Properties

Label 675.3.i.c.224.12
Level $675$
Weight $3$
Character 675.224
Analytic conductor $18.392$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,3,Mod(224,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.224"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 675.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,-32,0,0,0,0,0,0,36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3924178443\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 224.12
Character \(\chi\) \(=\) 675.224
Dual form 675.3.i.c.449.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.916957 - 1.58822i) q^{2} +(0.318381 + 0.551452i) q^{4} +(5.60142 + 3.23398i) q^{7} +8.50342 q^{8} +(-9.24701 - 5.33876i) q^{11} +(-9.58473 + 5.53374i) q^{13} +(10.2725 - 5.93084i) q^{14} +(6.52374 - 11.2995i) q^{16} +12.6328 q^{17} +32.1403 q^{19} +(-16.9582 + 9.79083i) q^{22} +(-5.67112 - 9.82266i) q^{23} +20.2968i q^{26} +4.11855i q^{28} +(35.2234 + 20.3362i) q^{29} +(15.9429 + 27.6139i) q^{31} +(5.04286 + 8.73448i) q^{32} +(11.5837 - 20.0635i) q^{34} +45.4499i q^{37} +(29.4713 - 51.0457i) q^{38} +(25.4781 - 14.7098i) q^{41} +(-32.5786 - 18.8093i) q^{43} -6.79904i q^{44} -20.8007 q^{46} +(-28.7589 + 49.8119i) q^{47} +(-3.58274 - 6.20548i) q^{49} +(-6.10319 - 3.52368i) q^{52} +33.3940 q^{53} +(47.6312 + 27.4999i) q^{56} +(64.5966 - 37.2949i) q^{58} +(3.54909 - 2.04907i) q^{59} +(33.1195 - 57.3647i) q^{61} +58.4757 q^{62} +70.6863 q^{64} +(61.4687 - 35.4890i) q^{67} +(4.02203 + 6.96635i) q^{68} -13.1123i q^{71} -109.273i q^{73} +(72.1842 + 41.6756i) q^{74} +(10.2328 + 17.7238i) q^{76} +(-34.5309 - 59.8093i) q^{77} +(49.8891 - 86.4104i) q^{79} -53.9530i q^{82} +(-42.8667 + 74.2472i) q^{83} +(-59.7463 + 34.4945i) q^{86} +(-78.6312 - 45.3977i) q^{88} +63.6372i q^{89} -71.5841 q^{91} +(3.61115 - 6.25469i) q^{92} +(52.7414 + 91.3507i) q^{94} +(-74.8357 - 43.2064i) q^{97} -13.1409 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{4} + 36 q^{11} - 108 q^{14} - 64 q^{16} + 104 q^{19} - 108 q^{29} + 64 q^{31} - 108 q^{34} - 288 q^{41} - 216 q^{46} + 108 q^{49} + 36 q^{56} - 972 q^{59} + 124 q^{61} - 512 q^{64} + 1080 q^{74}+ \cdots + 300 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.916957 1.58822i 0.458478 0.794108i −0.540402 0.841407i \(-0.681728\pi\)
0.998881 + 0.0472989i \(0.0150613\pi\)
\(3\) 0 0
\(4\) 0.318381 + 0.551452i 0.0795952 + 0.137863i
\(5\) 0 0
\(6\) 0 0
\(7\) 5.60142 + 3.23398i 0.800203 + 0.461997i 0.843542 0.537063i \(-0.180466\pi\)
−0.0433393 + 0.999060i \(0.513800\pi\)
\(8\) 8.50342 1.06293
\(9\) 0 0
\(10\) 0 0
\(11\) −9.24701 5.33876i −0.840637 0.485342i 0.0168436 0.999858i \(-0.494638\pi\)
−0.857481 + 0.514516i \(0.827972\pi\)
\(12\) 0 0
\(13\) −9.58473 + 5.53374i −0.737287 + 0.425673i −0.821082 0.570810i \(-0.806629\pi\)
0.0837952 + 0.996483i \(0.473296\pi\)
\(14\) 10.2725 5.93084i 0.733751 0.423631i
\(15\) 0 0
\(16\) 6.52374 11.2995i 0.407734 0.706216i
\(17\) 12.6328 0.743103 0.371552 0.928412i \(-0.378826\pi\)
0.371552 + 0.928412i \(0.378826\pi\)
\(18\) 0 0
\(19\) 32.1403 1.69159 0.845797 0.533505i \(-0.179125\pi\)
0.845797 + 0.533505i \(0.179125\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −16.9582 + 9.79083i −0.770828 + 0.445038i
\(23\) −5.67112 9.82266i −0.246570 0.427072i 0.716002 0.698099i \(-0.245970\pi\)
−0.962572 + 0.271026i \(0.912637\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 20.2968i 0.780647i
\(27\) 0 0
\(28\) 4.11855i 0.147091i
\(29\) 35.2234 + 20.3362i 1.21460 + 0.701249i 0.963758 0.266779i \(-0.0859594\pi\)
0.250841 + 0.968028i \(0.419293\pi\)
\(30\) 0 0
\(31\) 15.9429 + 27.6139i 0.514286 + 0.890770i 0.999863 + 0.0165759i \(0.00527652\pi\)
