480\) 0 0
\(481\) 7.95281 13.7747i 0.0165339 0.0286376i
\(482\) 455.774 + 263.141i 0.945590 + 0.545936i
\(483\) 0 0
\(484\) 116.924 + 202.518i 0.241578 + 0.418425i
\(485\) 0 0
\(486\) 0 0
\(487\) 729.487 1.49792 0.748959 0.662616i \(-0.230554\pi\)
0.748959 + 0.662616i \(0.230554\pi\)
\(488\) −559.676 + 323.129i −1.14688 + 0.662150i
\(489\) 0 0
\(490\) 0 0
\(491\) −3.30449 1.90785i −0.00673012 0.00388564i 0.496631 0.867962i \(-0.334570\pi\)
−0.503361 + 0.864076i \(0.667904\pi\)
\(492\) 0 0
\(493\) 65.4505 + 113.364i 0.132760 + 0.229946i
\(494\) 318.793i 0.645330i
\(495\) 0 0
\(496\) −724.853 −1.46140
\(497\) −161.590 + 93.2942i −0.325131 + 0.187715i
\(498\) 0 0
\(499\) 102.651 177.797i 0.205714 0.356307i −0.744646 0.667460i \(-0.767382\pi\)
0.950360 + 0.311152i \(0.100715\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −469.448 813.107i −0.935155 1.61974i
\(503\) 224.016i 0.445360i 0.974892 + 0.222680i \(0.0714806\pi\)
−0.974892 + 0.222680i \(0.928519\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −16.0259 + 9.25257i −0.0316718 + 0.0182857i
\(507\) 0 0
\(508\) 485.320 840.599i 0.955354 1.65472i
\(509\) −399.073 230.405i −0.784033 0.452662i 0.0538245 0.998550i \(-0.482859\pi\)
−0.837858 + 0.545889i \(0.816192\pi\)
\(510\) 0 0
\(511\) 38.9085 + 67.3915i 0.0761418 + 0.131882i
\(512\) 982.608i 1.91916i
\(513\) 0 0
\(514\) −526.309 −1.02395
\(515\) 0 0
\(516\) 0 0
\(517\) −250.330 + 433.584i −0.484197 + 0.838653i
\(518\) 10.8097 + 6.24097i 0.0208681 + 0.0120482i
\(519\) 0 0
\(520\) 0 0
\(521\) 182.438i 0.350168i −0.984554 0.175084i \(-0.943980\pi\)
0.984554 0.175084i \(-0.0560197\pi\)
\(522\) 0 0
\(523\) 431.339 0.824741 0.412370 0.911016i \(-0.364701\pi\)
0.412370 + 0.911016i \(0.364701\pi\)
\(524\) 713.006 411.654i 1.36070 0.785599i
\(525\) 0 0
\(526\) −465.461 + 806.202i −0.884907 + 1.53270i
\(527\) −71.3426 41.1896i −0.135375 0.0781587i
\(528\) 0 0
\(529\) −264.370 457.902i −0.499754 0.865599i
\(530\) 0 0
\(531\) 0 0
\(532\) −176.571 −0.331901
\(533\) 361.580 208.758i 0.678386 0.391666i
\(534\) 0 0
\(535\) 0 0
\(536\) 1394.80 + 805.285i 2.60223 + 1.50240i
\(537\) 0 0
\(538\) −716.571 1241.14i −1.33192 2.30695i
\(539\) 416.879i 0.773431i
\(540\) 0 0
\(541\) −649.924 −1.20134 −0.600669 0.799498i \(-0.705099\pi\)
−0.600669 + 0.799498i \(0.705099\pi\)
\(542\) −521.312 + 300.980i −0.961830 + 0.555313i
\(543\) 0 0
\(544\) −120.977 + 209.539i −0.222384 + 0.385181i
\(545\) 0 0
\(546\) 0 0
\(547\) −212.658 368.334i −0.388771 0.673371i 0.603513 0.797353i \(-0.293767\pi\)
−0.992285 + 0.123982i \(0.960434\pi\)
\(548\) 669.094i 1.22097i
\(549\) 0 0
\(550\) 0 0
\(551\) 189.631 109.483i 0.344157 0.198699i
\(552\) 0 0
