Properties

Label 405.3.d.a.404.1
Level $405$
Weight $3$
Character 405.404
Analytic conductor $11.035$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(404,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.404"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 3 x^{18} - 19 x^{16} + 66 x^{14} + 109 x^{12} - 813 x^{10} + 981 x^{8} + 5346 x^{6} + \cdots + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{20} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 404.1
Root \(-1.44078 + 0.961330i\) of defining polynomial
Character \(\chi\) \(=\) 405.404
Dual form 405.3.d.a.404.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.68728 q^{2} +9.59601 q^{4} +(-1.59117 - 4.74006i) q^{5} -2.56739i q^{7} -20.6340 q^{8} +(5.86709 + 17.4779i) q^{10} +9.83010i q^{11} +12.0633i q^{13} +9.46669i q^{14} +37.6993 q^{16} +4.28451 q^{17} +7.16698 q^{19} +(-15.2689 - 45.4857i) q^{20} -36.2463i q^{22} +0.510539 q^{23} +(-19.9364 + 15.0845i) q^{25} -44.4808i q^{26} -24.6367i q^{28} +30.5521i q^{29} -19.2272 q^{31} -56.4718 q^{32} -15.7982 q^{34} +(-12.1696 + 4.08516i) q^{35} +1.31851i q^{37} -26.4267 q^{38} +(32.8323 + 97.8066i) q^{40} -34.6104i q^{41} -51.9467i q^{43} +94.3297i q^{44} -1.88250 q^{46} +50.9313 q^{47} +42.4085 q^{49} +(73.5108 - 55.6207i) q^{50} +115.760i q^{52} +86.6349 q^{53} +(46.5953 - 15.6414i) q^{55} +52.9757i q^{56} -112.654i q^{58} +105.962i q^{59} +31.3200 q^{61} +70.8961 q^{62} +57.4297 q^{64} +(57.1809 - 19.1948i) q^{65} +78.0541i q^{67} +41.1142 q^{68} +(44.8727 - 15.0631i) q^{70} +72.6762i q^{71} -30.3097i q^{73} -4.86172i q^{74} +68.7744 q^{76} +25.2377 q^{77} +115.280 q^{79} +(-59.9861 - 178.697i) q^{80} +127.618i q^{82} +60.0138 q^{83} +(-6.81739 - 20.3089i) q^{85} +191.542i q^{86} -202.835i q^{88} -71.2992i q^{89} +30.9713 q^{91} +4.89914 q^{92} -187.798 q^{94} +(-11.4039 - 33.9719i) q^{95} +127.964i q^{97} -156.372 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 36 q^{4} + 4 q^{10} + 52 q^{16} - 8 q^{19} - 4 q^{25} - 56 q^{31} + 8 q^{34} + 68 q^{40} + 116 q^{46} + 80 q^{49} + 36 q^{55} + 100 q^{61} + 140 q^{64} + 108 q^{70} + 192 q^{76} + 256 q^{79} + 148 q^{85}+ \cdots - 436 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.68728 −1.84364 −0.921819 0.387620i \(-0.873297\pi\)
−0.921819 + 0.387620i \(0.873297\pi\)
\(3\) 0 0
\(4\) 9.59601 2.39900
\(5\) −1.59117 4.74006i −0.318234 0.948012i
\(6\) 0 0
\(7\) 2.56739i 0.366771i −0.983041 0.183385i \(-0.941294\pi\)
0.983041 0.183385i \(-0.0587056\pi\)
\(8\) −20.6340 −2.57925
\(9\) 0 0
\(10\) 5.86709 + 17.4779i 0.586709 + 1.74779i
\(11\) 9.83010i 0.893645i 0.894623 + 0.446823i \(0.147444\pi\)
−0.894623 + 0.446823i \(0.852556\pi\)
\(12\) 0 0
\(13\) 12.0633i 0.927948i 0.885849 + 0.463974i \(0.153577\pi\)
−0.885849 + 0.463974i \(0.846423\pi\)
\(14\) 9.46669i 0.676192i
\(15\) 0 0
\(16\) 37.6993 2.35621
\(17\) 4.28451 0.252030 0.126015 0.992028i \(-0.459781\pi\)
0.126015 + 0.992028i \(0.459781\pi\)
\(18\) 0 0
\(19\) 7.16698 0.377210 0.188605 0.982053i \(-0.439603\pi\)
0.188605 + 0.982053i \(0.439603\pi\)
\(20\) −15.2689 45.4857i −0.763444 2.27428i
\(21\) 0 0
\(22\) 36.2463i 1.64756i
\(23\) 0.510539 0.0221973 0.0110987 0.999938i \(-0.496467\pi\)
0.0110987 + 0.999938i \(0.496467\pi\)
\(24\) 0 0
\(25\) −19.9364 + 15.0845i −0.797454 + 0.603380i
\(26\) 44.4808i 1.71080i
\(27\) 0 0
\(28\) 24.6367i 0.879884i
\(29\) 30.5521i 1.05352i 0.850014 + 0.526760i \(0.176594\pi\)
−0.850014 + 0.526760i \(0.823406\pi\)
\(30\) 0 0
\(31\) −19.2272 −0.620233 −0.310116 0.950699i \(-0.600368\pi\)
−0.310116 + 0.950699i \(0.600368\pi\)
\(32\) −56.4718 −1.76474
\(33\) 0 0
\(34\) −15.7982 −0.464653
\(35\) −12.1696 + 4.08516i −0.347703 + 0.116719i
\(36\) 0 0
\(37\) 1.31851i 0.0356355i 0.999841 + 0.0178177i \(0.00567186\pi\)
−0.999841 + 0.0178177i \(0.994328\pi\)
\(38\) −26.4267 −0.695438
\(39\) 0 0
\(40\) 32.8323 + 97.8066i 0.820807 + 2.44516i
\(41\) 34.6104i 0.844156i −0.906559 0.422078i \(-0.861301\pi\)
0.906559 0.422078i \(-0.138699\pi\)
\(42\) 0 0
\(43\) 51.9467i 1.20806i −0.796960 0.604032i \(-0.793560\pi\)
0.796960 0.604032i \(-0.206440\pi\)
\(44\) 94.3297i 2.14386i
\(45\) 0 0
\(46\) −1.88250 −0.0409239
\(47\) 50.9313 1.08364 0.541822 0.840493i \(-0.317735\pi\)
0.541822 + 0.840493i \(0.317735\pi\)
\(48\) 0 0
\(49\) 42.4085 0.865479
\(50\) 73.5108 55.6207i 1.47022 1.11241i
\(51\) 0 0
\(52\) 115.760i 2.22615i
\(53\) 86.6349 1.63462 0.817311 0.576197i \(-0.195464\pi\)
0.817311 + 0.576197i \(0.195464\pi\)
\(54\) 0 0
\(55\) 46.5953 15.6414i 0.847186 0.284388i
\(56\) 52.9757i 0.945995i
\(57\) 0 0
\(58\) 112.654i 1.94231i
\(59\) 105.962i 1.79596i 0.440033 + 0.897982i \(0.354967\pi\)
−0.440033 + 0.897982i \(0.645033\pi\)
\(60\) 0 0
\(61\) 31.3200 0.513443 0.256721 0.966485i \(-0.417358\pi\)
0.256721 + 0.966485i \(0.417358\pi\)
\(62\) 70.8961 1.14348
\(63\) 0 0
\(64\) 57.4297 0.897339
\(65\) 57.1809 19.1948i 0.879706 0.295305i
\(66\) 0 0
\(67\) 78.0541i 1.16499i 0.812835 + 0.582493i \(0.197923\pi\)
−0.812835 + 0.582493i \(0.802077\pi\)
\(68\) 41.1142 0.604621
