Properties

Label 225.3.j.e.101.10
Level $225$
Weight $3$
Character 225.101
Analytic conductor $6.131$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,3,Mod(101,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.101"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 225.j (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13080594811\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 3 x^{18} - 19 x^{16} - 66 x^{14} + 109 x^{12} + 813 x^{10} + 981 x^{8} - 5346 x^{6} + \cdots + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{10} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.10
Root \(0.961330 - 1.44078i\) of defining polynomial
Character \(\chi\) \(=\) 225.101
Dual form 225.3.j.e.176.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.19328 + 1.84364i) q^{2} +(2.49550 - 1.66507i) q^{3} +(4.79800 + 8.31039i) q^{4} +(11.0386 - 0.716233i) q^{6} +(-1.28370 + 2.22343i) q^{7} +20.6340i q^{8} +(3.45506 - 8.31039i) q^{9} +(-8.51311 - 4.91505i) q^{11} +(25.8108 + 12.7496i) q^{12} +(-6.03166 - 10.4471i) q^{13} +(-8.19840 + 4.73335i) q^{14} +(-18.8497 + 32.6486i) q^{16} +4.28451i q^{17} +(26.3543 - 20.1675i) q^{18} -7.16698 q^{19} +(0.498702 + 7.68602i) q^{21} +(-18.1231 - 31.3902i) q^{22} +(-0.442140 + 0.255270i) q^{23} +(34.3572 + 51.4923i) q^{24} -44.4808i q^{26} +(-5.21528 - 26.4915i) q^{27} -24.6367 q^{28} +(26.4589 + 15.2761i) q^{29} +(9.61361 + 16.6513i) q^{31} +(-48.9060 + 28.2359i) q^{32} +(-29.4284 + 1.90944i) q^{33} +(-7.89910 + 13.6816i) q^{34} +(85.6399 - 11.1604i) q^{36} -1.31851 q^{37} +(-22.8862 - 13.2133i) q^{38} +(-32.4473 - 16.0277i) q^{39} +(-29.9735 + 17.3052i) q^{41} +(-12.5778 + 25.4630i) q^{42} +(25.9734 - 44.9872i) q^{43} -94.3297i q^{44} -1.88250 q^{46} +(-44.1078 - 25.4656i) q^{47} +(7.32289 + 112.861i) q^{48} +(21.2042 + 36.7268i) q^{49} +(7.13403 + 10.6920i) q^{51} +(57.8799 - 100.251i) q^{52} -86.6349i q^{53} +(32.1870 - 94.2098i) q^{54} +(-45.8783 - 26.4879i) q^{56} +(-17.8852 + 11.9336i) q^{57} +(56.3270 + 97.5613i) q^{58} +(-91.7656 + 52.9809i) q^{59} +(-15.6600 + 27.1239i) q^{61} +70.8961i q^{62} +(14.0423 + 18.3501i) q^{63} -57.4297 q^{64} +(-97.4933 - 48.1580i) q^{66} +(39.0271 + 67.5968i) q^{67} +(-35.6060 + 20.5571i) q^{68} +(-0.678318 + 1.37322i) q^{69} +72.6762i q^{71} +(171.477 + 71.2919i) q^{72} -30.3097 q^{73} +(-4.21037 - 2.43086i) q^{74} +(-34.3872 - 59.5604i) q^{76} +(21.8565 - 12.6189i) q^{77} +(-74.0638 - 111.002i) q^{78} +(57.6398 - 99.8350i) q^{79} +(-57.1251 - 57.4258i) q^{81} -127.618 q^{82} +(51.9734 + 30.0069i) q^{83} +(-61.4810 + 41.0220i) q^{84} +(165.880 - 95.7710i) q^{86} +(91.4640 - 5.93457i) q^{87} +(101.417 - 175.660i) q^{88} +71.2992i q^{89} +30.9713 q^{91} +(-4.24278 - 2.44957i) q^{92} +(51.7163 + 25.5459i) q^{93} +(-93.8989 - 162.638i) q^{94} +(-75.0302 + 151.895i) q^{96} +(63.9819 - 110.820i) q^{97} +156.372i q^{98} +(-70.2593 + 53.7655i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 18 q^{4} + 12 q^{6} + 18 q^{9} - 24 q^{11} - 30 q^{14} - 26 q^{16} + 8 q^{19} - 96 q^{21} + 102 q^{24} + 114 q^{29} + 28 q^{31} + 4 q^{34} + 432 q^{36} - 240 q^{39} + 102 q^{41} + 116 q^{46} + 40 q^{49}+ \cdots + 468 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.19328 + 1.84364i 1.59664 + 0.921819i 0.992129 + 0.125221i \(0.0399639\pi\)
0.604509 + 0.796599i \(0.293369\pi\)
\(3\) 2.49550 1.66507i 0.831834 0.555024i
\(4\) 4.79800 + 8.31039i 1.19950 + 2.07760i
\(5\) 0 0
\(6\) 11.0386 0.716233i 1.83977 0.119372i
\(7\) −1.28370 + 2.22343i −0.183385 + 0.317633i −0.943031 0.332704i \(-0.892039\pi\)
0.759646 + 0.650337i \(0.225372\pi\)
\(8\) 20.6340i 2.57925i
\(9\) 3.45506 8.31039i 0.383896 0.923376i
\(10\) 0 0
\(11\) −8.51311 4.91505i −0.773919 0.446823i 0.0603516 0.998177i \(-0.480778\pi\)
−0.834271 + 0.551355i \(0.814111\pi\)
\(12\) 25.8108 + 12.7496i 2.15090 + 1.06246i
\(13\) −6.03166 10.4471i −0.463974 0.803626i 0.535181 0.844738i \(-0.320243\pi\)
−0.999155 + 0.0411114i \(0.986910\pi\)
\(14\) −8.19840 + 4.73335i −0.585600 + 0.338096i
\(15\) 0 0
\(16\) −18.8497 + 32.6486i −1.17810 + 2.04054i
\(17\) 4.28451i 0.252030i 0.992028 + 0.126015i \(0.0402188\pi\)
−0.992028 + 0.126015i \(0.959781\pi\)
\(18\) 26.3543 20.1675i 1.46413 1.12041i
\(19\) −7.16698 −0.377210 −0.188605 0.982053i \(-0.560397\pi\)
−0.188605 + 0.982053i \(0.560397\pi\)
\(20\) 0 0
\(21\) 0.498702 + 7.68602i 0.0237477 + 0.366001i
\(22\) −18.1231 31.3902i −0.823779 1.42683i
\(23\) −0.442140 + 0.255270i −0.0192235 + 0.0110987i −0.509581 0.860423i \(-0.670200\pi\)
0.490357 + 0.871521i \(0.336866\pi\)
\(24\) 34.3572 + 51.4923i 1.43155 + 2.14551i
\(25\) 0 0
\(26\) 44.4808i 1.71080i
\(27\) −5.21528 26.4915i −0.193159 0.981168i
\(28\) −24.6367 −0.879884
\(29\) 26.4589 + 15.2761i 0.912376 + 0.526760i 0.881195 0.472753i \(-0.156740\pi\)
0.0311810 + 0.999514i \(0.490073\pi\)
\(30\) 0 0
\(31\) 9.61361 + 16.6513i 0.310116 + 0.537137i 0.978387 0.206781i \(-0.0662986\pi\)
−0.668271 + 0.743918i \(0.732965\pi\)
\(32\) −48.9060 + 28.2359i −1.52831 + 0.882372i
\(33\) −29.4284 + 1.90944i −0.891770 + 0.0578618i
\(34\) −7.89910 + 13.6816i −0.232326 + 0.402401i
\(35\) 0 0
\(36\) 85.6399 11.1604i 2.37889 0.310010i
\(37\) −1.31851 −0.0356355 −0.0178177 0.999841i \(-0.505672\pi\)
−0.0178177 + 0.999841i \(0.505672\pi\)
\(38\) −22.8862 13.2133i −0.602267 0.347719i
\(39\) −32.4473 16.0277i −0.831981 0.410967i
\(40\) 0 0
\(41\) −29.9735 + 17.3052i −0.731061 + 0.422078i −0.818810 0.574064i \(-0.805366\pi\)
0.0877493 + 0.996143i \(0.472033\pi\)
\(42\) −12.5778 + 25.4630i −0.299470 + 0.606262i
\(43\) 25.9734 44.9872i 0.604032 1.04621i −0.388172 0.921587i \(-0.626893\pi\)
0.992204 0.124627i \(-0.0397733\pi\)
\(44\) 94.3297i 2.14386i
\(45\) 0 0
\(46\) −1.88250 −0.0409239
\(47\) −44.1078 25.4656i −0.938463 0.541822i −0.0489851 0.998800i \(-0.515599\pi\)
−0.889478 + 0.456977i \(0.848932\pi\)
\(48\) 7.32289 + 112.861i 0.152560 + 2.35126i
\(49\) 21.2042 + 36.7268i 0.432740 + 0.749527i
\(50\) 0 0
\(51\) 7.13403 + 10.6920i 0.139883 + 0.209647i
\(52\) 57.8799 100.251i 1.11307 1.92790i
\(53\) 86.6349i 1.63462i −0.576197 0.817311i \(-0.695464\pi\)
0.576197 0.817311i \(-0.304536\pi\)
\(54\) 32.1870 94.2098i 0.596055 1.74463i
\(55\) 0 0
\(56\) −45.8783 26.4879i −0.819255 0.472997i
\(57\) −17.8852 + 11.9336i −0.313776 + 0.209361i
\(58\) 56.3270 + 97.5613i 0.971156 + 1.68209i
\(59\) −91.7656 + 52.9809i −1.55535 + 0.897982i −0.557658 + 0.830071i \(0.688300\pi\)
−0.997691 + 0.0679111i \(0.978367\pi\)
\(60\) 0 0
\(61\) −15.6600 + 27.1239i −0.256721 + 0.444655i −0.965362 0.260915i \(-0.915976\pi\)
0.708640 + 0.705570i \(0.249309\pi\)
\(62\) 70.8961i 1.14348i
\(63\) 14.0423 + 18.3501i 0.222894 + 0.291272i
\(64\) −57.4297 −0.897339
