Properties

Label 675.3.i.c.449.12
Level $675$
Weight $3$
Character 675.449
Analytic conductor $18.392$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,3,Mod(224,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.224"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 675.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,-32,0,0,0,0,0,0,36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3924178443\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 449.12
Character \(\chi\) \(=\) 675.449
Dual form 675.3.i.c.224.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.916957 + 1.58822i) q^{2} +(0.318381 - 0.551452i) q^{4} +(5.60142 - 3.23398i) q^{7} +8.50342 q^{8} +(-9.24701 + 5.33876i) q^{11} +(-9.58473 - 5.53374i) q^{13} +(10.2725 + 5.93084i) q^{14} +(6.52374 + 11.2995i) q^{16} +12.6328 q^{17} +32.1403 q^{19} +(-16.9582 - 9.79083i) q^{22} +(-5.67112 + 9.82266i) q^{23} -20.2968i q^{26} -4.11855i q^{28} +(35.2234 - 20.3362i) q^{29} +(15.9429 - 27.6139i) q^{31} +(5.04286 - 8.73448i) q^{32} +(11.5837 + 20.0635i) q^{34} -45.4499i q^{37} +(29.4713 + 51.0457i) q^{38} +(25.4781 + 14.7098i) q^{41} +(-32.5786 + 18.8093i) q^{43} +6.79904i q^{44} -20.8007 q^{46} +(-28.7589 - 49.8119i) q^{47} +(-3.58274 + 6.20548i) q^{49} +(-6.10319 + 3.52368i) q^{52} +33.3940 q^{53} +(47.6312 - 27.4999i) q^{56} +(64.5966 + 37.2949i) q^{58} +(3.54909 + 2.04907i) q^{59} +(33.1195 + 57.3647i) q^{61} +58.4757 q^{62} +70.6863 q^{64} +(61.4687 + 35.4890i) q^{67} +(4.02203 - 6.96635i) q^{68} +13.1123i q^{71} +109.273i q^{73} +(72.1842 - 41.6756i) q^{74} +(10.2328 - 17.7238i) q^{76} +(-34.5309 + 59.8093i) q^{77} +(49.8891 + 86.4104i) q^{79} +53.9530i q^{82} +(-42.8667 - 74.2472i) q^{83} +(-59.7463 - 34.4945i) q^{86} +(-78.6312 + 45.3977i) q^{88} -63.6372i q^{89} -71.5841 q^{91} +(3.61115 + 6.25469i) q^{92} +(52.7414 - 91.3507i) q^{94} +(-74.8357 + 43.2064i) q^{97} -13.1409 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{4} + 36 q^{11} - 108 q^{14} - 64 q^{16} + 104 q^{19} - 108 q^{29} + 64 q^{31} - 108 q^{34} - 288 q^{41} - 216 q^{46} + 108 q^{49} + 36 q^{56} - 972 q^{59} + 124 q^{61} - 512 q^{64} + 1080 q^{74}+ \cdots + 300 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.916957 + 1.58822i 0.458478 + 0.794108i 0.998881 0.0472989i \(-0.0150613\pi\)
−0.540402 + 0.841407i \(0.681728\pi\)
\(3\) 0 0
\(4\) 0.318381 0.551452i 0.0795952 0.137863i
\(5\) 0 0
\(6\) 0 0
\(7\) 5.60142 3.23398i 0.800203 0.461997i −0.0433393 0.999060i \(-0.513800\pi\)
0.843542 + 0.537063i \(0.180466\pi\)
\(8\) 8.50342 1.06293
\(9\) 0 0
\(10\) 0 0
\(11\) −9.24701 + 5.33876i −0.840637 + 0.485342i −0.857481 0.514516i \(-0.827972\pi\)
0.0168436 + 0.999858i \(0.494638\pi\)
\(12\) 0 0
\(13\) −9.58473 5.53374i −0.737287 0.425673i 0.0837952 0.996483i \(-0.473296\pi\)
−0.821082 + 0.570810i \(0.806629\pi\)
\(14\) 10.2725 + 5.93084i 0.733751 + 0.423631i
\(15\) 0 0
\(16\) 6.52374 + 11.2995i 0.407734 + 0.706216i
\(17\) 12.6328 0.743103 0.371552 0.928412i \(-0.378826\pi\)
0.371552 + 0.928412i \(0.378826\pi\)
\(18\) 0 0
\(19\) 32.1403 1.69159 0.845797 0.533505i \(-0.179125\pi\)
0.845797 + 0.533505i \(0.179125\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −16.9582 9.79083i −0.770828 0.445038i
\(23\) −5.67112 + 9.82266i −0.246570 + 0.427072i −0.962572 0.271026i \(-0.912637\pi\)
0.716002 + 0.698099i \(0.245970\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 20.2968i 0.780647i
\(27\) 0 0
\(28\) 4.11855i 0.147091i
\(29\) 35.2234 20.3362i 1.21460 0.701249i 0.250841 0.968028i \(-0.419293\pi\)
0.963758 + 0.266779i \(0.0859594\pi\)
\(30\) 0 0
\(31\) 15.9429 27.6139i 0.514286 0.890770i −0.485576 0.874194i \(-0.661390\pi\)
0.999863 0.0165759i \(-0.00527652\pi\)
\(32\) 5.04286 8.73448i 0.157589 0.272953i
\(33\) 0 0
\(34\) 11.5837 + 20.0635i 0.340697 + 0.590104i
\(35\) 0 0
\(36\) 0 0
\(37\) 45.4499i 1.22837i −0.789160 0.614187i \(-0.789484\pi\)
0.789160 0.614187i \(-0.210516\pi\)
\(38\) 29.4713 + 51.0457i 0.775559 + 1.34331i
\(39\) 0 0
\(40\) 0 0
\(41\) 25.4781 + 14.7098i 0.621418 + 0.358776i 0.777421 0.628981i \(-0.216528\pi\)
−0.156003 + 0.987757i \(0.549861\pi\)
\(42\) 0 0
\(43\) −32.5786 + 18.8093i −0.757641 + 0.437424i −0.828448 0.560066i \(-0.810776\pi\)
0.0708069 + 0.997490i \(0.477443\pi\)
\(44\) 6.79904i 0.154524i
\(45\) 0 0
\(46\) −20.8007 −0.452188
\(47\) −28.7589 49.8119i −0.611892 1.05983i −0.990921 0.134443i \(-0.957075\pi\)
0.379029 0.925385i \(-0.376258\pi\)
\(48\) 0 0
\(49\) −3.58274 + 6.20548i −0.0731171 + 0.126642i
\(50\) 0 0
\(51\) 0 0
\(52\) −6.10319 + 3.52368i −0.117369 + 0.0677630i
\(53\) 33.3940 0.630075 0.315038 0.949079i \(-0.397983\pi\)
0.315038 + 0.949079i \(0.397983\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 47.6312 27.4999i 0.850557 0.491070i
\(57\) 0 0
\(58\) 64.5966 + 37.2949i 1.11373 + 0.643015i
\(59\) 3.54909 + 2.04907i 0.0601541 + 0.0347300i 0.529775 0.848138i \(-0.322276\pi\)
−0.469621 + 0.882868i \(0.655610\pi\)
\(60\) 0 0
\(61\) 33.1195 + 57.3647i 0.542943 + 0.940404i 0.998733 + 0.0503172i \(0.0160232\pi\)
−0.455791 + 0.890087i \(0.650643\pi\)
\(62\) 58.4757 0.943157
\(63\) 0 0
\(64\) 70.6863 1.10447
\(65\) 0 0
\(66\) 0 0
\(67\) 61.4687 + 35.4890i 0.917444 + 0.529686i 0.882819 0.469714i \(-0.155643\pi\)
0.0346251 + 0.999400i \(0.488976\pi\)
\(68\) 4.02203 6.96635i 0.0591474 0.102446i
\(69\) 0 0
\(70\) 0 0
\(71\) 13.1123i 0.184680i 0.995728 + 0.0923400i \(0.0294347\pi\)
−0.995728 + 0.0923400i \(0.970565\pi\)
\(72\) 0 0
\(73\) 109.273i 1.49688i 0.663200 + 0.748442i \(0.269198\pi\)