−0.485576 + 0.874194i \(0.661390\pi\)
\(32\) 5.04286 + 8.73448i 0.157589 + 0.272953i
\(33\) 0 0
\(34\) 11.5837 20.0635i 0.340697 0.590104i
\(35\) 0 0
\(36\) 0 0
\(37\) 45.4499i 1.22837i 0.789160 + 0.614187i \(0.210516\pi\)
−0.789160 + 0.614187i \(0.789484\pi\)
\(38\) 29.4713 51.0457i 0.775559 1.34331i
\(39\) 0 0
\(40\) 0 0
\(41\) 25.4781 14.7098i 0.621418 0.358776i −0.156003 0.987757i \(-0.549861\pi\)
0.777421 + 0.628981i \(0.216528\pi\)
\(42\) 0 0
\(43\) −32.5786 18.8093i −0.757641 0.437424i 0.0708069 0.997490i \(-0.477443\pi\)
−0.828448 + 0.560066i \(0.810776\pi\)
\(44\) 6.79904i 0.154524i
\(45\) 0 0
\(46\) −20.8007 −0.452188
\(47\) −28.7589 + 49.8119i −0.611892 + 1.05983i 0.379029 + 0.925385i \(0.376258\pi\)
−0.990921 + 0.134443i \(0.957075\pi\)
\(48\) 0 0
\(49\) −3.58274 6.20548i −0.0731171 0.126642i
\(50\) 0 0
\(51\) 0 0
\(52\) −6.10319 3.52368i −0.117369 0.0677630i
\(53\) 33.3940 0.630075 0.315038 0.949079i \(-0.397983\pi\)
0.315038 + 0.949079i \(0.397983\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 47.6312 + 27.4999i 0.850557 + 0.491070i
\(57\) 0 0
\(58\) 64.5966 37.2949i 1.11373 0.643015i
\(59\) 3.54909 2.04907i 0.0601541 0.0347300i −0.469621 0.882868i \(-0.655610\pi\)
0.529775 + 0.848138i \(0.322276\pi\)
\(60\) 0 0
\(61\) 33.1195 57.3647i 0.542943 0.940404i −0.455791 0.890087i \(-0.650643\pi\)
0.998733 0.0503172i \(-0.0160232\pi\)
\(62\) 58.4757 0.943157
\(63\) 0 0
\(64\) 70.6863 1.10447
\(65\) 0 0
\(66\) 0 0
\(67\) 61.4687 35.4890i 0.917444 0.529686i 0.0346251 0.999400i \(-0.488976\pi\)
0.882819 + 0.469714i \(0.155643\pi\)
\(68\) 4.02203 + 6.96635i 0.0591474 + 0.102446i
\(69\) 0 0
\(70\) 0 0
\(71\) 13.1123i 0.184680i −0.995728 0.0923400i \(-0.970565\pi\)
0.995728 0.0923400i \(-0.0294347\pi\)
\(72\) 0 0
\(73\) 109.273i 1.49688i −0.663200 0.748442i \(-0.730802\pi\)
0.663200 0.748442i \(-0.269198\pi\)
\(74\) 72.1842 + 41.6756i 0.975462 + 0.563183i
\(75\) 0 0
\(76\) 10.2328 + 17.7238i 0.134643 + 0.233208i
\(77\) −34.5309 59.8093i −0.448453 0.776744i
\(78\) 0 0
\(79\) 49.8891 86.4104i 0.631507 1.09380i −0.355736 0.934586i \(-0.615770\pi\)
0.987244 0.159217i \(-0.0508968\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 53.9530i 0.657964i
\(83\) −42.8667 + 74.2472i −0.516466 + 0.894545i 0.483351 + 0.875426i \(0.339419\pi\)
−0.999817 + 0.0191187i \(0.993914\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −59.7463 + 34.4945i −0.694724 + 0.401099i
\(87\) 0 0
\(88\) −78.6312 45.3977i −0.893536 0.515883i
\(89\) 63.6372i 0.715025i 0.933908 + 0.357513i \(0.116375\pi\)
−0.933908 + 0.357513i \(0.883625\pi\)
\(90\) 0 0
\(91\) −71.5841 −0.786638
\(92\) 3.61115 6.25469i 0.0392516 0.0679858i
\(93\) 0 0
\(94\) 52.7414 + 91.3507i 0.561078 + 0.971816i
\(95\) 0 0
\(96\) 0 0
\(97\) −74.8357 43.2064i −0.771503 0.445427i 0.0619078 0.998082i \(-0.480282\pi\)
−0.833410 + 0.552655i \(0.813615\pi\)
\(98\) −13.1409 −0.134090
\(99\) 0 0
\(100\) 0 0
\(101\) 38.1796 + 22.0430i 0.378015 + 0.218247i 0.676954 0.736025i \(-0.263299\pi\)
−0.298939 + 0.954272i \(0.596633\pi\)
\(102\) 0 0
\(103\) −81.2952 + 46.9358i −0.789274 + 0.455688i −0.839707 0.543040i \(-0.817273\pi\)
0.0504329 + 0.998727i \(0.483940\pi\)
\(104\) −81.5030 + 47.0558i −0.783682 + 0.452459i
\(105\) 0 0
\(106\) 30.6208 53.0369i 0.288876 0.500348i
\(107\) −138.518 −1.29456 −0.647280 0.762252i \(-0.724094\pi\)
−0.647280 + 0.762252i \(0.724094\pi\)
\(108\) 0 0
\(109\) −176.733 −1.62140 −0.810700 0.585461i \(-0.800913\pi\)
−0.810700 + 0.585461i \(0.800913\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 73.0845 42.1953i 0.652540 0.376744i
\(113\) −44.3653 76.8430i −0.392613 0.680026i 0.600180 0.799865i \(-0.295096\pi\)