\(65\) 0 0
\(66\) −97.4933 48.1580i −1.47717 0.729666i
\(67\) 39.0271 + 67.5968i 0.582493 + 1.00891i 0.995183 + 0.0980363i \(0.0312561\pi\)
−0.412689 + 0.910872i \(0.635411\pi\)
\(68\) −35.6060 + 20.5571i −0.523617 + 0.302311i
\(69\) −0.678318 + 1.37322i −0.00983070 + 0.0199017i
\(70\) 0 0
\(71\) 72.6762i 1.02361i 0.859102 + 0.511804i \(0.171023\pi\)
−0.859102 + 0.511804i \(0.828977\pi\)
\(72\) 171.477 + 71.2919i 2.38162 + 0.990165i
\(73\) −30.3097 −0.415201 −0.207601 0.978214i \(-0.566565\pi\)
−0.207601 + 0.978214i \(0.566565\pi\)
\(74\) −4.21037 2.43086i −0.0568969 0.0328494i
\(75\) 0 0
\(76\) −34.3872 59.5604i −0.452463 0.783690i
\(77\) 21.8565 12.6189i 0.283851 0.163881i
\(78\) −74.0638 111.002i −0.949535 1.42310i
\(79\) 57.6398 99.8350i 0.729617 1.26373i −0.227428 0.973795i \(-0.573031\pi\)
0.957045 0.289940i \(-0.0936352\pi\)
\(80\) 0 0
\(81\) −57.1251 57.4258i −0.705248 0.708961i
\(82\) −127.618 −1.55632
\(83\) 51.9734 + 30.0069i 0.626186 + 0.361529i 0.779274 0.626684i \(-0.215588\pi\)
−0.153087 + 0.988213i \(0.548922\pi\)
\(84\) −61.4810 + 41.0220i −0.731917 + 0.488357i
\(85\) 0 0
\(86\) 165.880 95.7710i 1.92884 1.11362i
\(87\) 91.4640 5.93457i 1.05131 0.0682135i
\(88\) 101.417 175.660i 1.15247 1.99613i
\(89\) 71.2992i 0.801115i 0.916272 + 0.400558i \(0.131184\pi\)
−0.916272 + 0.400558i \(0.868816\pi\)
\(90\) 0 0
\(91\) 30.9713 0.340344
\(92\) −4.24278 2.44957i −0.0461171 0.0266257i
\(93\) 51.7163 + 25.5459i 0.556090 + 0.274687i
\(94\) −93.8989 162.638i −0.998924 1.73019i
\(95\) 0 0
\(96\) −75.0302 + 151.895i −0.781565 + 1.58224i
\(97\) 63.9819 110.820i 0.659607 1.14247i −0.321111 0.947042i \(-0.604056\pi\)
0.980717 0.195431i \(-0.0626106\pi\)
\(98\) 156.372i 1.59563i
\(99\) −70.2593 + 53.7655i −0.709690 + 0.543085i
\(100\) 0 0
\(101\) 74.5445 + 43.0383i 0.738065 + 0.426122i 0.821365 0.570403i \(-0.193213\pi\)
−0.0833005 + 0.996524i \(0.526546\pi\)
\(102\) 3.06871 + 47.2951i 0.0300854 + 0.463678i
\(103\) 20.4416 + 35.4060i 0.198463 + 0.343747i 0.948030 0.318181i \(-0.103072\pi\)
−0.749568 + 0.661928i \(0.769739\pi\)
\(104\) 215.567 124.457i 2.07276 1.19671i
\(105\) 0 0
\(106\) 159.723 276.649i 1.50683 2.60990i
\(107\) 1.66026i 0.0155165i 0.999970 + 0.00775823i \(0.00246955\pi\)
−0.999970 + 0.00775823i \(0.997530\pi\)
\(108\) 195.132 170.447i 1.80678 1.57822i
\(109\) 148.641 1.36368 0.681839 0.731502i \(-0.261180\pi\)
0.681839 + 0.731502i \(0.261180\pi\)
\(110\) 0 0
\(111\) −3.29035 + 2.19542i −0.0296428 + 0.0197785i
\(112\) −48.3946 83.8218i −0.432094 0.748409i
\(113\) −113.845 + 65.7284i −1.00748 + 0.581667i −0.910452 0.413615i \(-0.864266\pi\)
−0.0970249 + 0.995282i \(0.530933\pi\)
\(114\) −79.1136 + 5.13323i −0.693979 + 0.0450283i
\(115\) 0 0
\(116\) 293.178i 2.52740i
\(117\) −107.660 + 14.0299i −0.920167 + 0.119914i
\(118\) −390.711 −3.31111
\(119\) −9.52631 5.50002i −0.0800531 0.0462187i
\(120\) 0 0
\(121\) −12.1846 21.1044i −0.100699 0.174416i
\(122\) −100.013 + 57.7428i −0.819782 + 0.473301i
\(123\) −45.9845 + 93.0932i −0.373858 + 0.756856i
\(124\) −92.2523 + 159.786i −0.743970 + 1.28859i
\(125\) 0 0
\(126\) 11.0100 + 84.4859i 0.0873806 + 0.670523i
\(127\) −101.150 −0.796460 −0.398230 0.917286i \(-0.630375\pi\)
−0.398230 + 0.917286i \(0.630375\pi\)
\(128\) 12.2351 + 7.06394i 0.0955867 + 0.0551870i
\(129\) −10.0904 155.513i −0.0782198 1.20553i
\(130\) 0 0
\(131\) −74.3023 + 42.8985i −0.567193 + 0.327469i −0.756028 0.654540i \(-0.772862\pi\)
0.188834 + 0.982009i \(0.439529\pi\)
\(132\) −157.066 235.400i −1.18989 1.78333i
\(133\) 9.20024 15.9353i 0.0691747 0.119814i
\(134\) 287.807i 2.14781i
\(135\) 0 0
\(136\) −88.4068 −0.650050
\(137\) 60.3847 + 34.8631i 0.440764 + 0.254475i 0.703922 0.710278i \(-0.251431\pi\)
−0.263158 + 0.964753i \(0.584764\pi\)
\(138\) −4.69778 + 3.13450i −0.0340419 + 0.0227138i
\(139\) 69.4587 + 120.306i 0.499703 + 0.865511i 1.00000 0.000342926i \(-0.000109157\pi\)
−0.500297 + 0.865854i \(0.666776\pi\)
\(140\) 0 0
\(141\) −152.473 + 9.89312i −1.08137 + 0.0701639i
\(142\) −133.989 + 232.075i −0.943582 + 1.63433i
\(143\) 118.584i 0.829256i
\(144\) 206.196 + 269.451i 1.43191 + 1.87119i
\(145\) 0 0
\(146\) −96.7872 55.8801i −0.662926 0.382740i
\(147\) 114.068 + 56.3453i 0.775973 + 0.383301i
\(148\) −6.32622 10.9573i −0.0427448 0.0740361i
\(149\) −41.3586 + 23.8784i −0.277574 + 0.160258i −0.632325 0.774703i \(-0.717899\pi\)
0.354750 + 0.934961i \(0.384566\pi\)
\(150\) 0 0
\(151\) −27.7457 + 48.0569i −0.183746 + 0.318258i −0.943153 0.332358i \(-0.892156\pi\)
0.759407 + 0.650616i \(0.225489\pi\)
\(152\) 147.884i 0.972920i
\(153\) 35.6060 + 14.8033i 0.232719 + 0.0967534i
\(154\) 93.0585 0.604276
\(155\) 0 0
\(156\) −22.4857 346.550i −0.144139 2.22148i
\(157\) 5.53607 + 9.58875i 0.0352616 + 0.0610749i 0.883118 0.469152i \(-0.155440\pi\)
−0.847856 + 0.530226i \(0.822107\pi\)
\(158\) 368.119 212.534i 2.32987 1.34515i
\(159\) −144.254 216.198i −0.907255 1.35973i
\(160\) 0 0
\(161\) 1.31076i 0.00814134i
\(162\) −76.5436 288.694i −0.472491 1.78206i
\(163\) 216.230 1.32656 0.663282 0.748370i \(-0.269163\pi\)
0.663282 + 0.748370i \(0.269163\pi\)
\(164\) −287.626 166.061i −1.75382 1.01257i
\(165\) 0 0
\(166\) 110.644 + 191.640i 0.666528 + 1.15446i
\(167\) −53.6475 + 30.9734i −0.321242 + 0.185469i −0.651946 0.758265i \(-0.726047\pi\)
0.330704 + 0.943735i \(0.392714\pi\)
\(168\) −158.594 + 10.2902i −0.944010 + 0.0612514i
\(169\) 11.7382 20.3311i 0.0694567 0.120302i
\(170\) 0 0
\(171\) −24.7624 + 59.5604i −0.144809 + 0.348307i
\(172\) 498.481 2.89815
\(173\) −288.794 166.735i −1.66933 0.963788i −0.968000 0.250951i \(-0.919257\pi\)
−0.701330 0.712837i \(-0.747410\pi\)
\(174\) 303.011 + 149.676i 1.74144 + 0.860206i
\(175\) 0 0
\(176\) 320.939 185.294i 1.82352 1.05281i
\(177\) −140.784 + 285.010i −0.795391 + 1.61023i
\(178\) −131.450 + 227.678i −0.738483 + 1.27909i
\(179\) 193.521i 1.08112i 0.841304 + 0.540562i \(0.181788\pi\)
−0.841304 + 0.540562i \(0.818212\pi\)
\(180\) 0 0
\(181\) 243.865 1.34732 0.673661 0.739041i \(-0.264721\pi\)
0.673661 + 0.739041i \(0.264721\pi\)
\(182\) 98.8999 + 57.0999i 0.543406 + 0.313736i
\(183\) 6.08374 + 93.7629i 0.0332445 + 0.512365i
\(184\) −5.26724 9.12313i −0.0286263 0.0495822i
\(185\) 0 0
\(186\) 118.047 + 176.921i 0.634662 + 0.951190i
\(187\) 21.0586 36.4746i 0.112613 0.195051i
\(188\) 488.737i 2.59966i
\(189\) 65.5969 + 22.4113i 0.347073 + 0.118578i
\(190\) 0 0
\(191\) −122.599 70.7825i −0.641879 0.370589i 0.143459 0.989656i \(-0.454177\pi\)
−0.785338 + 0.619067i \(0.787511\pi\)
\(192\) −143.316 + 95.6247i −0.746438 + 0.498045i
\(193\) 110.711 + 191.757i 0.573633 + 0.993561i 0.996189 + 0.0872244i \(0.0277997\pi\)
−0.422556 + 0.906337i \(0.638867\pi\)