−0.663200 + 0.748442i \(0.730802\pi\)
\(74\) 72.1842 41.6756i 0.975462 0.563183i
\(75\) 0 0
\(76\) 10.2328 17.7238i 0.134643 0.233208i
\(77\) −34.5309 + 59.8093i −0.448453 + 0.776744i
\(78\) 0 0
\(79\) 49.8891 + 86.4104i 0.631507 + 1.09380i 0.987244 + 0.159217i \(0.0508968\pi\)
−0.355736 + 0.934586i \(0.615770\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 53.9530i 0.657964i
\(83\) −42.8667 74.2472i −0.516466 0.894545i −0.999817 0.0191187i \(-0.993914\pi\)
0.483351 0.875426i \(-0.339419\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −59.7463 34.4945i −0.694724 0.401099i
\(87\) 0 0
\(88\) −78.6312 + 45.3977i −0.893536 + 0.515883i
\(89\) 63.6372i 0.715025i −0.933908 0.357513i \(-0.883625\pi\)
0.933908 0.357513i \(-0.116375\pi\)
\(90\) 0 0
\(91\) −71.5841 −0.786638
\(92\) 3.61115 + 6.25469i 0.0392516 + 0.0679858i
\(93\) 0 0
\(94\) 52.7414 91.3507i 0.561078 0.971816i
\(95\) 0 0
\(96\) 0 0
\(97\) −74.8357 + 43.2064i −0.771503 + 0.445427i −0.833410 0.552655i \(-0.813615\pi\)
0.0619078 + 0.998082i \(0.480282\pi\)
\(98\) −13.1409 −0.134090
\(99\) 0 0
\(100\) 0 0
\(101\) 38.1796 22.0430i 0.378015 0.218247i −0.298939 0.954272i \(-0.596633\pi\)
0.676954 + 0.736025i \(0.263299\pi\)
\(102\) 0 0
\(103\) −81.2952 46.9358i −0.789274 0.455688i 0.0504329 0.998727i \(-0.483940\pi\)
−0.839707 + 0.543040i \(0.817273\pi\)
\(104\) −81.5030 47.0558i −0.783682 0.452459i
\(105\) 0 0
\(106\) 30.6208 + 53.0369i 0.288876 + 0.500348i
\(107\) −138.518 −1.29456 −0.647280 0.762252i \(-0.724094\pi\)
−0.647280 + 0.762252i \(0.724094\pi\)
\(108\) 0 0
\(109\) −176.733 −1.62140 −0.810700 0.585461i \(-0.800913\pi\)
−0.810700 + 0.585461i \(0.800913\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 73.0845 + 42.1953i 0.652540 + 0.376744i
\(113\) −44.3653 + 76.8430i −0.392613 + 0.680026i −0.992793 0.119839i \(-0.961762\pi\)
0.600180 + 0.799865i \(0.295096\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 25.8986i 0.223264i
\(117\) 0 0
\(118\) 7.51564i 0.0636918i
\(119\) 70.7613 40.8541i 0.594633 0.343312i
\(120\) 0 0
\(121\) −3.49522 + 6.05390i −0.0288861 + 0.0500323i
\(122\) −60.7383 + 105.202i −0.497855 + 0.862310i
\(123\) 0 0
\(124\) −10.1518 17.5835i −0.0818695 0.141802i
\(125\) 0 0
\(126\) 0 0
\(127\) 92.0203i 0.724569i −0.932068 0.362285i \(-0.881997\pi\)
0.932068 0.362285i \(-0.118003\pi\)
\(128\) 44.6448 + 77.3271i 0.348788 + 0.604118i
\(129\) 0 0
\(130\) 0 0
\(131\) 138.979 + 80.2398i 1.06091 + 0.612518i 0.925684 0.378297i \(-0.123490\pi\)
0.135228 + 0.990815i \(0.456823\pi\)
\(132\) 0 0
\(133\) 180.031 103.941i 1.35362 0.781512i
\(134\) 130.167i 0.971399i
\(135\) 0 0
\(136\) 107.422 0.789865
\(137\) −45.4321 78.6907i −0.331621 0.574385i 0.651209 0.758899i \(-0.274262\pi\)
−0.982830 + 0.184514i \(0.940929\pi\)
\(138\) 0 0
\(139\) −32.4865 + 56.2682i −0.233716 + 0.404807i −0.958899 0.283749i \(-0.908422\pi\)
0.725183 + 0.688556i \(0.241755\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −20.8251 + 12.0234i −0.146656 + 0.0846718i
\(143\) 118.173 0.826387
\(144\) 0 0
\(145\) 0 0
\(146\) −173.548 + 100.198i −1.18869 + 0.686289i
\(147\) 0 0
\(148\) −25.0634 14.4704i −0.169347 0.0977727i
\(149\) −124.965 72.1483i −0.838688 0.484217i 0.0181301 0.999836i \(-0.494229\pi\)
−0.856818 + 0.515619i \(0.827562\pi\)
\(150\) 0 0
\(151\) −68.3876 118.451i −0.452898 0.784442i 0.545667 0.838002i \(-0.316276\pi\)
−0.998565 + 0.0535600i \(0.982943\pi\)
\(152\) 273.302 1.79804
\(153\) 0 0
\(154\) −126.653 −0.822425
\(155\) 0 0
\(156\) 0 0
\(157\) −45.2004 26.0965i −0.287901 0.166220i 0.349094 0.937088i \(-0.386489\pi\)
−0.636995 + 0.770868i \(0.719823\pi\)
\(158\) −91.4923 + 158.469i −0.579065 + 1.00297i
\(159\) 0 0
\(160\) 0 0
\(161\) 73.3611i 0.455659i
\(162\) 0 0
\(163\) 103.226i 0.633287i −0.948545 0.316643i \(-0.897444\pi\)
0.948545 0.316643i \(-0.102556\pi\)
\(164\) 16.2235 9.36664i 0.0989238 0.0571137i
\(165\) 0 0
\(166\) 78.6138 136.163i 0.473577 0.820259i
\(167\) −56.4096 + 97.7044i −0.337782 + 0.585056i −0.984015 0.178084i \(-0.943010\pi\)
0.646233 + 0.763140i \(0.276343\pi\)
\(168\) 0 0
\(169\) −23.2553 40.2794i −0.137606 0.238340i
\(170\) 0 0
\(171\) 0 0
\(172\) 23.9540i 0.139268i
\(173\) −65.6580 113.723i −0.379526 0.657359i 0.611467 0.791270i \(-0.290580\pi\)
−0.990993 + 0.133911i \(0.957246\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −120.650 69.6574i −0.685513 0.395781i
\(177\) 0 0
\(178\) 101.070 58.3526i 0.567807 0.327824i
\(179\) 297.076i 1.65964i 0.558028 + 0.829822i \(0.311558\pi\)
−0.558028 + 0.829822i \(0.688442\pi\)
\(180\) 0 0
\(181\) 28.1168 0.155342 0.0776708 0.996979i \(-0.475252\pi\)
0.0776708 + 0.996979i \(0.475252\pi\)
\(182\) −65.6395 113.691i −0.360657 0.624676i
\(183\) 0 0
\(184\) −48.2239 + 83.5262i −0.262086 + 0.453947i
\(185\) 0 0
\(186\) 0 0
\(187\) −116.815 + 67.4433i −0.624680 + 0.360659i
\(188\) −36.6252 −0.194815
\(189\) 0 0
\(190\) 0 0
\(191\) −7.94176 + 4.58518i −0.0415799 + 0.0240062i −0.520646 0.853773i \(-0.674309\pi\)
0.479066 + 0.877779i \(0.340975\pi\)
\(192\) 0 0
\(193\) −82.0697 47.3830i −0.425232 0.245508i 0.272082 0.962274i \(-0.412288\pi\)
−0.697313 + 0.716767i \(0.745621\pi\)
\(194\) −137.242 79.2369i −0.707434 0.408437i
\(195\) 0 0
\(196\) 2.28135 + 3.95141i 0.0116395 + 0.0201603i
\(197\) 267.330 1.35701 0.678504 0.734597i \(-0.262629\pi\)
0.678504 + 0.734597i \(0.262629\pi\)
\(198\) 0 0
\(199\) 158.327 0.795615 0.397808 0.917469i \(-0.369771\pi\)