−0.992793 + 0.119839i \(0.961762\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 25.8986i 0.223264i
\(117\) 0 0
\(118\) 7.51564i 0.0636918i
\(119\) 70.7613 + 40.8541i 0.594633 + 0.343312i
\(120\) 0 0
\(121\) −3.49522 6.05390i −0.0288861 0.0500323i
\(122\) −60.7383 105.202i −0.497855 0.862310i
\(123\) 0 0
\(124\) −10.1518 + 17.5835i −0.0818695 + 0.141802i
\(125\) 0 0
\(126\) 0 0
\(127\) 92.0203i 0.724569i 0.932068 + 0.362285i \(0.118003\pi\)
−0.932068 + 0.362285i \(0.881997\pi\)
\(128\) 44.6448 77.3271i 0.348788 0.604118i
\(129\) 0 0
\(130\) 0 0
\(131\) 138.979 80.2398i 1.06091 0.612518i 0.135228 0.990815i \(-0.456823\pi\)
0.925684 + 0.378297i \(0.123490\pi\)
\(132\) 0 0
\(133\) 180.031 + 103.941i 1.35362 + 0.781512i
\(134\) 130.167i 0.971399i
\(135\) 0 0
\(136\) 107.422 0.789865
\(137\) −45.4321 + 78.6907i −0.331621 + 0.574385i −0.982830 0.184514i \(-0.940929\pi\)
0.651209 + 0.758899i \(0.274262\pi\)
\(138\) 0 0
\(139\) −32.4865 56.2682i −0.233716 0.404807i 0.725183 0.688556i \(-0.241755\pi\)
−0.958899 + 0.283749i \(0.908422\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −20.8251 12.0234i −0.146656 0.0846718i
\(143\) 118.173 0.826387
\(144\) 0 0
\(145\) 0 0
\(146\) −173.548 100.198i −1.18869 0.686289i
\(147\) 0 0
\(148\) −25.0634 + 14.4704i −0.169347 + 0.0977727i
\(149\) −124.965 + 72.1483i −0.838688 + 0.484217i −0.856818 0.515619i \(-0.827562\pi\)
0.0181301 + 0.999836i \(0.494229\pi\)
\(150\) 0 0
\(151\) −68.3876 + 118.451i −0.452898 + 0.784442i −0.998565 0.0535600i \(-0.982943\pi\)
0.545667 + 0.838002i \(0.316276\pi\)
\(152\) 273.302 1.79804
\(153\) 0 0
\(154\) −126.653 −0.822425
\(155\) 0 0
\(156\) 0 0
\(157\) −45.2004 + 26.0965i −0.287901 + 0.166220i −0.636995 0.770868i \(-0.719823\pi\)
0.349094 + 0.937088i \(0.386489\pi\)
\(158\) −91.4923 158.469i −0.579065 1.00297i
\(159\) 0 0
\(160\) 0 0
\(161\) 73.3611i 0.455659i
\(162\) 0 0
\(163\) 103.226i 0.633287i 0.948545 + 0.316643i \(0.102556\pi\)
−0.948545 + 0.316643i \(0.897444\pi\)
\(164\) 16.2235 + 9.36664i 0.0989238 + 0.0571137i
\(165\) 0 0
\(166\) 78.6138 + 136.163i 0.473577 + 0.820259i
\(167\) −56.4096 97.7044i −0.337782 0.585056i 0.646233 0.763140i \(-0.276343\pi\)
−0.984015 + 0.178084i \(0.943010\pi\)
\(168\) 0 0
\(169\) −23.2553 + 40.2794i −0.137606 + 0.238340i
\(170\) 0 0
\(171\) 0 0
\(172\) 23.9540i 0.139268i
\(173\) −65.6580 + 113.723i −0.379526 + 0.657359i −0.990993 0.133911i \(-0.957246\pi\)
0.611467 + 0.791270i \(0.290580\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −120.650 + 69.6574i −0.685513 + 0.395781i
\(177\) 0 0
\(178\) 101.070 + 58.3526i 0.567807 + 0.327824i
\(179\) 297.076i 1.65964i −0.558028 0.829822i \(-0.688442\pi\)
0.558028 0.829822i \(-0.311558\pi\)
\(180\) 0 0
\(181\) 28.1168 0.155342 0.0776708 0.996979i \(-0.475252\pi\)
0.0776708 + 0.996979i \(0.475252\pi\)
\(182\) −65.6395 + 113.691i −0.360657 + 0.624676i
\(183\) 0 0
\(184\) −48.2239 83.5262i −0.262086 0.453947i
\(185\) 0 0
\(186\) 0 0
\(187\) −116.815 67.4433i −0.624680 0.360659i
\(188\) −36.6252 −0.194815
\(189\) 0 0
\(190\) 0 0
\(191\) −7.94176 4.58518i −0.0415799 0.0240062i 0.479066 0.877779i \(-0.340975\pi\)
−0.520646 + 0.853773i \(0.674309\pi\)
\(192\) 0 0
\(193\) −82.0697 + 47.3830i −0.425232 + 0.245508i −0.697313 0.716767i \(-0.745621\pi\)
0.272082 + 0.962274i \(0.412288\pi\)
\(194\) −137.242 + 79.2369i −0.707434 + 0.408437i
\(195\) 0 0
\(196\) 2.28135 3.95141i 0.0116395 0.0201603i
\(197\) 267.330 1.35701 0.678504 0.734597i \(-0.262629\pi\)
0.678504 + 0.734597i \(0.262629\pi\)
\(198\) 0 0
\(199\) 158.327 0.795615 0.397808 0.917469i \(-0.369771\pi\)