\(553\) −147.984 + 256.316i −0.267602 + 0.463501i
\(554\) −1544.98 891.995i −2.78878 1.61010i
\(555\) 0 0
\(556\) −666.526 1154.46i −1.19879 2.07636i
\(557\) 325.885i 0.585073i 0.956254 + 0.292536i \(0.0944992\pi\)
−0.956254 + 0.292536i \(0.905501\pi\)
\(558\) 0 0
\(559\) −626.650 −1.12102
\(560\) 0 0
\(561\) 0 0
\(562\) −493.464 + 854.705i −0.878050 + 1.52083i
\(563\) −612.075 353.382i −1.08717 0.627676i −0.154346 0.988017i \(-0.549327\pi\)
−0.932821 + 0.360341i \(0.882660\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 1813.39i 3.20387i
\(567\) 0 0
\(568\) 1499.60 2.64015
\(569\) −485.178 + 280.118i −0.852686 + 0.492299i −0.861556 0.507662i \(-0.830510\pi\)
0.00887015 + 0.999961i \(0.497177\pi\)
\(570\) 0 0
\(571\) 105.346 182.465i 0.184494 0.319553i −0.758912 0.651193i \(-0.774269\pi\)
0.943406 + 0.331640i \(0.107602\pi\)
\(572\) −985.475 568.965i −1.72286 0.994693i
\(573\) 0 0
\(574\) 163.823 + 283.750i 0.285406 + 0.494338i
\(575\) 0 0
\(576\) 0 0
\(577\) 502.258 0.870464 0.435232 0.900318i \(-0.356666\pi\)
0.435232 + 0.900318i \(0.356666\pi\)
\(578\) 864.237 498.968i 1.49522 0.863266i
\(579\) 0 0
\(580\) 0 0
\(581\) 133.436 + 77.0395i 0.229667 + 0.132598i
\(582\) 0 0
\(583\) 425.815 + 737.533i 0.730386 + 1.26507i
\(584\) 625.411i 1.07091i
\(585\) 0 0
\(586\) 1187.84 2.02703
\(587\) 354.873 204.886i 0.604554 0.349040i −0.166277 0.986079i \(-0.553175\pi\)
0.770831 + 0.637040i \(0.219841\pi\)
\(588\) 0 0
\(589\) −68.9006 + 119.339i −0.116979 + 0.202613i
\(590\) 0 0
\(591\) 0 0
\(592\) −24.8535 43.0476i −0.0419823 0.0727155i
\(593\) 944.139i 1.59214i −0.605204 0.796070i \(-0.706908\pi\)
0.605204 0.796070i \(-0.293092\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 396.877 229.137i 0.665902 0.384458i
\(597\) 0 0
\(598\) −11.3546 + 19.6667i −0.0189876 + 0.0328875i
\(599\) 461.021 + 266.171i 0.769652 + 0.444359i 0.832750 0.553649i \(-0.186765\pi\)
−0.0630986 + 0.998007i \(0.520098\pi\)
\(600\) 0 0
\(601\) −257.783 446.493i −0.428923 0.742917i 0.567855 0.823129i \(-0.307774\pi\)
−0.996778 + 0.0802121i \(0.974440\pi\)
\(602\) 491.764i 0.816883i
\(603\) 0 0
\(604\) −532.496 −0.881615
\(605\) 0 0
\(606\) 0 0
\(607\) 85.5764 148.223i 0.140983 0.244189i −0.786884 0.617101i \(-0.788307\pi\)
0.927867 + 0.372912i \(0.121640\pi\)
\(608\) 350.509 + 202.366i 0.576494 + 0.332839i
\(609\) 0 0
\(610\) 0 0
\(611\) 614.400i 1.00557i
\(612\) 0 0
\(613\) 875.826 1.42875 0.714377 0.699761i \(-0.246710\pi\)
0.714377 + 0.699761i \(0.246710\pi\)
\(614\) 1360.43 785.447i 2.21569 1.27923i
\(615\) 0 0
\(616\) 260.378 450.988i 0.422692 0.732124i
\(617\) 980.122 + 565.874i 1.58853 + 0.917137i 0.993550 + 0.113396i \(0.0361728\pi\)