\(69\) 0 0
\(70\) 44.8727 15.0631i 0.641039 0.215187i
\(71\) 72.6762i 1.02361i 0.859102 + 0.511804i \(0.171023\pi\)
−0.859102 + 0.511804i \(0.828977\pi\)
\(72\) 0 0
\(73\) 30.3097i 0.415201i −0.978214 0.207601i \(-0.933435\pi\)
0.978214 0.207601i \(-0.0665654\pi\)
\(74\) 4.86172i 0.0656989i
\(75\) 0 0
\(76\) 68.7744 0.904927
\(77\) 25.2377 0.327763
\(78\) 0 0
\(79\) 115.280 1.45923 0.729617 0.683856i \(-0.239698\pi\)
0.729617 + 0.683856i \(0.239698\pi\)
\(80\) −59.9861 178.697i −0.749826 2.23371i
\(81\) 0 0
\(82\) 127.618i 1.55632i
\(83\) 60.0138 0.723057 0.361529 0.932361i \(-0.382255\pi\)
0.361529 + 0.932361i \(0.382255\pi\)
\(84\) 0 0
\(85\) −6.81739 20.3089i −0.0802046 0.238928i
\(86\) 191.542i 2.22723i
\(87\) 0 0
\(88\) 202.835i 2.30494i
\(89\) 71.2992i 0.801115i −0.916272 0.400558i \(-0.868816\pi\)
0.916272 0.400558i \(-0.131184\pi\)
\(90\) 0 0
\(91\) 30.9713 0.340344
\(92\) 4.89914 0.0532515
\(93\) 0 0
\(94\) −187.798 −1.99785
\(95\) −11.4039 33.9719i −0.120041 0.357599i
\(96\) 0 0
\(97\) 127.964i 1.31921i 0.751611 + 0.659607i \(0.229277\pi\)
−0.751611 + 0.659607i \(0.770723\pi\)
\(98\) −156.372 −1.59563
\(99\) 0 0
\(100\) −191.309 + 144.751i −1.91309 + 1.44751i
\(101\) 86.0766i 0.852244i −0.904666 0.426122i \(-0.859879\pi\)
0.904666 0.426122i \(-0.140121\pi\)
\(102\) 0 0
\(103\) 40.8833i 0.396925i −0.980108 0.198463i \(-0.936405\pi\)
0.980108 0.198463i \(-0.0635948\pi\)
\(104\) 248.915i 2.39341i
\(105\) 0 0
\(106\) −319.447 −3.01365
\(107\) 1.66026 0.0155165 0.00775823 0.999970i \(-0.497530\pi\)
0.00775823 + 0.999970i \(0.497530\pi\)
\(108\) 0 0
\(109\) −148.641 −1.36368 −0.681839 0.731502i \(-0.738820\pi\)
−0.681839 + 0.731502i \(0.738820\pi\)
\(110\) −171.810 + 57.6740i −1.56191 + 0.524309i
\(111\) 0 0
\(112\) 96.7891i 0.864188i
\(113\) 131.457 1.16333 0.581667 0.813427i \(-0.302401\pi\)
0.581667 + 0.813427i \(0.302401\pi\)
\(114\) 0 0
\(115\) −0.812355 2.41999i −0.00706395 0.0210434i
\(116\) 293.178i 2.52740i
\(117\) 0 0
\(118\) 390.711i 3.31111i
\(119\) 11.0000i 0.0924373i
\(120\) 0 0
\(121\) 24.3692 0.201398
\(122\) −115.486 −0.946603
\(123\) 0 0
\(124\) −184.505 −1.48794
\(125\) 103.224 + 70.4975i 0.825788 + 0.563980i
\(126\) 0 0
\(127\) 101.150i 0.796460i 0.917286 + 0.398230i \(0.130375\pi\)
−0.917286 + 0.398230i \(0.869625\pi\)
\(128\) 14.1279 0.110374
\(129\) 0 0
\(130\) −210.842 + 70.7765i −1.62186 + 0.544435i
\(131\) 85.7969i 0.654938i −0.944862 0.327469i \(-0.893804\pi\)
0.944862 0.327469i \(-0.106196\pi\)
\(132\) 0 0
\(133\) 18.4005i 0.138349i
\(134\) 287.807i 2.14781i
\(135\) 0 0
\(136\) −88.4068 −0.650050
\(137\) −69.7262 −0.508951 −0.254475 0.967079i \(-0.581903\pi\)
−0.254475 + 0.967079i \(0.581903\pi\)
\(138\) 0 0
\(139\) 138.917 0.999406 0.499703 0.866197i \(-0.333442\pi\)
0.499703 + 0.866197i \(0.333442\pi\)
\(140\) −116.780 + 39.2013i −0.834140 + 0.280009i
\(141\) 0 0
\(142\) 267.977i 1.88716i
\(143\) −118.584 −0.829256
\(144\) 0 0
\(145\) 144.819 48.6136i 0.998751 0.335266i
\(146\) 111.760i 0.765481i
\(147\) 0 0
\(148\) 12.6524i 0.0854895i
\(149\) 47.7568i 0.320515i 0.987075 + 0.160258i \(0.0512325\pi\)
−0.987075 + 0.160258i \(0.948767\pi\)
\(150\) 0 0
\(151\) 55.4914 0.367493 0.183746 0.982974i \(-0.441178\pi\)
0.183746 + 0.982974i \(0.441178\pi\)
\(152\) −147.884 −0.972920
\(153\) 0 0
\(154\) −93.0585 −0.604276
\(155\) 30.5938 + 91.1382i 0.197379 + 0.587988i
\(156\) 0 0
\(157\) 11.0721i 0.0705232i 0.999378 + 0.0352616i \(0.0112264\pi\)
−0.999378 + 0.0352616i \(0.988774\pi\)
\(158\) −425.068 −2.69030
\(159\) 0 0
\(160\) 89.8562 + 267.680i 0.561602 + 1.67300i
\(161\) 1.31076i 0.00814134i
\(162\) 0 0
\(163\) 216.230i 1.32656i 0.748370 + 0.663282i \(0.230837\pi\)
−0.748370 + 0.663282i \(0.769163\pi\)
\(164\) 332.122i 2.02513i
\(165\) 0 0
\(166\) −221.287 −1.33306
\(167\) −61.9468 −0.370939 −0.185469 0.982650i \(-0.559381\pi\)
−0.185469 + 0.982650i \(0.559381\pi\)
\(168\) 0 0
\(169\) 23.4763 0.138913
\(170\) 25.1376 + 74.8844i 0.147868 + 0.440496i
\(171\) 0 0
\(172\) 498.481i 2.89815i
\(173\) −333.471 −1.92758 −0.963788 0.266670i \(-0.914077\pi\)
−0.963788 + 0.266670i \(0.914077\pi\)
\(174\) 0 0
\(175\) 38.7278 + 51.1845i 0.221302 + 0.292483i
\(176\) 370.588i 2.10561i
\(177\) 0 0
\(178\) 262.900i 1.47697i
\(179\) 193.521i 1.08112i −0.841304 0.540562i \(-0.818212\pi\)
0.841304 0.540562i \(-0.181788\pi\)
\(180\) 0 0
\(181\) 243.865 1.34732 0.673661 0.739041i \(-0.264721\pi\)
0.673661 + 0.739041i \(0.264721\pi\)
\(182\) −114.200 −0.627471
\(183\) 0 0
\(184\) −10.5345 −0.0572526
\(185\) 6.24983 2.09798i 0.0337828 0.0113404i
\(186\) 0 0
\(187\) 42.1172i 0.225226i
\(188\) 488.737 2.59966
\(189\) 0 0
\(190\) 42.0493 + 125.264i 0.221312 + 0.659284i
\(191\) 141.565i 0.741178i 0.928797 + 0.370589i \(0.120844\pi\)
−0.928797 + 0.370589i \(0.879156\pi\)
\(192\) 0 0
\(193\) 221.422i 1.14727i −0.819112 0.573633i \(-0.805534\pi\)
0.819112 0.573633i \(-0.194466\pi\)
\(194\) 471.838i 2.43215i
\(195\) 0 0
\(196\) 406.952 2.07629
\(197\) −28.4424 −0.144378 −0.0721889 0.997391i \(-0.522998\pi\)