0.397808 + 0.917469i \(0.369771\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 70.0180 40.4249i 0.346624 0.200123i
\(203\) 131.534 + 227.823i 0.647950 + 1.12228i
\(204\) 0 0
\(205\) 0 0
\(206\) 172.152i 0.835692i
\(207\) 0 0
\(208\) 144.403i 0.694245i
\(209\) −297.202 171.589i −1.42202 0.821002i
\(210\) 0 0
\(211\) −158.786 275.026i −0.752542 1.30344i −0.946587 0.322448i \(-0.895494\pi\)
0.194045 0.980993i \(-0.437839\pi\)
\(212\) 10.6320 + 18.4152i 0.0501510 + 0.0868640i
\(213\) 0 0
\(214\) −127.015 + 219.996i −0.593528 + 1.02802i
\(215\) 0 0
\(216\) 0 0
\(217\) 206.236i 0.950396i
\(218\) −162.056 + 280.690i −0.743377 + 1.28757i
\(219\) 0 0
\(220\) 0 0
\(221\) −121.081 + 69.9064i −0.547880 + 0.316319i
\(222\) 0 0
\(223\) −107.379 61.9955i −0.481522 0.278007i 0.239529 0.970889i \(-0.423007\pi\)
−0.721050 + 0.692883i \(0.756340\pi\)
\(224\) 65.2340i 0.291223i
\(225\) 0 0
\(226\) −162.724 −0.720019
\(227\) −108.739 + 188.341i −0.479025 + 0.829695i −0.999711 0.0240532i \(-0.992343\pi\)
0.520686 + 0.853748i \(0.325676\pi\)
\(228\) 0 0
\(229\) 37.4773 + 64.9126i 0.163656 + 0.283461i 0.936177 0.351528i \(-0.114338\pi\)
−0.772521 + 0.634989i \(0.781005\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 299.519 + 172.927i 1.29103 + 0.745377i
\(233\) −142.781 −0.612792 −0.306396 0.951904i \(-0.599123\pi\)
−0.306396 + 0.951904i \(0.599123\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 2.25993 + 1.30477i 0.00957596 + 0.00552868i
\(237\) 0 0
\(238\) 129.770 74.9229i 0.545253 0.314802i
\(239\) 173.362 100.090i 0.725363 0.418789i −0.0913604 0.995818i \(-0.529122\pi\)
0.816723 + 0.577029i \(0.195788\pi\)
\(240\) 0 0
\(241\) −96.9600 + 167.940i −0.402324 + 0.696845i −0.994006 0.109326i \(-0.965131\pi\)
0.591682 + 0.806171i \(0.298464\pi\)
\(242\) −12.8199 −0.0529747
\(243\) 0 0
\(244\) 42.1784 0.172862
\(245\) 0 0
\(246\) 0 0
\(247\) −308.056 + 177.856i −1.24719 + 0.720065i
\(248\) 135.569 + 234.812i 0.546649 + 0.946824i
\(249\) 0 0
\(250\) 0 0
\(251\) 301.288i 1.20035i −0.799868 0.600176i \(-0.795097\pi\)
0.799868 0.600176i \(-0.204903\pi\)
\(252\) 0 0
\(253\) 121.107i 0.478684i
\(254\) 146.148 + 84.3786i 0.575386 + 0.332199i
\(255\) 0 0
\(256\) 59.4978 + 103.053i 0.232413 + 0.402552i
\(257\) −105.005 181.874i −0.408579 0.707679i 0.586152 0.810201i \(-0.300642\pi\)
−0.994731 + 0.102522i \(0.967309\pi\)
\(258\) 0 0
\(259\) −146.984 + 254.584i −0.567506 + 0.982949i
\(260\) 0 0
\(261\) 0 0
\(262\) 294.306i 1.12330i
\(263\) −75.7092 + 131.132i −0.287868 + 0.498601i −0.973301 0.229534i \(-0.926280\pi\)
0.685433 + 0.728136i \(0.259613\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 330.162 190.619i 1.24121 0.716613i
\(267\) 0 0
\(268\) 39.1409 + 22.5980i 0.146048 + 0.0843210i
\(269\) 411.264i 1.52886i −0.644706 0.764431i \(-0.723020\pi\)
0.644706 0.764431i \(-0.276980\pi\)
\(270\) 0 0
\(271\) −255.156 −0.941534 −0.470767 0.882257i \(-0.656023\pi\)
−0.470767 + 0.882257i \(0.656023\pi\)
\(272\) 82.4129 142.743i 0.302988 0.524791i
\(273\) 0 0
\(274\) 83.3186 + 144.312i 0.304082 + 0.526686i
\(275\) 0 0
\(276\) 0 0
\(277\) 160.699 + 92.7798i 0.580142 + 0.334945i 0.761190 0.648529i \(-0.224615\pi\)
−0.181048 + 0.983474i \(0.557949\pi\)
\(278\) −119.155 −0.428614
\(279\) 0 0
\(280\) 0 0
\(281\) −90.1892 52.0708i −0.320958 0.185305i 0.330862 0.943679i \(-0.392661\pi\)
−0.651820 + 0.758374i \(0.725994\pi\)
\(282\) 0 0
\(283\) 44.9089 25.9282i 0.158689 0.0916189i −0.418553 0.908192i \(-0.637463\pi\)
0.577241 + 0.816574i \(0.304129\pi\)
\(284\) 7.23079 4.17470i 0.0254605 0.0146996i
\(285\) 0 0
\(286\) 108.360 187.685i 0.378881 0.656241i
\(287\) 190.285 0.663014
\(288\) 0 0
\(289\) −129.414 −0.447798