0.594978 + 0.803742i \(0.297161\pi\)
\(618\) 0 0
\(619\) 260.187 + 450.658i 0.420335 + 0.728042i 0.995972 0.0896637i \(-0.0285792\pi\)
−0.575637 + 0.817705i \(0.695246\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 4.30664 0.00692386
\(623\) −158.529 + 91.5266i −0.254460 + 0.146913i
\(624\) 0 0
\(625\) 0 0
\(626\) −833.284 481.097i −1.33112 0.768525i
\(627\) 0 0
\(628\) 53.1242 + 92.0138i 0.0845926 + 0.146519i
\(629\) 5.64918i 0.00898121i
\(630\) 0 0
\(631\) −607.475 −0.962718 −0.481359 0.876523i \(-0.659857\pi\)
−0.481359 + 0.876523i \(0.659857\pi\)
\(632\) 2060.00 1189.34i 3.25949 1.88187i
\(633\) 0 0
\(634\) −241.582 + 418.433i −0.381044 + 0.659988i
\(635\) 0 0
\(636\) 0 0
\(637\) −255.794 443.047i −0.401560 0.695522i
\(638\) 1107.40i 1.73574i
\(639\) 0 0
\(640\) 0 0
\(641\) −161.252 + 93.0990i −0.251564 + 0.145240i −0.620480 0.784222i \(-0.713062\pi\)
0.368916 + 0.929463i \(0.379729\pi\)
\(642\) 0 0
\(643\) −398.761 + 690.674i −0.620157 + 1.07414i 0.369299 + 0.929311i \(0.379598\pi\)
−0.989456 + 0.144833i \(0.953736\pi\)
\(644\) −10.8929 6.28901i −0.0169144 0.00976554i
\(645\) 0 0
\(646\) 56.6127 + 98.0561i 0.0876357 + 0.151790i
\(647\) 849.489i 1.31297i −0.754341 0.656483i \(-0.772043\pi\)
0.754341 0.656483i \(-0.227957\pi\)
\(648\) 0 0
\(649\) 1041.61 1.60495
\(650\) 0 0
\(651\) 0 0
\(652\) −1037.47 + 1796.95i −1.59122 + 2.75607i
\(653\) 901.696 + 520.594i 1.38085 + 0.797235i 0.992260 0.124175i \(-0.0396285\pi\)
0.388591 + 0.921410i \(0.372962\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1304.79i 1.98901i
\(657\) 0 0
\(658\) −482.151 −0.732752
\(659\) 556.318 321.190i 0.844185 0.487390i −0.0144997 0.999895i \(-0.504616\pi\)
0.858685 + 0.512505i \(0.171282\pi\)
\(660\) 0 0
\(661\) 394.759 683.742i 0.597214 1.03441i −0.396016 0.918244i \(-0.629608\pi\)
0.993230 0.116162i \(-0.0370591\pi\)
\(662\) −617.847 356.714i −0.933304 0.538843i
\(663\) 0 0
\(664\) −619.163 1072.42i −0.932474 1.61509i
\(665\) 0 0
\(666\) 0 0
\(667\) 15.5980 0.0233854
\(668\) −514.802 + 297.221i −0.770661 + 0.444941i
\(669\) 0 0
\(670\) 0 0
\(671\) −266.631 153.939i −0.397363 0.229418i
\(672\) 0 0
\(673\) −507.967 879.824i −0.754780 1.30732i −0.945484 0.325669i \(-0.894410\pi\)
0.190704 0.981648i \(-0.438923\pi\)
\(674\) 1709.40i 2.53621i
\(675\) 0 0
\(676\) 225.279 0.333253
\(677\) −643.996 + 371.811i −0.951249 + 0.549204i −0.893469 0.449126i \(-0.851736\pi\)
−0.0577802 + 0.998329i \(0.518402\pi\)
\(678\) 0 0
\(679\) 164.267 284.518i 0.241924 0.419025i
\(680\) 0 0
\(681\) 0 0
\(682\) −348.458 603.546i −0.510935 0.884965i
\(683\) 152.482i 0.223254i 0.993750 + 0.111627i \(0.0356061\pi\)
−0.993750 + 0.111627i \(0.964394\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 749.403 432.668i 1.09242 0.630711i