\(194\) 408.623 235.919i 2.10631 1.21608i
\(195\) 0 0
\(196\) −203.476 + 352.431i −1.03814 + 1.79812i
\(197\) 28.4424i 0.144378i −0.997391 0.0721889i \(-0.977002\pi\)
0.997391 0.0721889i \(-0.0229984\pi\)
\(198\) −323.481 + 42.1552i −1.63374 + 0.212905i
\(199\) −153.875 −0.773244 −0.386622 0.922238i \(-0.626358\pi\)
−0.386622 + 0.922238i \(0.626358\pi\)
\(200\) 0 0
\(201\) 209.946 + 103.705i 1.04451 + 0.515946i
\(202\) 158.694 + 274.866i 0.785615 + 1.36072i
\(203\) −67.9304 + 39.2197i −0.334633 + 0.193200i
\(204\) −54.6257 + 110.587i −0.267773 + 0.542093i
\(205\) 0 0
\(206\) 150.748i 0.731786i
\(207\) 0.593767 + 4.55632i 0.00286844 + 0.0220112i
\(208\) 454.779 2.18644
\(209\) 61.0133 + 35.2261i 0.291930 + 0.168546i
\(210\) 0 0
\(211\) −90.0891 156.039i −0.426962 0.739521i 0.569639 0.821895i \(-0.307083\pi\)
−0.996601 + 0.0823744i \(0.973750\pi\)
\(212\) 719.970 415.675i 3.39608 1.96073i
\(213\) 121.011 + 181.364i 0.568127 + 0.851472i
\(214\) −3.06092 + 5.30167i −0.0143034 + 0.0247742i
\(215\) 0 0
\(216\) 546.627 107.612i 2.53068 0.498205i
\(217\) −49.3638 −0.227483
\(218\) 474.651 + 274.040i 2.17730 + 1.25706i
\(219\) −75.6379 + 50.4679i −0.345379 + 0.230447i
\(220\) 0 0
\(221\) 44.7609 25.8427i 0.202538 0.116935i
\(222\) −14.5545 + 0.944361i −0.0655610 + 0.00425388i
\(223\) 107.701 186.544i 0.482966 0.836521i −0.516843 0.856080i \(-0.672893\pi\)
0.999809 + 0.0195592i \(0.00622628\pi\)
\(224\) 144.985i 0.647256i
\(225\) 0 0
\(226\) −484.717 −2.14477
\(227\) −43.6615 25.2080i −0.192341 0.111048i 0.400737 0.916193i \(-0.368754\pi\)
−0.593078 + 0.805145i \(0.702088\pi\)
\(228\) −184.986 91.3759i −0.811341 0.400772i
\(229\) −3.08352 5.34081i −0.0134652 0.0233223i 0.859214 0.511616i \(-0.170953\pi\)
−0.872679 + 0.488294i \(0.837620\pi\)
\(230\) 0 0
\(231\) 33.5317 67.8831i 0.145159 0.293866i
\(232\) −315.207 + 545.954i −1.35865 + 2.35325i
\(233\) 52.5336i 0.225466i −0.993625 0.112733i \(-0.964040\pi\)
0.993625 0.112733i \(-0.0359605\pi\)
\(234\) −369.653 153.684i −1.57971 0.656769i
\(235\) 0 0
\(236\) −880.584 508.405i −3.73129 2.15426i
\(237\) −22.3924 345.113i −0.0944827 1.45617i
\(238\) −20.2801 35.1262i −0.0852105 0.147589i
\(239\) −84.5102 + 48.7920i −0.353599 + 0.204151i −0.666269 0.745711i \(-0.732110\pi\)
0.312670 + 0.949862i \(0.398777\pi\)
\(240\) 0 0
\(241\) 71.3647 123.607i 0.296119 0.512893i −0.679126 0.734022i \(-0.737641\pi\)
0.975245 + 0.221129i \(0.0709742\pi\)
\(242\) 89.8560i 0.371306i
\(243\) −238.174 48.1889i −0.980140 0.198308i
\(244\) −300.547 −1.23175
\(245\) 0 0
\(246\) −318.471 + 212.494i −1.29460 + 0.863795i
\(247\) 43.2288 + 74.8745i 0.175015 + 0.303136i
\(248\) −343.583 + 198.367i −1.38541 + 0.799869i
\(249\) 179.663 11.6573i 0.721540 0.0468166i
\(250\) 0 0
\(251\) 254.631i 1.01447i −0.861809 0.507233i \(-0.830668\pi\)
0.861809 0.507233i \(-0.169332\pi\)
\(252\) −85.1215 + 204.741i −0.337784 + 0.812464i
\(253\) 5.01865 0.0198366
\(254\) −323.001 186.485i −1.27166 0.734192i
\(255\) 0 0
\(256\) 140.906 + 244.057i 0.550415 + 0.953346i
\(257\) −123.613 + 71.3682i −0.480986 + 0.277697i −0.720827 0.693115i \(-0.756238\pi\)
0.239841 + 0.970812i \(0.422905\pi\)
\(258\) 254.489 515.199i 0.986390 1.99690i
\(259\) 1.69257 2.93162i 0.00653502 0.0113190i
\(260\) 0 0
\(261\) 218.367 167.104i 0.836656 0.640245i
\(262\) −316.357 −1.20747
\(263\) −218.644 126.234i −0.831347 0.479979i 0.0229665 0.999736i \(-0.492689\pi\)
−0.854314 + 0.519758i \(0.826022\pi\)
\(264\) −39.3995 607.227i −0.149240 2.30010i
\(265\) 0 0
\(266\) 58.7578 33.9238i 0.220894 0.127533i
\(267\) 118.718 + 177.927i 0.444638 + 0.666395i
\(268\) −374.504 + 648.660i −1.39740 + 2.42037i
\(269\) 388.672i 1.44488i −0.691435 0.722439i \(-0.743021\pi\)
0.691435 0.722439i \(-0.256979\pi\)
\(270\) 0 0
\(271\) −163.253 −0.602410 −0.301205 0.953559i \(-0.597389\pi\)
−0.301205 + 0.953559i \(0.597389\pi\)
\(272\) −139.883 80.7617i −0.514277 0.296918i
\(273\) 77.2889 51.5695i 0.283110 0.188899i
\(274\) 128.550 + 222.655i 0.469160 + 0.812610i
\(275\) 0 0
\(276\) −14.6666 + 0.951630i −0.0531397 + 0.00344793i
\(277\) 241.912 419.003i 0.873328 1.51265i 0.0147939 0.999891i \(-0.495291\pi\)
0.858534 0.512757i \(-0.171376\pi\)
\(278\) 512.227i 1.84254i
\(279\) 171.594 22.3616i 0.615032 0.0801493i
\(280\) 0 0
\(281\) 231.798 + 133.829i 0.824906 + 0.476260i 0.852105 0.523371i \(-0.175326\pi\)
−0.0271995 + 0.999630i \(0.508659\pi\)
\(282\) −505.128 249.514i −1.79124 0.884802i
\(283\) −245.898 425.908i −0.868898 1.50498i −0.863124 0.504993i \(-0.831495\pi\)
−0.00577475 0.999983i \(-0.501838\pi\)
\(284\) −603.967 + 348.701i −2.12664 + 1.22782i
\(285\) 0 0
\(286\) −218.625 + 378.670i −0.764424 + 1.32402i
\(287\) 88.8586i 0.309612i
\(288\) 65.6779 + 503.985i 0.228048 + 1.74995i
\(289\) 270.643 0.936481
\(290\) 0 0
\(291\) −24.8562 383.086i −0.0854166 1.31645i
\(292\) −145.426 251.885i −0.498034 0.862621i
\(293\) 278.986 161.073i 0.952172 0.549737i 0.0584171 0.998292i \(-0.481395\pi\)
0.893755 + 0.448555i \(0.148061\pi\)
\(294\) 260.370 + 390.226i 0.885614 + 1.32730i
\(295\) 0 0
\(296\) 27.2062i 0.0919129i
\(297\) −85.8088 + 251.159i −0.288919 + 0.845652i
\(298\) −176.092 −0.590914
\(299\) 5.33367 + 3.07940i 0.0178384 + 0.0102990i
\(300\) 0 0
\(301\) 66.6839 + 115.500i 0.221541 + 0.383720i
\(302\) −177.199 + 102.306i −0.586752 + 0.338762i
\(303\) 257.688 16.7199i 0.850455 0.0551812i
\(304\) 135.095 233.992i 0.444392 0.769710i
\(305\) 0 0
\(306\) 86.4078 + 112.915i 0.282378 + 0.369005i
\(307\) −426.031 −1.38772 −0.693861 0.720109i \(-0.744092\pi\)
−0.693861 + 0.720109i \(0.744092\pi\)
\(308\) 209.735 + 121.091i 0.680959 + 0.393152i
\(309\) 109.966 + 54.3188i 0.355876 + 0.175789i
\(310\) 0 0
\(311\) −1.01150 + 0.583987i −0.00325240 + 0.00187777i −0.501625 0.865085i \(-0.667264\pi\)
0.498373 + 0.866963i \(0.333931\pi\)
\(312\) 330.716 669.518i 1.05999 2.14589i
\(313\) 130.475 225.989i 0.416852 0.722009i −0.578769 0.815492i \(-0.696467\pi\)
0.995621 + 0.0934824i \(0.0297999\pi\)
\(314\) 40.8260i 0.130019i
\(315\) 0 0
\(316\) 1106.22 3.50071
\(317\) −113.480 65.5178i −0.357981 0.206681i 0.310213 0.950667i \(-0.399599\pi\)
−0.668195 + 0.743986i \(0.732933\pi\)
\(318\) −62.0508 956.330i −0.195128 3.00733i
\(319\) −150.165 260.094i −0.470737 0.815340i
\(320\) 0 0
\(321\) 2.76446 + 4.14318i 0.00861201 + 0.0129071i
\(322\) 2.41656 4.18560i 0.00750484 0.0129988i
\(323\) 30.7071i 0.0950683i
\(324\) 203.145 750.261i 0.626989 2.31562i
\(325\) 0 0
\(326\) 690.482 + 398.650i 2.11804 + 1.22285i
\(327\) 370.934 247.498i 1.13435 0.756874i
\(328\) −357.076 618.474i −1.08865 1.88559i
\(329\) 113.242 65.3803i 0.344201 0.198724i
\(330\) 0 0
\(331\) −96.7419 + 167.562i −0.292272 + 0.506229i −0.974347 0.225053i \(-0.927745\pi\)