\(290\) 0 0
\(291\) 0 0
\(292\) 60.2586 34.7903i 0.206365 0.119145i
\(293\) −165.835 287.235i −0.565990 0.980323i −0.996957 0.0779553i \(-0.975161\pi\)
0.430967 0.902368i \(-0.358172\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 386.479i 1.30567i
\(297\) 0 0
\(298\) 264.627i 0.888012i
\(299\) 108.712 + 62.7650i 0.363586 + 0.209916i
\(300\) 0 0
\(301\) −121.658 210.717i −0.404178 0.700057i
\(302\) 125.417 + 217.228i 0.415288 + 0.719300i
\(303\) 0 0
\(304\) 209.675 363.168i 0.689720 1.19463i
\(305\) 0 0
\(306\) 0 0
\(307\) 292.274i 0.952031i −0.879437 0.476016i \(-0.842081\pi\)
0.879437 0.476016i \(-0.157919\pi\)
\(308\) 21.9880 38.0843i 0.0713895 0.123650i
\(309\) 0 0
\(310\) 0 0
\(311\) −171.292 + 98.8956i −0.550779 + 0.317992i −0.749436 0.662077i \(-0.769675\pi\)
0.198657 + 0.980069i \(0.436342\pi\)
\(312\) 0 0
\(313\) 186.800 + 107.849i 0.596804 + 0.344565i 0.767783 0.640710i \(-0.221360\pi\)
−0.170979 + 0.985275i \(0.554693\pi\)
\(314\) 95.7173i 0.304832i
\(315\) 0 0
\(316\) 63.5349 0.201060
\(317\) −101.818 + 176.354i −0.321192 + 0.556321i −0.980734 0.195346i \(-0.937417\pi\)
0.659542 + 0.751668i \(0.270750\pi\)
\(318\) 0 0
\(319\) −217.141 376.098i −0.680691 1.17899i
\(320\) 0 0
\(321\) 0 0
\(322\) −116.513 67.2690i −0.361842 0.208910i
\(323\) 406.020 1.25703
\(324\) 0 0
\(325\) 0 0
\(326\) 163.945 + 94.6536i 0.502898 + 0.290348i
\(327\) 0 0
\(328\) 216.651 125.084i 0.660522 0.381353i
\(329\) −322.182 + 186.012i −0.979275 + 0.565385i
\(330\) 0 0
\(331\) −47.0115 + 81.4264i −0.142029 + 0.246001i −0.928260 0.371931i \(-0.878696\pi\)
0.786232 + 0.617932i \(0.212029\pi\)
\(332\) −54.5917 −0.164433
\(333\) 0 0
\(334\) −206.901 −0.619464
\(335\) 0 0
\(336\) 0 0
\(337\) −291.103 + 168.068i −0.863807 + 0.498719i −0.865285 0.501280i \(-0.832863\pi\)
0.00147845 + 0.999999i \(0.499529\pi\)
\(338\) 42.6483 + 73.8690i 0.126178 + 0.218547i
\(339\) 0 0
\(340\) 0 0
\(341\) 340.461i 0.998419i
\(342\) 0 0
\(343\) 363.276i 1.05911i
\(344\) −277.029 159.943i −0.805318 0.464950i
\(345\) 0 0
\(346\) 120.411 + 208.558i 0.348009 + 0.602769i
\(347\) −31.2617 54.1469i −0.0900914 0.156043i 0.817458 0.575988i \(-0.195383\pi\)
−0.907549 + 0.419945i \(0.862049\pi\)
\(348\) 0 0
\(349\) −160.475 + 277.951i −0.459815 + 0.796422i −0.998951 0.0457962i \(-0.985418\pi\)
0.539136 + 0.842219i \(0.318751\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 107.690i 0.305939i
\(353\) 83.1067 143.945i 0.235430 0.407776i −0.723968 0.689834i \(-0.757684\pi\)
0.959397 + 0.282058i \(0.0910170\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −35.0929 + 20.2609i −0.0985754 + 0.0569126i
\(357\) 0 0
\(358\) −471.821 272.406i −1.31794 0.760911i
\(359\) 199.670i 0.556183i 0.960555 + 0.278091i \(0.0897018\pi\)
−0.960555 + 0.278091i \(0.910298\pi\)
\(360\) 0 0
\(361\) 671.998 1.86149
\(362\) 25.7819 44.6556i 0.0712208 0.123358i
\(363\) 0 0
\(364\) −22.7910 39.4752i −0.0626126 0.108448i
\(365\) 0 0
\(366\) 0 0
\(367\) 139.120 + 80.3209i 0.379073 + 0.218858i 0.677415 0.735601i \(-0.263100\pi\)
−0.298342 + 0.954459i \(0.596433\pi\)
\(368\) −147.988 −0.402140
\(369\) 0 0
\(370\) 0 0
\(371\) 187.054 + 107.996i 0.504188 + 0.291093i
\(372\) 0 0
\(373\) 148.296 85.6188i 0.397577 0.229541i −0.287861 0.957672i \(-0.592944\pi\)
0.685438 + 0.728131i \(0.259611\pi\)
\(374\) −214.229 + 123.685i −0.572805 + 0.330709i
\(375\) 0 0
\(376\) −244.549 + 423.572i −0.650397 + 1.12652i
\(377\) −450.142 −1.19401
\(378\) 0 0
\(379\) 297.486 0.784922 0.392461 0.919769i \(-0.371624\pi\)
0.392461 + 0.919769i \(0.371624\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −14.5645 + 8.40882i −0.0381270 + 0.0220126i