\(687\) 0 0
\(688\) −979.179 + 1695.99i −1.42322 + 2.46510i
\(689\) 905.087 + 522.552i 1.31362 + 0.758422i
\(690\) 0 0
\(691\) −388.586 673.050i −0.562353 0.974023i −0.997291 0.0735628i \(-0.976563\pi\)
0.434938 0.900460i \(-0.356770\pi\)
\(692\) 3199.99i 4.62426i
\(693\) 0 0
\(694\) −35.8355 −0.0516361
\(695\) 0 0
\(696\) 0 0
\(697\) 74.1444 128.422i 0.106376 0.184249i
\(698\) −157.543 90.9573i −0.225706 0.130311i
\(699\) 0 0
\(700\) 0 0
\(701\) 461.657i 0.658569i 0.944231 + 0.329284i \(0.106808\pi\)
−0.944231 + 0.329284i \(0.893192\pi\)
\(702\) 0 0
\(703\) −9.44975 −0.0134420
\(704\) −488.906 + 282.270i −0.694468 + 0.400952i
\(705\) 0 0
\(706\) −175.813 + 304.517i −0.249027 + 0.431327i
\(707\) −191.385 110.496i −0.270701 0.156289i
\(708\) 0 0
\(709\) −179.227 310.431i −0.252789 0.437843i 0.711504 0.702682i \(-0.248014\pi\)
−0.964293 + 0.264839i \(0.914681\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1471.19 2.06628
\(713\) −8.50112 + 4.90812i −0.0119230 + 0.00688376i
\(714\) 0 0
\(715\) 0 0
\(716\) 1608.24 + 928.515i 2.24614 + 1.29681i
\(717\) 0 0
\(718\) −994.245 1722.08i −1.38474 2.39845i
\(719\) 283.414i 0.394178i 0.980386 + 0.197089i \(0.0631488\pi\)
−0.980386 + 0.197089i \(0.936851\pi\)
\(720\) 0 0
\(721\) −104.964 −0.145580
\(722\) −988.748 + 570.854i −1.36946 + 0.790656i
\(723\) 0 0
\(724\) 1170.07 2026.61i 1.61611 2.79919i
\(725\) 0 0
\(726\) 0 0
\(727\) 77.6796 + 134.545i 0.106850 + 0.185069i 0.914492 0.404603i \(-0.132590\pi\)
−0.807643 + 0.589672i \(0.799257\pi\)
\(728\) 639.063i 0.877833i
\(729\) 0 0
\(730\) 0 0
\(731\) −192.748 + 111.283i −0.263677 + 0.152234i
\(732\) 0 0
\(733\) 52.4658 90.8735i 0.0715768 0.123975i −0.828016 0.560705i \(-0.810530\pi\)
0.899593 + 0.436730i \(0.143864\pi\)
\(734\) −967.845 558.786i −1.31859 0.761288i
\(735\) 0 0
\(736\) 14.4155 + 24.9684i 0.0195863 + 0.0339245i
\(737\) 767.279i 1.04108i
\(738\) 0 0
\(739\) 627.375 0.848951 0.424476 0.905439i \(-0.360458\pi\)
0.424476 + 0.905439i \(0.360458\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −410.073 + 710.268i −0.552659 + 0.957234i
\(743\) 334.797 + 193.295i 0.450602 + 0.260155i 0.708084 0.706128i \(-0.249560\pi\)
−0.257483 + 0.966283i \(0.582893\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 481.798i 0.645842i
\(747\) 0 0
\(748\) −404.157 −0.540317
\(749\) 3.69147 2.13127i 0.00492853 0.00284549i
\(750\) 0 0
\(751\) −452.601 + 783.928i −0.602665 + 1.04385i 0.389751 + 0.920920i \(0.372561\pi\)
−0.992416 + 0.122926i \(0.960772\pi\)
\(752\) 1662.83 + 960.038i 2.21122 + 1.27665i
\(753\) 0 0
\(754\) 679.491 + 1176.91i 0.901182 + 1.56089i
\(755\) 0 0