0.397808 + 0.917469i \(0.369771\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 70.0180 + 40.4249i 0.346624 + 0.200123i
\(203\) 131.534 227.823i 0.647950 1.12228i
\(204\) 0 0
\(205\) 0 0
\(206\) 172.152i 0.835692i
\(207\) 0 0
\(208\) 144.403i 0.694245i
\(209\) −297.202 + 171.589i −1.42202 + 0.821002i
\(210\) 0 0
\(211\) −158.786 + 275.026i −0.752542 + 1.30344i 0.194045 + 0.980993i \(0.437839\pi\)
−0.946587 + 0.322448i \(0.895494\pi\)
\(212\) 10.6320 18.4152i 0.0501510 0.0868640i
\(213\) 0 0
\(214\) −127.015 219.996i −0.593528 1.02802i
\(215\) 0 0
\(216\) 0 0
\(217\) 206.236i 0.950396i
\(218\) −162.056 280.690i −0.743377 1.28757i
\(219\) 0 0
\(220\) 0 0
\(221\) −121.081 69.9064i −0.547880 0.316319i
\(222\) 0 0
\(223\) −107.379 + 61.9955i −0.481522 + 0.278007i −0.721050 0.692883i \(-0.756340\pi\)
0.239529 + 0.970889i \(0.423007\pi\)
\(224\) 65.2340i 0.291223i
\(225\) 0 0
\(226\) −162.724 −0.720019
\(227\) −108.739 188.341i −0.479025 0.829695i 0.520686 0.853748i \(-0.325676\pi\)
−0.999711 + 0.0240532i \(0.992343\pi\)
\(228\) 0 0
\(229\) 37.4773 64.9126i 0.163656 0.283461i −0.772521 0.634989i \(-0.781005\pi\)
0.936177 + 0.351528i \(0.114338\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 299.519 172.927i 1.29103 0.745377i
\(233\) −142.781 −0.612792 −0.306396 0.951904i \(-0.599123\pi\)
−0.306396 + 0.951904i \(0.599123\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 2.25993 1.30477i 0.00957596 0.00552868i
\(237\) 0 0
\(238\) 129.770 + 74.9229i 0.545253 + 0.314802i
\(239\) 173.362 + 100.090i 0.725363 + 0.418789i 0.816723 0.577029i \(-0.195788\pi\)
−0.0913604 + 0.995818i \(0.529122\pi\)
\(240\) 0 0
\(241\) −96.9600 167.940i −0.402324 0.696845i 0.591682 0.806171i \(-0.298464\pi\)
−0.994006 + 0.109326i \(0.965131\pi\)
\(242\) −12.8199 −0.0529747
\(243\) 0 0
\(244\) 42.1784 0.172862
\(245\) 0 0
\(246\) 0 0
\(247\) −308.056 177.856i −1.24719 0.720065i
\(248\) 135.569 234.812i 0.546649 0.946824i
\(249\) 0 0
\(250\) 0 0
\(251\) 301.288i 1.20035i 0.799868 + 0.600176i \(0.204903\pi\)
−0.799868 + 0.600176i \(0.795097\pi\)
\(252\) 0 0
\(253\) 121.107i 0.478684i
\(254\) 146.148 84.3786i 0.575386 0.332199i
\(255\) 0 0
\(256\) 59.4978 103.053i 0.232413 0.402552i
\(257\) −105.005 + 181.874i −0.408579 + 0.707679i −0.994731 0.102522i \(-0.967309\pi\)
0.586152 + 0.810201i \(0.300642\pi\)
\(258\) 0 0
\(259\) −146.984 254.584i −0.567506 0.982949i
\(260\) 0 0
\(261\) 0 0
\(262\) 294.306i 1.12330i
\(263\) −75.7092 131.132i −0.287868 0.498601i 0.685433 0.728136i \(-0.259613\pi\)
−0.973301 + 0.229534i \(0.926280\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 330.162 + 190.619i 1.24121 + 0.716613i
\(267\) 0 0
\(268\) 39.1409 22.5980i 0.146048 0.0843210i
\(269\) 411.264i 1.52886i 0.644706 + 0.764431i \(0.276980\pi\)
−0.644706 + 0.764431i \(0.723020\pi\)
\(270\) 0 0
\(271\) −255.156 −0.941534 −0.470767 0.882257i \(-0.656023\pi\)
−0.470767 + 0.882257i \(0.656023\pi\)
\(272\) 82.4129 + 142.743i 0.302988 + 0.524791i
\(273\) 0 0
\(274\) 83.3186 144.312i 0.304082 0.526686i
\(275\) 0 0
\(276\) 0 0
\(277\) 160.699 92.7798i 0.580142 0.334945i −0.181048 0.983474i \(-0.557949\pi\)
0.761190 + 0.648529i \(0.224615\pi\)
\(278\) −119.155 −0.428614
\(279\) 0 0
\(280\) 0 0
\(281\) −90.1892 + 52.0708i −0.320958 + 0.185305i −0.651820 0.758374i \(-0.725994\pi\)
0.330862 + 0.943679i \(0.392661\pi\)
\(282\) 0 0
\(283\) 44.9089 + 25.9282i 0.158689 + 0.0916189i 0.577241 0.816574i \(-0.304129\pi\)
−0.418553 + 0.908192i \(0.637463\pi\)
\(284\) 7.23079 + 4.17470i 0.0254605 + 0.0146996i
\(285\) 0 0
\(286\) 108.360 + 187.685i 0.378881 + 0.656241i
\(287\) 190.285 0.663014
\(288\) 0 0
\(289\) −129.414 −0.447798
\(290\) 0 0
\(291\) 0 0
\(292\) 60.2586 + 34.7903i 0.206365 + 0.119145i
\(293\) −165.835 + 287.235i −0.565990 + 0.980323i 0.430967 + 0.902368i \(0.358172\pi\)
−0.996957 + 0.0779553i \(0.975161\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 386.479i 1.30567i
\(297\) 0 0
\(298\) 264.627i 0.888012i
\(299\) 108.712 62.7650i 0.363586 0.209916i
\(300\) 0 0
\(301\) −121.658 + 210.717i −0.404178 + 0.700057i
\(302\) 125.417 217.228i 0.415288 0.719300i
\(303\) 0 0
\(304\) 209.675 + 363.168i 0.689720 + 1.19463i
\(305\) 0 0
\(306\) 0 0
\(307\) 292.274i 0.952031i 0.879437 + 0.476016i \(0.157919\pi\)
−0.879437 + 0.476016i \(0.842081\pi\)
\(308\) 21.9880 + 38.0843i 0.0713895 + 0.123650i
\(309\) 0 0
\(310\) 0 0
\(311\) −171.292 98.8956i −0.550779 0.317992i 0.198657 0.980069i \(-0.436342\pi\)
−0.749436 + 0.662077i \(0.769675\pi\)
\(312\) 0 0
\(313\) 186.800 107.849i 0.596804 0.344565i −0.170979 0.985275i \(-0.554693\pi\)
0.767783 + 0.640710i \(0.221360\pi\)
\(314\) 95.7173i 0.304832i
\(315\) 0 0
\(316\) 63.5349 0.201060
\(317\) −101.818 176.354i −0.321192 0.556321i 0.659542 0.751668i \(-0.270750\pi\)
−0.980734 + 0.195346i \(0.937417\pi\)
\(318\) 0 0
\(319\) −217.141 + 376.098i −0.680691 + 1.17899i
\(320\) 0 0
\(321\) 0 0
\(322\) −116.513 + 67.2690i −0.361842 + 0.208910i
\(323\) 406.020 1.25703
\(324\) 0 0
\(325\) 0 0
\(326\) 163.945 94.6536i 0.502898 0.290348i
\(327\) 0 0
\(328\) 216.651 + 125.084i 0.660522 + 0.381353i
\(329\) −322.182 186.012i −0.979275 0.565385i
\(330\) 0 0
\(331\) −47.0115 81.4264i −0.142029 0.246001i 0.786232 0.617932i \(-0.212029\pi\)
−0.928260 + 0.371931i \(0.878696\pi\)
\(332\) −54.5917 −0.164433
\(333\) 0 0
\(334\) −206.901 −0.619464
\(335\) 0 0
\(336\) 0 0
\(337\) −291.103 168.068i −0.863807 0.498719i 0.00147845 0.999999i \(-0.499529\pi\)
−0.865285 + 0.501280i \(0.832863\pi\)
\(338\) 42.6483 73.8690i 0.126178 0.218547i
