Properties

Label 135.3.h.a.44.10
Level $135$
Weight $3$
Character 135.44
Analytic conductor $3.678$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [135,3,Mod(44,135)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("135.44"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(135, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 135.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.67848356886\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 3 x^{18} - 19 x^{16} + 66 x^{14} + 109 x^{12} - 813 x^{10} + 981 x^{8} + 5346 x^{6} + \cdots + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{12} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 44.10
Root \(-1.44078 - 0.961330i\) of defining polynomial
Character \(\chi\) \(=\) 135.44
Dual form 135.3.h.a.89.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.84364 + 3.19328i) q^{2} +(-4.79800 + 8.31039i) q^{4} +(4.90060 + 0.992036i) q^{5} +(-2.22343 + 1.28370i) q^{7} -20.6340 q^{8} +(5.86709 + 17.4779i) q^{10} +(8.51311 - 4.91505i) q^{11} +(-10.4471 - 6.03166i) q^{13} +(-8.19840 - 4.73335i) q^{14} +(-18.8497 - 32.6486i) q^{16} +4.28451 q^{17} +7.16698 q^{19} +(-31.7573 + 35.9661i) q^{20} +(31.3902 + 18.1231i) q^{22} +(-0.255270 + 0.442140i) q^{23} +(23.0317 + 9.72314i) q^{25} -44.4808i q^{26} -24.6367i q^{28} +(26.4589 - 15.2761i) q^{29} +(9.61361 - 16.6513i) q^{31} +(28.2359 - 48.9060i) q^{32} +(7.89910 + 13.6816i) q^{34} +(-12.1696 + 4.08516i) q^{35} +1.31851i q^{37} +(13.2133 + 22.8862i) q^{38} +(-101.119 - 20.4697i) q^{40} +(29.9735 + 17.3052i) q^{41} +(-44.9872 + 25.9734i) q^{43} +94.3297i q^{44} -1.88250 q^{46} +(-25.4656 - 44.1078i) q^{47} +(-21.2042 + 36.7268i) q^{49} +(11.4135 + 91.4726i) q^{50} +(100.251 - 57.8799i) q^{52} +86.6349 q^{53} +(46.5953 - 15.6414i) q^{55} +(45.8783 - 26.4879i) q^{56} +(97.5613 + 56.3270i) q^{58} +(-91.7656 - 52.9809i) q^{59} +(-15.6600 - 27.1239i) q^{61} +70.8961 q^{62} +57.4297 q^{64} +(-45.2136 - 39.9227i) q^{65} +(-67.5968 - 39.0271i) q^{67} +(-20.5571 + 35.6060i) q^{68} +(-35.4814 - 31.3293i) q^{70} +72.6762i q^{71} -30.3097i q^{73} +(-4.21037 + 2.43086i) q^{74} +(-34.3872 + 59.5604i) q^{76} +(-12.6189 + 21.8565i) q^{77} +(-57.6398 - 99.8350i) q^{79} +(-59.9861 - 178.697i) q^{80} +127.618i q^{82} +(-30.0069 - 51.9734i) q^{83} +(20.9967 + 4.25039i) q^{85} +(-165.880 - 95.7710i) q^{86} +(-175.660 + 101.417i) q^{88} -71.2992i q^{89} +30.9713 q^{91} +(-2.44957 - 4.24278i) q^{92} +(93.8989 - 162.638i) q^{94} +(35.1225 + 7.10991i) q^{95} +(110.820 - 63.9819i) q^{97} -156.372 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 18 q^{4} + 12 q^{5} + 4 q^{10} + 24 q^{11} - 30 q^{14} - 26 q^{16} - 8 q^{19} - 144 q^{20} + 2 q^{25} + 114 q^{29} + 28 q^{31} - 4 q^{34} - 34 q^{40} - 102 q^{41} + 116 q^{46} - 40 q^{49} + 408 q^{50}+ \cdots + 762 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/135\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(82\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.84364 + 3.19328i 0.921819 + 1.59664i 0.796599 + 0.604509i \(0.206631\pi\)
0.125221 + 0.992129i \(0.460036\pi\)
\(3\) 0 0
\(4\) −4.79800 + 8.31039i −1.19950 + 2.07760i
\(5\) 4.90060 + 0.992036i 0.980120 + 0.198407i
\(6\) 0 0
\(7\) −2.22343 + 1.28370i −0.317633 + 0.183385i −0.650337 0.759646i \(-0.725372\pi\)
0.332704 + 0.943031i \(0.392039\pi\)
\(8\) −20.6340 −2.57925
\(9\) 0 0
\(10\) 5.86709 + 17.4779i 0.586709 + 1.74779i
\(11\) 8.51311 4.91505i 0.773919 0.446823i −0.0603516 0.998177i \(-0.519222\pi\)
0.834271 + 0.551355i \(0.185889\pi\)
\(12\) 0 0
\(13\) −10.4471 6.03166i −0.803626 0.463974i 0.0411114 0.999155i \(-0.486910\pi\)
−0.844738 + 0.535181i \(0.820243\pi\)
\(14\) −8.19840 4.73335i −0.585600 0.338096i
\(15\) 0 0
\(16\) −18.8497 32.6486i −1.17810 2.04054i
\(17\) 4.28451 0.252030 0.126015 0.992028i \(-0.459781\pi\)
0.126015 + 0.992028i \(0.459781\pi\)
\(18\) 0 0
\(19\) 7.16698 0.377210 0.188605 0.982053i \(-0.439603\pi\)
0.188605 + 0.982053i \(0.439603\pi\)
\(20\) −31.7573 + 35.9661i −1.58786 + 1.79830i
\(21\) 0 0
\(22\) 31.3902 + 18.1231i 1.42683 + 0.823779i
\(23\) −0.255270 + 0.442140i −0.0110987 + 0.0192235i −0.871521 0.490357i \(-0.836866\pi\)
0.860423 + 0.509581i \(0.170200\pi\)
\(24\) 0 0
\(25\) 23.0317 + 9.72314i 0.921269 + 0.388926i
\(26\) 44.4808i 1.71080i
\(27\) 0 0
\(28\) 24.6367i 0.879884i
\(29\) 26.4589 15.2761i 0.912376 0.526760i 0.0311810 0.999514i \(-0.490073\pi\)
0.881195 + 0.472753i \(0.156740\pi\)
\(30\) 0 0
\(31\) 9.61361 16.6513i 0.310116 0.537137i −0.668271 0.743918i \(-0.732965\pi\)
0.978387 + 0.206781i \(0.0662986\pi\)
\(32\) 28.2359 48.9060i 0.882372 1.52831i
\(33\) 0 0
\(34\) 7.89910 + 13.6816i 0.232326 + 0.402401i
\(35\) −12.1696 + 4.08516i −0.347703 + 0.116719i
\(36\) 0 0
\(37\) 1.31851i 0.0356355i 0.999841 + 0.0178177i \(0.00567186\pi\)
−0.999841 + 0.0178177i \(0.994328\pi\)
\(38\) 13.2133 + 22.8862i 0.347719 + 0.602267i
\(39\) 0 0
\(40\) −101.119 20.4697i −2.52798 0.511743i
\(41\) 29.9735 + 17.3052i 0.731061 + 0.422078i 0.818810 0.574064i \(-0.194634\pi\)
−0.0877493 + 0.996143i \(0.527967\pi\)
\(42\) 0 0
\(43\) −44.9872 + 25.9734i −1.04621 + 0.604032i −0.921587 0.388172i \(-0.873107\pi\)
−0.124627 + 0.992204i \(0.539773\pi\)
\(44\) 94.3297i 2.14386i
\(45\) 0 0
\(46\) −1.88250 −0.0409239
\(47\) −25.4656 44.1078i −0.541822 0.938463i −0.998800 0.0489851i \(-0.984401\pi\)
0.456977 0.889478i \(-0.348932\pi\)
\(48\) 0 0
\(49\) −21.2042 + 36.7268i −0.432740 + 0.749527i
\(50\) 11.4135 + 91.4726i 0.228270 + 1.82945i
\(51\) 0 0
\(52\) 100.251 57.8799i 1.92790 1.11307i
\(53\) 86.6349 1.63462 0.817311 0.576197i \(-0.195464\pi\)
0.817311 + 0.576197i \(0.195464\pi\)
\(54\) 0 0
\(55\) 46.5953 15.6414i 0.847186 0.284388i
\(56\) 45.8783 26.4879i 0.819255 0.472997i
\(57\) 0 0
\(58\) 97.5613 + 56.3270i 1.68209 + 0.971156i
\(59\) −91.7656 52.9809i −1.55535 0.897982i −0.997691 0.0679111i \(-0.978367\pi\)
−0.557658 0.830071i \(-0.688300\pi\)
\(60\) 0 0
\(61\) −15.6600 27.1239i −0.256721 0.444655i 0.708640 0.705570i \(-0.249309\pi\)
−0.965362 + 0.260915i \(0.915976\pi\)