0.682075 + 0.731282i \(0.261078\pi\)
\(332\) 575.893i 1.73462i
\(333\) −4.55554 + 10.9573i −0.0136803 + 0.0329049i
\(334\) −228.415 −0.683877
\(335\) 0 0
\(336\) −260.338 128.597i −0.774816 0.382729i
\(337\) 231.798 + 401.485i 0.687827 + 1.19135i 0.972539 + 0.232738i \(0.0747686\pi\)
−0.284712 + 0.958613i \(0.591898\pi\)
\(338\) 74.9664 43.2819i 0.221794 0.128053i
\(339\) −174.658 + 353.585i −0.515214 + 1.04302i
\(340\) 0 0
\(341\) 189.005i 0.554268i
\(342\) −188.881 + 144.540i −0.552284 + 0.422631i
\(343\) −234.682 −0.684203
\(344\) 928.267 + 535.935i 2.69845 + 1.55795i
\(345\) 0 0
\(346\) −614.799 1064.86i −1.77688 3.07764i
\(347\) −8.41662 + 4.85934i −0.0242554 + 0.0140039i −0.512079 0.858939i \(-0.671124\pi\)
0.487823 + 0.872942i \(0.337791\pi\)
\(348\) 488.163 + 731.627i 1.40277 + 2.10238i
\(349\) −24.6679 + 42.7260i −0.0706816 + 0.122424i −0.899200 0.437537i \(-0.855851\pi\)
0.828519 + 0.559962i \(0.189184\pi\)
\(350\) 0 0
\(351\) −245.304 + 214.273i −0.698871 + 0.610463i
\(352\) 555.123 1.57705
\(353\) −82.5859 47.6810i −0.233954 0.135074i 0.378441 0.925626i \(-0.376460\pi\)
−0.612395 + 0.790552i \(0.709794\pi\)
\(354\) −975.019 + 650.562i −2.75429 + 1.83774i
\(355\) 0 0
\(356\) −592.524 + 342.094i −1.66439 + 0.960938i
\(357\) −32.9309 + 2.13670i −0.0922433 + 0.00598514i
\(358\) −356.783 + 617.966i −0.996600 + 1.72616i
\(359\) 539.284i 1.50219i −0.660197 0.751093i \(-0.729527\pi\)
0.660197 0.751093i \(-0.270473\pi\)
\(360\) 0 0
\(361\) −309.634 −0.857713
\(362\) 778.729 + 449.599i 2.15118 + 1.24199i
\(363\) −65.5470 32.3777i −0.180570 0.0891948i
\(364\) 148.600 + 257.383i 0.408243 + 0.707098i
\(365\) 0 0
\(366\) −153.438 + 310.627i −0.419229 + 0.848707i
\(367\) 151.544 262.482i 0.412927 0.715211i −0.582281 0.812987i \(-0.697840\pi\)
0.995208 + 0.0977766i \(0.0311731\pi\)
\(368\) 19.2470i 0.0523016i
\(369\) 40.2526 + 308.882i 0.109086 + 0.837078i
\(370\) 0 0
\(371\) 192.627 + 111.213i 0.519209 + 0.299766i
\(372\) 35.8390 + 552.352i 0.0963413 + 1.48482i
\(373\) 65.3325 + 113.159i 0.175154 + 0.303376i 0.940215 0.340582i \(-0.110624\pi\)
−0.765060 + 0.643959i \(0.777291\pi\)
\(374\) 134.492 77.6489i 0.359604 0.207617i
\(375\) 0 0
\(376\) 525.459 910.121i 1.39750 2.42054i
\(377\) 368.560i 0.977612i
\(378\) 168.151 + 192.502i 0.444843 + 0.509265i
\(379\) −545.141 −1.43837 −0.719183 0.694821i \(-0.755484\pi\)
−0.719183 + 0.694821i \(0.755484\pi\)
\(380\) 0 0
\(381\) −252.421 + 168.423i −0.662522 + 0.442054i
\(382\) −260.995 452.056i −0.683232 1.18339i
\(383\) −1.07950 + 0.623248i −0.00281853 + 0.00162728i −0.501409 0.865211i \(-0.667185\pi\)
0.498590 + 0.866838i \(0.333851\pi\)
\(384\) 42.2947 2.74426i 0.110142 0.00714651i
\(385\) 0 0
\(386\) 816.445i 2.11514i
\(387\) −284.121 371.282i −0.734163 0.959386i
\(388\) 1227.94 3.16480
\(389\) 345.001 + 199.187i 0.886893 + 0.512048i 0.872925 0.487855i \(-0.162220\pi\)
0.0139679 + 0.999902i \(0.495554\pi\)
\(390\) 0 0
\(391\) −1.09371 1.89435i −0.00279720 0.00484490i
\(392\) −757.822 + 437.529i −1.93322 + 1.11615i
\(393\) −113.993 + 230.772i −0.290057 + 0.587206i
\(394\) 52.4376 90.8245i 0.133090 0.230519i
\(395\) 0 0
\(396\) −783.916 325.915i −1.97959 0.823018i
\(397\) 685.998 1.72795 0.863977 0.503531i \(-0.167966\pi\)
0.863977 + 0.503531i \(0.167966\pi\)
\(398\) −491.367 283.691i −1.23459 0.712791i
\(399\) −3.57419 55.0856i −0.00895787 0.138059i
\(400\) 0 0
\(401\) 44.9212 25.9353i 0.112023 0.0646764i −0.442942 0.896550i \(-0.646065\pi\)
0.554965 + 0.831874i \(0.312732\pi\)
\(402\) 479.220 + 718.223i 1.19209 + 1.78663i
\(403\) 115.972 200.869i 0.287772 0.498435i
\(404\) 825.992i 2.04453i
\(405\) 0 0
\(406\) −289.227 −0.712383
\(407\) 11.2246 + 6.48055i 0.0275790 + 0.0159227i
\(408\) −220.619 + 147.204i −0.540734 + 0.360794i
\(409\) −135.648 234.950i −0.331658 0.574449i 0.651179 0.758924i \(-0.274275\pi\)
−0.982837 + 0.184475i \(0.940941\pi\)
\(410\) 0 0
\(411\) 208.740 13.5439i 0.507883 0.0329536i
\(412\) −196.158 + 339.756i −0.476112 + 0.824650i
\(413\) 272.046i 0.658707i
\(414\) −6.50415 + 15.6443i −0.0157105 + 0.0377881i
\(415\) 0 0
\(416\) 589.969 + 340.619i 1.41819 + 0.818795i
\(417\) 373.653 + 184.570i 0.896050 + 0.442614i
\(418\) 129.888 + 224.973i 0.310738 + 0.538213i
\(419\) −23.9467 + 13.8256i −0.0571520 + 0.0329967i −0.528304 0.849055i \(-0.677172\pi\)
0.471152 + 0.882052i \(0.343838\pi\)
\(420\) 0 0
\(421\) 218.613 378.649i 0.519271 0.899403i −0.480478 0.877007i \(-0.659537\pi\)
0.999749 0.0223967i \(-0.00712970\pi\)
\(422\) 664.367i 1.57433i
\(423\) −364.025 + 278.567i −0.860578 + 0.658552i
\(424\) 1787.63 4.21610
\(425\) 0 0
\(426\) 52.0531 + 802.245i 0.122190 + 1.88320i
\(427\) −40.2054 69.6378i −0.0941579 0.163086i
\(428\) −13.7974 + 7.96594i −0.0322369 + 0.0186120i
\(429\) 197.450 + 295.926i 0.460257 + 0.689803i
\(430\) 0 0
\(431\) 54.3602i 0.126126i −0.998010 0.0630629i \(-0.979913\pi\)
0.998010 0.0630629i \(-0.0200869\pi\)
\(432\) 963.217 + 329.085i 2.22967 + 0.761771i
\(433\) 526.426 1.21576 0.607882 0.794028i \(-0.292019\pi\)
0.607882 + 0.794028i \(0.292019\pi\)
\(434\) −157.632 91.0091i −0.363208 0.209698i
\(435\) 0 0
\(436\) 713.180 + 1235.26i 1.63573 + 2.83317i
\(437\) 3.16881 1.82951i 0.00725128 0.00418653i
\(438\) −334.577 + 21.7088i −0.763875 + 0.0495635i
\(439\) −208.124 + 360.481i −0.474087 + 0.821142i −0.999560 0.0296681i \(-0.990555\pi\)
0.525473 + 0.850810i \(0.323888\pi\)
\(440\) 0 0
\(441\) 378.476 49.3219i 0.858223 0.111841i
\(442\) 190.579 0.431173
\(443\) 369.935 + 213.582i 0.835069 + 0.482127i 0.855585 0.517662i \(-0.173198\pi\)
−0.0205163 + 0.999790i \(0.506531\pi\)
\(444\) −34.0319 16.8104i −0.0766484 0.0378614i
\(445\) 0 0
\(446\) 687.840 397.125i 1.54224 0.890414i
\(447\) −63.4512 + 128.454i −0.141949 + 0.287368i
\(448\) 73.7224 127.691i 0.164559 0.285024i
\(449\) 236.730i 0.527239i −0.964627 0.263620i \(-0.915084\pi\)
0.964627 0.263620i \(-0.0849164\pi\)
\(450\) 0 0
\(451\) 340.224 0.754376
\(452\) −1092.46 630.730i −2.41694 1.39542i
\(453\) 10.7789 + 166.125i 0.0237945 + 0.366721i
\(454\) −92.9488 160.992i −0.204733 0.354608i
\(455\) 0 0
\(456\) −246.237 369.044i −0.539994 0.809308i
\(457\) −348.891 + 604.296i −0.763437 + 1.32231i 0.177633 + 0.984097i \(0.443156\pi\)
−0.941069 + 0.338214i \(0.890177\pi\)
\(458\) 22.7396i 0.0496497i
\(459\) 113.503 22.3450i 0.247284 0.0486818i
\(460\) 0 0
\(461\) −332.339 191.876i −0.720910 0.416217i 0.0941777 0.995555i \(-0.469978\pi\)
−0.815087 + 0.579338i \(0.803311\pi\)
\(462\) 232.228 154.949i 0.502657 0.335388i
\(463\) 135.056 + 233.924i 0.291698 + 0.505235i 0.974211 0.225638i \(-0.0724466\pi\)
−0.682514 + 0.730873i \(0.739113\pi\)
\(464\) −997.483 + 575.897i −2.14975 + 1.24116i