\(383\) −240.374 416.340i −0.627608 1.08705i −0.988030 0.154259i \(-0.950701\pi\)
0.360423 0.932789i \(-0.382632\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 173.793i 0.450240i
\(387\) 0 0
\(388\) 55.0244i 0.141815i
\(389\) 514.801 + 297.220i 1.32340 + 0.764062i 0.984269 0.176678i \(-0.0565352\pi\)
0.339126 + 0.940741i \(0.389869\pi\)
\(390\) 0 0
\(391\) −71.6418 124.087i −0.183227 0.317359i
\(392\) −30.4655 52.7678i −0.0777181 0.134612i
\(393\) 0 0
\(394\) 245.130 424.578i 0.622158 1.07761i
\(395\) 0 0
\(396\) 0 0
\(397\) 106.303i 0.267765i −0.990997 0.133883i \(-0.957255\pi\)
0.990997 0.133883i \(-0.0427445\pi\)
\(398\) 145.179 251.458i 0.364772 0.631804i
\(399\) 0 0
\(400\) 0 0
\(401\) 26.3207 15.1963i 0.0656376 0.0378959i −0.466822 0.884351i \(-0.654601\pi\)
0.532460 + 0.846455i \(0.321268\pi\)
\(402\) 0 0
\(403\) −305.616 176.448i −0.758353 0.437835i
\(404\) 28.0722i 0.0694857i
\(405\) 0 0
\(406\) 482.444 1.18828
\(407\) 242.646 420.275i 0.596182 1.03262i
\(408\) 0 0
\(409\) 36.7195 + 63.6000i 0.0897787 + 0.155501i 0.907418 0.420230i \(-0.138051\pi\)
−0.817639 + 0.575732i \(0.804717\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −51.7657 29.8869i −0.125645 0.0725411i
\(413\) 26.5066 0.0641807
\(414\) 0 0
\(415\) 0 0
\(416\) −96.6688 55.8118i −0.232377 0.134163i
\(417\) 0 0
\(418\) −545.042 + 314.680i −1.30393 + 0.752823i
\(419\) 144.551 83.4568i 0.344992 0.199181i −0.317486 0.948263i \(-0.602838\pi\)
0.662477 + 0.749082i \(0.269505\pi\)
\(420\) 0 0
\(421\) 152.746 264.563i 0.362816 0.628416i −0.625607 0.780138i \(-0.715149\pi\)
0.988423 + 0.151722i \(0.0484820\pi\)
\(422\) −582.401 −1.38010
\(423\) 0 0
\(424\) 283.963 0.669724
\(425\) 0 0
\(426\) 0 0
\(427\) 371.032 214.216i 0.868928 0.501676i
\(428\) −44.1014 76.3859i −0.103041 0.178472i
\(429\) 0 0
\(430\) 0 0
\(431\) 221.026i 0.512820i −0.966568 0.256410i \(-0.917460\pi\)
0.966568 0.256410i \(-0.0825398\pi\)
\(432\) 0 0
\(433\) 194.055i 0.448164i −0.974570 0.224082i \(-0.928062\pi\)
0.974570 0.224082i \(-0.0719384\pi\)
\(434\) 327.547 + 189.109i 0.754717 + 0.435736i
\(435\) 0 0
\(436\) −56.2683 97.4595i −0.129056 0.223531i
\(437\) −182.271 315.703i −0.417097 0.722433i
\(438\) 0 0
\(439\) −77.3450 + 133.965i −0.176184 + 0.305160i −0.940571 0.339598i \(-0.889709\pi\)
0.764386 + 0.644759i \(0.223042\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 256.405i 0.580101i
\(443\) 241.573 418.418i 0.545313 0.944509i −0.453275 0.891371i \(-0.649744\pi\)
0.998587 0.0531381i \(-0.0169224\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −196.924 + 113.694i −0.441535 + 0.254920i
\(447\) 0 0
\(448\) 395.943 + 228.598i 0.883802 + 0.510264i
\(449\) 679.146i 1.51257i 0.654240 + 0.756287i \(0.272989\pi\)
−0.654240 + 0.756287i \(0.727011\pi\)
\(450\) 0 0
\(451\) −314.129 −0.696516
\(452\) 28.2501 48.9306i 0.0625003 0.108254i
\(453\) 0 0
\(454\) 199.417 + 345.401i 0.439245 + 0.760794i
\(455\) 0 0
\(456\) 0 0
\(457\) 69.7270 + 40.2569i 0.152576 + 0.0880896i 0.574344 0.818614i \(-0.305257\pi\)
−0.421768 + 0.906704i \(0.638590\pi\)
\(458\) 137.460 0.300131
\(459\) 0 0
\(460\) 0 0
\(461\) −535.846 309.371i −1.16236 0.671087i −0.210489 0.977596i \(-0.567505\pi\)
−0.951868 + 0.306510i \(0.900839\pi\)
\(462\) 0 0
\(463\) −285.318 + 164.729i −0.616238 + 0.355785i −0.775403 0.631467i \(-0.782453\pi\)
0.159165 + 0.987252i \(0.449120\pi\)
\(464\) 459.577 265.337i 0.990467 0.571846i
\(465\) 0 0
\(466\) −130.924 + 226.766i −0.280952 + 0.486623i
\(467\) 216.349 0.463275 0.231637 0.972802i \(-0.425592\pi\)
0.231637 + 0.972802i \(0.425592\pi\)
\(468\) 0 0
\(469\) 459.083 0.978855
\(470\) 0 0
\(471\) 0 0
\(472\) 30.1794 17.4241i 0.0639395 0.0369155i