\(756\) 0 0
\(757\) −332.222 −0.438867 −0.219433 0.975627i \(-0.570421\pi\)
−0.219433 + 0.975627i \(0.570421\pi\)
\(758\) −1740.78 + 1005.04i −2.29655 + 1.32591i
\(759\) 0 0
\(760\) 0 0
\(761\) 396.726 + 229.050i 0.521322 + 0.300986i 0.737475 0.675374i \(-0.236018\pi\)
−0.216153 + 0.976359i \(0.569351\pi\)
\(762\) 0 0
\(763\) 190.810 + 330.492i 0.250079 + 0.433149i
\(764\) 1358.46i 1.77809i
\(765\) 0 0
\(766\) −4.59618 −0.00600023
\(767\) 1107.00 639.126i 1.44328 0.833280i
\(768\) 0 0
\(769\) −458.196 + 793.618i −0.595833 + 1.03201i 0.397595 + 0.917561i \(0.369845\pi\)
−0.993429 + 0.114453i \(0.963489\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1062.39 + 1840.11i 1.37615 + 2.38356i
\(773\) 1186.06i 1.53436i 0.641434 + 0.767178i \(0.278340\pi\)
−0.641434 + 0.767178i \(0.721660\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −2286.66 + 1320.20i −2.94673 + 1.70129i
\(777\) 0 0
\(778\) −734.456 + 1272.12i −0.944031 + 1.63511i
\(779\) −214.820 124.026i −0.275763 0.159212i
\(780\) 0 0
\(781\) 357.207 + 618.701i 0.457371 + 0.792190i
\(782\) 8.06559i 0.0103141i
\(783\) 0 0
\(784\) −1598.77 −2.03925
\(785\) 0 0
\(786\) 0 0
\(787\) 441.240 764.249i 0.560660 0.971092i −0.436779 0.899569i \(-0.643881\pi\)
0.997439 0.0715229i \(-0.0227859\pi\)
\(788\) 236.368 + 136.467i 0.299959 + 0.173181i
\(789\) 0 0
\(790\) 0 0
\(791\) 337.501i 0.426677i
\(792\) 0 0
\(793\) −377.823 −0.476448
\(794\) −2190.58 + 1264.73i −2.75892 + 1.59286i
\(795\) 0 0
\(796\) −738.295 + 1278.76i −0.927507 + 1.60649i
\(797\) −124.537 71.9016i −0.156258 0.0902153i 0.419832 0.907602i \(-0.362089\pi\)
−0.576090 + 0.817386i \(0.695422\pi\)
\(798\) 0 0
\(799\) 109.108 + 188.980i 0.136556 + 0.236521i
\(800\) 0 0
\(801\) 0 0
\(802\) −191.261 −0.238480
\(803\) 258.030 148.974i 0.321332 0.185521i
\(804\) 0 0
\(805\) 0 0
\(806\) −740.661 427.621i −0.918934 0.530547i
\(807\) 0 0
\(808\) 888.054 + 1538.15i 1.09908 + 1.90366i
\(809\) 52.3078i 0.0646574i 0.999477 + 0.0323287i \(0.0102923\pi\)
−0.999477 + 0.0323287i \(0.989708\pi\)
\(810\) 0 0
\(811\) 1518.65 1.87256 0.936281 0.351253i \(-0.114244\pi\)
0.936281 + 0.351253i \(0.114244\pi\)
\(812\) −651.861 + 376.352i −0.802785 + 0.463488i
\(813\) 0 0
\(814\) 23.8956 41.3883i 0.0293557 0.0508456i
\(815\) 0 0
\(816\) 0 0
\(817\) 186.151 + 322.422i 0.227847 + 0.394642i
\(818\) 1000.35i 1.22292i
\(819\) 0 0
\(820\) 0 0
\(821\) −950.059 + 548.517i −1.15720 + 0.668108i −0.950631 0.310324i \(-0.899562\pi\)
−0.206567 + 0.978432i \(0.566229\pi\)
\(822\) 0 0
\(823\) 478.550 828.873i 0.581470 1.00714i −0.413835 0.910352i \(-0.635811\pi\)
0.995305 0.0967841i \(-0.0308556\pi\)
\(824\) 730.568 + 421.793i 0.886611 + 0.511885i
\(825\) 0 0