\(62\) 70.8961 1.14348
\(63\) 0 0
\(64\) 57.4297 0.897339
\(65\) −45.2136 39.9227i −0.695594 0.614195i
\(66\) 0 0
\(67\) −67.5968 39.0271i −1.00891 0.582493i −0.0980363 0.995183i \(-0.531256\pi\)
−0.910872 + 0.412689i \(0.864589\pi\)
\(68\) −20.5571 + 35.6060i −0.302311 + 0.523617i
\(69\) 0 0
\(70\) −35.4814 31.3293i −0.506877 0.447562i
\(71\) 72.6762i 1.02361i 0.859102 + 0.511804i \(0.171023\pi\)
−0.859102 + 0.511804i \(0.828977\pi\)
\(72\) 0 0
\(73\) 30.3097i 0.415201i −0.978214 0.207601i \(-0.933435\pi\)
0.978214 0.207601i \(-0.0665654\pi\)
\(74\) −4.21037 + 2.43086i −0.0568969 + 0.0328494i
\(75\) 0 0
\(76\) −34.3872 + 59.5604i −0.452463 + 0.783690i
\(77\) −12.6189 + 21.8565i −0.163881 + 0.283851i
\(78\) 0 0
\(79\) −57.6398 99.8350i −0.729617 1.26373i −0.957045 0.289940i \(-0.906365\pi\)
0.227428 0.973795i \(-0.426969\pi\)
\(80\) −59.9861 178.697i −0.749826 2.23371i
\(81\) 0 0
\(82\) 127.618i 1.55632i
\(83\) −30.0069 51.9734i −0.361529 0.626186i 0.626684 0.779274i \(-0.284412\pi\)
−0.988213 + 0.153087i \(0.951078\pi\)
\(84\) 0 0
\(85\) 20.9967 + 4.25039i 0.247020 + 0.0500046i
\(86\) −165.880 95.7710i −1.92884 1.11362i
\(87\) 0 0
\(88\) −175.660 + 101.417i −1.99613 + 1.15247i
\(89\) 71.2992i 0.801115i −0.916272 0.400558i \(-0.868816\pi\)
0.916272 0.400558i \(-0.131184\pi\)
\(90\) 0 0
\(91\) 30.9713 0.340344
\(92\) −2.44957 4.24278i −0.0266257 0.0461171i
\(93\) 0 0
\(94\) 93.8989 162.638i 0.998924 1.73019i
\(95\) 35.1225 + 7.10991i 0.369711 + 0.0748412i
\(96\) 0 0
\(97\) 110.820 63.9819i 1.14247 0.659607i 0.195431 0.980717i \(-0.437389\pi\)
0.947042 + 0.321111i \(0.104056\pi\)
\(98\) −156.372 −1.59563
\(99\) 0 0
\(100\) −191.309 + 144.751i −1.91309 + 1.44751i
\(101\) −74.5445 + 43.0383i −0.738065 + 0.426122i −0.821365 0.570403i \(-0.806787\pi\)
0.0833005 + 0.996524i \(0.473454\pi\)
\(102\) 0 0
\(103\) 35.4060 + 20.4416i 0.343747 + 0.198463i 0.661928 0.749568i \(-0.269739\pi\)
−0.318181 + 0.948030i \(0.603072\pi\)
\(104\) 215.567 + 124.457i 2.07276 + 1.19671i
\(105\) 0 0
\(106\) 159.723 + 276.649i 1.50683 + 2.60990i
\(107\) 1.66026 0.0155165 0.00775823 0.999970i \(-0.497530\pi\)
0.00775823 + 0.999970i \(0.497530\pi\)
\(108\) 0 0
\(109\) −148.641 −1.36368 −0.681839 0.731502i \(-0.738820\pi\)
−0.681839 + 0.731502i \(0.738820\pi\)
\(110\) 135.852 + 119.954i 1.23502 + 1.09050i
\(111\) 0 0
\(112\) 83.8218 + 48.3946i 0.748409 + 0.432094i
\(113\) −65.7284 + 113.845i −0.581667 + 1.00748i 0.413615 + 0.910452i \(0.364266\pi\)
−0.995282 + 0.0970249i \(0.969067\pi\)
\(114\) 0 0
\(115\) −1.68959 + 1.91351i −0.0146921 + 0.0166392i
\(116\) 293.178i 2.52740i
\(117\) 0 0
\(118\) 390.711i 3.31111i
\(119\) −9.52631 + 5.50002i −0.0800531 + 0.0462187i
\(120\) 0 0
\(121\) −12.1846 + 21.1044i −0.100699 + 0.174416i
\(122\) 57.7428 100.013i 0.473301 0.819782i
\(123\) 0 0
\(124\) 92.2523 + 159.786i 0.743970 + 1.28859i
\(125\) 103.224 + 70.4975i 0.825788 + 0.563980i
\(126\) 0 0
\(127\) 101.150i 0.796460i 0.917286 + 0.398230i \(0.130375\pi\)
−0.917286 + 0.398230i \(0.869625\pi\)
\(128\) −7.06394 12.2351i −0.0551870 0.0955867i
\(129\) 0 0
\(130\) 44.1266 217.982i 0.339435 1.67679i
\(131\) 74.3023 + 42.8985i 0.567193 + 0.327469i 0.756028 0.654540i \(-0.227138\pi\)
−0.188834 + 0.982009i \(0.560471\pi\)
\(132\) 0 0
\(133\) −15.9353 + 9.20024i −0.119814 + 0.0691747i
\(134\) 287.807i 2.14781i
\(135\) 0 0
\(136\) −88.4068 −0.650050
\(137\) 34.8631 + 60.3847i 0.254475 + 0.440764i 0.964753 0.263158i \(-0.0847639\pi\)
−0.710278 + 0.703922i \(0.751431\pi\)
\(138\) 0 0
\(139\) −69.4587 + 120.306i −0.499703 + 0.865511i −1.00000 0.000342926i \(-0.999891\pi\)
0.500297 + 0.865854i \(0.333224\pi\)
\(140\) 24.4405 120.735i 0.174575 0.862391i
\(141\) 0 0
\(142\) −232.075 + 133.989i −1.63433 + 0.943582i
\(143\) −118.584 −0.829256
\(144\) 0 0
\(145\) 144.819 48.6136i 0.998751 0.335266i
\(146\) 96.7872 55.8801i 0.662926 0.382740i
\(147\) 0 0
\(148\) −10.9573 6.32622i −0.0740361 0.0427448i
\(149\) −41.3586 23.8784i −0.277574 0.160258i 0.354750 0.934961i \(-0.384566\pi\)
−0.632325 + 0.774703i \(0.717899\pi\)
\(150\) 0 0
\(151\) −27.7457 48.0569i −0.183746 0.318258i 0.759407 0.650616i \(-0.225489\pi\)
−0.943153 + 0.332358i \(0.892156\pi\)
\(152\) −147.884 −0.972920
\(153\) 0 0
\(154\) −93.0585 −0.604276
\(155\) 63.6311 72.0641i 0.410523 0.464929i
\(156\) 0 0
\(157\) −9.58875 5.53607i −0.0610749 0.0352616i 0.469152 0.883118i \(-0.344560\pi\)
−0.530226 + 0.847856i \(0.677893\pi\)
\(158\) 212.534 368.119i 1.34515 2.32987i
\(159\) 0 0
\(160\) 186.889 211.658i 1.16806 1.32286i
\(161\) 1.31076i 0.00814134i
\(162\) 0 0
\(163\) 216.230i 1.32656i 0.748370 + 0.663282i \(0.230837\pi\)
−0.748370 + 0.663282i \(0.769163\pi\)
\(164\) −287.626 + 166.061i −1.75382 + 1.01257i
\(165\) 0 0
\(166\) 110.644 191.640i 0.666528 1.15446i
\(167\) 30.9734 53.6475i 0.185469 0.321242i −0.758265 0.651946i \(-0.773953\pi\)
0.943735 + 0.330704i \(0.107286\pi\)
\(168\) 0 0
\(169\) −11.7382 20.3311i −0.0694567 0.120302i
\(170\) 25.1376 + 74.8844i 0.147868 + 0.440496i
\(171\) 0 0
\(172\) 498.481i 2.89815i
\(173\) 166.735 + 288.794i 0.963788 + 1.66933i 0.712837 + 0.701330i \(0.247410\pi\)
0.250951 + 0.968000i \(0.419257\pi\)
\(174\) 0 0
\(175\) −63.6910 + 7.94705i −0.363948 + 0.0454117i
\(176\) −320.939 185.294i −1.82352 1.05281i
\(177\) 0 0
\(178\) 227.678 131.450i 1.27909 0.738483i
\(179\) 193.521i 1.08112i −0.841304 0.540562i \(-0.818212\pi\)
0.841304 0.540562i \(-0.181788\pi\)
\(180\) 0 0
\(181\) 243.865 1.34732 0.673661 0.739041i \(-0.264721\pi\)
0.673661 + 0.739041i \(0.264721\pi\)
\(182\) 57.0999 + 98.8999i 0.313736 + 0.543406i
\(183\) 0 0
\(184\) 5.26724 9.12313i 0.0286263 0.0495822i
\(185\) −1.30801 + 6.46150i −0.00707033 + 0.0349270i
\(186\) 0 0
\(187\) 36.4746 21.0586i 0.195051 0.112613i
\(188\) 488.737 2.59966
\(189\) 0 0
\(190\) 42.0493 + 125.264i 0.221312 + 0.659284i
\(191\) 122.599 70.7825i 0.641879 0.370589i −0.143459 0.989656i \(-0.545823\pi\)
0.785338 + 0.619067i \(0.212489\pi\)
\(192\) 0 0
\(193\) 191.757 + 110.711i 0.993561 + 0.573633i 0.906337 0.422556i \(-0.138867\pi\)