\(473\) 200.836 + 347.859i 0.424601 + 0.735430i
\(474\) 0 0
\(475\) 0 0
\(476\) 52.0286i 0.109304i
\(477\) 0 0
\(478\) 367.114i 0.768022i
\(479\) −119.965 69.2617i −0.250448 0.144596i 0.369521 0.929222i \(-0.379522\pi\)
−0.619970 + 0.784626i \(0.712855\pi\)
\(480\) 0 0
\(481\) −251.508 435.625i −0.522886 0.905665i
\(482\) 177.816 + 307.987i 0.368913 + 0.638977i
\(483\) 0 0
\(484\) 2.22562 3.85489i 0.00459840 0.00796466i
\(485\) 0 0
\(486\) 0 0
\(487\) 93.0290i 0.191025i 0.995428 + 0.0955123i \(0.0304489\pi\)
−0.995428 + 0.0955123i \(0.969551\pi\)
\(488\) 281.629 487.796i 0.577109 0.999581i
\(489\) 0 0
\(490\) 0 0
\(491\) 203.168 117.299i 0.413783 0.238898i −0.278631 0.960398i \(-0.589881\pi\)
0.692414 + 0.721501i \(0.256547\pi\)
\(492\) 0 0
\(493\) 444.968 + 256.902i 0.902572 + 0.521100i
\(494\) 652.346i 1.32054i
\(495\) 0 0
\(496\) 416.029 0.838768
\(497\) 42.4049 73.4474i 0.0853217 0.147781i
\(498\) 0 0
\(499\) −330.575 572.573i −0.662476 1.14744i −0.979963 0.199179i \(-0.936172\pi\)
0.317487 0.948262i \(-0.397161\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −478.511 276.268i −0.953209 0.550336i
\(503\) −184.352 −0.366504 −0.183252 0.983066i \(-0.558662\pi\)
−0.183252 + 0.983066i \(0.558662\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 192.344 + 111.050i 0.380126 + 0.219466i
\(507\) 0 0
\(508\) −50.7447 + 29.2975i −0.0998912 + 0.0576722i
\(509\) 702.274 405.458i 1.37971 0.796578i 0.387588 0.921833i \(-0.373308\pi\)
0.992125 + 0.125255i \(0.0399749\pi\)
\(510\) 0 0
\(511\) 353.385 612.082i 0.691557 1.19781i
\(512\) 575.386 1.12380
\(513\) 0 0
\(514\) −385.139 −0.749298
\(515\) 0 0
\(516\) 0 0
\(517\) 531.868 307.074i 1.02876 0.593954i
\(518\) 269.556 + 466.885i 0.520378 + 0.901322i
\(519\) 0 0
\(520\) 0 0
\(521\) 787.925i 1.51233i 0.654379 + 0.756167i \(0.272930\pi\)
−0.654379 + 0.756167i \(0.727070\pi\)
\(522\) 0 0
\(523\) 495.806i 0.948004i −0.880524 0.474002i \(-0.842809\pi\)
0.880524 0.474002i \(-0.157191\pi\)
\(524\) 88.4968 + 51.0936i 0.168887 + 0.0975070i
\(525\) 0 0
\(526\) 138.844 + 240.485i 0.263962 + 0.457196i
\(527\) 201.402 + 348.839i 0.382168 + 0.661934i
\(528\) 0 0
\(529\) 200.177 346.717i 0.378406 0.655419i
\(530\) 0 0
\(531\) 0 0
\(532\) 132.371i 0.248818i
\(533\) −162.801 + 281.979i −0.305442 + 0.529041i
\(534\) 0 0
\(535\) 0 0
\(536\) 522.694 301.778i 0.975176 0.563018i
\(537\) 0 0
\(538\) −653.175 377.111i −1.21408 0.700950i
\(539\) 76.5095i 0.141947i
\(540\) 0 0
\(541\) −395.636 −0.731305 −0.365652 0.930751i \(-0.619154\pi\)
−0.365652 + 0.930751i \(0.619154\pi\)
\(542\) −233.967 + 405.242i −0.431673 + 0.747680i
\(543\) 0 0
\(544\) 63.7052 + 110.341i 0.117105 + 0.202832i
\(545\) 0 0
\(546\) 0 0
\(547\) −140.121 80.8992i −0.256164 0.147896i 0.366420 0.930450i \(-0.380583\pi\)
−0.622583 + 0.782554i \(0.713917\pi\)
\(548\) −57.8589 −0.105582
\(549\) 0 0
\(550\) 0 0
\(551\) 1132.09 + 653.612i 2.05461 + 1.18623i
\(552\) 0 0
\(553\) 558.899 322.681i 1.01067 0.583509i
\(554\) 294.709 170.150i 0.531965 0.307130i
\(555\) 0 0
\(556\) 20.6861 35.8294i 0.0372053 0.0644414i
\(557\) −199.042 −0.357347 −0.178673 0.983908i \(-0.557181\pi\)
−0.178673 + 0.983908i \(0.557181\pi\)
\(558\) 0 0
\(559\) 416.342 0.744799
\(560\) 0 0
\(561\) 0 0
\(562\) −165.399 + 95.4933i −0.294305 + 0.169917i
\(563\) −453.792 785.990i −0.806024 1.39608i −0.915597 0.402096i \(-0.868282\pi\)
0.109573 0.993979i \(-0.465052\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 95.1000i 0.168021i
\(567\) 0 0
\(568\) 111.499i 0.196301i
\(569\) −776.399 448.254i −1.36450 0.787793i −0.374279 0.927316i \(-0.622110\pi\)
−0.990219 + 0.139523i \(0.955443\pi\)