\(826\) 501.554 + 868.717i 0.607208 + 1.05172i
\(827\) 171.626i 0.207529i 0.994602 + 0.103764i \(0.0330888\pi\)
−0.994602 + 0.103764i \(0.966911\pi\)
\(828\) 0 0
\(829\) −203.896 −0.245954 −0.122977 0.992410i \(-0.539244\pi\)
−0.122977 + 0.992410i \(0.539244\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −346.397 + 599.976i −0.416342 + 0.721126i
\(833\) −157.357 90.8499i −0.188904 0.109063i
\(834\) 0 0
\(835\) 0 0
\(836\) 676.059i 0.808683i
\(837\) 0 0
\(838\) 101.958 0.121668
\(839\) −1348.10 + 778.323i −1.60679 + 0.927680i −0.616705 + 0.787194i \(0.711533\pi\)
−0.990083 + 0.140486i \(0.955134\pi\)
\(840\) 0 0
\(841\) 46.2156 80.0477i 0.0549531 0.0951816i
\(842\) 1396.18 + 806.087i 1.65817 + 0.957347i
\(843\) 0 0
\(844\) 864.495 + 1497.35i 1.02428 + 1.77411i
\(845\) 0 0
\(846\) 0 0
\(847\) −62.5654 −0.0738670
\(848\) 2828.51 1633.04i 3.33551 1.92576i
\(849\) 0 0
\(850\) 0 0
\(851\) −0.582966 0.336576i −0.000685037 0.000395506i
\(852\) 0 0
\(853\) 281.964 + 488.377i 0.330556 + 0.572540i 0.982621 0.185623i \(-0.0594304\pi\)
−0.652065 + 0.758163i \(0.726097\pi\)
\(854\) 296.497i 0.347186i
\(855\) 0 0
\(856\) −34.2579 −0.0400209
\(857\) −826.107 + 476.953i −0.963952 + 0.556538i −0.897387 0.441244i \(-0.854537\pi\)
−0.0665649 + 0.997782i \(0.521204\pi\)
\(858\) 0 0
\(859\) 422.728 732.186i 0.492116 0.852371i −0.507842 0.861450i \(-0.669557\pi\)
0.999959 + 0.00907936i \(0.00289009\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −100.221 173.587i −0.116265 0.201377i
\(863\) 1109.42i 1.28554i −0.766061 0.642768i \(-0.777786\pi\)
0.766061 0.642768i \(-0.222214\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −1681.02 + 970.538i −1.94113 + 1.12071i
\(867\) 0 0
\(868\) 236.848 410.233i 0.272866 0.472618i
\(869\) 981.388 + 566.605i 1.12933 + 0.652019i
\(870\) 0 0
\(871\) 470.796 + 815.442i 0.540523 + 0.936214i
\(872\) 3067.06i 3.51727i
\(873\) 0 0
\(874\) 13.4918 0.0154369
\(875\) 0 0
\(876\) 0 0
\(877\) −507.331 + 878.724i −0.578485 + 1.00197i 0.417168 + 0.908829i \(0.363023\pi\)
−0.995653 + 0.0931364i \(0.970311\pi\)
\(878\) −1329.19 767.411i −1.51389 0.874044i
\(879\) 0 0
\(880\) 0 0
\(881\) 1226.86i 1.39257i −0.717764 0.696287i \(-0.754834\pi\)
0.717764 0.696287i \(-0.245166\pi\)
\(882\) 0 0
\(883\) 659.407 0.746780 0.373390 0.927674i \(-0.378195\pi\)
0.373390 + 0.927674i \(0.378195\pi\)
\(884\) −429.526 + 247.987i −0.485889 + 0.280528i
\(885\) 0 0
\(886\) 787.537 1364.05i 0.888868 1.53956i
\(887\) −668.543 385.984i −0.753713 0.435156i 0.0733209 0.997308i \(-0.476640\pi\)
−0.827034 + 0.562152i \(0.809974\pi\)
\(888\) 0 0
\(889\) 129.846 + 224.901i 0.146059 + 0.252982i
\(890\) 0 0
\(891\) 0 0
\(892\) −2067.01 −2.31727