0.0872244 + 0.996189i \(0.472200\pi\)
\(194\) 408.623 + 235.919i 2.10631 + 1.21608i
\(195\) 0 0
\(196\) −203.476 352.431i −1.03814 1.79812i
\(197\) −28.4424 −0.144378 −0.0721889 0.997391i \(-0.522998\pi\)
−0.0721889 + 0.997391i \(0.522998\pi\)
\(198\) 0 0
\(199\) 153.875 0.773244 0.386622 0.922238i \(-0.373642\pi\)
0.386622 + 0.922238i \(0.373642\pi\)
\(200\) −475.237 200.628i −2.37619 1.00314i
\(201\) 0 0
\(202\) −274.866 158.694i −1.36072 0.785615i
\(203\) −39.2197 + 67.9304i −0.193200 + 0.334633i
\(204\) 0 0
\(205\) 129.721 + 114.541i 0.632784 + 0.558735i
\(206\) 150.748i 0.731786i
\(207\) 0 0
\(208\) 454.779i 2.18644i
\(209\) 61.0133 35.2261i 0.291930 0.168546i
\(210\) 0 0
\(211\) −90.0891 + 156.039i −0.426962 + 0.739521i −0.996601 0.0823744i \(-0.973750\pi\)
0.569639 + 0.821895i \(0.307083\pi\)
\(212\) −415.675 + 719.970i −1.96073 + 3.39608i
\(213\) 0 0
\(214\) 3.06092 + 5.30167i 0.0143034 + 0.0247742i
\(215\) −246.231 + 82.6561i −1.14526 + 0.384447i
\(216\) 0 0
\(217\) 49.3638i 0.227483i
\(218\) −274.040 474.651i −1.25706 2.17730i
\(219\) 0 0
\(220\) −93.5785 + 462.272i −0.425357 + 2.10124i
\(221\) −44.7609 25.8427i −0.202538 0.116935i
\(222\) 0 0
\(223\) −186.544 + 107.701i −0.836521 + 0.482966i −0.856080 0.516843i \(-0.827107\pi\)
0.0195592 + 0.999809i \(0.493774\pi\)
\(224\) 144.985i 0.647256i
\(225\) 0 0
\(226\) −484.717 −2.14477
\(227\) −25.2080 43.6615i −0.111048 0.192341i 0.805145 0.593078i \(-0.202088\pi\)
−0.916193 + 0.400737i \(0.868754\pi\)
\(228\) 0 0
\(229\) 3.08352 5.34081i 0.0134652 0.0233223i −0.859214 0.511616i \(-0.829047\pi\)
0.872679 + 0.488294i \(0.162380\pi\)
\(230\) −9.22537 1.86751i −0.0401103 0.00811960i
\(231\) 0 0
\(232\) −545.954 + 315.207i −2.35325 + 1.35865i
\(233\) 52.5336 0.225466 0.112733 0.993625i \(-0.464040\pi\)
0.112733 + 0.993625i \(0.464040\pi\)
\(234\) 0 0
\(235\) −81.0403 241.417i −0.344853 1.02731i
\(236\) 880.584 508.405i 3.73129 2.15426i
\(237\) 0 0
\(238\) −35.1262 20.2801i −0.147589 0.0852105i
\(239\) −84.5102 48.7920i −0.353599 0.204151i 0.312670 0.949862i \(-0.398777\pi\)
−0.666269 + 0.745711i \(0.732110\pi\)
\(240\) 0 0
\(241\) 71.3647 + 123.607i 0.296119 + 0.512893i 0.975245 0.221129i \(-0.0709742\pi\)
−0.679126 + 0.734022i \(0.737641\pi\)
\(242\) −89.8560 −0.371306
\(243\) 0 0
\(244\) 300.547 1.23175
\(245\) −140.348 + 158.948i −0.572848 + 0.648767i
\(246\) 0 0
\(247\) −74.8745 43.2288i −0.303136 0.175015i
\(248\) −198.367 + 343.583i −0.799869 + 1.38541i
\(249\) 0 0
\(250\) −34.8112 + 459.593i −0.139245 + 1.83837i
\(251\) 254.631i 1.01447i −0.861809 0.507233i \(-0.830668\pi\)
0.861809 0.507233i \(-0.169332\pi\)
\(252\) 0 0
\(253\) 5.01865i 0.0198366i
\(254\) −323.001 + 186.485i −1.27166 + 0.734192i
\(255\) 0 0
\(256\) 140.906 244.057i 0.550415 0.953346i
\(257\) 71.3682 123.613i 0.277697 0.480986i −0.693115 0.720827i \(-0.743762\pi\)
0.970812 + 0.239841i \(0.0770955\pi\)
\(258\) 0 0
\(259\) −1.69257 2.93162i −0.00653502 0.0113190i
\(260\) 548.708 184.193i 2.11042 0.708436i
\(261\) 0 0
\(262\) 316.357i 1.20747i
\(263\) 126.234 + 218.644i 0.479979 + 0.831347i 0.999736 0.0229665i \(-0.00731110\pi\)
−0.519758 + 0.854314i \(0.673978\pi\)
\(264\) 0 0
\(265\) 424.563 + 85.9450i 1.60212 + 0.324321i
\(266\) −58.7578 33.9238i −0.220894 0.127533i
\(267\) 0 0
\(268\) 648.660 374.504i 2.42037 1.39740i
\(269\) 388.672i 1.44488i 0.691435 + 0.722439i \(0.256979\pi\)
−0.691435 + 0.722439i \(0.743021\pi\)
\(270\) 0 0
\(271\) −163.253 −0.602410 −0.301205 0.953559i \(-0.597389\pi\)
−0.301205 + 0.953559i \(0.597389\pi\)
\(272\) −80.7617 139.883i −0.296918 0.514277i
\(273\) 0 0
\(274\) −128.550 + 222.655i −0.469160 + 0.812610i
\(275\) 243.861 30.4278i 0.886769 0.110647i
\(276\) 0 0
\(277\) 419.003 241.912i 1.51265 0.873328i 0.512757 0.858534i \(-0.328624\pi\)
0.999891 0.0147939i \(-0.00470921\pi\)
\(278\) −512.227 −1.84254
\(279\) 0 0
\(280\) 251.108 84.2934i 0.896814 0.301048i
\(281\) −231.798 + 133.829i −0.824906 + 0.476260i −0.852105 0.523371i \(-0.824674\pi\)
0.0271995 + 0.999630i \(0.491341\pi\)
\(282\) 0 0
\(283\) −425.908 245.898i −1.50498 0.868898i −0.999983 0.00577475i \(-0.998162\pi\)
−0.504993 0.863124i \(-0.668505\pi\)
\(284\) −603.967 348.701i −2.12664 1.22782i
\(285\) 0 0
\(286\) −218.625 378.670i −0.764424 1.32402i
\(287\) −88.8586 −0.309612
\(288\) 0 0
\(289\) −270.643 −0.936481
\(290\) 422.230 + 372.820i 1.45597 + 1.28559i
\(291\) 0 0
\(292\) 251.885 + 145.426i 0.862621 + 0.498034i
\(293\) 161.073 278.986i 0.549737 0.952172i −0.448555 0.893755i \(-0.648061\pi\)
0.998292 0.0584171i \(-0.0186053\pi\)
\(294\) 0 0
\(295\) −397.148 350.673i −1.34626 1.18872i
\(296\) 27.2062i 0.0919129i
\(297\) 0 0
\(298\) 176.092i 0.590914i
\(299\) 5.33367 3.07940i 0.0178384 0.0102990i
\(300\) 0 0
\(301\) 66.6839 115.500i 0.221541 0.383720i
\(302\) 102.306 177.199i 0.338762 0.586752i
\(303\) 0 0
\(304\) −135.095 233.992i −0.444392 0.769710i
\(305\) −49.8355 148.459i −0.163395 0.486750i
\(306\) 0 0
\(307\) 426.031i 1.38772i 0.720109 + 0.693861i \(0.244092\pi\)
−0.720109 + 0.693861i \(0.755908\pi\)
\(308\) −121.091 209.735i −0.393152 0.680959i
\(309\) 0 0
\(310\) 347.433 + 70.3315i 1.12075 + 0.226876i
\(311\) 1.01150 + 0.583987i 0.00325240 + 0.00187777i 0.501625 0.865085i \(-0.332736\pi\)
−0.498373 + 0.866963i \(0.666069\pi\)
\(312\) 0 0
\(313\) −225.989 + 130.475i −0.722009 + 0.416852i −0.815492 0.578769i \(-0.803533\pi\)
0.0934824 + 0.995621i \(0.470200\pi\)
\(314\) 40.8260i 0.130019i
\(315\) 0 0
\(316\) 1106.22 3.50071
\(317\) −65.5178 113.480i −0.206681 0.357981i 0.743986 0.668195i \(-0.232933\pi\)
−0.950667 + 0.310213i \(0.899599\pi\)
\(318\) 0 0
\(319\) 150.165 260.094i 0.470737 0.815340i
\(320\) 281.440 + 56.9724i 0.879500 + 0.178039i
\(321\) 0 0
\(322\) 4.18560 2.41656i 0.0129988 0.00750484i
\(323\) 30.7071 0.0950683
\(324\) 0 0
\(325\) −181.969 240.499i −0.559905 0.739996i
\(326\) −690.482 + 398.650i −2.11804 + 1.22285i
\(327\) 0 0
\(328\) −618.474 357.076i −1.88559 1.08865i
\(329\) 113.242 + 65.3803i 0.344201 + 0.198724i
\(330\) 0 0