−0.0721889 + 0.997391i \(0.522998\pi\)
\(198\) 0 0
\(199\) 153.875 0.773244 0.386622 0.922238i \(-0.373642\pi\)
0.386622 + 0.922238i \(0.373642\pi\)
\(200\) 411.367 311.254i 2.05684 1.55627i
\(201\) 0 0
\(202\) 317.388i 1.57123i
\(203\) 78.4393 0.386401
\(204\) 0 0
\(205\) −164.055 + 55.0711i −0.800271 + 0.268639i
\(206\) 150.748i 0.731786i
\(207\) 0 0
\(208\) 454.779i 2.18644i
\(209\) 70.4521i 0.337092i
\(210\) 0 0
\(211\) 180.178 0.853925 0.426962 0.904269i \(-0.359584\pi\)
0.426962 + 0.904269i \(0.359584\pi\)
\(212\) 831.350 3.92146
\(213\) 0 0
\(214\) −6.12184 −0.0286067
\(215\) −246.231 + 82.6561i −1.14526 + 0.384447i
\(216\) 0 0
\(217\) 49.3638i 0.227483i
\(218\) 548.080 2.51413
\(219\) 0 0
\(220\) 447.128 150.095i 2.03240 0.682248i
\(221\) 51.6855i 0.233871i
\(222\) 0 0
\(223\) 215.403i 0.965931i −0.875639 0.482966i \(-0.839560\pi\)
0.875639 0.482966i \(-0.160440\pi\)
\(224\) 144.985i 0.647256i
\(225\) 0 0
\(226\) −484.717 −2.14477
\(227\) 50.4159 0.222097 0.111048 0.993815i \(-0.464579\pi\)
0.111048 + 0.993815i \(0.464579\pi\)
\(228\) 0 0
\(229\) −6.16704 −0.0269303 −0.0134652 0.999909i \(-0.504286\pi\)
−0.0134652 + 0.999909i \(0.504286\pi\)
\(230\) 2.99538 + 8.92316i 0.0130234 + 0.0387963i
\(231\) 0 0
\(232\) 630.413i 2.71730i
\(233\) 52.5336 0.225466 0.112733 0.993625i \(-0.464040\pi\)
0.112733 + 0.993625i \(0.464040\pi\)
\(234\) 0 0
\(235\) −81.0403 241.417i −0.344853 1.02731i
\(236\) 1016.81i 4.30852i
\(237\) 0 0
\(238\) 40.5602i 0.170421i
\(239\) 97.5840i 0.408301i 0.978939 + 0.204151i \(0.0654432\pi\)
−0.978939 + 0.204151i \(0.934557\pi\)
\(240\) 0 0
\(241\) −142.729 −0.592238 −0.296119 0.955151i \(-0.595693\pi\)
−0.296119 + 0.955151i \(0.595693\pi\)
\(242\) −89.8560 −0.371306
\(243\) 0 0
\(244\) 300.547 1.23175
\(245\) −67.4791 201.019i −0.275425 0.820485i
\(246\) 0 0
\(247\) 86.4576i 0.350031i
\(248\) 396.735 1.59974
\(249\) 0 0
\(250\) −380.614 259.944i −1.52245 1.03978i
\(251\) 254.631i 1.01447i −0.861809 0.507233i \(-0.830668\pi\)
0.861809 0.507233i \(-0.169332\pi\)
\(252\) 0 0
\(253\) 5.01865i 0.0198366i
\(254\) 372.969i 1.46838i
\(255\) 0 0
\(256\) −281.812 −1.10083
\(257\) −142.736 −0.555394 −0.277697 0.960669i \(-0.589571\pi\)
−0.277697 + 0.960669i \(0.589571\pi\)
\(258\) 0 0
\(259\) 3.38514 0.0130700
\(260\) 548.708 184.193i 2.11042 0.708436i
\(261\) 0 0
\(262\) 316.357i 1.20747i
\(263\) −252.469 −0.959957 −0.479979 0.877280i \(-0.659356\pi\)
−0.479979 + 0.877280i \(0.659356\pi\)
\(264\) 0 0
\(265\) −137.851 410.655i −0.520192 1.54964i
\(266\) 67.8477i 0.255066i
\(267\) 0 0
\(268\) 749.008i 2.79481i
\(269\) 388.672i 1.44488i 0.691435 + 0.722439i \(0.256979\pi\)
−0.691435 + 0.722439i \(0.743021\pi\)
\(270\) 0 0
\(271\) −163.253 −0.602410 −0.301205 0.953559i \(-0.597389\pi\)
−0.301205 + 0.953559i \(0.597389\pi\)
\(272\) 161.523 0.593836
\(273\) 0 0
\(274\) 257.100 0.938321
\(275\) −148.282 195.976i −0.539207 0.712641i
\(276\) 0 0
\(277\) 483.823i 1.74666i 0.487133 + 0.873328i \(0.338043\pi\)
−0.487133 + 0.873328i \(0.661957\pi\)
\(278\) −512.227 −1.84254
\(279\) 0 0
\(280\) 251.108 84.2934i 0.896814 0.301048i
\(281\) 267.658i 0.952519i −0.879305 0.476260i \(-0.841992\pi\)
0.879305 0.476260i \(-0.158008\pi\)
\(282\) 0 0
\(283\) 491.796i 1.73780i 0.494991 + 0.868898i \(0.335172\pi\)
−0.494991 + 0.868898i \(0.664828\pi\)
\(284\) 697.401i 2.45564i
\(285\) 0 0
\(286\) 437.250 1.52885
\(287\) −88.8586 −0.309612
\(288\) 0 0
\(289\) −270.643 −0.936481
\(290\) −533.987 + 179.252i −1.84133 + 0.618110i
\(291\) 0 0
\(292\) 290.852i 0.996069i
\(293\) −322.146 −1.09947 −0.549737 0.835338i \(-0.685272\pi\)
−0.549737 + 0.835338i \(0.685272\pi\)
\(294\) 0 0
\(295\) 502.266 168.603i 1.70260 0.571537i
\(296\) 27.2062i 0.0919129i
\(297\) 0 0
\(298\) 176.092i 0.590914i
\(299\) 6.15879i 0.0205980i
\(300\) 0 0
\(301\) −133.368 −0.443082
\(302\) −204.612 −0.677523
\(303\) 0 0
\(304\) 270.191 0.888785
\(305\) −49.8355 148.459i −0.163395 0.486750i
\(306\) 0 0
\(307\) 426.031i 1.38772i 0.720109 + 0.693861i \(0.244092\pi\)
−0.720109 + 0.693861i \(0.755908\pi\)
\(308\) 242.182 0.786304
\(309\) 0 0
\(310\) −112.808 336.052i −0.363896 1.08404i
\(311\) 1.16797i 0.00375554i −0.999998 0.00187777i \(-0.999402\pi\)
0.999998 0.00187777i \(-0.000597714\pi\)
\(312\) 0 0
\(313\) 260.950i 0.833705i −0.908974 0.416852i \(-0.863133\pi\)
0.908974 0.416852i \(-0.136867\pi\)
\(314\) 40.8260i 0.130019i
\(315\) 0 0
\(316\) 1106.22 3.50071
\(317\) 131.036 0.413361 0.206681 0.978408i \(-0.433734\pi\)
0.206681 + 0.978408i \(0.433734\pi\)
\(318\) 0 0
\(319\) −300.330 −0.941474
\(320\) −91.3805 272.220i −0.285564 0.850689i
\(321\) 0 0
\(322\) 4.83312i 0.0150097i
\(323\) 30.7071 0.0950683
\(324\) 0 0
\(325\) −181.969 240.499i −0.559905 0.739996i
\(326\) 797.300i 2.44570i
\(327\) 0 0
\(328\) 714.152i 2.17729i
\(329\) 130.761i 0.397449i
\(330\) 0 0
\(331\) 193.484 0.584543 0.292272 0.956335i \(-0.405589\pi\)
0.292272 + 0.956335i \(0.405589\pi\)
\(332\) 575.893 1.73462
\(333\) 0 0
\(334\) 228.415 0.683877
\(335\) 369.981 124.197i 1.10442 0.370738i