\(465\) 0 0
\(466\) 96.8529 167.754i 0.207839 0.359987i
\(467\) 777.952i 1.66585i 0.553385 + 0.832926i \(0.313336\pi\)
−0.553385 + 0.832926i \(0.686664\pi\)
\(468\) −633.145 827.377i −1.35287 1.76790i
\(469\) −200.396 −0.427283
\(470\) 0 0
\(471\) 29.7812 + 14.7108i 0.0632298 + 0.0312331i
\(472\) −1093.21 1893.50i −2.31612 4.01164i
\(473\) −442.228 + 255.321i −0.934943 + 0.539790i
\(474\) 564.758 1143.32i 1.19147 2.41208i
\(475\) 0 0
\(476\) 105.556i 0.221757i
\(477\) −719.970 299.329i −1.50937 0.627525i
\(478\) −359.819 −0.752760
\(479\) −62.8429 36.2824i −0.131196 0.0757460i 0.432966 0.901410i \(-0.357467\pi\)
−0.564162 + 0.825664i \(0.690800\pi\)
\(480\) 0 0
\(481\) 7.95281 + 13.7747i 0.0165339 + 0.0286376i
\(482\) 455.774 263.141i 0.945590 0.545936i
\(483\) −2.18250 3.27099i −0.00451864 0.00677224i
\(484\) 116.924 202.518i 0.241578 0.418425i
\(485\) 0 0
\(486\) −671.712 592.987i −1.38212 1.22014i
\(487\) −729.487 −1.49792 −0.748959 0.662616i \(-0.769446\pi\)
−0.748959 + 0.662616i \(0.769446\pi\)
\(488\) −559.676 323.129i −1.14688 0.662150i
\(489\) 539.602 360.039i 1.10348 0.736275i
\(490\) 0 0
\(491\) 3.30449 1.90785i 0.00673012 0.00388564i −0.496631 0.867962i \(-0.665430\pi\)
0.503361 + 0.864076i \(0.332096\pi\)
\(492\) −994.275 + 64.5128i −2.02088 + 0.131124i
\(493\) −65.4505 + 113.364i −0.132760 + 0.229946i
\(494\) 318.793i 0.645330i
\(495\) 0 0
\(496\) −724.853 −1.46140
\(497\) −161.590 93.2942i −0.325131 0.187715i
\(498\) 595.207 + 294.009i 1.19519 + 0.590380i
\(499\) 102.651 + 177.797i 0.205714 + 0.356307i 0.950360 0.311152i \(-0.100715\pi\)
−0.744646 + 0.667460i \(0.767382\pi\)
\(500\) 0 0
\(501\) −82.3044 + 166.621i −0.164280 + 0.332577i
\(502\) 469.448 813.107i 0.935155 1.61974i
\(503\) 224.016i 0.445360i −0.974892 0.222680i \(-0.928519\pi\)
0.974892 0.222680i \(-0.0714806\pi\)
\(504\) −378.637 + 289.749i −0.751263 + 0.574899i
\(505\) 0 0
\(506\) 16.0259 + 9.25257i 0.0316718 + 0.0182857i
\(507\) −4.56015 70.2813i −0.00899438 0.138622i
\(508\) −485.320 840.599i −0.955354 1.65472i
\(509\) 399.073 230.405i 0.784033 0.452662i −0.0538245 0.998550i \(-0.517141\pi\)
0.837858 + 0.545889i \(0.183808\pi\)
\(510\) 0 0
\(511\) 38.9085 67.3915i 0.0761418 0.131882i
\(512\) 982.608i 1.91916i
\(513\) 37.3778 + 189.864i 0.0728613 + 0.370106i
\(514\) −526.309 −1.02395
\(515\) 0 0
\(516\) 1243.96 830.007i 2.41078 1.60854i
\(517\) 250.330 + 433.584i 0.484197 + 0.838653i
\(518\) 10.8097 6.24097i 0.0208681 0.0120482i
\(519\) −998.313 + 64.7748i −1.92353 + 0.124807i
\(520\) 0 0
\(521\) 182.438i 0.350168i −0.984554 0.175084i \(-0.943980\pi\)
0.984554 0.175084i \(-0.0560197\pi\)
\(522\) 1005.39 131.019i 1.92603 0.250994i
\(523\) −431.339 −0.824741 −0.412370 0.911016i \(-0.635299\pi\)
−0.412370 + 0.911016i \(0.635299\pi\)
\(524\) −713.006 411.654i −1.36070 0.785599i
\(525\) 0 0
\(526\) −465.461 806.202i −0.884907 1.53270i
\(527\) −71.3426 + 41.1896i −0.135375 + 0.0781587i
\(528\) 492.375 996.788i 0.932529 1.88786i
\(529\) −264.370 + 457.902i −0.499754 + 0.865599i
\(530\) 0 0
\(531\) 123.236 + 945.660i 0.232083 + 1.78090i
\(532\) 176.571 0.331901
\(533\) 361.580 + 208.758i 0.678386 + 0.391666i
\(534\) 51.0669 + 787.045i 0.0956308 + 1.47387i
\(535\) 0 0
\(536\) −1394.80 + 805.285i −2.60223 + 1.50240i
\(537\) 322.227 + 482.932i 0.600050 + 0.899315i
\(538\) 716.571 1241.14i 1.33192 2.30695i
\(539\) 416.879i 0.773431i
\(540\) 0 0
\(541\) −649.924 −1.20134 −0.600669 0.799498i \(-0.705099\pi\)
−0.600669 + 0.799498i \(0.705099\pi\)
\(542\) −521.312 300.980i −0.961830 0.555313i
\(543\) 608.566 406.053i 1.12075 0.747796i
\(544\) −120.977 209.539i −0.222384 0.385181i
\(545\) 0 0
\(546\) 341.880 22.1827i 0.626154 0.0406276i
\(547\) 212.658 368.334i 0.388771 0.673371i −0.603513 0.797353i \(-0.706233\pi\)
0.992285 + 0.123982i \(0.0395663\pi\)
\(548\) 669.094i 1.22097i
\(549\) 171.304 + 223.856i 0.312029 + 0.407752i
\(550\) 0 0
\(551\) −189.631 109.483i −0.344157 0.198699i
\(552\) −28.3351 13.9964i −0.0513317 0.0253559i
\(553\) 147.984 + 256.316i 0.267602 + 0.463501i
\(554\) 1544.98 891.995i 2.78878 1.61010i
\(555\) 0 0
\(556\) −666.526 + 1154.46i −1.19879 + 2.07636i
\(557\) 325.885i 0.585073i −0.956254 0.292536i \(-0.905501\pi\)
0.956254 0.292536i \(-0.0944992\pi\)
\(558\) 589.174 + 244.950i 1.05587 + 0.438979i
\(559\) −626.650 −1.12102
\(560\) 0 0
\(561\) −8.18103 126.086i −0.0145829 0.224753i
\(562\) 493.464 + 854.705i 0.878050 + 1.52083i
\(563\) −612.075 + 353.382i −1.08717 + 0.627676i −0.932821 0.360341i \(-0.882660\pi\)
−0.154346 + 0.988017i \(0.549327\pi\)
\(564\) −813.783 1219.64i −1.44288 2.16249i
\(565\) 0 0
\(566\) 1813.39i 3.20387i
\(567\) 201.014 53.2962i 0.354521 0.0939967i
\(568\) −1499.60 −2.64015
\(569\) 485.178 + 280.118i 0.852686 + 0.492299i 0.861556 0.507662i \(-0.169490\pi\)
−0.00887015 + 0.999961i \(0.502823\pi\)
\(570\) 0 0
\(571\) 105.346 + 182.465i 0.184494 + 0.319553i 0.943406 0.331640i \(-0.107602\pi\)
−0.758912 + 0.651193i \(0.774269\pi\)
\(572\) −985.475 + 568.965i −1.72286 + 0.994693i
\(573\) −423.804 + 27.4982i −0.739623 + 0.0479899i
\(574\) 163.823 283.750i 0.285406 0.494338i
\(575\) 0 0
\(576\) −198.423 + 477.263i −0.344485 + 0.828582i
\(577\) −502.258 −0.870464 −0.435232 0.900318i \(-0.643334\pi\)
−0.435232 + 0.900318i \(0.643334\pi\)
\(578\) 864.237 + 498.968i 1.49522 + 0.863266i
\(579\) 595.570 + 294.189i 1.02862 + 0.508098i
\(580\) 0 0
\(581\) −133.436 + 77.0395i −0.229667 + 0.132598i
\(582\) 626.899 1269.12i 1.07715 2.18063i
\(583\) −425.815 + 737.533i −0.730386 + 1.26507i
\(584\) 625.411i 1.07091i
\(585\) 0 0
\(586\) 1187.84 2.02703
\(587\) 354.873 + 204.886i 0.604554 + 0.349040i 0.770831 0.637040i \(-0.219841\pi\)
−0.166277 + 0.986079i \(0.553175\pi\)
\(588\) 79.0482 + 1218.29i 0.134436 + 2.07193i
\(589\) −68.9006 119.339i −0.116979 0.202613i
\(590\) 0 0
\(591\) −47.3587 70.9782i −0.0801332 0.120098i
\(592\) 24.8535 43.0476i 0.0419823 0.0727155i
\(593\) 944.139i 1.59214i 0.605204 + 0.796070i \(0.293092\pi\)
−0.605204 + 0.796070i \(0.706908\pi\)
\(594\) −737.057 + 643.818i −1.24084 + 1.08387i
\(595\) 0 0
\(596\) −396.877 229.137i −0.665902 0.384458i
\(597\) −383.997 + 256.214i −0.643210 + 0.429169i
\(598\) 11.3546 + 19.6667i 0.0189876 + 0.0328875i
\(599\) −461.021 + 266.171i −0.769652 + 0.444359i −0.832750 0.553649i \(-0.813235\pi\)
0.0630986 + 0.998007i \(0.479902\pi\)
\(600\) 0 0
\(601\) −257.783 + 446.493i −0.428923 + 0.742917i −0.996778 0.0802121i \(-0.974440\pi\)
0.567855 + 0.823129i \(0.307774\pi\)
\(602\) 491.764i 0.816883i
\(603\) 696.597 90.7785i 1.15522 0.150545i
\(604\) −532.496 −0.881615
\(605\) 0 0
\(606\) 853.694 + 421.692i 1.40874 + 0.695862i