\(331\) −96.7419 167.562i −0.292272 0.506229i 0.682075 0.731282i \(-0.261078\pi\)
−0.974347 + 0.225053i \(0.927745\pi\)
\(332\) 575.893 1.73462
\(333\) 0 0
\(334\) 228.415 0.683877
\(335\) −292.549 258.314i −0.873280 0.771088i
\(336\) 0 0
\(337\) −401.485 231.798i −1.19135 0.687827i −0.232738 0.972539i \(-0.574769\pi\)
−0.958613 + 0.284712i \(0.908102\pi\)
\(338\) 43.2819 74.9664i 0.128053 0.221794i
\(339\) 0 0
\(340\) −136.065 + 154.097i −0.400190 + 0.453227i
\(341\) 189.005i 0.554268i
\(342\) 0 0
\(343\) 234.682i 0.684203i
\(344\) 928.267 535.935i 2.69845 1.55795i
\(345\) 0 0
\(346\) −614.799 + 1064.86i −1.77688 + 3.07764i
\(347\) 4.85934 8.41662i 0.0140039 0.0242554i −0.858939 0.512079i \(-0.828876\pi\)
0.872942 + 0.487823i \(0.162209\pi\)
\(348\) 0 0
\(349\) 24.6679 + 42.7260i 0.0706816 + 0.122424i 0.899200 0.437537i \(-0.144149\pi\)
−0.828519 + 0.559962i \(0.810816\pi\)
\(350\) −142.800 188.731i −0.408001 0.539232i
\(351\) 0 0
\(352\) 555.123i 1.57705i
\(353\) 47.6810 + 82.5859i 0.135074 + 0.233954i 0.925626 0.378441i \(-0.123540\pi\)
−0.790552 + 0.612395i \(0.790206\pi\)
\(354\) 0 0
\(355\) −72.0974 + 356.157i −0.203091 + 1.00326i
\(356\) 592.524 + 342.094i 1.66439 + 0.960938i
\(357\) 0 0
\(358\) 617.966 356.783i 1.72616 0.996600i
\(359\) 539.284i 1.50219i 0.660197 + 0.751093i \(0.270473\pi\)
−0.660197 + 0.751093i \(0.729527\pi\)
\(360\) 0 0
\(361\) −309.634 −0.857713
\(362\) 449.599 + 778.729i 1.24199 + 2.15118i
\(363\) 0 0
\(364\) −148.600 + 257.383i −0.408243 + 0.707098i
\(365\) 30.0683 148.536i 0.0823790 0.406947i
\(366\) 0 0
\(367\) 262.482 151.544i 0.715211 0.412927i −0.0977766 0.995208i \(-0.531173\pi\)
0.812987 + 0.582281i \(0.197840\pi\)
\(368\) 19.2470 0.0523016
\(369\) 0 0
\(370\) −23.0448 + 7.73582i −0.0622833 + 0.0209076i
\(371\) −192.627 + 111.213i −0.519209 + 0.299766i
\(372\) 0 0
\(373\) 113.159 + 65.3325i 0.303376 + 0.175154i 0.643959 0.765060i \(-0.277291\pi\)
−0.340582 + 0.940215i \(0.610624\pi\)
\(374\) 134.492 + 77.6489i 0.359604 + 0.207617i
\(375\) 0 0
\(376\) 525.459 + 910.121i 1.39750 + 2.42054i
\(377\) −368.560 −0.977612
\(378\) 0 0
\(379\) 545.141 1.43837 0.719183 0.694821i \(-0.244516\pi\)
0.719183 + 0.694821i \(0.244516\pi\)
\(380\) −227.604 + 257.768i −0.598958 + 0.678338i
\(381\) 0 0
\(382\) 452.056 + 260.995i 1.18339 + 0.683232i
\(383\) −0.623248 + 1.07950i −0.00162728 + 0.00281853i −0.866838 0.498590i \(-0.833851\pi\)
0.865211 + 0.501409i \(0.167185\pi\)
\(384\) 0 0
\(385\) −83.5225 + 94.5917i −0.216941 + 0.245693i
\(386\) 816.445i 2.11514i
\(387\) 0 0
\(388\) 1227.94i 3.16480i
\(389\) 345.001 199.187i 0.886893 0.512048i 0.0139679 0.999902i \(-0.495554\pi\)
0.872925 + 0.487855i \(0.162220\pi\)
\(390\) 0 0
\(391\) −1.09371 + 1.89435i −0.00279720 + 0.00484490i
\(392\) 437.529 757.822i 1.11615 1.93322i
\(393\) 0 0
\(394\) −52.4376 90.8245i −0.133090 0.230519i
\(395\) −183.429 546.432i −0.464378 1.38337i
\(396\) 0 0
\(397\) 685.998i 1.72795i −0.503531 0.863977i \(-0.667966\pi\)
0.503531 0.863977i \(-0.332034\pi\)
\(398\) 283.691 + 491.367i 0.712791 + 1.23459i
\(399\) 0 0
\(400\) −116.694 935.232i −0.291734 2.33808i
\(401\) −44.9212 25.9353i −0.112023 0.0646764i 0.442942 0.896550i \(-0.353935\pi\)
−0.554965 + 0.831874i \(0.687268\pi\)
\(402\) 0 0
\(403\) −200.869 + 115.972i −0.498435 + 0.287772i
\(404\) 825.992i 2.04453i
\(405\) 0 0
\(406\) −289.227 −0.712383
\(407\) 6.48055 + 11.2246i 0.0159227 + 0.0275790i
\(408\) 0 0
\(409\) 135.648 234.950i 0.331658 0.574449i −0.651179 0.758924i \(-0.725725\pi\)
0.982837 + 0.184475i \(0.0590586\pi\)
\(410\) −126.602 + 625.405i −0.308785 + 1.52538i
\(411\) 0 0
\(412\) −339.756 + 196.158i −0.824650 + 0.476112i
\(413\) 272.046 0.658707
\(414\) 0 0
\(415\) −95.4921 284.469i −0.230101 0.685467i
\(416\) −589.969 + 340.619i −1.41819 + 0.818795i
\(417\) 0 0
\(418\) 224.973 + 129.888i 0.538213 + 0.310738i
\(419\) −23.9467 13.8256i −0.0571520 0.0329967i 0.471152 0.882052i \(-0.343838\pi\)
−0.528304 + 0.849055i \(0.677172\pi\)
\(420\) 0 0
\(421\) 218.613 + 378.649i 0.519271 + 0.899403i 0.999749 + 0.0223967i \(0.00712970\pi\)
−0.480478 + 0.877007i \(0.659537\pi\)
\(422\) −664.367 −1.57433
\(423\) 0 0
\(424\) −1787.63 −4.21610
\(425\) 98.6798 + 41.6590i 0.232188 + 0.0980211i
\(426\) 0 0
\(427\) 69.6378 + 40.2054i 0.163086 + 0.0941579i
\(428\) −7.96594 + 13.7974i −0.0186120 + 0.0322369i
\(429\) 0 0
\(430\) −717.904 633.894i −1.66954 1.47417i
\(431\) 54.3602i 0.126126i −0.998010 0.0630629i \(-0.979913\pi\)
0.998010 0.0630629i \(-0.0200869\pi\)
\(432\) 0 0
\(433\) 526.426i 1.21576i 0.794028 + 0.607882i \(0.207981\pi\)
−0.794028 + 0.607882i \(0.792019\pi\)
\(434\) −157.632 + 91.0091i −0.363208 + 0.209698i
\(435\) 0 0
\(436\) 713.180 1235.26i 1.63573 2.83317i
\(437\) −1.82951 + 3.16881i −0.00418653 + 0.00725128i
\(438\) 0 0
\(439\) 208.124 + 360.481i 0.474087 + 0.821142i 0.999560 0.0296681i \(-0.00944503\pi\)
−0.525473 + 0.850810i \(0.676112\pi\)
\(440\) −961.448 + 322.744i −2.18511 + 0.733510i
\(441\) 0 0
\(442\) 190.579i 0.431173i
\(443\) −213.582 369.935i −0.482127 0.835069i 0.517662 0.855585i \(-0.326802\pi\)
−0.999790 + 0.0205163i \(0.993469\pi\)
\(444\) 0 0
\(445\) 70.7314 349.409i 0.158947 0.785189i
\(446\) −687.840 397.125i −1.54224 0.890414i
\(447\) 0 0
\(448\) −127.691 + 73.7224i −0.285024 + 0.164559i
\(449\) 236.730i 0.527239i 0.964627 + 0.263620i \(0.0849164\pi\)
−0.964627 + 0.263620i \(0.915084\pi\)
\(450\) 0 0
\(451\) 340.224 0.754376
\(452\) −630.730 1092.46i −1.39542 2.41694i
\(453\) 0 0
\(454\) 92.9488 160.992i 0.204733 0.354608i
\(455\) 151.778 + 30.7247i 0.333578 + 0.0675267i
\(456\) 0 0
\(457\) −604.296 + 348.891i −1.32231 + 0.763437i −0.984097 0.177633i \(-0.943156\pi\)
−0.338214 + 0.941069i \(0.609823\pi\)
\(458\) 22.7396 0.0496497
\(459\) 0 0
\(460\) −7.79536 23.2222i −0.0169464 0.0504831i
\(461\) 332.339 191.876i 0.720910 0.416217i −0.0941777 0.995555i \(-0.530022\pi\)
0.815087 + 0.579338i \(0.196689\pi\)
\(462\) 0 0
\(463\) 233.924 + 135.056i 0.505235 + 0.291698i 0.730873 0.682514i \(-0.239113\pi\)
−0.225638 + 0.974211i \(0.572447\pi\)