\(336\) 0 0
\(337\) 463.595i 1.37565i 0.725875 + 0.687827i \(0.241435\pi\)
−0.725875 + 0.687827i \(0.758565\pi\)
\(338\) −86.5638 −0.256106
\(339\) 0 0
\(340\) −65.4198 194.884i −0.192411 0.573188i
\(341\) 189.005i 0.554268i
\(342\) 0 0
\(343\) 234.682i 0.684203i
\(344\) 1071.87i 3.11590i
\(345\) 0 0
\(346\) 1229.60 3.55375
\(347\) −9.71868 −0.0280077 −0.0140039 0.999902i \(-0.504458\pi\)
−0.0140039 + 0.999902i \(0.504458\pi\)
\(348\) 0 0
\(349\) −49.3358 −0.141363 −0.0706816 0.997499i \(-0.522517\pi\)
−0.0706816 + 0.997499i \(0.522517\pi\)
\(350\) −142.800 188.731i −0.408001 0.539232i
\(351\) 0 0
\(352\) 555.123i 1.57705i
\(353\) −95.3620 −0.270147 −0.135074 0.990836i \(-0.543127\pi\)
−0.135074 + 0.990836i \(0.543127\pi\)
\(354\) 0 0
\(355\) 344.489 115.640i 0.970393 0.325747i
\(356\) 684.188i 1.92188i
\(357\) 0 0
\(358\) 713.566i 1.99320i
\(359\) 539.284i 1.50219i 0.660197 + 0.751093i \(0.270473\pi\)
−0.660197 + 0.751093i \(0.729527\pi\)
\(360\) 0 0
\(361\) −309.634 −0.857713
\(362\) −899.199 −2.48397
\(363\) 0 0
\(364\) 297.201 0.816486
\(365\) −143.670 + 48.2279i −0.393616 + 0.132131i
\(366\) 0 0
\(367\) 303.089i 0.825854i 0.910764 + 0.412927i \(0.135494\pi\)
−0.910764 + 0.412927i \(0.864506\pi\)
\(368\) 19.2470 0.0523016
\(369\) 0 0
\(370\) −23.0448 + 7.73582i −0.0622833 + 0.0209076i
\(371\) 222.426i 0.599531i
\(372\) 0 0
\(373\) 130.665i 0.350308i −0.984541 0.175154i \(-0.943958\pi\)
0.984541 0.175154i \(-0.0560424\pi\)
\(374\) 155.298i 0.415235i
\(375\) 0 0
\(376\) −1050.92 −2.79499
\(377\) −368.560 −0.977612
\(378\) 0 0
\(379\) 545.141 1.43837 0.719183 0.694821i \(-0.244516\pi\)
0.719183 + 0.694821i \(0.244516\pi\)
\(380\) −109.432 325.995i −0.287979 0.857882i
\(381\) 0 0
\(382\) 521.989i 1.36646i
\(383\) 1.24650 0.00325456 0.00162728 0.999999i \(-0.499482\pi\)
0.00162728 + 0.999999i \(0.499482\pi\)
\(384\) 0 0
\(385\) −40.1575 119.628i −0.104305 0.310723i
\(386\) 816.445i 2.11514i
\(387\) 0 0
\(388\) 1227.94i 3.16480i
\(389\) 398.373i 1.02410i 0.858957 + 0.512048i \(0.171113\pi\)
−0.858957 + 0.512048i \(0.828887\pi\)
\(390\) 0 0
\(391\) 2.18741 0.00559440
\(392\) −875.058 −2.23229
\(393\) 0 0
\(394\) 104.875 0.266180
\(395\) −183.429 546.432i −0.464378 1.38337i
\(396\) 0 0
\(397\) 685.998i 1.72795i −0.503531 0.863977i \(-0.667966\pi\)
0.503531 0.863977i \(-0.332034\pi\)
\(398\) −567.381 −1.42558
\(399\) 0 0
\(400\) −751.587 + 568.675i −1.87897 + 1.42169i
\(401\) 51.8705i 0.129353i 0.997906 + 0.0646764i \(0.0206015\pi\)
−0.997906 + 0.0646764i \(0.979398\pi\)
\(402\) 0 0
\(403\) 231.944i 0.575543i
\(404\) 825.992i 2.04453i
\(405\) 0 0
\(406\) −289.227 −0.712383
\(407\) −12.9611 −0.0318454
\(408\) 0 0
\(409\) −271.296 −0.663317 −0.331658 0.943400i \(-0.607608\pi\)
−0.331658 + 0.943400i \(0.607608\pi\)
\(410\) 604.918 203.062i 1.47541 0.495274i
\(411\) 0 0
\(412\) 392.316i 0.952224i
\(413\) 272.046 0.658707
\(414\) 0 0
\(415\) −95.4921 284.469i −0.230101 0.685467i
\(416\) 681.237i 1.63759i
\(417\) 0 0
\(418\) 259.777i 0.621475i
\(419\) 27.6513i 0.0659935i 0.999455 + 0.0329967i \(0.0105051\pi\)
−0.999455 + 0.0329967i \(0.989495\pi\)
\(420\) 0 0
\(421\) −437.226 −1.03854 −0.519271 0.854610i \(-0.673796\pi\)
−0.519271 + 0.854610i \(0.673796\pi\)
\(422\) −664.367 −1.57433
\(423\) 0 0
\(424\) −1787.63 −4.21610
\(425\) −85.4176 + 64.6297i −0.200983 + 0.152070i
\(426\) 0 0
\(427\) 80.4108i 0.188316i
\(428\) 15.9319 0.0372240
\(429\) 0 0
\(430\) 907.920 304.776i 2.11144 0.708781i
\(431\) 54.3602i 0.126126i −0.998010 0.0630629i \(-0.979913\pi\)
0.998010 0.0630629i \(-0.0200869\pi\)
\(432\) 0 0
\(433\) 526.426i 1.21576i 0.794028 + 0.607882i \(0.207981\pi\)
−0.794028 + 0.607882i \(0.792019\pi\)
\(434\) 182.018i 0.419397i
\(435\) 0 0
\(436\) −1426.36 −3.27147
\(437\) 3.65903 0.00837306
\(438\) 0 0
\(439\) −416.248 −0.948173 −0.474087 0.880478i \(-0.657222\pi\)
−0.474087 + 0.880478i \(0.657222\pi\)
\(440\) −961.448 + 322.744i −2.18511 + 0.733510i
\(441\) 0 0
\(442\) 190.579i 0.431173i
\(443\) 427.165 0.964254 0.482127 0.876101i \(-0.339864\pi\)
0.482127 + 0.876101i \(0.339864\pi\)
\(444\) 0 0
\(445\) −337.963 + 113.449i −0.759467 + 0.254942i
\(446\) 794.249i 1.78083i
\(447\) 0 0
\(448\) 147.445i 0.329118i
\(449\) 236.730i 0.527239i 0.964627 + 0.263620i \(0.0849164\pi\)
−0.964627 + 0.263620i \(0.915084\pi\)
\(450\) 0 0
\(451\) 340.224 0.754376
\(452\) 1261.46 2.79084
\(453\) 0 0
\(454\) −185.898 −0.409466
\(455\) −49.2806 146.806i −0.108309 0.322650i
\(456\) 0 0
\(457\) 697.781i 1.52687i −0.645883 0.763437i \(-0.723511\pi\)
0.645883 0.763437i \(-0.276489\pi\)
\(458\) 22.7396 0.0496497
\(459\) 0 0
\(460\) −7.79536 23.2222i −0.0169464 0.0504831i
\(461\) 383.752i 0.832435i 0.909265 + 0.416217i \(0.136644\pi\)
−0.909265 + 0.416217i \(0.863356\pi\)
\(462\) 0 0
\(463\) 270.112i 0.583395i −0.956511 0.291698i \(-0.905780\pi\)
0.956511 0.291698i \(-0.0942201\pi\)
\(464\) 1151.79i 2.48232i
\(465\) 0 0
\(466\) −193.706 −0.415678
\(467\) 777.952 1.66585 0.832926 0.553385i \(-0.186664\pi\)
0.832926 + 0.553385i \(0.186664\pi\)