\(607\) −85.5764 148.223i −0.140983 0.244189i 0.786884 0.617101i \(-0.211693\pi\)
−0.927867 + 0.372912i \(0.878360\pi\)
\(608\) 350.509 202.366i 0.576494 0.332839i
\(609\) −104.217 + 210.982i −0.171128 + 0.346440i
\(610\) 0 0
\(611\) 614.400i 1.00557i
\(612\) 47.8167 + 366.926i 0.0781319 + 0.599552i
\(613\) −875.826 −1.42875 −0.714377 0.699761i \(-0.753290\pi\)
−0.714377 + 0.699761i \(0.753290\pi\)
\(614\) −1360.43 785.447i −2.21569 1.27923i
\(615\) 0 0
\(616\) 260.378 + 450.988i 0.422692 + 0.732124i
\(617\) 980.122 565.874i 1.58853 0.917137i 0.594978 0.803742i \(-0.297161\pi\)
0.993550 0.113396i \(-0.0361728\pi\)
\(618\) 251.006 + 376.192i 0.406159 + 0.608725i
\(619\) 260.187 450.658i 0.420335 0.728042i −0.575637 0.817705i \(-0.695246\pi\)
0.995972 + 0.0896637i \(0.0285792\pi\)
\(620\) 0 0
\(621\) 9.06836 + 10.3817i 0.0146028 + 0.0167176i
\(622\) −4.30664 −0.00692386
\(623\) −158.529 91.5266i −0.254460 0.146913i
\(624\) 1134.90 757.241i 1.81875 1.21353i
\(625\) 0 0
\(626\) 833.284 481.097i 1.33112 0.768525i
\(627\) 210.913 13.6849i 0.336384 0.0218261i
\(628\) −53.1242 + 92.0138i −0.0845926 + 0.146519i
\(629\) 5.64918i 0.00898121i
\(630\) 0 0
\(631\) −607.475 −0.962718 −0.481359 0.876523i \(-0.659857\pi\)
−0.481359 + 0.876523i \(0.659857\pi\)
\(632\) 2060.00 + 1189.34i 3.25949 + 1.88187i
\(633\) −484.633 239.390i −0.765614 0.378184i
\(634\) −241.582 418.433i −0.381044 0.659988i
\(635\) 0 0
\(636\) 1104.56 2236.12i 1.73673 3.51591i
\(637\) 255.794 443.047i 0.401560 0.695522i
\(638\) 1107.40i 1.73574i
\(639\) 603.967 + 251.101i 0.945176 + 0.392959i
\(640\) 0 0
\(641\) 161.252 + 93.0990i 0.251564 + 0.145240i 0.620480 0.784222i \(-0.286938\pi\)
−0.368916 + 0.929463i \(0.620271\pi\)
\(642\) 1.18913 + 18.3270i 0.00185223 + 0.0285467i
\(643\) 398.761 + 690.674i 0.620157 + 1.07414i 0.989456 + 0.144833i \(0.0462645\pi\)
−0.369299 + 0.929311i \(0.620402\pi\)
\(644\) 10.8929 6.28901i 0.0169144 0.00976554i
\(645\) 0 0
\(646\) 56.6127 98.0561i 0.0876357 0.151790i
\(647\) 849.489i 1.31297i 0.754341 + 0.656483i \(0.227957\pi\)
−0.754341 + 0.656483i \(0.772043\pi\)
\(648\) 1184.93 1178.72i 1.82859 1.81901i
\(649\) 1041.61 1.60495
\(650\) 0 0
\(651\) −123.188 + 82.1944i −0.189228 + 0.126259i
\(652\) 1037.47 + 1796.95i 1.59122 + 2.75607i
\(653\) 901.696 520.594i 1.38085 0.797235i 0.388591 0.921410i \(-0.372962\pi\)
0.992260 + 0.124175i \(0.0396285\pi\)
\(654\) 1640.79 106.461i 2.50885 0.162785i
\(655\) 0 0
\(656\) 1304.79i 1.98901i
\(657\) −104.722 + 251.885i −0.159394 + 0.383387i
\(658\) 482.151 0.732752
\(659\) −556.318 321.190i −0.844185 0.487390i 0.0144997 0.999895i \(-0.495384\pi\)
−0.858685 + 0.512505i \(0.828718\pi\)
\(660\) 0 0
\(661\) 394.759 + 683.742i 0.597214 + 1.03441i 0.993230 + 0.116162i \(0.0370591\pi\)
−0.396016 + 0.918244i \(0.629608\pi\)
\(662\) −617.847 + 356.714i −0.933304 + 0.538843i
\(663\) 68.6710 139.021i 0.103576 0.209684i
\(664\) −619.163 + 1072.42i −0.932474 + 1.61509i
\(665\) 0 0
\(666\) −34.7485 + 26.5910i −0.0521749 + 0.0399265i
\(667\) −15.5980 −0.0233854
\(668\) −514.802 297.221i −0.770661 0.444941i
\(669\) −41.8408 644.852i −0.0625422 0.963904i
\(670\) 0 0
\(671\) 266.631 153.939i 0.397363 0.229418i
\(672\) −241.411 361.811i −0.359243 0.538410i
\(673\) 507.967 879.824i 0.754780 1.30732i −0.190704 0.981648i \(-0.561077\pi\)
0.945484 0.325669i \(-0.105590\pi\)
\(674\) 1709.40i 2.53621i
\(675\) 0 0
\(676\) 225.279 0.333253
\(677\) −643.996 371.811i −0.951249 0.549204i −0.0577802 0.998329i \(-0.518402\pi\)
−0.893469 + 0.449126i \(0.851736\pi\)
\(678\) −1209.61 + 807.090i −1.78409 + 1.19040i
\(679\) 164.267 + 284.518i 0.241924 + 0.419025i
\(680\) 0 0
\(681\) −150.930 + 9.79301i −0.221631 + 0.0143803i
\(682\) 348.458 603.546i 0.510935 0.884965i
\(683\) 152.482i 0.223254i −0.993750 0.111627i \(-0.964394\pi\)
0.993750 0.111627i \(-0.0356061\pi\)
\(684\) −613.780 + 79.9861i −0.897339 + 0.116939i
\(685\) 0 0
\(686\) −749.403 432.668i −1.09242 0.630711i
\(687\) −16.5878 8.19373i −0.0241452 0.0119268i
\(688\) 979.179 + 1695.99i 1.42322 + 2.46510i
\(689\) −905.087 + 522.552i −1.31362 + 0.758422i
\(690\) 0 0
\(691\) −388.586 + 673.050i −0.562353 + 0.974023i 0.434938 + 0.900460i \(0.356770\pi\)
−0.997291 + 0.0735628i \(0.976563\pi\)
\(692\) 3199.99i 4.62426i
\(693\) −29.3520 225.235i −0.0423550 0.325015i
\(694\) −35.8355 −0.0516361
\(695\) 0 0
\(696\) 122.454 + 1887.27i 0.175940 + 2.71160i
\(697\) −74.1444 128.422i −0.106376 0.184249i
\(698\) −157.543 + 90.9573i −0.225706 + 0.130311i
\(699\) −87.4722 131.098i −0.125139 0.187550i
\(700\) 0 0
\(701\) 461.657i 0.658569i 0.944231 + 0.329284i \(0.106808\pi\)
−0.944231 + 0.329284i \(0.893192\pi\)
\(702\) −1178.36 + 231.980i −1.67858 + 0.330456i
\(703\) 9.44975 0.0134420
\(704\) 488.906 + 282.270i 0.694468 + 0.400952i
\(705\) 0 0
\(706\) −175.813 304.517i −0.249027 0.431327i
\(707\) −191.385 + 110.496i −0.270701 + 0.156289i
\(708\) −3044.03 + 197.510i −4.29948 + 0.278969i
\(709\) −179.227 + 310.431i −0.252789 + 0.437843i −0.964293 0.264839i \(-0.914681\pi\)
0.711504 + 0.702682i \(0.248014\pi\)
\(710\) 0 0
\(711\) −630.519 823.945i −0.886805 1.15885i
\(712\) −1471.19 −2.06628
\(713\) −8.50112 4.90812i −0.0119230 0.00688376i
\(714\) −109.097 53.8896i −0.152796 0.0754756i
\(715\) 0 0
\(716\) −1608.24 + 928.515i −2.24614 + 1.29681i
\(717\) −129.653 + 262.476i −0.180827 + 0.366076i
\(718\) 994.245 1722.08i 1.38474 2.39845i
\(719\) 283.414i 0.394178i 0.980386 + 0.197089i \(0.0631488\pi\)
−0.980386 + 0.197089i \(0.936851\pi\)
\(720\) 0 0
\(721\) −104.964 −0.145580
\(722\) −988.748 570.854i −1.36946 0.790656i
\(723\) −27.7244 427.290i −0.0383463 0.590995i
\(724\) 1170.07 + 2026.61i 1.61611 + 2.79919i
\(725\) 0 0
\(726\) −149.617 224.236i −0.206084 0.308865i
\(727\) −77.6796 + 134.545i −0.106850 + 0.185069i −0.914492 0.404603i \(-0.867410\pi\)
0.807643 + 0.589672i \(0.200743\pi\)
\(728\) 639.063i 0.877833i
\(729\) −674.602 + 276.322i −0.925380 + 0.379042i
\(730\) 0 0
\(731\) 192.748 + 111.283i 0.263677 + 0.152234i
\(732\) −750.016 + 500.433i −1.02461 + 0.683652i
\(733\) −52.4658 90.8735i −0.0715768 0.123975i 0.828016 0.560705i \(-0.189470\pi\)
−0.899593 + 0.436730i \(0.856136\pi\)
\(734\) 967.845 558.786i 1.31859 0.761288i
\(735\) 0 0
\(736\) 14.4155 24.9684i 0.0195863 0.0339245i
\(737\) 767.279i 1.04108i
\(738\) −440.929 + 1060.56i −0.597465 + 1.43707i
\(739\) 627.375 0.848951 0.424476 0.905439i \(-0.360458\pi\)
0.424476 + 0.905439i \(0.360458\pi\)
\(740\) 0 0
\(741\) 232.549 + 114.870i 0.313831 + 0.155021i
\(742\) 410.073 + 710.268i 0.552659 + 0.957234i
\(743\) 334.797 193.295i 0.450602 0.260155i −0.257483 0.966283i \(-0.582893\pi\)
0.708084 + 0.706128i \(0.249560\pi\)
\(744\) −527.115 + 1067.12i −0.708488 + 1.43430i