\(464\) −997.483 575.897i −2.14975 1.24116i
\(465\) 0 0
\(466\) 96.8529 + 167.754i 0.207839 + 0.359987i
\(467\) 777.952 1.66585 0.832926 0.553385i \(-0.186664\pi\)
0.832926 + 0.553385i \(0.186664\pi\)
\(468\) 0 0
\(469\) 200.396 0.427283
\(470\) 621.503 703.870i 1.32235 1.49760i
\(471\) 0 0
\(472\) 1893.50 + 1093.21i 4.01164 + 2.31612i
\(473\) −255.321 + 442.228i −0.539790 + 0.934943i
\(474\) 0 0
\(475\) 165.068 + 69.6856i 0.347512 + 0.146707i
\(476\) 105.556i 0.221757i
\(477\) 0 0
\(478\) 359.819i 0.752760i
\(479\) −62.8429 + 36.2824i −0.131196 + 0.0757460i −0.564162 0.825664i \(-0.690800\pi\)
0.432966 + 0.901410i \(0.357467\pi\)
\(480\) 0 0
\(481\) 7.95281 13.7747i 0.0165339 0.0286376i
\(482\) −263.141 + 455.774i −0.545936 + 0.945590i
\(483\) 0 0
\(484\) −116.924 202.518i −0.241578 0.418425i
\(485\) 606.556 203.612i 1.25063 0.419819i
\(486\) 0 0
\(487\) 729.487i 1.49792i 0.662616 + 0.748959i \(0.269446\pi\)
−0.662616 + 0.748959i \(0.730554\pi\)
\(488\) 323.129 + 559.676i 0.662150 + 1.14688i
\(489\) 0 0
\(490\) −766.315 155.127i −1.56391 0.316585i
\(491\) −3.30449 1.90785i −0.00673012 0.00388564i 0.496631 0.867962i \(-0.334570\pi\)
−0.503361 + 0.864076i \(0.667904\pi\)
\(492\) 0 0
\(493\) 113.364 65.4505i 0.229946 0.132760i
\(494\) 318.793i 0.645330i
\(495\) 0 0
\(496\) −724.853 −1.46140
\(497\) −93.2942 161.590i −0.187715 0.325131i
\(498\) 0 0
\(499\) −102.651 + 177.797i −0.205714 + 0.356307i −0.950360 0.311152i \(-0.899285\pi\)
0.744646 + 0.667460i \(0.232618\pi\)
\(500\) −1081.13 + 519.580i −2.16226 + 1.03916i
\(501\) 0 0
\(502\) 813.107 469.448i 1.61974 0.935155i
\(503\) 224.016 0.445360 0.222680 0.974892i \(-0.428519\pi\)
0.222680 + 0.974892i \(0.428519\pi\)
\(504\) 0 0
\(505\) −408.008 + 136.963i −0.807937 + 0.271213i
\(506\) −16.0259 + 9.25257i −0.0316718 + 0.0182857i
\(507\) 0 0
\(508\) −840.599 485.320i −1.65472 0.955354i
\(509\) 399.073 + 230.405i 0.784033 + 0.452662i 0.837858 0.545889i \(-0.183808\pi\)
−0.0538245 + 0.998550i \(0.517141\pi\)
\(510\) 0 0
\(511\) 38.9085 + 67.3915i 0.0761418 + 0.131882i
\(512\) 982.608 1.91916
\(513\) 0 0
\(514\) 526.309 1.02395
\(515\) 153.232 + 135.300i 0.297537 + 0.262719i
\(516\) 0 0
\(517\) −433.584 250.330i −0.838653 0.484197i
\(518\) 6.24097 10.8097i 0.0120482 0.0208681i
\(519\) 0 0
\(520\) 932.939 + 823.766i 1.79411 + 1.58417i
\(521\) 182.438i 0.350168i −0.984554 0.175084i \(-0.943980\pi\)
0.984554 0.175084i \(-0.0560197\pi\)
\(522\) 0 0
\(523\) 431.339i 0.824741i −0.911016 0.412370i \(-0.864701\pi\)
0.911016 0.412370i \(-0.135299\pi\)
\(524\) −713.006 + 411.654i −1.36070 + 0.785599i
\(525\) 0 0
\(526\) −465.461 + 806.202i −0.884907 + 1.53270i
\(527\) 41.1896 71.3426i 0.0781587 0.135375i
\(528\) 0 0
\(529\) 264.370 + 457.902i 0.499754 + 0.865599i
\(530\) 508.295 + 1514.20i 0.959046 + 2.85698i
\(531\) 0 0
\(532\) 176.571i 0.331901i
\(533\) −208.758 361.580i −0.391666 0.678386i
\(534\) 0 0
\(535\) 8.13627 + 1.64704i 0.0152080 + 0.00307858i
\(536\) 1394.80 + 805.285i 2.60223 + 1.50240i
\(537\) 0 0
\(538\) −1241.14 + 716.571i −2.30695 + 1.33192i
\(539\) 416.879i 0.773431i
\(540\) 0 0
\(541\) −649.924 −1.20134 −0.600669 0.799498i \(-0.705099\pi\)
−0.600669 + 0.799498i \(0.705099\pi\)
\(542\) −300.980 521.312i −0.555313 0.961830i
\(543\) 0 0
\(544\) 120.977 209.539i 0.222384 0.385181i
\(545\) −728.429 147.457i −1.33657 0.270564i
\(546\) 0 0
\(547\) 368.334 212.658i 0.673371 0.388771i −0.123982 0.992285i \(-0.539566\pi\)
0.797353 + 0.603513i \(0.206233\pi\)
\(548\) −669.094 −1.22097
\(549\) 0 0
\(550\) 546.757 + 722.619i 0.994103 + 1.31385i
\(551\) 189.631 109.483i 0.344157 0.198699i
\(552\) 0 0
\(553\) 256.316 + 147.984i 0.463501 + 0.267602i
\(554\) 1544.98 + 891.995i 2.78878 + 1.61010i
\(555\) 0 0
\(556\) −666.526 1154.46i −1.19879 2.07636i
\(557\) −325.885 −0.585073 −0.292536 0.956254i \(-0.594499\pi\)
−0.292536 + 0.956254i \(0.594499\pi\)
\(558\) 0 0
\(559\) 626.650 1.12102
\(560\) 362.768 + 320.317i 0.647800 + 0.571994i
\(561\) 0 0
\(562\) −854.705 493.464i −1.52083 0.878050i
\(563\) −353.382 + 612.075i −0.627676 + 1.08717i 0.360341 + 0.932821i \(0.382660\pi\)
−0.988017 + 0.154346i \(0.950673\pi\)
\(564\) 0 0
\(565\) −435.047 + 492.703i −0.769994 + 0.872041i
\(566\) 1813.39i 3.20387i
\(567\) 0 0
\(568\) 1499.60i 2.64015i
\(569\) 485.178 280.118i 0.852686 0.492299i −0.00887015 0.999961i \(-0.502823\pi\)
0.861556 + 0.507662i \(0.169490\pi\)
\(570\) 0 0
\(571\) 105.346 182.465i 0.184494 0.319553i −0.758912 0.651193i \(-0.774269\pi\)
0.943406 + 0.331640i \(0.107602\pi\)
\(572\) 568.965 985.475i 0.994693 1.72286i
\(573\) 0 0
\(574\) −163.823 283.750i −0.285406 0.494338i
\(575\) −10.1783 + 7.70122i −0.0177014 + 0.0133934i
\(576\) 0 0
\(577\) 502.258i 0.870464i 0.900318 + 0.435232i \(0.143334\pi\)
−0.900318 + 0.435232i \(0.856666\pi\)
\(578\) −498.968 864.237i −0.863266 1.49522i
\(579\) 0 0
\(580\) −290.844 + 1436.75i −0.501454 + 2.47715i
\(581\) 133.436 + 77.0395i 0.229667 + 0.132598i
\(582\) 0 0
\(583\) 737.533 425.815i 1.26507 0.730386i
\(584\) 625.411i 1.07091i
\(585\) 0 0
\(586\) 1187.84 2.02703
\(587\) 204.886 + 354.873i 0.349040 + 0.604554i 0.986079 0.166277i \(-0.0531746\pi\)
−0.637040 + 0.770831i \(0.719841\pi\)
\(588\) 0 0
\(589\) 68.9006 119.339i 0.116979 0.202613i
\(590\) 387.599 1914.72i 0.656948 3.24528i
\(591\) 0 0
\(592\) 43.0476 24.8535i 0.0727155 0.0419823i
\(593\) −944.139 −1.59214 −0.796070 0.605204i \(-0.793092\pi\)
−0.796070 + 0.605204i \(0.793092\pi\)
\(594\) 0 0
\(595\) −52.1409 + 17.5029i −0.0876317 + 0.0294167i
\(596\) 396.877 229.137i 0.665902 0.384458i
\(597\) 0 0
\(598\) 19.6667 + 11.3546i 0.0328875 + 0.0189876i
\(599\) −461.021 266.171i −0.769652 0.444359i 0.0630986 0.998007i \(-0.479902\pi\)
−0.832750 + 0.553649i \(0.813235\pi\)
\(600\) 0 0
\(601\) −257.783 446.493i −0.428923 0.742917i 0.567855 0.823129i \(-0.307774\pi\)
−0.996778 + 0.0802121i \(0.974440\pi\)
\(602\) 491.764 0.816883
\(603\) 0 0
\(604\) 532.496 0.881615
\(605\) −80.6481 + 91.3364i −0.133303 + 0.150969i
\(606\) 0 0