\(468\) 0 0
\(469\) 200.396 0.427283
\(470\) 298.818 + 890.173i 0.635783 + 1.89398i
\(471\) 0 0
\(472\) 2186.42i 4.63225i
\(473\) 510.641 1.07958
\(474\) 0 0
\(475\) −142.884 + 108.110i −0.300807 + 0.227601i
\(476\) 105.556i 0.221757i
\(477\) 0 0
\(478\) 359.819i 0.752760i
\(479\) 72.5647i 0.151492i −0.997127 0.0757460i \(-0.975866\pi\)
0.997127 0.0757460i \(-0.0241338\pi\)
\(480\) 0 0
\(481\) −15.9056 −0.0330678
\(482\) 526.283 1.09187
\(483\) 0 0
\(484\) 233.847 0.483155
\(485\) 606.556 203.612i 1.25063 0.419819i
\(486\) 0 0
\(487\) 729.487i 1.49792i 0.662616 + 0.748959i \(0.269446\pi\)
−0.662616 + 0.748959i \(0.730554\pi\)
\(488\) −646.258 −1.32430
\(489\) 0 0
\(490\) 248.814 + 741.212i 0.507784 + 1.51268i
\(491\) 3.81570i 0.00777127i 0.999992 + 0.00388564i \(0.00123684\pi\)
−0.999992 + 0.00388564i \(0.998763\pi\)
\(492\) 0 0
\(493\) 130.901i 0.265519i
\(494\) 318.793i 0.645330i
\(495\) 0 0
\(496\) −724.853 −1.46140
\(497\) 186.588 0.375429
\(498\) 0 0
\(499\) 205.303 0.411428 0.205714 0.978612i \(-0.434048\pi\)
0.205714 + 0.978612i \(0.434048\pi\)
\(500\) 990.534 + 676.495i 1.98107 + 1.35299i
\(501\) 0 0
\(502\) 938.895i 1.87031i
\(503\) 224.016 0.445360 0.222680 0.974892i \(-0.428519\pi\)
0.222680 + 0.974892i \(0.428519\pi\)
\(504\) 0 0
\(505\) −408.008 + 136.963i −0.807937 + 0.271213i
\(506\) 18.5051i 0.0365714i
\(507\) 0 0
\(508\) 970.640i 1.91071i
\(509\) 460.810i 0.905324i −0.891682 0.452662i \(-0.850474\pi\)
0.891682 0.452662i \(-0.149526\pi\)
\(510\) 0 0
\(511\) −77.8169 −0.152284
\(512\) 982.608 1.91916
\(513\) 0 0
\(514\) 526.309 1.02395
\(515\) −193.789 + 65.0523i −0.376290 + 0.126315i
\(516\) 0 0
\(517\) 500.659i 0.968393i
\(518\) −12.4819 −0.0240964
\(519\) 0 0
\(520\) −1179.87 + 396.066i −2.26898 + 0.761665i
\(521\) 182.438i 0.350168i −0.984554 0.175084i \(-0.943980\pi\)
0.984554 0.175084i \(-0.0560197\pi\)
\(522\) 0 0
\(523\) 431.339i 0.824741i −0.911016 0.412370i \(-0.864701\pi\)
0.911016 0.412370i \(-0.135299\pi\)
\(524\) 823.308i 1.57120i
\(525\) 0 0
\(526\) 930.922 1.76981
\(527\) −82.3793 −0.156317
\(528\) 0 0
\(529\) −528.739 −0.999507
\(530\) 508.295 + 1514.20i 0.959046 + 2.85698i
\(531\) 0 0
\(532\) 176.571i 0.331901i
\(533\) 417.516 0.783333
\(534\) 0 0
\(535\) −2.64176 7.86974i −0.00493786 0.0147098i
\(536\) 1610.57i 3.00480i
\(537\) 0 0
\(538\) 1433.14i 2.66383i
\(539\) 416.879i 0.773431i
\(540\) 0 0
\(541\) −649.924 −1.20134 −0.600669 0.799498i \(-0.705099\pi\)
−0.600669 + 0.799498i \(0.705099\pi\)
\(542\) 601.959 1.11063
\(543\) 0 0
\(544\) −241.954 −0.444769
\(545\) 236.513 + 704.567i 0.433969 + 1.29278i
\(546\) 0 0
\(547\) 425.316i 0.777542i 0.921334 + 0.388771i \(0.127100\pi\)
−0.921334 + 0.388771i \(0.872900\pi\)
\(548\) −669.094 −1.22097
\(549\) 0 0
\(550\) 546.757 + 722.619i 0.994103 + 1.31385i
\(551\) 218.966i 0.397398i
\(552\) 0 0
\(553\) 295.968i 0.535205i
\(554\) 1783.99i 3.22020i
\(555\) 0 0
\(556\) 1333.05 2.39758
\(557\) −325.885 −0.585073 −0.292536 0.956254i \(-0.594499\pi\)
−0.292536 + 0.956254i \(0.594499\pi\)
\(558\) 0 0
\(559\) 626.650 1.12102
\(560\) −458.786 + 154.008i −0.819261 + 0.275014i
\(561\) 0 0
\(562\) 986.929i 1.75610i
\(563\) 706.763 1.25535 0.627676 0.778475i \(-0.284006\pi\)
0.627676 + 0.778475i \(0.284006\pi\)
\(564\) 0 0
\(565\) −209.170 623.113i −0.370213 1.10285i
\(566\) 1813.39i 3.20387i
\(567\) 0 0
\(568\) 1499.60i 2.64015i
\(569\) 560.236i 0.984597i 0.870426 + 0.492299i \(0.163843\pi\)
−0.870426 + 0.492299i \(0.836157\pi\)
\(570\) 0 0
\(571\) −210.692 −0.368988 −0.184494 0.982834i \(-0.559065\pi\)
−0.184494 + 0.982834i \(0.559065\pi\)
\(572\) −1137.93 −1.98939
\(573\) 0 0
\(574\) 327.646 0.570812
\(575\) −10.1783 + 7.70122i −0.0177014 + 0.0133934i
\(576\) 0 0
\(577\) 502.258i 0.870464i 0.900318 + 0.435232i \(0.143334\pi\)
−0.900318 + 0.435232i \(0.856666\pi\)
\(578\) 997.935 1.72653
\(579\) 0 0
\(580\) 1389.68 466.497i 2.39600 0.804304i
\(581\) 154.079i 0.265196i
\(582\) 0 0
\(583\) 851.630i 1.46077i
\(584\) 625.411i 1.07091i
\(585\) 0 0
\(586\) 1187.84 2.02703
\(587\) −409.772 −0.698079 −0.349040 0.937108i \(-0.613492\pi\)
−0.349040 + 0.937108i \(0.613492\pi\)
\(588\) 0 0
\(589\) −137.801 −0.233958
\(590\) −1851.99 + 621.687i −3.13897 + 1.05371i
\(591\) 0 0
\(592\) 49.7070i 0.0839646i
\(593\) −944.139 −1.59214 −0.796070 0.605204i \(-0.793092\pi\)
−0.796070 + 0.605204i \(0.793092\pi\)
\(594\) 0 0
\(595\) −52.1409 + 17.5029i −0.0876317 + 0.0294167i
\(596\) 458.275i 0.768917i
\(597\) 0 0
\(598\) 22.7092i 0.0379752i
\(599\) 532.342i 0.888717i 0.895849 + 0.444359i \(0.146568\pi\)
−0.895849 + 0.444359i \(0.853432\pi\)
\(600\) 0 0
\(601\) 515.566 0.857846 0.428923 0.903341i \(-0.358893\pi\)
0.428923 + 0.903341i \(0.358893\pi\)
\(602\) 491.764 0.816883
\(603\) 0 0
\(604\) 532.496 0.881615
\(605\) −38.7756 115.512i −0.0640918 0.190928i
\(606\) 0 0
\(607\) 171.153i 0.281965i −0.990012 0.140983i \(-0.954974\pi\)
0.990012 0.140983i \(-0.0450262\pi\)
\(608\) −404.732 −0.665678
\(609\) 0 0
\(610\) 183.757 + 547.409i 0.301241 + 0.897391i