\(893\) 316.120 182.512i 0.353998 0.204381i
\(894\) 0 0
\(895\) 0 0
\(896\) 31.4123 + 18.1359i 0.0350584 + 0.0202410i
\(897\) 0 0
\(898\) −436.445 755.945i −0.486019 0.841810i
\(899\) 587.432i 0.653428i
\(900\) 0 0
\(901\) 371.189 0.411974
\(902\) 1086.43 627.249i 1.20447 0.695398i
\(903\) 0 0
\(904\) −1356.24 + 2349.08i −1.50027 + 2.59854i
\(905\) 0 0
\(906\) 0 0
\(907\) 60.7354 + 105.197i 0.0669629 + 0.115983i 0.897563 0.440886i \(-0.145336\pi\)
−0.830600 + 0.556869i \(0.812002\pi\)
\(908\) 483.792i 0.532810i
\(909\) 0 0
\(910\) 0 0
\(911\) 1000.46 577.616i 1.09820 0.634046i 0.162453 0.986716i \(-0.448060\pi\)
0.935748 + 0.352670i \(0.114726\pi\)
\(912\) 0 0
\(913\) 294.971 510.904i 0.323078 0.559588i
\(914\) 2228.21 + 1286.46i 2.43786 + 1.40750i
\(915\) 0 0
\(916\) 29.5895 + 51.2505i 0.0323029 + 0.0559503i
\(917\) 220.275i 0.240212i
\(918\) 0 0
\(919\) 994.576 1.08224 0.541119 0.840946i \(-0.318001\pi\)
0.541119 + 0.840946i \(0.318001\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 707.501 1225.43i 0.767354 1.32910i
\(923\) 759.258 + 438.358i 0.822598 + 0.474927i
\(924\) 0 0
\(925\) 0 0
\(926\) 995.977i 1.07557i
\(927\) 0 0
\(928\) 1725.33 1.85919
\(929\) 140.236 80.9655i 0.150954 0.0871534i −0.422620 0.906307i \(-0.638890\pi\)
0.573575 + 0.819153i \(0.305556\pi\)
\(930\) 0 0
\(931\) −151.970 + 263.221i −0.163234 + 0.282729i
\(932\) 436.574 + 252.056i 0.468427 + 0.270447i
\(933\) 0 0
\(934\) −1434.26 2484.22i −1.53561 2.65976i
\(935\) 0 0
\(936\) 0 0
\(937\) −660.489 −0.704898 −0.352449 0.935831i \(-0.614651\pi\)
−0.352449 + 0.935831i \(0.614651\pi\)
\(938\) −639.919 + 369.457i −0.682216 + 0.393878i
\(939\) 0 0
\(940\) 0 0
\(941\) 1378.06 + 795.624i 1.46446 + 0.845509i 0.999213 0.0396696i \(-0.0126305\pi\)
0.465252 + 0.885179i \(0.345964\pi\)
\(942\) 0 0
\(943\) −8.83498 15.3026i −0.00936902 0.0162276i
\(944\) 3994.69i 4.23167i
\(945\) 0 0
\(946\) −1882.88 −1.99035
\(947\) 1353.91 781.678i 1.42968 0.825426i 0.432584 0.901594i \(-0.357602\pi\)
0.997095 + 0.0761680i \(0.0242685\pi\)
\(948\) 0 0
\(949\) 182.818 316.650i 0.192643 0.333667i
\(950\) 0 0
\(951\) 0 0
\(952\) −113.488 196.566i −0.119210 0.206477i
\(953\) 996.612i 1.04576i −0.852405 0.522881i \(-0.824857\pi\)
0.852405 0.522881i \(-0.175143\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 810.961 468.209i 0.848285 0.489758i
\(957\) 0 0
\(958\) 133.783 231.719i 0.139648 0.241878i
\(959\) 155.031 + 89.5074i 0.161659 + 0.0933341i
\(960\) 0 0
\(961\) 295.657 + 512.093i 0.307656 + 0.532875i
\(962\) 58.6484i 0.0609651i
\(963\) 0 0
\(964\) 1369.63 1.42078
\(965\) 0 0
\(966\) 0 0
\(967\) 325.000 562.916i 0.336091 0.582126i −0.647603 0.761978i \(-0.724229\pi\)