\(339\) 0 0
\(340\) 0 0
\(341\) 340.461i 0.998419i
\(342\) 0 0
\(343\) 363.276i 1.05911i
\(344\) −277.029 + 159.943i −0.805318 + 0.464950i
\(345\) 0 0
\(346\) 120.411 208.558i 0.348009 0.602769i
\(347\) −31.2617 + 54.1469i −0.0900914 + 0.156043i −0.907549 0.419945i \(-0.862049\pi\)
0.817458 + 0.575988i \(0.195383\pi\)
\(348\) 0 0
\(349\) −160.475 277.951i −0.459815 0.796422i 0.539136 0.842219i \(-0.318751\pi\)
−0.998951 + 0.0457962i \(0.985418\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 107.690i 0.305939i
\(353\) 83.1067 + 143.945i 0.235430 + 0.407776i 0.959397 0.282058i \(-0.0910170\pi\)
−0.723968 + 0.689834i \(0.757684\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −35.0929 20.2609i −0.0985754 0.0569126i
\(357\) 0 0
\(358\) −471.821 + 272.406i −1.31794 + 0.760911i
\(359\) 199.670i 0.556183i −0.960555 0.278091i \(-0.910298\pi\)
0.960555 0.278091i \(-0.0897018\pi\)
\(360\) 0 0
\(361\) 671.998 1.86149
\(362\) 25.7819 + 44.6556i 0.0712208 + 0.123358i
\(363\) 0 0
\(364\) −22.7910 + 39.4752i −0.0626126 + 0.108448i
\(365\) 0 0
\(366\) 0 0
\(367\) 139.120 80.3209i 0.379073 0.218858i −0.298342 0.954459i \(-0.596433\pi\)
0.677415 + 0.735601i \(0.263100\pi\)
\(368\) −147.988 −0.402140
\(369\) 0 0
\(370\) 0 0
\(371\) 187.054 107.996i 0.504188 0.291093i
\(372\) 0 0
\(373\) 148.296 + 85.6188i 0.397577 + 0.229541i 0.685438 0.728131i \(-0.259611\pi\)
−0.287861 + 0.957672i \(0.592944\pi\)
\(374\) −214.229 123.685i −0.572805 0.330709i
\(375\) 0 0
\(376\) −244.549 423.572i −0.650397 1.12652i
\(377\) −450.142 −1.19401
\(378\) 0 0
\(379\) 297.486 0.784922 0.392461 0.919769i \(-0.371624\pi\)
0.392461 + 0.919769i \(0.371624\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −14.5645 8.40882i −0.0381270 0.0220126i
\(383\) −240.374 + 416.340i −0.627608 + 1.08705i 0.360423 + 0.932789i \(0.382632\pi\)
−0.988030 + 0.154259i \(0.950701\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 173.793i 0.450240i
\(387\) 0 0
\(388\) 55.0244i 0.141815i
\(389\) 514.801 297.220i 1.32340 0.764062i 0.339126 0.940741i \(-0.389869\pi\)
0.984269 + 0.176678i \(0.0565352\pi\)
\(390\) 0 0
\(391\) −71.6418 + 124.087i −0.183227 + 0.317359i
\(392\) −30.4655 + 52.7678i −0.0777181 + 0.134612i
\(393\) 0 0
\(394\) 245.130 + 424.578i 0.622158 + 1.07761i
\(395\) 0 0
\(396\) 0 0
\(397\) 106.303i 0.267765i 0.990997 + 0.133883i \(0.0427445\pi\)
−0.990997 + 0.133883i \(0.957255\pi\)
\(398\) 145.179 + 251.458i 0.364772 + 0.631804i
\(399\) 0 0
\(400\) 0 0
\(401\) 26.3207 + 15.1963i 0.0656376 + 0.0378959i 0.532460 0.846455i \(-0.321268\pi\)
−0.466822 + 0.884351i \(0.654601\pi\)
\(402\) 0 0
\(403\) −305.616 + 176.448i −0.758353 + 0.437835i
\(404\) 28.0722i 0.0694857i
\(405\) 0 0
\(406\) 482.444 1.18828
\(407\) 242.646 + 420.275i 0.596182 + 1.03262i
\(408\) 0 0
\(409\) 36.7195 63.6000i 0.0897787 0.155501i −0.817639 0.575732i \(-0.804717\pi\)
0.907418 + 0.420230i \(0.138051\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −51.7657 + 29.8869i −0.125645 + 0.0725411i
\(413\) 26.5066 0.0641807
\(414\) 0 0
\(415\) 0 0
\(416\) −96.6688 + 55.8118i −0.232377 + 0.134163i
\(417\) 0 0
\(418\) −545.042 314.680i −1.30393 0.752823i
\(419\) 144.551 + 83.4568i 0.344992 + 0.199181i 0.662477 0.749082i \(-0.269505\pi\)
−0.317486 + 0.948263i \(0.602838\pi\)
\(420\) 0 0
\(421\) 152.746 + 264.563i 0.362816 + 0.628416i 0.988423 0.151722i \(-0.0484820\pi\)
−0.625607 + 0.780138i \(0.715149\pi\)
\(422\) −582.401 −1.38010
\(423\) 0 0
\(424\) 283.963 0.669724
\(425\) 0 0
\(426\) 0 0
\(427\) 371.032 + 214.216i 0.868928 + 0.501676i
\(428\) −44.1014 + 76.3859i −0.103041 + 0.178472i
\(429\) 0 0
\(430\) 0 0
\(431\) 221.026i 0.512820i 0.966568 + 0.256410i \(0.0825398\pi\)
−0.966568 + 0.256410i \(0.917460\pi\)
\(432\) 0 0
\(433\) 194.055i 0.448164i 0.974570 + 0.224082i \(0.0719384\pi\)
−0.974570 + 0.224082i \(0.928062\pi\)
\(434\) 327.547 189.109i 0.754717 0.435736i
\(435\) 0 0
\(436\) −56.2683 + 97.4595i −0.129056 + 0.223531i
\(437\) −182.271 + 315.703i −0.417097 + 0.722433i
\(438\) 0 0
\(439\) −77.3450 133.965i −0.176184 0.305160i 0.764386 0.644759i \(-0.223042\pi\)
−0.940571 + 0.339598i \(0.889709\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 256.405i 0.580101i
\(443\) 241.573 + 418.418i 0.545313 + 0.944509i 0.998587 + 0.0531381i \(0.0169224\pi\)
−0.453275 + 0.891371i \(0.649744\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −196.924 113.694i −0.441535 0.254920i
\(447\) 0 0
\(448\) 395.943 228.598i 0.883802 0.510264i
\(449\) 679.146i 1.51257i −0.654240 0.756287i \(-0.727011\pi\)
0.654240 0.756287i \(-0.272989\pi\)
\(450\) 0 0
\(451\) −314.129 −0.696516
\(452\) 28.2501 + 48.9306i 0.0625003 + 0.108254i
\(453\) 0 0
\(454\) 199.417 345.401i 0.439245 0.760794i
\(455\) 0 0
\(456\) 0 0
\(457\) 69.7270 40.2569i 0.152576 0.0880896i −0.421768 0.906704i \(-0.638590\pi\)
0.574344 + 0.818614i \(0.305257\pi\)
\(458\) 137.460 0.300131
\(459\) 0 0
\(460\) 0 0
\(461\) −535.846 + 309.371i −1.16236 + 0.671087i −0.951868 0.306510i \(-0.900839\pi\)
−0.210489 + 0.977596i \(0.567505\pi\)
\(462\) 0 0
\(463\) −285.318 164.729i −0.616238 0.355785i 0.159165 0.987252i \(-0.449120\pi\)
−0.775403 + 0.631467i \(0.782453\pi\)
\(464\) 459.577 + 265.337i 0.990467 + 0.571846i
\(465\) 0 0
\(466\) −130.924 226.766i −0.280952 0.486623i
\(467\) 216.349 0.463275 0.231637 0.972802i \(-0.425592\pi\)
0.231637 + 0.972802i \(0.425592\pi\)
\(468\) 0 0
\(469\) 459.083 0.978855
\(470\) 0 0
\(471\) 0 0
\(472\) 30.1794 + 17.4241i 0.0639395 + 0.0369155i