\(745\) 0 0
\(746\) 481.798i 0.645842i
\(747\) 428.940 328.244i 0.574217 0.439416i
\(748\) 404.157 0.540317
\(749\) −3.69147 2.13127i −0.00492853 0.00284549i
\(750\) 0 0
\(751\) −452.601 783.928i −0.602665 1.04385i −0.992416 0.122926i \(-0.960772\pi\)
0.389751 0.920920i \(-0.372561\pi\)
\(752\) 1662.83 960.038i 2.21122 1.27665i
\(753\) −423.979 635.433i −0.563054 0.843868i
\(754\) 679.491 1176.91i 0.901182 1.56089i
\(755\) 0 0
\(756\) 128.488 + 652.665i 0.169957 + 0.863313i
\(757\) 332.222 0.438867 0.219433 0.975627i \(-0.429579\pi\)
0.219433 + 0.975627i \(0.429579\pi\)
\(758\) −1740.78 1005.04i −2.29655 1.32591i
\(759\) 12.5240 8.35641i 0.0165007 0.0110098i
\(760\) 0 0
\(761\) −396.726 + 229.050i −0.521322 + 0.300986i −0.737475 0.675374i \(-0.763982\pi\)
0.216153 + 0.976359i \(0.430649\pi\)
\(762\) −1116.56 + 72.4472i −1.46530 + 0.0950751i
\(763\) −190.810 + 330.492i −0.250079 + 0.433149i
\(764\) 1358.46i 1.77809i
\(765\) 0 0
\(766\) −4.59618 −0.00600023
\(767\) 1107.00 + 639.126i 1.44328 + 0.833280i
\(768\) 758.004 + 374.425i 0.986984 + 0.487532i
\(769\) −458.196 793.618i −0.595833 1.03201i −0.993429 0.114453i \(-0.963489\pi\)
0.397595 0.917561i \(-0.369845\pi\)
\(770\) 0 0
\(771\) −189.644 + 383.925i −0.245972 + 0.497957i
\(772\) −1062.39 + 1840.11i −1.37615 + 2.38356i
\(773\) 1186.06i 1.53436i −0.641434 0.767178i \(-0.721660\pi\)
0.641434 0.767178i \(-0.278340\pi\)
\(774\) −222.767 1709.42i −0.287813 2.20856i
\(775\) 0 0
\(776\) 2286.66 + 1320.20i 2.94673 + 1.70129i
\(777\) −0.657544 10.1341i −0.000846261 0.0130426i
\(778\) 734.456 + 1272.12i 0.944031 + 1.63511i
\(779\) 214.820 124.026i 0.275763 0.159212i
\(780\) 0 0
\(781\) 357.207 618.701i 0.457371 0.792190i
\(782\) 8.06559i 0.0103141i
\(783\) 266.695 780.605i 0.340607 0.996942i
\(784\) −1598.77 −2.03925
\(785\) 0 0
\(786\) −789.470 + 526.757i −1.00441 + 0.670175i
\(787\) −441.240 764.249i −0.560660 0.971092i −0.997439 0.0715229i \(-0.977214\pi\)
0.436779 0.899569i \(-0.356119\pi\)
\(788\) 236.368 136.467i 0.299959 0.173181i
\(789\) −755.817 + 49.0406i −0.957943 + 0.0621554i
\(790\) 0 0
\(791\) 337.501i 0.426677i
\(792\) −1109.40 1449.73i −1.40076 1.83047i
\(793\) 377.823 0.476448
\(794\) 2190.58 + 1264.73i 2.75892 + 1.59286i
\(795\) 0 0
\(796\) −738.295 1278.76i −0.927507 1.60649i
\(797\) −124.537 + 71.9016i −0.156258 + 0.0902153i −0.576090 0.817386i \(-0.695422\pi\)
0.419832 + 0.907602i \(0.362089\pi\)
\(798\) 90.1446 182.493i 0.112963 0.228688i
\(799\) 109.108 188.980i 0.136556 0.236521i
\(800\) 0 0
\(801\) 592.524 + 246.343i 0.739731 + 0.307545i
\(802\) 191.261 0.238480
\(803\) 258.030 + 148.974i 0.321332 + 0.185521i
\(804\) 145.491 + 2242.31i 0.180958 + 2.78894i
\(805\) 0 0
\(806\) 740.661 427.621i 0.918934 0.530547i
\(807\) −647.167 969.932i −0.801942 1.20190i
\(808\) −888.054 + 1538.15i −1.09908 + 1.90366i
\(809\) 52.3078i 0.0646574i 0.999477 + 0.0323287i \(0.0102923\pi\)
−0.999477 + 0.0323287i \(0.989708\pi\)
\(810\) 0 0
\(811\) 1518.65 1.87256 0.936281 0.351253i \(-0.114244\pi\)
0.936281 + 0.351253i \(0.114244\pi\)
\(812\) −651.861 376.352i −0.802785 0.463488i
\(813\) −407.398 + 271.828i −0.501105 + 0.334352i
\(814\) 23.8956 + 41.3883i 0.0293557 + 0.0508456i
\(815\) 0 0
\(816\) −483.553 + 31.3750i −0.592590 + 0.0384498i
\(817\) −186.151 + 322.422i −0.227847 + 0.394642i
\(818\) 1000.35i 1.22292i
\(819\) 107.008 257.383i 0.130657 0.314266i
\(820\) 0 0
\(821\) 950.059 + 548.517i 1.15720 + 0.668108i 0.950631 0.310324i \(-0.100438\pi\)
0.206567 + 0.978432i \(0.433771\pi\)
\(822\) 691.534 + 341.591i 0.841282 + 0.415561i
\(823\) −478.550 828.873i −0.581470 1.00714i −0.995305 0.0967841i \(-0.969144\pi\)
0.413835 0.910352i \(-0.364189\pi\)
\(824\) −730.568 + 421.793i −0.886611 + 0.511885i
\(825\) 0 0
\(826\) 501.554 868.717i 0.607208 1.05172i
\(827\) 171.626i 0.207529i −0.994602 0.103764i \(-0.966911\pi\)
0.994602 0.103764i \(-0.0330888\pi\)
\(828\) −35.0159 + 26.7957i −0.0422898 + 0.0323620i
\(829\) −203.896 −0.245954 −0.122977 0.992410i \(-0.539244\pi\)
−0.122977 + 0.992410i \(0.539244\pi\)
\(830\) 0 0
\(831\) −93.9800 1448.42i −0.113093 1.74299i
\(832\) 346.397 + 599.976i 0.416342 + 0.721126i
\(833\) −157.357 + 90.8499i −0.188904 + 0.109063i
\(834\) 852.895 + 1278.26i 1.02266 + 1.53269i
\(835\) 0 0
\(836\) 676.059i 0.808683i
\(837\) 390.979 341.520i 0.467120 0.408029i
\(838\) −101.958 −0.121668
\(839\) 1348.10 + 778.323i 1.60679 + 0.927680i 0.990083 + 0.140486i \(0.0448664\pi\)
0.616705 + 0.787194i \(0.288467\pi\)
\(840\) 0 0
\(841\) 46.2156 + 80.0477i 0.0549531 + 0.0951816i
\(842\) 1396.18 806.087i 1.65817 0.957347i
\(843\) 801.289 51.9910i 0.950520 0.0616738i
\(844\) 864.495 1497.35i 1.02428 1.77411i
\(845\) 0 0
\(846\) −1676.01 + 218.413i −1.98110 + 0.258171i
\(847\) 62.5654 0.0738670
\(848\) 2828.51 + 1633.04i 3.33551 + 1.92576i
\(849\) −1322.81 653.416i −1.55808 0.769631i
\(850\) 0 0
\(851\) 0.582966 0.336576i 0.000685037 0.000395506i
\(852\) −926.589 + 1875.83i −1.08755 + 2.20168i
\(853\) −281.964 + 488.377i −0.330556 + 0.572540i −0.982621 0.185623i \(-0.940570\pi\)
0.652065 + 0.758163i \(0.273903\pi\)
\(854\) 296.497i 0.347186i
\(855\) 0 0
\(856\) −34.2579 −0.0400209
\(857\) −826.107 476.953i −0.963952 0.556538i −0.0665649 0.997782i \(-0.521204\pi\)
−0.897387 + 0.441244i \(0.854537\pi\)
\(858\) 84.9334 + 1309.00i 0.0989900 + 1.52564i
\(859\) 422.728 + 732.186i 0.492116 + 0.852371i 0.999959 0.00907936i \(-0.00289009\pi\)
−0.507842 + 0.861450i \(0.669557\pi\)
\(860\) 0 0
\(861\) −147.956 221.747i −0.171842 0.257546i
\(862\) 100.221 173.587i 0.116265 0.201377i
\(863\) 1109.42i 1.28554i 0.766061 + 0.642768i \(0.222214\pi\)
−0.766061 + 0.642768i \(0.777786\pi\)
\(864\) 1003.07 + 1148.34i 1.16096 + 1.32909i
\(865\) 0 0
\(866\) 1681.02 + 970.538i 1.94113 + 1.12071i
\(867\) 675.390 450.640i 0.778997 0.519770i
\(868\) −236.848 410.233i −0.272866 0.472618i
\(869\) −981.388 + 566.605i −1.12933 + 0.652019i
\(870\) 0 0
\(871\) 470.796 815.442i 0.540523 0.936214i
\(872\) 3067.06i 3.51727i
\(873\) −699.894 914.604i −0.801712 1.04766i
\(874\) 13.4918 0.0154369
\(875\) 0 0
\(876\) −782.318 386.435i −0.893058 0.441136i
\(877\) 507.331 + 878.724i 0.578485 + 1.00197i 0.995653 + 0.0931364i \(0.0296893\pi\)
−0.417168 + 0.908829i \(0.636977\pi\)
\(878\) −1329.19 + 767.411i −1.51389 + 0.874044i
\(879\) 428.013 866.491i 0.486932 0.985769i
\(880\) 0 0
\(881\) 1226.86i 1.39257i −0.717764 0.696287i \(-0.754834\pi\)
0.717764 0.696287i \(-0.245166\pi\)
\(882\) 1299.51 + 540.275i 1.47337 + 0.612556i
\(883\) −659.407 −0.746780 −0.373390 0.927674i \(-0.621805\pi\)
−0.373390 + 0.927674i \(0.621805\pi\)
\(884\) 429.526 + 247.987i 0.485889 + 0.280528i
\(885\) 0 0