\(607\) 148.223 + 85.5764i 0.244189 + 0.140983i 0.617101 0.786884i \(-0.288307\pi\)
−0.372912 + 0.927867i \(0.621640\pi\)
\(608\) 202.366 350.509i 0.332839 0.576494i
\(609\) 0 0
\(610\) 382.191 432.843i 0.626543 0.709578i
\(611\) 614.400i 1.00557i
\(612\) 0 0
\(613\) 875.826i 1.42875i −0.699761 0.714377i \(-0.746710\pi\)
0.699761 0.714377i \(-0.253290\pi\)
\(614\) −1360.43 + 785.447i −2.21569 + 1.27923i
\(615\) 0 0
\(616\) 260.378 450.988i 0.422692 0.732124i
\(617\) −565.874 + 980.122i −0.917137 + 1.58853i −0.113396 + 0.993550i \(0.536173\pi\)
−0.803742 + 0.594978i \(0.797161\pi\)
\(618\) 0 0
\(619\) −260.187 450.658i −0.420335 0.728042i 0.575637 0.817705i \(-0.304754\pi\)
−0.995972 + 0.0896637i \(0.971421\pi\)
\(620\) 293.578 + 874.563i 0.473513 + 1.41058i
\(621\) 0 0
\(622\) 4.30664i 0.00692386i
\(623\) 91.5266 + 158.529i 0.146913 + 0.254460i
\(624\) 0 0
\(625\) 435.921 + 447.882i 0.697474 + 0.716611i
\(626\) −833.284 481.097i −1.33112 0.768525i
\(627\) 0 0
\(628\) 92.0138 53.1242i 0.146519 0.0845926i
\(629\) 5.64918i 0.00898121i
\(630\) 0 0
\(631\) −607.475 −0.962718 −0.481359 0.876523i \(-0.659857\pi\)
−0.481359 + 0.876523i \(0.659857\pi\)
\(632\) 1189.34 + 2060.00i 1.88187 + 3.25949i
\(633\) 0 0
\(634\) 241.582 418.433i 0.381044 0.659988i
\(635\) −100.345 + 495.697i −0.158023 + 0.780626i
\(636\) 0 0
\(637\) 443.047 255.794i 0.695522 0.401560i
\(638\) 1107.40 1.73574
\(639\) 0 0
\(640\) −22.4799 66.9670i −0.0351248 0.104636i
\(641\) −161.252 + 93.0990i −0.251564 + 0.145240i −0.620480 0.784222i \(-0.713062\pi\)
0.368916 + 0.929463i \(0.379729\pi\)
\(642\) 0 0
\(643\) 690.674 + 398.761i 1.07414 + 0.620157i 0.929311 0.369299i \(-0.120402\pi\)
0.144833 + 0.989456i \(0.453736\pi\)
\(644\) 10.8929 + 6.28901i 0.0169144 + 0.00976554i
\(645\) 0 0
\(646\) 56.6127 + 98.0561i 0.0876357 + 0.151790i
\(647\) 849.489 1.31297 0.656483 0.754341i \(-0.272043\pi\)
0.656483 + 0.754341i \(0.272043\pi\)
\(648\) 0 0
\(649\) −1041.61 −1.60495
\(650\) 432.493 1024.47i 0.665374 1.57611i
\(651\) 0 0
\(652\) −1796.95 1037.47i −2.75607 1.59122i
\(653\) 520.594 901.696i 0.797235 1.38085i −0.124175 0.992260i \(-0.539629\pi\)
0.921410 0.388591i \(-0.127038\pi\)
\(654\) 0 0
\(655\) 321.569 + 283.939i 0.490945 + 0.433494i
\(656\) 1304.79i 1.98901i
\(657\) 0 0
\(658\) 482.151i 0.732752i
\(659\) −556.318 + 321.190i −0.844185 + 0.487390i −0.858685 0.512505i \(-0.828718\pi\)
0.0144997 + 0.999895i \(0.495384\pi\)
\(660\) 0 0
\(661\) 394.759 683.742i 0.597214 1.03441i −0.396016 0.918244i \(-0.629608\pi\)
0.993230 0.116162i \(-0.0370591\pi\)
\(662\) 356.714 617.847i 0.538843 0.933304i
\(663\) 0 0
\(664\) 619.163 + 1072.42i 0.932474 + 1.61509i
\(665\) −87.2194 + 29.2783i −0.131157 + 0.0440275i
\(666\) 0 0
\(667\) 15.5980i 0.0233854i
\(668\) 297.221 + 514.802i 0.444941 + 0.770661i
\(669\) 0 0
\(670\) 285.515 1410.43i 0.426142 2.10511i
\(671\) −266.631 153.939i −0.397363 0.229418i
\(672\) 0 0
\(673\) −879.824 + 507.967i −1.30732 + 0.754780i −0.981648 0.190704i \(-0.938923\pi\)
−0.325669 + 0.945484i \(0.605590\pi\)
\(674\) 1709.40i 2.53621i
\(675\) 0 0
\(676\) 225.279 0.333253
\(677\) −371.811 643.996i −0.549204 0.951249i −0.998329 0.0577802i \(-0.981598\pi\)
0.449126 0.893469i \(-0.351736\pi\)
\(678\) 0 0
\(679\) −164.267 + 284.518i −0.241924 + 0.419025i
\(680\) −433.246 87.7028i −0.637127 0.128975i
\(681\) 0 0
\(682\) 603.546 348.458i 0.884965 0.510935i
\(683\) 152.482 0.223254 0.111627 0.993750i \(-0.464394\pi\)
0.111627 + 0.993750i \(0.464394\pi\)
\(684\) 0 0
\(685\) 110.946 + 330.507i 0.161965 + 0.482491i
\(686\) 749.403 432.668i 1.09242 0.630711i
\(687\) 0 0
\(688\) 1695.99 + 979.179i 2.46510 + 1.42322i
\(689\) −905.087 522.552i −1.31362 0.758422i
\(690\) 0 0
\(691\) −388.586 673.050i −0.562353 0.974023i −0.997291 0.0735628i \(-0.976563\pi\)
0.434938 0.900460i \(-0.356770\pi\)
\(692\) −3199.99 −4.62426
\(693\) 0 0
\(694\) 35.8355 0.0516361
\(695\) −459.737 + 520.666i −0.661492 + 0.749160i
\(696\) 0 0
\(697\) 128.422 + 74.1444i 0.184249 + 0.106376i
\(698\) −90.9573 + 157.543i −0.130311 + 0.225706i
\(699\) 0 0
\(700\) 239.547 567.427i 0.342209 0.810610i
\(701\) 461.657i 0.658569i 0.944231 + 0.329284i \(0.106808\pi\)
−0.944231 + 0.329284i \(0.893192\pi\)
\(702\) 0 0
\(703\) 9.44975i 0.0134420i
\(704\) 488.906 282.270i 0.694468 0.400952i
\(705\) 0 0
\(706\) −175.813 + 304.517i −0.249027 + 0.431327i
\(707\) 110.496 191.385i 0.156289 0.270701i
\(708\) 0 0
\(709\) 179.227 + 310.431i 0.252789 + 0.437843i 0.964293 0.264839i \(-0.0853189\pi\)
−0.711504 + 0.702682i \(0.751986\pi\)
\(710\) −1270.23 + 426.397i −1.78905 + 0.600560i
\(711\) 0 0
\(712\) 1471.19i 2.06628i
\(713\) 4.90812 + 8.50112i 0.00688376 + 0.0119230i
\(714\) 0 0
\(715\) −581.130 117.639i −0.812770 0.164530i
\(716\) 1608.24 + 928.515i 2.24614 + 1.29681i
\(717\) 0 0
\(718\) −1722.08 + 994.245i −2.39845 + 1.38474i
\(719\) 283.414i 0.394178i −0.980386 0.197089i \(-0.936851\pi\)
0.980386 0.197089i \(-0.0631488\pi\)
\(720\) 0 0
\(721\) −104.964 −0.145580
\(722\) −570.854 988.748i −0.790656 1.36946i
\(723\) 0 0
\(724\) −1170.07 + 2026.61i −1.61611 + 2.79919i
\(725\) 757.925 94.5702i 1.04541 0.130442i
\(726\) 0 0
\(727\) −134.545 + 77.6796i −0.185069 + 0.106850i −0.589672 0.807643i \(-0.700743\pi\)
0.404603 + 0.914492i \(0.367410\pi\)
\(728\) −639.063 −0.877833
\(729\) 0 0
\(730\) 529.750 177.830i 0.725685 0.243602i
\(731\) −192.748 + 111.283i −0.263677 + 0.152234i
\(732\) 0 0
\(733\) −90.8735 52.4658i −0.123975 0.0715768i 0.436730 0.899593i \(-0.356136\pi\)
−0.560705 + 0.828016i \(0.689470\pi\)
\(734\) 967.845 + 558.786i 1.31859 + 0.761288i
\(735\) 0 0
\(736\) 14.4155 + 24.9684i 0.0195863 + 0.0339245i
\(737\) −767.279 −1.04108
\(738\) 0 0
\(739\) −627.375 −0.848951 −0.424476 0.905439i \(-0.639542\pi\)
−0.424476 + 0.905439i \(0.639542\pi\)
\(740\) −47.4217 41.8724i −0.0640834 0.0565843i
\(741\) 0 0
\(742\) −710.268 410.073i −0.957234 0.552659i
\(743\) 193.295 334.797i 0.260155 0.450602i −0.706128 0.708084i \(-0.749560\pi\)
0.966283 + 0.257483i \(0.0828930\pi\)
\(744\) 0 0
\(745\) −178.994 158.048i −0.240260 0.212144i