\(473\) 200.836 347.859i 0.424601 0.735430i
\(474\) 0 0
\(475\) 0 0
\(476\) 52.0286i 0.109304i
\(477\) 0 0
\(478\) 367.114i 0.768022i
\(479\) −119.965 + 69.2617i −0.250448 + 0.144596i −0.619970 0.784626i \(-0.712855\pi\)
0.369521 + 0.929222i \(0.379522\pi\)
\(480\) 0 0
\(481\) −251.508 + 435.625i −0.522886 + 0.905665i
\(482\) 177.816 307.987i 0.368913 0.638977i
\(483\) 0 0
\(484\) 2.22562 + 3.85489i 0.00459840 + 0.00796466i
\(485\) 0 0
\(486\) 0 0
\(487\) 93.0290i 0.191025i −0.995428 0.0955123i \(-0.969551\pi\)
0.995428 0.0955123i \(-0.0304489\pi\)
\(488\) 281.629 + 487.796i 0.577109 + 0.999581i
\(489\) 0 0
\(490\) 0 0
\(491\) 203.168 + 117.299i 0.413783 + 0.238898i 0.692414 0.721501i \(-0.256547\pi\)
−0.278631 + 0.960398i \(0.589881\pi\)
\(492\) 0 0
\(493\) 444.968 256.902i 0.902572 0.521100i
\(494\) 652.346i 1.32054i
\(495\) 0 0
\(496\) 416.029 0.838768
\(497\) 42.4049 + 73.4474i 0.0853217 + 0.147781i
\(498\) 0 0
\(499\) −330.575 + 572.573i −0.662476 + 1.14744i 0.317487 + 0.948262i \(0.397161\pi\)
−0.979963 + 0.199179i \(0.936172\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −478.511 + 276.268i −0.953209 + 0.550336i
\(503\) −184.352 −0.366504 −0.183252 0.983066i \(-0.558662\pi\)
−0.183252 + 0.983066i \(0.558662\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 192.344 111.050i 0.380126 0.219466i
\(507\) 0 0
\(508\) −50.7447 29.2975i −0.0998912 0.0576722i
\(509\) 702.274 + 405.458i 1.37971 + 0.796578i 0.992125 0.125255i \(-0.0399749\pi\)
0.387588 + 0.921833i \(0.373308\pi\)
\(510\) 0 0
\(511\) 353.385 + 612.082i 0.691557 + 1.19781i
\(512\) 575.386 1.12380
\(513\) 0 0
\(514\) −385.139 −0.749298
\(515\) 0 0
\(516\) 0 0
\(517\) 531.868 + 307.074i 1.02876 + 0.593954i
\(518\) 269.556 466.885i 0.520378 0.901322i
\(519\) 0 0
\(520\) 0 0
\(521\) 787.925i 1.51233i −0.654379 0.756167i \(-0.727070\pi\)
0.654379 0.756167i \(-0.272930\pi\)
\(522\) 0 0
\(523\) 495.806i 0.948004i 0.880524 + 0.474002i \(0.157191\pi\)
−0.880524 + 0.474002i \(0.842809\pi\)
\(524\) 88.4968 51.0936i 0.168887 0.0975070i
\(525\) 0 0
\(526\) 138.844 240.485i 0.263962 0.457196i
\(527\) 201.402 348.839i 0.382168 0.661934i
\(528\) 0 0
\(529\) 200.177 + 346.717i 0.378406 + 0.655419i
\(530\) 0 0
\(531\) 0 0
\(532\) 132.371i 0.248818i
\(533\) −162.801 281.979i −0.305442 0.529041i
\(534\) 0 0
\(535\) 0 0
\(536\) 522.694 + 301.778i 0.975176 + 0.563018i
\(537\) 0 0
\(538\) −653.175 + 377.111i −1.21408 + 0.700950i
\(539\) 76.5095i 0.141947i
\(540\) 0 0
\(541\) −395.636 −0.731305 −0.365652 0.930751i \(-0.619154\pi\)
−0.365652 + 0.930751i \(0.619154\pi\)
\(542\) −233.967 405.242i −0.431673 0.747680i
\(543\) 0 0
\(544\) 63.7052 110.341i 0.117105 0.202832i
\(545\) 0 0
\(546\) 0 0
\(547\) −140.121 + 80.8992i −0.256164 + 0.147896i −0.622583 0.782554i \(-0.713917\pi\)
0.366420 + 0.930450i \(0.380583\pi\)
\(548\) −57.8589 −0.105582
\(549\) 0 0
\(550\) 0 0
\(551\) 1132.09 653.612i 2.05461 1.18623i
\(552\) 0 0
\(553\) 558.899 + 322.681i 1.01067 + 0.583509i
\(554\) 294.709 + 170.150i 0.531965 + 0.307130i
\(555\) 0 0
\(556\) 20.6861 + 35.8294i 0.0372053 + 0.0644414i
\(557\) −199.042 −0.357347 −0.178673 0.983908i \(-0.557181\pi\)
−0.178673 + 0.983908i \(0.557181\pi\)
\(558\) 0 0
\(559\) 416.342 0.744799
\(560\) 0 0
\(561\) 0 0
\(562\) −165.399 95.4933i −0.294305 0.169917i
\(563\) −453.792 + 785.990i −0.806024 + 1.39608i 0.109573 + 0.993979i \(0.465052\pi\)
−0.915597 + 0.402096i \(0.868282\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 95.1000i 0.168021i
\(567\) 0 0
\(568\) 111.499i 0.196301i
\(569\) −776.399 + 448.254i −1.36450 + 0.787793i −0.990219 0.139523i \(-0.955443\pi\)
−0.374279 + 0.927316i \(0.622110\pi\)
\(570\) 0 0
\(571\) 304.808 527.943i 0.533815 0.924594i −0.465405 0.885098i \(-0.654091\pi\)
0.999220 0.0394965i \(-0.0125754\pi\)
\(572\) 37.6241 65.1669i 0.0657765 0.113928i
\(573\) 0 0
\(574\) 174.483 + 302.214i 0.303977 + 0.526504i
\(575\) 0 0
\(576\) 0 0
\(577\) 477.854i 0.828170i −0.910238 0.414085i \(-0.864102\pi\)
0.910238 0.414085i \(-0.135898\pi\)
\(578\) −118.667 205.537i −0.205306 0.355600i
\(579\) 0 0
\(580\) 0 0
\(581\) −480.228 277.260i −0.826555 0.477212i
\(582\) 0 0
\(583\) −308.795 + 178.283i −0.529665 + 0.305802i
\(584\) 929.191i 1.59108i
\(585\) 0 0
\(586\) −608.254 −1.03798
\(587\) −127.420 220.698i −0.217070 0.375976i 0.736841 0.676066i \(-0.236317\pi\)
−0.953911 + 0.300090i \(0.902983\pi\)
\(588\) 0 0
\(589\) 512.409 887.518i 0.869964 1.50682i
\(590\) 0 0
\(591\) 0 0
\(592\) 513.559 296.503i 0.867498 0.500850i
\(593\) 604.184 1.01886 0.509430 0.860512i \(-0.329856\pi\)
0.509430 + 0.860512i \(0.329856\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −79.5726 + 45.9413i −0.133511 + 0.0770826i
\(597\) 0 0
\(598\) 199.369 + 115.106i 0.333393 + 0.192484i
\(599\) −164.832 95.1657i −0.275178 0.158874i 0.356060 0.934463i \(-0.384120\pi\)
−0.631239 + 0.775589i \(0.717453\pi\)
\(600\) 0 0
\(601\) −468.662 811.746i −0.779804 1.35066i −0.932055 0.362318i \(-0.881986\pi\)
0.152251 0.988342i \(-0.451348\pi\)
\(602\) −446.219 −0.741227
\(603\) 0 0
\(604\) −87.0932 −0.144194
\(605\) 0 0
\(606\) 0 0
\(607\) −838.308 483.997i −1.38107 0.797360i −0.388781 0.921330i \(-0.627104\pi\)
−0.992286 + 0.123970i \(0.960437\pi\)
\(608\) 162.079 280.729i 0.266577 0.461725i
\(609\) 0 0
\(610\) 0 0
\(611\) 636.578i 1.04186i
\(612\) 0 0
\(613\) 14.3244i 0.0233677i 0.999932 + 0.0116839i \(0.00371918\pi\)
−0.999932 + 0.0116839i \(0.996281\pi\)
\(614\) −464.194 + 268.002i −0.756016 + 0.436486i