\(611\) 614.400i 1.00557i
\(612\) 0 0
\(613\) 875.826i 1.42875i −0.699761 0.714377i \(-0.746710\pi\)
0.699761 0.714377i \(-0.253290\pi\)
\(614\) 1570.89i 2.55846i
\(615\) 0 0
\(616\) −520.756 −0.845384
\(617\) 1131.75 1.83427 0.917137 0.398571i \(-0.130494\pi\)
0.917137 + 0.398571i \(0.130494\pi\)
\(618\) 0 0
\(619\) 520.375 0.840670 0.420335 0.907369i \(-0.361913\pi\)
0.420335 + 0.907369i \(0.361913\pi\)
\(620\) 293.578 + 874.563i 0.473513 + 1.41058i
\(621\) 0 0
\(622\) 4.30664i 0.00692386i
\(623\) −183.053 −0.293826
\(624\) 0 0
\(625\) 169.916 601.459i 0.271866 0.962335i
\(626\) 962.193i 1.53705i
\(627\) 0 0
\(628\) 106.248i 0.169185i
\(629\) 5.64918i 0.00898121i
\(630\) 0 0
\(631\) −607.475 −0.962718 −0.481359 0.876523i \(-0.659857\pi\)
−0.481359 + 0.876523i \(0.659857\pi\)
\(632\) −2378.68 −3.76374
\(633\) 0 0
\(634\) −483.164 −0.762089
\(635\) 479.459 160.947i 0.755053 0.253461i
\(636\) 0 0
\(637\) 511.587i 0.803119i
\(638\) 1107.40 1.73574
\(639\) 0 0
\(640\) −22.4799 66.9670i −0.0351248 0.104636i
\(641\) 186.198i 0.290481i −0.989396 0.145240i \(-0.953604\pi\)
0.989396 0.145240i \(-0.0463955\pi\)
\(642\) 0 0
\(643\) 797.522i 1.24031i −0.784478 0.620157i \(-0.787069\pi\)
0.784478 0.620157i \(-0.212931\pi\)
\(644\) 12.5780i 0.0195311i
\(645\) 0 0
\(646\) −113.225 −0.175271
\(647\) 849.489 1.31297 0.656483 0.754341i \(-0.272043\pi\)
0.656483 + 0.754341i \(0.272043\pi\)
\(648\) 0 0
\(649\) −1041.61 −1.60495
\(650\) 670.970 + 886.785i 1.03226 + 1.36428i
\(651\) 0 0
\(652\) 2074.94i 3.18243i
\(653\) −1041.19 −1.59447 −0.797235 0.603669i \(-0.793705\pi\)
−0.797235 + 0.603669i \(0.793705\pi\)
\(654\) 0 0
\(655\) −406.683 + 136.518i −0.620889 + 0.208424i
\(656\) 1304.79i 1.98901i
\(657\) 0 0
\(658\) 482.151i 0.732752i
\(659\) 642.380i 0.974781i −0.873184 0.487390i \(-0.837949\pi\)
0.873184 0.487390i \(-0.162051\pi\)
\(660\) 0 0
\(661\) −789.517 −1.19443 −0.597214 0.802082i \(-0.703726\pi\)
−0.597214 + 0.802082i \(0.703726\pi\)
\(662\) −713.429 −1.07769
\(663\) 0 0
\(664\) −1238.33 −1.86495
\(665\) −87.2194 + 29.2783i −0.131157 + 0.0440275i
\(666\) 0 0
\(667\) 15.5980i 0.0233854i
\(668\) −594.442 −0.889883
\(669\) 0 0
\(670\) −1364.22 + 457.950i −2.03615 + 0.683508i
\(671\) 307.879i 0.458836i
\(672\) 0 0
\(673\) 1015.93i 1.50956i −0.655978 0.754780i \(-0.727744\pi\)
0.655978 0.754780i \(-0.272256\pi\)
\(674\) 1709.40i 2.53621i
\(675\) 0 0
\(676\) 225.279 0.333253
\(677\) 743.622 1.09841 0.549204 0.835688i \(-0.314931\pi\)
0.549204 + 0.835688i \(0.314931\pi\)
\(678\) 0 0
\(679\) 328.533 0.483849
\(680\) 140.670 + 419.054i 0.206868 + 0.616255i
\(681\) 0 0
\(682\) 696.915i 1.02187i
\(683\) 152.482 0.223254 0.111627 0.993750i \(-0.464394\pi\)
0.111627 + 0.993750i \(0.464394\pi\)
\(684\) 0 0
\(685\) 110.946 + 330.507i 0.161965 + 0.482491i
\(686\) 865.336i 1.26142i
\(687\) 0 0
\(688\) 1958.36i 2.84645i
\(689\) 1045.10i 1.51684i
\(690\) 0 0
\(691\) 777.171 1.12471 0.562353 0.826898i \(-0.309896\pi\)
0.562353 + 0.826898i \(0.309896\pi\)
\(692\) −3199.99 −4.62426
\(693\) 0 0
\(694\) 35.8355 0.0516361
\(695\) −221.041 658.477i −0.318045 0.947449i
\(696\) 0 0
\(697\) 148.289i 0.212753i
\(698\) 181.915 0.260623
\(699\) 0 0
\(700\) 371.633 + 491.167i 0.530904 + 0.701667i
\(701\) 461.657i 0.658569i 0.944231 + 0.329284i \(0.106808\pi\)
−0.944231 + 0.329284i \(0.893192\pi\)
\(702\) 0 0
\(703\) 9.44975i 0.0134420i
\(704\) 564.540i 0.801903i
\(705\) 0 0
\(706\) 351.626 0.498054
\(707\) −220.993 −0.312578
\(708\) 0 0
\(709\) −358.455 −0.505578 −0.252789 0.967521i \(-0.581348\pi\)
−0.252789 + 0.967521i \(0.581348\pi\)
\(710\) −1270.23 + 426.397i −1.78905 + 0.600560i
\(711\) 0 0
\(712\) 1471.19i 2.06628i
\(713\) −9.81624 −0.0137675
\(714\) 0 0
\(715\) 188.687 + 562.093i 0.263897 + 0.786145i
\(716\) 1857.03i 2.59362i
\(717\) 0 0
\(718\) 1988.49i 2.76949i
\(719\) 283.414i 0.394178i −0.980386 0.197089i \(-0.936851\pi\)
0.980386 0.197089i \(-0.0631488\pi\)
\(720\) 0 0
\(721\) −104.964 −0.145580
\(722\) 1141.71 1.58131
\(723\) 0 0
\(724\) 2340.13 3.23223
\(725\) −460.863 609.098i −0.635673 0.840135i
\(726\) 0 0
\(727\) 155.359i 0.213699i −0.994275 0.106850i \(-0.965924\pi\)
0.994275 0.106850i \(-0.0340763\pi\)
\(728\) −639.063 −0.877833
\(729\) 0 0
\(730\) 529.750 177.830i 0.725685 0.243602i
\(731\) 222.566i 0.304468i
\(732\) 0 0
\(733\) 104.932i 0.143154i 0.997435 + 0.0715768i \(0.0228031\pi\)
−0.997435 + 0.0715768i \(0.977197\pi\)
\(734\) 1117.57i 1.52258i
\(735\) 0 0
\(736\) −28.8311 −0.0391726
\(737\) −767.279 −1.04108
\(738\) 0 0
\(739\) −627.375 −0.848951 −0.424476 0.905439i \(-0.639542\pi\)
−0.424476 + 0.905439i \(0.639542\pi\)
\(740\) 59.9734 20.1322i 0.0810451 0.0272057i
\(741\) 0 0
\(742\) 820.146i 1.10532i
\(743\) −386.590 −0.520310 −0.260155 0.965567i \(-0.583774\pi\)
−0.260155 + 0.965567i \(0.583774\pi\)
\(744\) 0 0
\(745\) 226.370 75.9892i 0.303852 0.101999i
\(746\) 481.798i 0.645842i
\(747\) 0 0
\(748\) 404.157i 0.540317i
\(749\) 4.26254i 0.00569098i
\(750\) 0 0
\(751\) 905.203 1.20533 0.602665 0.797994i \(-0.294106\pi\)