\(886\) 787.537 + 1364.05i 0.888868 + 1.53956i
\(887\) −668.543 + 385.984i −0.753713 + 0.435156i −0.827034 0.562152i \(-0.809974\pi\)
0.0733209 + 0.997308i \(0.476640\pi\)
\(888\) −45.3003 67.8932i −0.0510139 0.0764563i
\(889\) 129.846 224.901i 0.146059 0.252982i
\(890\) 0 0
\(891\) 204.061 + 769.645i 0.229025 + 0.863799i
\(892\) 2067.01 2.31727
\(893\) 316.120 + 182.512i 0.353998 + 0.204381i
\(894\) −439.439 + 293.207i −0.491543 + 0.327972i
\(895\) 0 0
\(896\) −31.4123 + 18.1359i −0.0350584 + 0.0202410i
\(897\) 18.4376 1.19631i 0.0205548 0.00133368i
\(898\) 436.445 755.945i 0.486019 0.841810i
\(899\) 587.432i 0.653428i
\(900\) 0 0
\(901\) 371.189 0.411974
\(902\) 1086.43 + 627.249i 1.20447 + 0.695398i
\(903\) 358.725 + 177.197i 0.397260 + 0.196231i
\(904\) −1356.24 2349.08i −1.50027 2.59854i
\(905\) 0 0
\(906\) −271.854 + 550.355i −0.300060 + 0.607455i
\(907\) −60.7354 + 105.197i −0.0669629 + 0.115983i −0.897563 0.440886i \(-0.854664\pi\)
0.830600 + 0.556869i \(0.187998\pi\)
\(908\) 483.792i 0.532810i
\(909\) 615.221 470.794i 0.676811 0.517925i
\(910\) 0 0
\(911\) −1000.46 577.616i −1.09820 0.634046i −0.162453 0.986716i \(-0.551940\pi\)
−0.935748 + 0.352670i \(0.885274\pi\)
\(912\) −52.4830 808.871i −0.0575472 0.886920i
\(913\) −294.971 510.904i −0.323078 0.559588i
\(914\) −2228.21 + 1286.46i −2.43786 + 1.40750i
\(915\) 0 0
\(916\) 29.5895 51.2505i 0.0323029 0.0559503i
\(917\) 220.275i 0.240212i
\(918\) 403.643 + 137.905i 0.439699 + 0.150224i
\(919\) 994.576 1.08224 0.541119 0.840946i \(-0.318001\pi\)
0.541119 + 0.840946i \(0.318001\pi\)
\(920\) 0 0
\(921\) −1063.16 + 709.372i −1.15436 + 0.770220i
\(922\) −707.501 1225.43i −0.767354 1.32910i
\(923\) 759.258 438.358i 0.822598 0.474927i
\(924\) 725.020 47.0424i 0.784654 0.0509117i
\(925\) 0 0
\(926\) 995.977i 1.07557i
\(927\) 364.864 47.5481i 0.393597 0.0512924i
\(928\) −1725.33 −1.85919
\(929\) −140.236 80.9655i −0.150954 0.0871534i 0.422620 0.906307i \(-0.361110\pi\)
−0.573575 + 0.819153i \(0.694444\pi\)
\(930\) 0 0
\(931\) −151.970 263.221i −0.163234 0.282729i
\(932\) 436.574 252.056i 0.468427 0.270447i
\(933\) −1.55181 + 3.14155i −0.00166324 + 0.00336715i
\(934\) −1434.26 + 2484.22i −1.53561 + 2.65976i
\(935\) 0 0
\(936\) −289.493 2221.45i −0.309288 2.37334i
\(937\) 660.489 0.704898 0.352449 0.935831i \(-0.385349\pi\)
0.352449 + 0.935831i \(0.385349\pi\)
\(938\) −639.919 369.457i −0.682216 0.393878i
\(939\) −50.6880 781.206i −0.0539808 0.831955i
\(940\) 0 0
\(941\) −1378.06 + 795.624i −1.46446 + 0.845509i −0.999213 0.0396696i \(-0.987369\pi\)
−0.465252 + 0.885179i \(0.654036\pi\)
\(942\) 67.9783 + 101.881i 0.0721638 + 0.108154i
\(943\) 8.83498 15.3026i 0.00936902 0.0162276i
\(944\) 3994.69i 4.23167i
\(945\) 0 0
\(946\) −1882.88 −1.99035
\(947\) 1353.91 + 781.678i 1.42968 + 0.825426i 0.997095 0.0761680i \(-0.0242685\pi\)
0.432584 + 0.901594i \(0.357602\pi\)
\(948\) 2760.58 1841.94i 2.91201 1.94298i
\(949\) 182.818 + 316.650i 0.192643 + 0.333667i
\(950\) 0 0
\(951\) −392.282 + 25.4529i −0.412494 + 0.0267644i
\(952\) 113.488 196.566i 0.119210 0.206477i
\(953\) 996.612i 1.04576i 0.852405 + 0.522881i \(0.175143\pi\)
−0.852405 + 0.522881i \(0.824857\pi\)
\(954\) −1747.21 2283.20i −1.83145 2.39330i
\(955\) 0 0
\(956\) −810.961 468.209i −0.848285 0.489758i
\(957\) −807.812 399.028i −0.844109 0.416957i
\(958\) −133.783 231.719i −0.139648 0.241878i
\(959\) −155.031 + 89.5074i −0.161659 + 0.0933341i
\(960\) 0 0
\(961\) 295.657 512.093i 0.307656 0.532875i
\(962\) 58.6484i 0.0609651i
\(963\) 13.7974 + 5.73631i 0.0143275 + 0.00595670i
\(964\) 1369.63 1.42078
\(965\) 0 0
\(966\) −0.938806 14.4689i −0.000971849 0.0149782i
\(967\) −325.000 562.916i −0.336091 0.582126i 0.647603 0.761978i \(-0.275771\pi\)
−0.983694 + 0.179852i \(0.942438\pi\)
\(968\) 435.468 251.418i 0.449864 0.259729i
\(969\) −51.1295 76.6295i −0.0527652 0.0790810i
\(970\) 0 0
\(971\) 1717.75i 1.76905i 0.466495 + 0.884524i \(0.345517\pi\)
−0.466495 + 0.884524i \(0.654483\pi\)
\(972\) −742.291 2210.53i −0.763674 2.27421i
\(973\) −356.656 −0.366553
\(974\) −2329.45 1344.91i −2.39163 1.38081i
\(975\) 0 0
\(976\) −590.372 1022.55i −0.604889 1.04770i
\(977\) −244.324 + 141.061i −0.250076 + 0.144381i −0.619799 0.784761i \(-0.712786\pi\)
0.369723 + 0.929142i \(0.379453\pi\)
\(978\) 2386.88 154.871i 2.44057 0.158355i
\(979\) 350.439 606.979i 0.357956 0.619998i
\(980\) 0 0
\(981\) 513.564 1235.26i 0.523510 1.25919i
\(982\) 14.0695 0.0143274
\(983\) 333.017 + 192.267i 0.338776 + 0.195592i 0.659731 0.751502i \(-0.270670\pi\)
−0.320955 + 0.947095i \(0.604004\pi\)
\(984\) −1920.89 948.846i −1.95212 0.964274i
\(985\) 0 0
\(986\) −418.003 + 241.334i −0.423938 + 0.244761i
\(987\) 173.733 351.713i 0.176021 0.356346i
\(988\) −414.824 + 718.496i −0.419862 + 0.727223i
\(989\) 26.5208i 0.0268158i
\(990\) 0 0
\(991\) 399.250 0.402876 0.201438 0.979501i \(-0.435439\pi\)
0.201438 + 0.979501i \(0.435439\pi\)
\(992\) −940.326 542.898i −0.947910 0.547276i
\(993\) 37.5832 + 579.234i 0.0378481 + 0.583317i
\(994\) −344.002 595.828i −0.346078 0.599425i
\(995\) 0 0
\(996\) 958.903 + 1437.14i 0.962754 + 1.44291i
\(997\) −726.087 + 1257.62i −0.728272 + 1.26140i 0.229341 + 0.973346i \(0.426343\pi\)
−0.957613 + 0.288058i \(0.906991\pi\)
\(998\) 757.008i 0.758525i
\(999\) 6.87641 + 34.9294i 0.00688329 + 0.0349643i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.3.j.e.101.10 20
3.2 odd 2 675.3.j.e.251.1 20
5.2 odd 4 45.3.h.a.29.1 yes 20
5.3 odd 4 45.3.h.a.29.10 yes 20
5.4 even 2 inner 225.3.j.e.101.1 20
9.4 even 3 675.3.j.e.476.1 20
9.5 odd 6 inner 225.3.j.e.176.10 20
15.2 even 4 135.3.h.a.89.10 20
15.8 even 4 135.3.h.a.89.1 20
15.14 odd 2 675.3.j.e.251.10 20
45.2 even 12 405.3.d.a.404.2 20
45.4 even 6 675.3.j.e.476.10 20
45.7 odd 12 405.3.d.a.404.19 20
45.13 odd 12 135.3.h.a.44.10 20
45.14 odd 6 inner 225.3.j.e.176.1 20
45.22 odd 12 135.3.h.a.44.1 20
45.23 even 12 45.3.h.a.14.1 20
45.32 even 12 45.3.h.a.14.10 yes 20
45.38 even 12 405.3.d.a.404.20 20
45.43 odd 12 405.3.d.a.404.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.h.a.14.1 20 45.23 even 12
45.3.h.a.14.10 yes 20 45.32 even 12
45.3.h.a.29.1 yes 20 5.2 odd 4
45.3.h.a.29.10 yes 20 5.3 odd 4
135.3.h.a.44.1 20 45.22 odd 12
135.3.h.a.44.10 20 45.13 odd 12
135.3.h.a.89.1 20 15.8 even 4
135.3.h.a.89.10 20 15.2 even 4
225.3.j.e.101.1 20 5.4 even 2 inner
225.3.j.e.101.10 20 1.1 even 1 trivial
225.3.j.e.176.1 20 45.14 odd 6 inner
225.3.j.e.176.10 20 9.5 odd 6 inner
405.3.d.a.404.1 20 45.43 odd 12
405.3.d.a.404.2 20 45.2 even 12
405.3.d.a.404.19 20 45.7 odd 12
405.3.d.a.404.20 20 45.38 even 12
675.3.j.e.251.1 20 3.2 odd 2
675.3.j.e.251.10 20 15.14 odd 2
675.3.j.e.476.1 20 9.4 even 3
675.3.j.e.476.10 20 45.4 even 6