\(615\) 0 0
\(616\) −293.631 + 508.584i −0.476673 + 0.825623i
\(617\) 533.807 924.580i 0.865165 1.49851i −0.00171906 0.999999i \(-0.500547\pi\)
0.866884 0.498511i \(-0.166119\pi\)
\(618\) 0 0
\(619\) 582.166 + 1008.34i 0.940494 + 1.62898i 0.764531 + 0.644586i \(0.222970\pi\)
0.175963 + 0.984397i \(0.443696\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 362.732i 0.583170i
\(623\) −205.802 356.459i −0.330340 0.572165i
\(624\) 0 0
\(625\) 0 0
\(626\) 342.574 + 197.785i 0.547243 + 0.315951i
\(627\) 0 0
\(628\) −28.7819 + 16.6172i −0.0458310 + 0.0264605i
\(629\) 574.157i 0.912809i
\(630\) 0 0
\(631\) −88.9538 −0.140973 −0.0704864 0.997513i \(-0.522455\pi\)
−0.0704864 + 0.997513i \(0.522455\pi\)
\(632\) 424.228 + 734.784i 0.671247 + 1.16263i
\(633\) 0 0
\(634\) 186.725 323.418i 0.294519 0.510123i
\(635\) 0 0
\(636\) 0 0
\(637\) 68.6791 39.6519i 0.107816 0.0622479i
\(638\) −796.434 −1.24833
\(639\) 0 0
\(640\) 0 0
\(641\) −115.362 + 66.6040i −0.179971 + 0.103906i −0.587279 0.809384i \(-0.699801\pi\)
0.407308 + 0.913291i \(0.366468\pi\)
\(642\) 0 0
\(643\) 418.686 + 241.729i 0.651145 + 0.375939i 0.788895 0.614528i \(-0.210654\pi\)
−0.137750 + 0.990467i \(0.543987\pi\)
\(644\) 40.4551 + 23.3568i 0.0628185 + 0.0362683i
\(645\) 0 0
\(646\) 372.303 + 644.848i 0.576321 + 0.998216i
\(647\) −347.759 −0.537495 −0.268748 0.963211i \(-0.586610\pi\)
−0.268748 + 0.963211i \(0.586610\pi\)
\(648\) 0 0
\(649\) −43.7580 −0.0674237
\(650\) 0 0
\(651\) 0 0
\(652\) −56.9240 32.8651i −0.0873068 0.0504066i
\(653\) 433.872 751.488i 0.664428 1.15082i −0.315011 0.949088i \(-0.602008\pi\)
0.979440 0.201736i \(-0.0646583\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 383.852i 0.585140i
\(657\) 0 0
\(658\) 682.258i 1.03687i
\(659\) 804.603 464.538i 1.22095 0.704913i 0.255826 0.966723i \(-0.417653\pi\)
0.965120 + 0.261810i \(0.0843193\pi\)
\(660\) 0 0
\(661\) 463.561 802.912i 0.701303 1.21469i −0.266706 0.963778i \(-0.585935\pi\)
0.968009 0.250915i \(-0.0807314\pi\)
\(662\) 86.2151 149.329i 0.130234 0.225572i
\(663\) 0 0
\(664\) −364.513 631.355i −0.548966 0.950837i
\(665\) 0 0
\(666\) 0 0
\(667\) 461.316i 0.691629i
\(668\) 35.9195 + 62.2144i 0.0537717 + 0.0931353i
\(669\) 0 0
\(670\) 0 0
\(671\) −612.513 353.634i −0.912836 0.527026i
\(672\) 0 0
\(673\) 819.253 472.996i 1.21732 0.702817i 0.252973 0.967473i \(-0.418592\pi\)
0.964343 + 0.264656i \(0.0852584\pi\)
\(674\) 616.446i 0.914608i
\(675\) 0 0
\(676\) −29.6162 −0.0438110
\(677\) 307.292 + 532.245i 0.453902 + 0.786182i 0.998624 0.0524349i \(-0.0166982\pi\)
−0.544722 + 0.838617i \(0.683365\pi\)
\(678\) 0 0
\(679\) −279.458 + 484.035i −0.411572 + 0.712864i
\(680\) 0 0
\(681\) 0 0
\(682\) −540.726 + 312.188i −0.792853 + 0.457754i
\(683\) 258.893 0.379053 0.189527 0.981876i \(-0.439305\pi\)
0.189527 + 0.981876i \(0.439305\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −576.961 + 333.108i −0.841051 + 0.485581i
\(687\) 0 0
\(688\) −425.069 245.414i −0.617832 0.356706i
\(689\) −320.072 184.794i −0.464546 0.268206i
\(690\) 0 0
\(691\) 485.487 + 840.888i 0.702586 + 1.21691i 0.967556 + 0.252658i \(0.0813048\pi\)
−0.264969 + 0.964257i \(0.585362\pi\)
\(692\) −83.6170 −0.120834
\(693\) 0 0
\(694\) −114.663 −0.165220
\(695\) 0 0
\(696\) 0 0
\(697\) 321.859 + 185.825i 0.461778 + 0.266607i
\(698\) 294.298 509.739i 0.421630 0.730285i
\(699\) 0 0
\(700\) 0 0
\(701\) 718.418i 1.02485i −0.858733 0.512424i \(-0.828748\pi\)
0.858733 0.512424i \(-0.171252\pi\)
\(702\) 0 0
\(703\) 1460.77i 2.07791i
\(704\) −653.637 + 377.377i −0.928461 + 0.536047i
\(705\) 0 0
\(706\) −152.410 + 263.983i −0.215879 + 0.373913i
\(707\) 142.573 246.944i 0.201659 0.349284i
\(708\) 0 0
\(709\) −494.222 856.018i −0.697070 1.20736i −0.969478 0.245178i \(-0.921153\pi\)
0.272408 0.962182i \(-0.412180\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 541.134i 0.760020i
\(713\) 180.828 + 313.203i 0.253615 + 0.439275i
\(714\) 0 0
\(715\) 0 0
\(716\) 163.823 + 94.5834i 0.228803 + 0.132100i
\(717\) 0 0
\(718\) 317.118 183.088i 0.441669 0.254998i
\(719\) 1280.53i 1.78099i 0.454994 + 0.890495i \(0.349642\pi\)
−0.454994 + 0.890495i \(0.650358\pi\)
\(720\) 0 0
\(721\) −607.158 −0.842106
\(722\) 616.193 + 1067.28i 0.853453 + 1.47822i
\(723\) 0 0
\(724\) 8.95186 15.5051i 0.0123644 0.0214158i
\(725\) 0 0
\(726\) 0 0
\(727\) 562.611 324.824i 0.773881 0.446800i −0.0603766 0.998176i \(-0.519230\pi\)
0.834257 + 0.551376i \(0.185897\pi\)
\(728\) −608.710 −0.836140
\(729\) 0 0
\(730\) 0 0
\(731\) −411.557 + 237.613i −0.563006 + 0.325052i
\(732\) 0 0
\(733\) −1013.33 585.044i −1.38244 0.798150i −0.389989 0.920820i \(-0.627521\pi\)
−0.992448 + 0.122669i \(0.960855\pi\)
\(734\) 255.134 + 147.302i 0.347594 + 0.200683i
\(735\) 0 0
\(736\) 57.1972 + 99.0685i 0.0777136 + 0.134604i
\(737\) −757.869 −1.02832
\(738\) 0 0
\(739\) −1175.25 −1.59033 −0.795164 0.606394i \(-0.792615\pi\)
−0.795164 + 0.606394i \(0.792615\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 343.040 + 198.054i 0.462319 + 0.266920i
\(743\) −508.717 + 881.124i −0.684680 + 1.18590i 0.288858 + 0.957372i \(0.406725\pi\)
−0.973537 + 0.228528i \(0.926609\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 314.035i 0.420958i
\(747\) 0 0
\(748\) 85.8906i 0.114827i
\(749\) −775.897 + 447.964i −1.03591 + 0.598083i
\(750\) 0 0
\(751\) 497.229 861.226i 0.662089 1.14677i −0.317977 0.948099i \(-0.603003\pi\)
0.980066 0.198673i \(-0.0636633\pi\)
\(752\) 375.232 649.920i 0.498978 0.864256i
\(753\) 0 0