0.602665 + 0.797994i \(0.294106\pi\)
\(752\) 1920.08 2.55329
\(753\) 0 0
\(754\) 1358.98 1.80236
\(755\) −88.2962 263.032i −0.116949 0.348387i
\(756\) 0 0
\(757\) 332.222i 0.438867i −0.975627 0.219433i \(-0.929579\pi\)
0.975627 0.219433i \(-0.0704209\pi\)
\(758\) −2010.08 −2.65183
\(759\) 0 0
\(760\) 235.308 + 700.978i 0.309616 + 0.922340i
\(761\) 458.100i 0.601971i −0.953629 0.300986i \(-0.902684\pi\)
0.953629 0.300986i \(-0.0973156\pi\)
\(762\) 0 0
\(763\) 381.620i 0.500157i
\(764\) 1358.46i 1.77809i
\(765\) 0 0
\(766\) −4.59618 −0.00600023
\(767\) −1278.25 −1.66656
\(768\) 0 0
\(769\) −916.392 −1.19167 −0.595833 0.803108i \(-0.703178\pi\)
−0.595833 + 0.803108i \(0.703178\pi\)
\(770\) 148.072 + 441.103i 0.192301 + 0.572861i
\(771\) 0 0
\(772\) 2124.77i 2.75229i
\(773\) 1186.06 1.53436 0.767178 0.641434i \(-0.221660\pi\)
0.767178 + 0.641434i \(0.221660\pi\)
\(774\) 0 0
\(775\) 383.321 290.033i 0.494607 0.374236i
\(776\) 2640.41i 3.40259i
\(777\) 0 0
\(778\) 1468.91i 1.88806i
\(779\) 248.052i 0.318424i
\(780\) 0 0
\(781\) −714.414 −0.914742
\(782\) −8.06559 −0.0103141
\(783\) 0 0
\(784\) 1598.77 2.03925
\(785\) 52.4826 17.6177i 0.0668568 0.0224429i
\(786\) 0 0
\(787\) 882.479i 1.12132i −0.828046 0.560660i \(-0.810547\pi\)
0.828046 0.560660i \(-0.189453\pi\)
\(788\) −272.934 −0.346363
\(789\) 0 0
\(790\) 676.355 + 2014.85i 0.856146 + 2.55044i
\(791\) 337.501i 0.426677i
\(792\) 0 0
\(793\) 377.823i 0.476448i
\(794\) 2529.46i 3.18572i
\(795\) 0 0
\(796\) 1476.59 1.85501
\(797\) −143.803 −0.180431 −0.0902153 0.995922i \(-0.528756\pi\)
−0.0902153 + 0.995922i \(0.528756\pi\)
\(798\) 0 0
\(799\) 218.216 0.273111
\(800\) 1125.84 851.848i 1.40730 1.06481i
\(801\) 0 0
\(802\) 191.261i 0.238480i
\(803\) 297.947 0.371043
\(804\) 0 0
\(805\) −6.21306 + 2.08563i −0.00771809 + 0.00259085i
\(806\) 855.242i 1.06109i
\(807\) 0 0
\(808\) 1776.11i 2.19815i
\(809\) 52.3078i 0.0646574i −0.999477 0.0323287i \(-0.989708\pi\)
0.999477 0.0323287i \(-0.0102923\pi\)
\(810\) 0 0
\(811\) 1518.65 1.87256 0.936281 0.351253i \(-0.114244\pi\)
0.936281 + 0.351253i \(0.114244\pi\)
\(812\) 752.704 0.926976
\(813\) 0 0
\(814\) 47.7911 0.0587115
\(815\) 1024.94 344.059i 1.25760 0.422158i
\(816\) 0 0
\(817\) 372.301i 0.455693i
\(818\) 1000.35 1.22292
\(819\) 0 0
\(820\) −1574.28 + 528.462i −1.91985 + 0.644466i
\(821\) 1097.03i 1.33622i −0.744064 0.668108i \(-0.767104\pi\)
0.744064 0.668108i \(-0.232896\pi\)
\(822\) 0 0
\(823\) 957.100i 1.16294i 0.813568 + 0.581470i \(0.197522\pi\)
−0.813568 + 0.581470i \(0.802478\pi\)
\(824\) 843.587i 1.02377i
\(825\) 0 0
\(826\) −1003.11 −1.21442
\(827\) −171.626 −0.207529 −0.103764 0.994602i \(-0.533089\pi\)
−0.103764 + 0.994602i \(0.533089\pi\)
\(828\) 0 0
\(829\) 203.896 0.245954 0.122977 0.992410i \(-0.460756\pi\)
0.122977 + 0.992410i \(0.460756\pi\)
\(830\) 352.106 + 1048.92i 0.424224 + 1.26375i
\(831\) 0 0
\(832\) 692.793i 0.832684i
\(833\) 181.700 0.218127
\(834\) 0 0
\(835\) 98.5679 + 293.631i 0.118045 + 0.351654i
\(836\) 676.059i 0.808683i
\(837\) 0 0
\(838\) 101.958i 0.121668i
\(839\) 1556.65i 1.85536i 0.373377 + 0.927680i \(0.378200\pi\)
−0.373377 + 0.927680i \(0.621800\pi\)
\(840\) 0 0
\(841\) −92.4311 −0.109906
\(842\) 1612.17 1.91469
\(843\) 0 0
\(844\) 1728.99 2.04857
\(845\) −37.3549 111.279i −0.0442069 0.131692i
\(846\) 0 0
\(847\) 62.5654i 0.0738670i
\(848\) 3266.08 3.85151
\(849\) 0 0
\(850\) 314.958 238.308i 0.370539 0.280362i
\(851\) 0.673152i 0.000791013i
\(852\) 0 0
\(853\) 563.929i 0.661112i 0.943786 + 0.330556i \(0.107236\pi\)
−0.943786 + 0.330556i \(0.892764\pi\)
\(854\) 296.497i 0.347186i
\(855\) 0 0
\(856\) −34.2579 −0.0400209
\(857\) 953.906 1.11308 0.556538 0.830822i \(-0.312129\pi\)
0.556538 + 0.830822i \(0.312129\pi\)
\(858\) 0 0
\(859\) 845.456 0.984233 0.492116 0.870529i \(-0.336223\pi\)
0.492116 + 0.870529i \(0.336223\pi\)
\(860\) −2362.83 + 793.168i −2.74748 + 0.922289i
\(861\) 0 0
\(862\) 200.441i 0.232530i
\(863\) −1109.42 −1.28554 −0.642768 0.766061i \(-0.722214\pi\)
−0.642768 + 0.766061i \(0.722214\pi\)
\(864\) 0 0
\(865\) 530.609 + 1580.67i 0.613420 + 1.82737i
\(866\) 1941.08i 2.24143i
\(867\) 0 0
\(868\) 473.696i 0.545733i
\(869\) 1133.21i 1.30404i
\(870\) 0 0
\(871\) −941.592 −1.08105
\(872\) 3067.06 3.51727
\(873\) 0 0
\(874\) −13.4918 −0.0154369
\(875\) 180.995 265.016i 0.206851 0.302875i
\(876\) 0 0
\(877\) 1014.66i 1.15697i 0.815693 + 0.578485i \(0.196356\pi\)
−0.815693 + 0.578485i \(0.803644\pi\)
\(878\) 1534.82 1.74809
\(879\) 0 0
\(880\) 1756.61 589.669i 1.99615 0.670078i
\(881\) 1226.86i 1.39257i −0.717764 0.696287i \(-0.754834\pi\)
0.717764 0.696287i \(-0.245166\pi\)
\(882\) 0 0
\(883\) 659.407i 0.746780i −0.927674 0.373390i \(-0.878195\pi\)
0.927674 0.373390i \(-0.121805\pi\)
\(884\) 495.974i 0.561057i
\(885\) 0 0
\(886\) −1575.07 −1.77774
\(887\) −771.967 −0.870313 −0.435156 0.900355i \(-0.643307\pi\)
−0.435156 + 0.900355i \(0.643307\pi\)
\(888\) 0 0
\(889\) 259.693 0.292118
\(890\) 1246.16 418.319i 1.40018 0.470021i
\(891\) 0 0
\(892\) 2067.01i 2.31727i