0.983694 + 0.179852i \(0.0575618\pi\)
\(968\) 435.468 + 251.418i 0.449864 + 0.259729i
\(969\) 0 0
\(970\) 0 0
\(971\) 1717.75i 1.76905i 0.466495 + 0.884524i \(0.345517\pi\)
−0.466495 + 0.884524i \(0.654483\pi\)
\(972\) 0 0
\(973\) 356.656 0.366553
\(974\) 2329.45 1344.91i 2.39163 1.38081i
\(975\) 0 0
\(976\) −590.372 + 1022.55i −0.604889 + 1.04770i
\(977\) −244.324 141.061i −0.250076 0.144381i 0.369723 0.929142i \(-0.379453\pi\)
−0.619799 + 0.784761i \(0.712786\pi\)
\(978\) 0 0
\(979\) 350.439 + 606.979i 0.357956 + 0.619998i
\(980\) 0 0
\(981\) 0 0
\(982\) −14.0695 −0.0143274
\(983\) 333.017 192.267i 0.338776 0.195592i −0.320955 0.947095i \(-0.604004\pi\)
0.659731 + 0.751502i \(0.270670\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 418.003 + 241.334i 0.423938 + 0.244761i
\(987\) 0 0
\(988\) 414.824 + 718.496i 0.419862 + 0.727223i
\(989\) 26.5208i 0.0268158i
\(990\) 0 0
\(991\) 399.250 0.402876 0.201438 0.979501i \(-0.435439\pi\)
0.201438 + 0.979501i \(0.435439\pi\)
\(992\) −940.326 + 542.898i −0.947910 + 0.547276i
\(993\) 0 0
\(994\) −344.002 + 595.828i −0.346078 + 0.599425i
\(995\) 0 0
\(996\) 0 0
\(997\) 726.087 + 1257.62i 0.728272 + 1.26140i 0.957613 + 0.288058i \(0.0930095\pi\)
−0.229341 + 0.973346i \(0.573657\pi\)
\(998\) 757.008i 0.758525i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.3.j.e.476.10 20
3.2 odd 2 225.3.j.e.176.1 20
5.2 odd 4 135.3.h.a.44.10 20
5.3 odd 4 135.3.h.a.44.1 20
5.4 even 2 inner 675.3.j.e.476.1 20
9.2 odd 6 inner 675.3.j.e.251.10 20
9.7 even 3 225.3.j.e.101.1 20
15.2 even 4 45.3.h.a.14.1 20
15.8 even 4 45.3.h.a.14.10 yes 20
15.14 odd 2 225.3.j.e.176.10 20
45.2 even 12 135.3.h.a.89.1 20
45.7 odd 12 45.3.h.a.29.10 yes 20
45.13 odd 12 405.3.d.a.404.19 20
45.22 odd 12 405.3.d.a.404.1 20
45.23 even 12 405.3.d.a.404.2 20
45.29 odd 6 inner 675.3.j.e.251.1 20
45.32 even 12 405.3.d.a.404.20 20
45.34 even 6 225.3.j.e.101.10 20
45.38 even 12 135.3.h.a.89.10 20
45.43 odd 12 45.3.h.a.29.1 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.h.a.14.1 20 15.2 even 4
45.3.h.a.14.10 yes 20 15.8 even 4
45.3.h.a.29.1 yes 20 45.43 odd 12
45.3.h.a.29.10 yes 20 45.7 odd 12
135.3.h.a.44.1 20 5.3 odd 4
135.3.h.a.44.10 20 5.2 odd 4
135.3.h.a.89.1 20 45.2 even 12
135.3.h.a.89.10 20 45.38 even 12
225.3.j.e.101.1 20 9.7 even 3
225.3.j.e.101.10 20 45.34 even 6
225.3.j.e.176.1 20 3.2 odd 2
225.3.j.e.176.10 20 15.14 odd 2
405.3.d.a.404.1 20 45.22 odd 12
405.3.d.a.404.2 20 45.23 even 12
405.3.d.a.404.19 20 45.13 odd 12
405.3.d.a.404.20 20 45.32 even 12
675.3.j.e.251.1 20 45.29 odd 6 inner
675.3.j.e.251.10 20 9.2 odd 6 inner
675.3.j.e.476.1 20 5.4 even 2 inner
675.3.j.e.476.10 20 1.1 even 1 trivial