\(754\) −412.761 714.922i −0.547428 0.948173i
\(755\) 0 0
\(756\) 0 0
\(757\) 659.088i 0.870658i 0.900271 + 0.435329i \(0.143368\pi\)
−0.900271 + 0.435329i \(0.856632\pi\)
\(758\) 272.781 + 472.471i 0.359870 + 0.623313i
\(759\) 0 0
\(760\) 0 0
\(761\) −559.677 323.130i −0.735450 0.424612i 0.0849628 0.996384i \(-0.472923\pi\)
−0.820413 + 0.571772i \(0.806256\pi\)
\(762\) 0 0
\(763\) −989.954 + 571.550i −1.29745 + 0.749083i
\(764\) 5.83933i 0.00764310i
\(765\) 0 0
\(766\) −881.649 −1.15098
\(767\) −22.6781 39.2796i −0.0295672 0.0512119i
\(768\) 0 0
\(769\) −123.429 + 213.784i −0.160505 + 0.278003i −0.935050 0.354516i \(-0.884646\pi\)
0.774545 + 0.632519i \(0.217979\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −52.2588 + 30.1717i −0.0676928 + 0.0390824i
\(773\) −263.071 −0.340325 −0.170162 0.985416i \(-0.554429\pi\)
−0.170162 + 0.985416i \(0.554429\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −636.360 + 367.402i −0.820051 + 0.473457i
\(777\) 0 0
\(778\) 944.100 + 545.076i 1.21350 + 0.700612i
\(779\) 818.875 + 472.777i 1.05119 + 0.606903i
\(780\) 0 0
\(781\) −70.0034 121.249i −0.0896330 0.155249i
\(782\) −262.770 −0.336023
\(783\) 0 0
\(784\) −93.4914 −0.119249
\(785\) 0 0
\(786\) 0 0
\(787\) 932.515 + 538.388i 1.18490 + 0.684102i 0.957143 0.289617i \(-0.0935278\pi\)
0.227756 + 0.973718i \(0.426861\pi\)
\(788\) 85.1129 147.420i 0.108011 0.187081i
\(789\) 0 0
\(790\) 0 0
\(791\) 573.906i 0.725545i
\(792\) 0 0
\(793\) 733.100i 0.924463i
\(794\) −168.832 + 97.4751i −0.212635 + 0.122765i
\(795\) 0 0
\(796\) 50.4084 87.3099i 0.0633271 0.109686i
\(797\) −456.965 + 791.487i −0.573356 + 0.993082i 0.422862 + 0.906194i \(0.361026\pi\)
−0.996218 + 0.0868882i \(0.972308\pi\)
\(798\) 0 0
\(799\) −363.304 629.262i −0.454699 0.787562i
\(800\) 0 0
\(801\) 0 0
\(802\) 55.7373i 0.0694978i
\(803\) −583.381 1010.44i −0.726501 1.25834i
\(804\) 0 0
\(805\) 0 0
\(806\) −560.474 323.590i −0.695377 0.401476i
\(807\) 0 0
\(808\) 324.657 187.441i 0.401803 0.231981i
\(809\) 1008.67i 1.24681i −0.781897 0.623407i \(-0.785748\pi\)
0.781897 0.623407i \(-0.214252\pi\)
\(810\) 0 0
\(811\) 952.468 1.17444 0.587218 0.809429i \(-0.300223\pi\)
0.587218 + 0.809429i \(0.300223\pi\)
\(812\) −83.7557 145.069i −0.103147 0.178657i
\(813\) 0 0
\(814\) −444.992 + 770.749i −0.546673 + 0.946866i
\(815\) 0 0
\(816\) 0 0
\(817\) −1047.08 + 604.535i −1.28162 + 0.739945i
\(818\) 134.681 0.164646
\(819\) 0 0
\(820\) 0 0
\(821\) 1222.35 705.724i 1.48885 0.859590i 0.488935 0.872320i \(-0.337385\pi\)
0.999919 + 0.0127295i \(0.00405205\pi\)
\(822\) 0 0
\(823\) −659.680 380.867i −0.801556 0.462778i 0.0424591 0.999098i \(-0.486481\pi\)
−0.844015 + 0.536320i \(0.819814\pi\)
\(824\) −691.287 399.115i −0.838941 0.484363i
\(825\) 0 0
\(826\) 24.3054 + 42.0982i 0.0294255 + 0.0509664i
\(827\) 718.144 0.868373 0.434186 0.900823i \(-0.357036\pi\)
0.434186 + 0.900823i \(0.357036\pi\)
\(828\) 0 0
\(829\) −400.411 −0.483005 −0.241503 0.970400i \(-0.577640\pi\)
−0.241503 + 0.970400i \(0.577640\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −677.509 391.160i −0.814313 0.470144i
\(833\) −45.2598 + 78.3923i −0.0543335 + 0.0941084i
\(834\) 0 0
\(835\) 0 0
\(836\) 218.523i 0.261391i
\(837\) 0 0
\(838\) 306.105i 0.365281i
\(839\) −614.302 + 354.667i −0.732183 + 0.422726i −0.819220 0.573479i \(-0.805593\pi\)
0.0870370 + 0.996205i \(0.472260\pi\)
\(840\) 0 0
\(841\) 406.624 704.293i 0.483500 0.837447i
\(842\) −280.122 + 485.186i −0.332687 + 0.576230i
\(843\) 0 0
\(844\) 101.109 + 175.126i 0.119797 + 0.207495i
\(845\) 0 0
\(846\) 0 0
\(847\) 45.2139i 0.0533813i
\(848\) 217.854 + 377.334i 0.256903 + 0.444969i
\(849\) 0 0
\(850\) 0 0
\(851\) 446.439 + 257.751i 0.524605 + 0.302881i
\(852\) 0 0
\(853\) 767.495 443.113i 0.899760 0.519476i 0.0226375 0.999744i \(-0.492794\pi\)
0.877122 + 0.480267i \(0.159460\pi\)
\(854\) 785.706i 0.920030i
\(855\) 0 0
\(856\) −1177.88 −1.37602
\(857\) 163.757 + 283.635i 0.191081 + 0.330963i 0.945609 0.325306i \(-0.105467\pi\)
−0.754527 + 0.656268i \(0.772134\pi\)
\(858\) 0 0
\(859\) −35.0835 + 60.7664i −0.0408423 + 0.0707409i −0.885724 0.464212i \(-0.846337\pi\)
0.844882 + 0.534953i \(0.179671\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −351.036 + 202.671i −0.407235 + 0.235117i
\(863\) −982.709 −1.13871 −0.569356 0.822091i \(-0.692807\pi\)
−0.569356 + 0.822091i \(0.692807\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −308.201 + 177.940i −0.355891 + 0.205474i
\(867\) 0 0
\(868\) −113.729 65.6615i −0.131024 0.0756469i
\(869\) −922.650 532.692i −1.06174 0.612994i
\(870\) 0 0
\(871\) −392.774 680.305i −0.450946 0.781062i
\(872\) −1502.83 −1.72343
\(873\) 0 0
\(874\) −668.539 −0.764919
\(875\) 0 0
\(876\) 0 0
\(877\) 802.714 + 463.447i 0.915296 + 0.528446i 0.882131 0.471004i \(-0.156108\pi\)
0.0331646 + 0.999450i \(0.489441\pi\)
\(878\) 141.844 245.681i 0.161553 0.279819i
\(879\) 0 0
\(880\) 0 0
\(881\) 766.920i 0.870510i 0.900307 + 0.435255i \(0.143342\pi\)
−0.900307 + 0.435255i \(0.856658\pi\)
\(882\) 0 0
\(883\) 1206.08i 1.36589i 0.730469 + 0.682946i \(0.239301\pi\)
−0.730469 + 0.682946i \(0.760699\pi\)
\(884\) −77.1000 + 44.5137i −0.0872172 + 0.0503549i
\(885\) 0 0
\(886\) −443.025 + 767.341i −0.500028 + 0.866074i
\(887\) −376.283 + 651.741i −0.424220 + 0.734771i −0.996347 0.0853943i \(-0.972785\pi\)
0.572127 + 0.820165i \(0.306118\pi\)
\(888\) 0 0
\(889\) −297.592 515.444i −0.334749 0.579802i
\(890\) 0 0
\(891\) 0 0
\(892\) 78.9527i 0.0885120i
\(893\) −924.320 1600.97i −1.03507 1.79280i