\(893\) 365.024 0.408761
\(894\) 0 0
\(895\) −917.302 + 307.925i −1.02492 + 0.344050i
\(896\) 36.2718i 0.0404820i
\(897\) 0 0
\(898\) 872.891i 0.972038i
\(899\) 587.432i 0.653428i
\(900\) 0 0
\(901\) 371.189 0.411974
\(902\) −1254.50 −1.39080
\(903\) 0 0
\(904\) −2712.48 −3.00053
\(905\) −388.031 1155.94i −0.428764 1.27728i
\(906\) 0 0
\(907\) 121.471i 0.133926i −0.997755 0.0669629i \(-0.978669\pi\)
0.997755 0.0669629i \(-0.0213309\pi\)
\(908\) 483.792 0.532810
\(909\) 0 0
\(910\) 181.711 + 541.314i 0.199683 + 0.594850i
\(911\) 1155.23i 1.26809i 0.773295 + 0.634046i \(0.218607\pi\)
−0.773295 + 0.634046i \(0.781393\pi\)
\(912\) 0 0
\(913\) 589.941i 0.646157i
\(914\) 2572.91i 2.81500i
\(915\) 0 0
\(916\) −59.1790 −0.0646059
\(917\) −220.275 −0.240212
\(918\) 0 0
\(919\) −994.576 −1.08224 −0.541119 0.840946i \(-0.681999\pi\)
−0.541119 + 0.840946i \(0.681999\pi\)
\(920\) 16.7621 + 49.9341i 0.0182197 + 0.0542762i
\(921\) 0 0
\(922\) 1415.00i 1.53471i
\(923\) −876.716 −0.949855
\(924\) 0 0
\(925\) −19.8891 26.2863i −0.0215017 0.0284176i
\(926\) 995.977i 1.07557i
\(927\) 0 0
\(928\) 1725.33i 1.85919i
\(929\) 161.931i 0.174307i −0.996195 0.0871534i \(-0.972223\pi\)
0.996195 0.0871534i \(-0.0277770\pi\)
\(930\) 0 0
\(931\) 303.941 0.326467
\(932\) 504.113 0.540893
\(933\) 0 0
\(934\) −2868.53 −3.07123
\(935\) 199.638 67.0156i 0.213517 0.0716745i
\(936\) 0 0
\(937\) 660.489i 0.704898i −0.935831 0.352449i \(-0.885349\pi\)
0.935831 0.352449i \(-0.114651\pi\)
\(938\) −738.914 −0.787755
\(939\) 0 0
\(940\) −777.664 2316.64i −0.827302 2.46451i
\(941\) 1591.25i 1.69102i −0.533961 0.845509i \(-0.679297\pi\)
0.533961 0.845509i \(-0.320703\pi\)
\(942\) 0 0
\(943\) 17.6700i 0.0187380i
\(944\) 3994.69i 4.23167i
\(945\) 0 0
\(946\) −1882.88 −1.99035
\(947\) −1563.36 −1.65085 −0.825426 0.564511i \(-0.809065\pi\)
−0.825426 + 0.564511i \(0.809065\pi\)
\(948\) 0 0
\(949\) 365.635 0.385285
\(950\) 526.851 398.633i 0.554580 0.419613i
\(951\) 0 0
\(952\) 226.975i 0.238419i
\(953\) −996.612 −1.04576 −0.522881 0.852405i \(-0.675143\pi\)
−0.522881 + 0.852405i \(0.675143\pi\)
\(954\) 0 0
\(955\) 671.027 225.254i 0.702646 0.235868i
\(956\) 936.417i 0.979516i
\(957\) 0 0
\(958\) 267.566i 0.279297i
\(959\) 179.015i 0.186668i
\(960\) 0 0
\(961\) −591.314 −0.615311
\(962\) 58.6484 0.0609651
\(963\) 0 0
\(964\) −1369.63 −1.42078
\(965\) −1049.56 + 352.321i −1.08762 + 0.365099i
\(966\) 0 0
\(967\) 649.999i 0.672181i −0.941830 0.336091i \(-0.890895\pi\)
0.941830 0.336091i \(-0.109105\pi\)
\(968\) −502.835 −0.519458
\(969\) 0 0
\(970\) −2236.54 + 750.774i −2.30571 + 0.773994i
\(971\) 1717.75i 1.76905i 0.466495 + 0.884524i \(0.345517\pi\)
−0.466495 + 0.884524i \(0.654483\pi\)
\(972\) 0 0
\(973\) 356.656i 0.366553i
\(974\) 2689.82i 2.76162i
\(975\) 0 0
\(976\) 1180.74 1.20978
\(977\) −282.121 −0.288763 −0.144381 0.989522i \(-0.546119\pi\)
−0.144381 + 0.989522i \(0.546119\pi\)
\(978\) 0 0
\(979\) 700.878 0.715913
\(980\) −647.530 1928.98i −0.660745 1.96834i
\(981\) 0 0
\(982\) 14.0695i 0.0143274i
\(983\) 384.535 0.391185 0.195592 0.980685i \(-0.437337\pi\)
0.195592 + 0.980685i \(0.437337\pi\)
\(984\) 0 0
\(985\) 45.2568 + 134.819i 0.0459459 + 0.136872i
\(986\) 482.668i 0.489521i
\(987\) 0 0
\(988\) 829.648i 0.839725i
\(989\) 26.5208i 0.0268158i
\(990\) 0 0
\(991\) 399.250 0.402876 0.201438 0.979501i \(-0.435439\pi\)
0.201438 + 0.979501i \(0.435439\pi\)
\(992\) 1085.80 1.09455
\(993\) 0 0
\(994\) −688.003 −0.692156
\(995\) −244.842 729.379i −0.246072 0.733044i
\(996\) 0 0
\(997\) 1452.17i 1.45654i −0.685288 0.728272i \(-0.740324\pi\)
0.685288 0.728272i \(-0.259676\pi\)
\(998\) −757.008 −0.758525
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.d.a.404.1 20
3.2 odd 2 inner 405.3.d.a.404.20 20
5.4 even 2 inner 405.3.d.a.404.19 20
9.2 odd 6 45.3.h.a.14.1 20
9.4 even 3 45.3.h.a.29.10 yes 20
9.5 odd 6 135.3.h.a.89.1 20
9.7 even 3 135.3.h.a.44.10 20
15.14 odd 2 inner 405.3.d.a.404.2 20
45.2 even 12 225.3.j.e.176.10 20
45.4 even 6 45.3.h.a.29.1 yes 20
45.7 odd 12 675.3.j.e.476.1 20
45.13 odd 12 225.3.j.e.101.1 20
45.14 odd 6 135.3.h.a.89.10 20
45.22 odd 12 225.3.j.e.101.10 20
45.23 even 12 675.3.j.e.251.10 20
45.29 odd 6 45.3.h.a.14.10 yes 20
45.32 even 12 675.3.j.e.251.1 20
45.34 even 6 135.3.h.a.44.1 20
45.38 even 12 225.3.j.e.176.1 20
45.43 odd 12 675.3.j.e.476.10 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.h.a.14.1 20 9.2 odd 6
45.3.h.a.14.10 yes 20 45.29 odd 6
45.3.h.a.29.1 yes 20 45.4 even 6
45.3.h.a.29.10 yes 20 9.4 even 3
135.3.h.a.44.1 20 45.34 even 6
135.3.h.a.44.10 20 9.7 even 3
135.3.h.a.89.1 20 9.5 odd 6
135.3.h.a.89.10 20 45.14 odd 6
225.3.j.e.101.1 20 45.13 odd 12
225.3.j.e.101.10 20 45.22 odd 12
225.3.j.e.176.1 20 45.38 even 12
225.3.j.e.176.10 20 45.2 even 12
405.3.d.a.404.1 20 1.1 even 1 trivial
405.3.d.a.404.2 20 15.14 odd 2 inner
405.3.d.a.404.19 20 5.4 even 2 inner
405.3.d.a.404.20 20 3.2 odd 2 inner
675.3.j.e.251.1 20 45.32 even 12
675.3.j.e.251.10 20 45.23 even 12
675.3.j.e.476.1 20 45.7 odd 12
675.3.j.e.476.10 20 45.43 odd 12