\(746\) 481.798i 0.645842i
\(747\) 0 0
\(748\) 404.157i 0.540317i
\(749\) −3.69147 + 2.13127i −0.00492853 + 0.00284549i
\(750\) 0 0
\(751\) −452.601 + 783.928i −0.602665 + 1.04385i 0.389751 + 0.920920i \(0.372561\pi\)
−0.992416 + 0.122926i \(0.960772\pi\)
\(752\) −960.038 + 1662.83i −1.27665 + 2.21122i
\(753\) 0 0
\(754\) −679.491 1176.91i −0.901182 1.56089i
\(755\) −88.2962 263.032i −0.116949 0.348387i
\(756\) 0 0
\(757\) 332.222i 0.438867i −0.975627 0.219433i \(-0.929579\pi\)
0.975627 0.219433i \(-0.0704209\pi\)
\(758\) 1005.04 + 1740.78i 1.32591 + 2.29655i
\(759\) 0 0
\(760\) −724.719 146.706i −0.953578 0.193034i
\(761\) 396.726 + 229.050i 0.521322 + 0.300986i 0.737475 0.675374i \(-0.236018\pi\)
−0.216153 + 0.976359i \(0.569351\pi\)
\(762\) 0 0
\(763\) 330.492 190.810i 0.433149 0.250079i
\(764\) 1358.46i 1.77809i
\(765\) 0 0
\(766\) −4.59618 −0.00600023
\(767\) 639.126 + 1107.00i 0.833280 + 1.44328i
\(768\) 0 0
\(769\) 458.196 793.618i 0.595833 1.03201i −0.397595 0.917561i \(-0.630155\pi\)
0.993429 0.114453i \(-0.0365115\pi\)
\(770\) −456.042 92.3174i −0.592263 0.119893i
\(771\) 0 0
\(772\) −1840.11 + 1062.39i −2.38356 + 1.37615i
\(773\) 1186.06 1.53436 0.767178 0.641434i \(-0.221660\pi\)
0.767178 + 0.641434i \(0.221660\pi\)
\(774\) 0 0
\(775\) 383.321 290.033i 0.494607 0.374236i
\(776\) −2286.66 + 1320.20i −2.94673 + 1.70129i
\(777\) 0 0
\(778\) 1272.12 + 734.456i 1.63511 + 0.944031i
\(779\) 214.820 + 124.026i 0.275763 + 0.159212i
\(780\) 0 0
\(781\) 357.207 + 618.701i 0.457371 + 0.792190i
\(782\) −8.06559 −0.0103141
\(783\) 0 0
\(784\) 1598.77 2.03925
\(785\) −41.4986 36.6424i −0.0528645 0.0466783i
\(786\) 0 0
\(787\) 764.249 + 441.240i 0.971092 + 0.560660i 0.899569 0.436779i \(-0.143881\pi\)
0.0715229 + 0.997439i \(0.477214\pi\)
\(788\) 136.467 236.368i 0.173181 0.299959i
\(789\) 0 0
\(790\) 1406.73 1593.16i 1.78067 2.01666i
\(791\) 337.501i 0.426677i
\(792\) 0 0
\(793\) 377.823i 0.476448i
\(794\) 2190.58 1264.73i 2.75892 1.59286i
\(795\) 0 0
\(796\) −738.295 + 1278.76i −0.927507 + 1.60649i
\(797\) 71.9016 124.537i 0.0902153 0.156258i −0.817386 0.576090i \(-0.804578\pi\)
0.907602 + 0.419832i \(0.137911\pi\)
\(798\) 0 0
\(799\) −109.108 188.980i −0.136556 0.236521i
\(800\) 1125.84 851.848i 1.40730 1.06481i
\(801\) 0 0
\(802\) 191.261i 0.238480i
\(803\) −148.974 258.030i −0.185521 0.321332i
\(804\) 0 0
\(805\) 1.30032 6.42348i 0.00161530 0.00797948i
\(806\) −740.661 427.621i −0.918934 0.530547i
\(807\) 0 0
\(808\) 1538.15 888.054i 1.90366 1.09908i
\(809\) 52.3078i 0.0646574i −0.999477 0.0323287i \(-0.989708\pi\)
0.999477 0.0323287i \(-0.0102923\pi\)
\(810\) 0 0
\(811\) 1518.65 1.87256 0.936281 0.351253i \(-0.114244\pi\)
0.936281 + 0.351253i \(0.114244\pi\)
\(812\) −376.352 651.861i −0.463488 0.802785i
\(813\) 0 0
\(814\) −23.8956 + 41.3883i −0.0293557 + 0.0508456i
\(815\) −214.508 + 1059.66i −0.263200 + 1.30019i
\(816\) 0 0
\(817\) −322.422 + 186.151i −0.394642 + 0.227847i
\(818\) 1000.35 1.22292
\(819\) 0 0
\(820\) −1574.28 + 528.462i −1.91985 + 0.644466i
\(821\) −950.059 + 548.517i −1.15720 + 0.668108i −0.950631 0.310324i \(-0.899562\pi\)
−0.206567 + 0.978432i \(0.566229\pi\)
\(822\) 0 0
\(823\) −828.873 478.550i −1.00714 0.581470i −0.0967841 0.995305i \(-0.530856\pi\)
−0.910352 + 0.413835i \(0.864189\pi\)
\(824\) −730.568 421.793i −0.886611 0.511885i
\(825\) 0 0
\(826\) 501.554 + 868.717i 0.607208 + 1.05172i
\(827\) −171.626 −0.207529 −0.103764 0.994602i \(-0.533089\pi\)
−0.103764 + 0.994602i \(0.533089\pi\)
\(828\) 0 0
\(829\) 203.896 0.245954 0.122977 0.992410i \(-0.460756\pi\)
0.122977 + 0.992410i \(0.460756\pi\)
\(830\) 732.334 829.390i 0.882331 0.999265i
\(831\) 0 0
\(832\) −599.976 346.397i −0.721126 0.416342i
\(833\) −90.8499 + 157.357i −0.109063 + 0.188904i
\(834\) 0 0
\(835\) 205.008 232.178i 0.245519 0.278057i
\(836\) 676.059i 0.808683i
\(837\) 0 0
\(838\) 101.958i 0.121668i
\(839\) 1348.10 778.323i 1.60679 0.927680i 0.616705 0.787194i \(-0.288467\pi\)
0.990083 0.140486i \(-0.0448664\pi\)
\(840\) 0 0
\(841\) 46.2156 80.0477i 0.0549531 0.0951816i
\(842\) −806.087 + 1396.18i −0.957347 + 1.65817i
\(843\) 0 0
\(844\) −864.495 1497.35i −1.02428 1.77411i
\(845\) −37.3549 111.279i −0.0442069 0.131692i
\(846\) 0 0
\(847\) 62.5654i 0.0738670i
\(848\) −1633.04 2828.51i −1.92576 3.33551i
\(849\) 0 0
\(850\) 48.9013 + 391.916i 0.0575310 + 0.461077i
\(851\) −0.582966 0.336576i −0.000685037 0.000395506i
\(852\) 0 0
\(853\) 488.377 281.964i 0.572540 0.330556i −0.185623 0.982621i \(-0.559430\pi\)
0.758163 + 0.652065i \(0.226097\pi\)
\(854\) 296.497i 0.347186i
\(855\) 0 0
\(856\) −34.2579 −0.0400209
\(857\) −476.953 826.107i −0.556538 0.963952i −0.997782 0.0665649i \(-0.978796\pi\)
0.441244 0.897387i \(-0.354537\pi\)
\(858\) 0 0
\(859\) −422.728 + 732.186i −0.492116 + 0.852371i −0.999959 0.00907936i \(-0.997110\pi\)
0.507842 + 0.861450i \(0.330443\pi\)
\(860\) 494.511 2442.86i 0.575013 2.84053i
\(861\) 0 0
\(862\) 173.587 100.221i 0.201377 0.116265i
\(863\) −1109.42 −1.28554 −0.642768 0.766061i \(-0.722214\pi\)
−0.642768 + 0.766061i \(0.722214\pi\)
\(864\) 0 0
\(865\) 530.609 + 1580.67i 0.613420 + 1.82737i
\(866\) −1681.02 + 970.538i −1.94113 + 1.12071i
\(867\) 0 0
\(868\) −410.233 236.848i −0.472618 0.272866i
\(869\) −981.388 566.605i −1.12933 0.652019i
\(870\) 0 0
\(871\) 470.796 + 815.442i 0.540523 + 0.936214i
\(872\) 3067.06 3.51727
\(873\) 0 0
\(874\) −13.4918 −0.0154369
\(875\) −320.008 24.2385i −0.365723 0.0277011i
\(876\) 0 0
\(877\) −878.724 507.331i −1.00197 0.578485i −0.0931364 0.995653i \(-0.529689\pi\)
−0.908829 + 0.417168i \(0.863023\pi\)
\(878\) −767.411 + 1329.19i −0.874044 + 1.51389i
\(879\) 0 0
\(880\) −1388.97 1226.43i −1.57838 1.39368i
\(881\) 1226.86i 1.39257i −0.717764 0.696287i \(-0.754834\pi\)
0.717764 0.696287i \(-0.245166\pi\)
\(882\) 0 0
\(883\) 659.407i 0.746780i −0.927674 0.373390i \(-0.878195\pi\)
0.927674 0.373390i \(-0.121805\pi\)
\(884\) 429.526 247.987i 0.485889 0.280528i
\(885\) 0 0
\(886\) 787.537 1364.05i 0.888868 1.53956i