\(894\) 0 0
\(895\) 0 0
\(896\) 500.149 + 288.761i 0.558202 + 0.322278i
\(897\) 0 0
\(898\) 1078.63 622.747i 1.20115 0.693482i
\(899\) 1296.87i 1.44257i
\(900\) 0 0
\(901\) 421.858 0.468211
\(902\) −288.042 498.904i −0.319338 0.553109i
\(903\) 0 0
\(904\) −377.257 + 653.428i −0.417319 + 0.722818i
\(905\) 0 0
\(906\) 0 0
\(907\) 307.213 177.370i 0.338713 0.195556i −0.320989 0.947083i \(-0.604015\pi\)
0.659703 + 0.751526i \(0.270682\pi\)
\(908\) −138.481 −0.152512
\(909\) 0 0
\(910\) 0 0
\(911\) −280.940 + 162.201i −0.308387 + 0.178047i −0.646204 0.763164i \(-0.723645\pi\)
0.337818 + 0.941212i \(0.390311\pi\)
\(912\) 0 0
\(913\) 792.777 + 457.710i 0.868321 + 0.501325i
\(914\) 127.873 + 73.8277i 0.139905 + 0.0807743i
\(915\) 0 0
\(916\) −23.8641 41.3338i −0.0260525 0.0451243i
\(917\) 1037.98 1.13193
\(918\) 0 0
\(919\) 604.200 0.657453 0.328727 0.944425i \(-0.393381\pi\)
0.328727 + 0.944425i \(0.393381\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −982.696 567.360i −1.06583 0.615357i
\(923\) 72.5600 125.678i 0.0786133 0.136162i
\(924\) 0 0
\(925\) 0 0
\(926\) 604.196i 0.652479i
\(927\) 0 0
\(928\) 410.211i 0.442037i
\(929\) −1417.48 + 818.384i −1.52582 + 0.880930i −0.526285 + 0.850308i \(0.676415\pi\)
−0.999531 + 0.0306220i \(0.990251\pi\)
\(930\) 0 0
\(931\) −115.150 + 199.446i −0.123684 + 0.214228i
\(932\) −45.4586 + 78.7366i −0.0487753 + 0.0844813i
\(933\) 0 0
\(934\) 198.383 + 343.609i 0.212401 + 0.367890i
\(935\) 0 0
\(936\) 0 0
\(937\) 266.212i 0.284111i 0.989859 + 0.142055i \(0.0453711\pi\)
−0.989859 + 0.142055i \(0.954629\pi\)
\(938\) 420.959 + 729.123i 0.448784 + 0.777316i
\(939\) 0 0
\(940\) 0 0
\(941\) −140.374 81.0449i −0.149175 0.0861264i 0.423554 0.905871i \(-0.360782\pi\)
−0.572730 + 0.819744i \(0.694116\pi\)
\(942\) 0 0
\(943\) −288.979 + 166.842i −0.306446 + 0.176927i
\(944\) 53.4704i 0.0566424i
\(945\) 0 0
\(946\) 736.633 0.778681
\(947\) −398.717 690.598i −0.421032 0.729248i 0.575009 0.818147i \(-0.304999\pi\)
−0.996041 + 0.0888989i \(0.971665\pi\)
\(948\) 0 0
\(949\) 604.687 1047.35i 0.637183 1.10363i
\(950\) 0 0
\(951\) 0 0
\(952\) 601.713 347.399i 0.632052 0.364915i
\(953\) 1382.90 1.45110 0.725551 0.688168i \(-0.241585\pi\)
0.725551 + 0.688168i \(0.241585\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 110.390 63.7338i 0.115471 0.0666671i
\(957\) 0 0
\(958\) −220.005 127.020i −0.229650 0.132589i
\(959\) −508.969 293.853i −0.530729 0.306416i
\(960\) 0 0
\(961\) −27.8509 48.2391i −0.0289811 0.0501968i
\(962\) −922.488 −0.958927
\(963\) 0 0
\(964\) −123.481 −0.128092
\(965\) 0 0
\(966\) 0 0
\(967\) 320.006 + 184.756i 0.330927 + 0.191061i 0.656252 0.754541i \(-0.272141\pi\)
−0.325326 + 0.945602i \(0.605474\pi\)
\(968\) −29.7214 + 51.4789i −0.0307039 + 0.0531807i
\(969\) 0 0
\(970\) 0 0
\(971\) 961.450i 0.990165i −0.868846 0.495082i \(-0.835138\pi\)
0.868846 0.495082i \(-0.164862\pi\)
\(972\) 0 0
\(973\) 420.243i 0.431904i
\(974\) 147.750 85.3036i 0.151694 0.0875807i
\(975\) 0 0
\(976\) −432.126 + 748.465i −0.442752 + 0.766870i
\(977\) 859.076 1487.96i 0.879300 1.52299i 0.0271901 0.999630i \(-0.491344\pi\)
0.852110 0.523362i \(-0.175323\pi\)
\(978\) 0 0
\(979\) 339.744 + 588.454i 0.347032 + 0.601077i
\(980\) 0 0
\(981\) 0 0
\(982\) 430.232i 0.438118i
\(983\) 640.833 + 1109.96i 0.651915 + 1.12915i 0.982658 + 0.185430i \(0.0593676\pi\)
−0.330742 + 0.943721i \(0.607299\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 816.033 + 471.137i 0.827620 + 0.477826i
\(987\) 0 0
\(988\) −196.158 + 113.252i −0.198541 + 0.114627i
\(989\) 426.678i 0.431423i
\(990\) 0 0
\(991\) 952.926 0.961581 0.480790 0.876836i \(-0.340350\pi\)
0.480790 + 0.876836i \(0.340350\pi\)
\(992\) −160.795 278.506i −0.162092 0.280752i
\(993\) 0 0
\(994\) −77.7669 + 134.696i −0.0782363 + 0.135509i
\(995\) 0 0
\(996\) 0 0
\(997\) −1532.57 + 884.833i −1.53719 + 0.887495i −0.538185 + 0.842827i \(0.680890\pi\)
−0.999002 + 0.0446679i \(0.985777\pi\)
\(998\) −1212.49 −1.21492
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.3.i.c.449.12 32
3.2 odd 2 225.3.i.b.149.5 32
5.2 odd 4 135.3.i.a.71.3 16
5.3 odd 4 675.3.j.b.476.6 16
5.4 even 2 inner 675.3.i.c.449.5 32
9.2 odd 6 inner 675.3.i.c.224.5 32
9.7 even 3 225.3.i.b.74.12 32
15.2 even 4 45.3.i.a.41.6 yes 16
15.8 even 4 225.3.j.b.176.3 16
15.14 odd 2 225.3.i.b.149.12 32
20.7 even 4 2160.3.bs.c.881.6 16
45.2 even 12 135.3.i.a.116.3 16
45.7 odd 12 45.3.i.a.11.6 16
45.22 odd 12 405.3.c.a.161.5 16
45.29 odd 6 inner 675.3.i.c.224.12 32
45.32 even 12 405.3.c.a.161.12 16
45.34 even 6 225.3.i.b.74.5 32
45.38 even 12 675.3.j.b.251.6 16
45.43 odd 12 225.3.j.b.101.3 16
60.47 odd 4 720.3.bs.c.401.4 16
180.7 even 12 720.3.bs.c.641.4 16
180.47 odd 12 2160.3.bs.c.1601.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.i.a.11.6 16 45.7 odd 12
45.3.i.a.41.6 yes 16 15.2 even 4
135.3.i.a.71.3 16 5.2 odd 4
135.3.i.a.116.3 16 45.2 even 12
225.3.i.b.74.5 32 45.34 even 6
225.3.i.b.74.12 32 9.7 even 3
225.3.i.b.149.5 32 3.2 odd 2
225.3.i.b.149.12 32 15.14 odd 2
225.3.j.b.101.3 16 45.43 odd 12
225.3.j.b.176.3 16 15.8 even 4
405.3.c.a.161.5 16 45.22 odd 12
405.3.c.a.161.12 16 45.32 even 12
675.3.i.c.224.5 32 9.2 odd 6 inner
675.3.i.c.224.12 32 45.29 odd 6 inner
675.3.i.c.449.5 32 5.4 even 2 inner
675.3.i.c.449.12 32 1.1 even 1 trivial
675.3.j.b.251.6 16 45.38 even 12
675.3.j.b.476.6 16 5.3 odd 4
720.3.bs.c.401.4 16 60.47 odd 4
720.3.bs.c.641.4 16 180.7 even 12
2160.3.bs.c.881.6 16 20.7 even 4
2160.3.bs.c.1601.6 16 180.47 odd 12