\(887\) 385.984 668.543i 0.435156 0.753713i −0.562152 0.827034i \(-0.690026\pi\)
0.997308 + 0.0733209i \(0.0233597\pi\)
\(888\) 0 0
\(889\) −129.846 224.901i −0.146059 0.252982i
\(890\) 1246.16 418.319i 1.40018 0.470021i
\(891\) 0 0
\(892\) 2067.01i 2.31727i
\(893\) −182.512 316.120i −0.204381 0.353998i
\(894\) 0 0
\(895\) 191.980 948.369i 0.214503 1.05963i
\(896\) 31.4123 + 18.1359i 0.0350584 + 0.0202410i
\(897\) 0 0
\(898\) −755.945 + 436.445i −0.841810 + 0.486019i
\(899\) 587.432i 0.653428i
\(900\) 0 0
\(901\) 371.189 0.411974
\(902\) 627.249 + 1086.43i 0.695398 + 1.20447i
\(903\) 0 0
\(904\) 1356.24 2349.08i 1.50027 2.59854i
\(905\) 1195.09 + 241.923i 1.32054 + 0.267318i
\(906\) 0 0
\(907\) −105.197 + 60.7354i −0.115983 + 0.0669629i −0.556869 0.830600i \(-0.687998\pi\)
0.440886 + 0.897563i \(0.354664\pi\)
\(908\) 483.792 0.532810
\(909\) 0 0
\(910\) 181.711 + 541.314i 0.199683 + 0.594850i
\(911\) 1000.46 577.616i 1.09820 0.634046i 0.162453 0.986716i \(-0.448060\pi\)
0.935748 + 0.352670i \(0.114726\pi\)
\(912\) 0 0
\(913\) −510.904 294.971i −0.559588 0.323078i
\(914\) −2228.21 1286.46i −2.43786 1.40750i
\(915\) 0 0
\(916\) 29.5895 + 51.2505i 0.0323029 + 0.0559503i
\(917\) −220.275 −0.240212
\(918\) 0 0
\(919\) −994.576 −1.08224 −0.541119 0.840946i \(-0.681999\pi\)
−0.541119 + 0.840946i \(0.681999\pi\)
\(920\) 34.8631 39.4835i 0.0378947 0.0429168i
\(921\) 0 0
\(922\) 1225.43 + 707.501i 1.32910 + 0.767354i
\(923\) 438.358 759.258i 0.474927 0.822598i
\(924\) 0 0
\(925\) −12.8201 + 30.3676i −0.0138595 + 0.0328298i
\(926\) 995.977i 1.07557i
\(927\) 0 0
\(928\) 1725.33i 1.85919i
\(929\) −140.236 + 80.9655i −0.150954 + 0.0871534i −0.573575 0.819153i \(-0.694444\pi\)
0.422620 + 0.906307i \(0.361110\pi\)
\(930\) 0 0
\(931\) −151.970 + 263.221i −0.163234 + 0.282729i
\(932\) −252.056 + 436.574i −0.270447 + 0.468427i
\(933\) 0 0
\(934\) 1434.26 + 2484.22i 1.53561 + 2.65976i
\(935\) 199.638 67.0156i 0.213517 0.0716745i
\(936\) 0 0
\(937\) 660.489i 0.704898i −0.935831 0.352449i \(-0.885349\pi\)
0.935831 0.352449i \(-0.114651\pi\)
\(938\) 369.457 + 639.919i 0.393878 + 0.682216i
\(939\) 0 0
\(940\) 2395.10 + 484.845i 2.54798 + 0.515792i
\(941\) 1378.06 + 795.624i 1.46446 + 0.845509i 0.999213 0.0396696i \(-0.0126305\pi\)
0.465252 + 0.885179i \(0.345964\pi\)
\(942\) 0 0
\(943\) −15.3026 + 8.83498i −0.0162276 + 0.00936902i
\(944\) 3994.69i 4.23167i
\(945\) 0 0
\(946\) −1882.88 −1.99035
\(947\) 781.678 + 1353.91i 0.825426 + 1.42968i 0.901594 + 0.432584i \(0.142398\pi\)
−0.0761680 + 0.997095i \(0.524269\pi\)
\(948\) 0 0
\(949\) −182.818 + 316.650i −0.192643 + 0.333667i
\(950\) 81.8004 + 655.583i 0.0861057 + 0.690087i
\(951\) 0 0
\(952\) 196.566 113.488i 0.206477 0.119210i
\(953\) −996.612 −1.04576 −0.522881 0.852405i \(-0.675143\pi\)
−0.522881 + 0.852405i \(0.675143\pi\)
\(954\) 0 0
\(955\) 671.027 225.254i 0.702646 0.235868i
\(956\) 810.961 468.209i 0.848285 0.489758i
\(957\) 0 0
\(958\) −231.719 133.783i −0.241878 0.139648i
\(959\) −155.031 89.5074i −0.161659 0.0933341i
\(960\) 0 0
\(961\) 295.657 + 512.093i 0.307656 + 0.532875i
\(962\) 58.6484 0.0609651
\(963\) 0 0
\(964\) −1369.63 −1.42078
\(965\) 829.896 + 732.781i 0.859996 + 0.759359i
\(966\) 0 0
\(967\) 562.916 + 325.000i 0.582126 + 0.336091i 0.761978 0.647603i \(-0.224229\pi\)
−0.179852 + 0.983694i \(0.557562\pi\)
\(968\) 251.418 435.468i 0.259729 0.449864i
\(969\) 0 0
\(970\) 1768.46 + 1561.51i 1.82315 + 1.60981i
\(971\) 1717.75i 1.76905i 0.466495 + 0.884524i \(0.345517\pi\)
−0.466495 + 0.884524i \(0.654483\pi\)
\(972\) 0 0
\(973\) 356.656i 0.366553i
\(974\) −2329.45 + 1344.91i −2.39163 + 1.38081i
\(975\) 0 0
\(976\) −590.372 + 1022.55i −0.604889 + 1.04770i
\(977\) 141.061 244.324i 0.144381 0.250076i −0.784761 0.619799i \(-0.787214\pi\)
0.929142 + 0.369723i \(0.120547\pi\)
\(978\) 0 0
\(979\) −350.439 606.979i −0.357956 0.619998i
\(980\) −647.530 1928.98i −0.660745 1.96834i
\(981\) 0 0
\(982\) 14.0695i 0.0143274i
\(983\) −192.267 333.017i −0.195592 0.338776i 0.751502 0.659731i \(-0.229330\pi\)
−0.947095 + 0.320955i \(0.895996\pi\)
\(984\) 0 0
\(985\) −139.385 28.2159i −0.141508 0.0286456i
\(986\) 418.003 + 241.334i 0.423938 + 0.244761i
\(987\) 0 0
\(988\) 718.496 414.824i 0.727223 0.419862i
\(989\) 26.5208i 0.0268158i
\(990\) 0 0
\(991\) 399.250 0.402876 0.201438 0.979501i \(-0.435439\pi\)
0.201438 + 0.979501i \(0.435439\pi\)
\(992\) −542.898 940.326i −0.547276 0.947910i
\(993\) 0 0
\(994\) 344.002 595.828i 0.346078 0.599425i
\(995\) 754.082 + 152.650i 0.757871 + 0.153417i
\(996\) 0 0
\(997\) −1257.62 + 726.087i −1.26140 + 0.728272i −0.973346 0.229341i \(-0.926343\pi\)
−0.288058 + 0.957613i \(0.593009\pi\)
\(998\) −757.008 −0.758525
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 135.3.h.a.44.10 20
3.2 odd 2 45.3.h.a.14.1 20
5.2 odd 4 675.3.j.e.476.1 20
5.3 odd 4 675.3.j.e.476.10 20
5.4 even 2 inner 135.3.h.a.44.1 20
9.2 odd 6 inner 135.3.h.a.89.1 20
9.4 even 3 405.3.d.a.404.1 20
9.5 odd 6 405.3.d.a.404.20 20
9.7 even 3 45.3.h.a.29.10 yes 20
15.2 even 4 225.3.j.e.176.10 20
15.8 even 4 225.3.j.e.176.1 20
15.14 odd 2 45.3.h.a.14.10 yes 20
45.2 even 12 675.3.j.e.251.1 20
45.4 even 6 405.3.d.a.404.19 20
45.7 odd 12 225.3.j.e.101.10 20
45.14 odd 6 405.3.d.a.404.2 20
45.29 odd 6 inner 135.3.h.a.89.10 20
45.34 even 6 45.3.h.a.29.1 yes 20
45.38 even 12 675.3.j.e.251.10 20
45.43 odd 12 225.3.j.e.101.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.h.a.14.1 20 3.2 odd 2
45.3.h.a.14.10 yes 20 15.14 odd 2
45.3.h.a.29.1 yes 20 45.34 even 6
45.3.h.a.29.10 yes 20 9.7 even 3
135.3.h.a.44.1 20 5.4 even 2 inner
135.3.h.a.44.10 20 1.1 even 1 trivial
135.3.h.a.89.1 20 9.2 odd 6 inner
135.3.h.a.89.10 20 45.29 odd 6 inner
225.3.j.e.101.1 20 45.43 odd 12
225.3.j.e.101.10 20 45.7 odd 12
225.3.j.e.176.1 20 15.8 even 4
225.3.j.e.176.10 20 15.2 even 4
405.3.d.a.404.1 20 9.4 even 3
405.3.d.a.404.2 20 45.14 odd 6
405.3.d.a.404.19 20 45.4 even 6
405.3.d.a.404.20 20 9.5 odd 6
675.3.j.e.251.1 20 45.2 even 12
675.3.j.e.251.10 20 45.38 even 12
675.3.j.e.476.1 20 5.2 odd 4
675.3.j.e.476.10 20 5.3 odd 4