\(570\) 0 0
\(571\) 304.808 + 527.943i 0.533815 + 0.924594i 0.999220 + 0.0394965i \(0.0125754\pi\)
−0.465405 + 0.885098i \(0.654091\pi\)
\(572\) 37.6241 + 65.1669i 0.0657765 + 0.113928i
\(573\) 0 0
\(574\) 174.483 302.214i 0.303977 0.526504i
\(575\) 0 0
\(576\) 0 0
\(577\) 477.854i 0.828170i 0.910238 + 0.414085i \(0.135898\pi\)
−0.910238 + 0.414085i \(0.864102\pi\)
\(578\) −118.667 + 205.537i −0.205306 + 0.355600i
\(579\) 0 0
\(580\) 0 0
\(581\) −480.228 + 277.260i −0.826555 + 0.477212i
\(582\) 0 0
\(583\) −308.795 178.283i −0.529665 0.305802i
\(584\) 929.191i 1.59108i
\(585\) 0 0
\(586\) −608.254 −1.03798
\(587\) −127.420 + 220.698i −0.217070 + 0.375976i −0.953911 0.300090i \(-0.902983\pi\)
0.736841 + 0.676066i \(0.236317\pi\)
\(588\) 0 0
\(589\) 512.409 + 887.518i 0.869964 + 1.50682i
\(590\) 0 0
\(591\) 0 0
\(592\) 513.559 + 296.503i 0.867498 + 0.500850i
\(593\) 604.184 1.01886 0.509430 0.860512i \(-0.329856\pi\)
0.509430 + 0.860512i \(0.329856\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −79.5726 45.9413i −0.133511 0.0770826i
\(597\) 0 0
\(598\) 199.369 115.106i 0.333393 0.192484i
\(599\) −164.832 + 95.1657i −0.275178 + 0.158874i −0.631239 0.775589i \(-0.717453\pi\)
0.356060 + 0.934463i \(0.384120\pi\)
\(600\) 0 0
\(601\) −468.662 + 811.746i −0.779804 + 1.35066i 0.152251 + 0.988342i \(0.451348\pi\)
−0.932055 + 0.362318i \(0.881986\pi\)
\(602\) −446.219 −0.741227
\(603\) 0 0
\(604\) −87.0932 −0.144194
\(605\) 0 0
\(606\) 0 0
\(607\) −838.308 + 483.997i −1.38107 + 0.797360i −0.992286 0.123970i \(-0.960437\pi\)
−0.388781 + 0.921330i \(0.627104\pi\)
\(608\) 162.079 + 280.729i 0.266577 + 0.461725i
\(609\) 0 0
\(610\) 0 0
\(611\) 636.578i 1.04186i
\(612\) 0 0
\(613\) 14.3244i 0.0233677i −0.999932 0.0116839i \(-0.996281\pi\)
0.999932 0.0116839i \(-0.00371918\pi\)
\(614\) −464.194 268.002i −0.756016 0.436486i
\(615\) 0 0
\(616\) −293.631 508.584i −0.476673 0.825623i
\(617\) 533.807 + 924.580i 0.865165 + 1.49851i 0.866884 + 0.498511i \(0.166119\pi\)
−0.00171906 + 0.999999i \(0.500547\pi\)
\(618\) 0 0
\(619\) 582.166 1008.34i 0.940494 1.62898i 0.175963 0.984397i \(-0.443696\pi\)
0.764531 0.644586i \(-0.222970\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 362.732i 0.583170i
\(623\) −205.802 + 356.459i −0.330340 + 0.572165i
\(624\) 0 0
\(625\) 0 0
\(626\) 342.574 197.785i 0.547243 0.315951i
\(627\) 0 0
\(628\) −28.7819 16.6172i −0.0458310 0.0264605i
\(629\) 574.157i 0.912809i
\(630\) 0 0
\(631\) −88.9538 −0.140973 −0.0704864 0.997513i \(-0.522455\pi\)
−0.0704864 + 0.997513i \(0.522455\pi\)
\(632\) 424.228 734.784i 0.671247 1.16263i
\(633\) 0 0
\(634\) 186.725 + 323.418i 0.294519 + 0.510123i
\(635\) 0 0
\(636\) 0 0
\(637\) 68.6791 + 39.6519i 0.107816 + 0.0622479i
\(638\) −796.434 −1.24833
\(639\) 0 0
\(640\) 0 0
\(641\) −115.362 66.6040i −0.179971 0.103906i 0.407308 0.913291i \(-0.366468\pi\)
−0.587279 + 0.809384i \(0.699801\pi\)
\(642\) 0 0
\(643\) 418.686 241.729i 0.651145 0.375939i −0.137750 0.990467i \(-0.543987\pi\)
0.788895 + 0.614528i \(0.210654\pi\)
\(644\) 40.4551 23.3568i 0.0628185 0.0362683i
\(645\) 0 0
\(646\) 372.303 644.848i 0.576321 0.998216i
\(647\) −347.759 −0.537495 −0.268748 0.963211i \(-0.586610\pi\)
−0.268748 + 0.963211i \(0.586610\pi\)
\(648\) 0 0
\(649\) −43.7580 −0.0674237
\(650\) 0 0
\(651\) 0 0
\(652\) −56.9240 + 32.8651i −0.0873068 + 0.0504066i
\(653\) 433.872 + 751.488i 0.664428 + 1.15082i 0.979440 + 0.201736i \(0.0646583\pi\)
−0.315011 + 0.949088i \(0.602008\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 383.852i 0.585140i
\(657\) 0 0
\(658\) 682.258i 1.03687i
\(659\) 804.603 + 464.538i 1.22095 + 0.704913i 0.965120 0.261810i \(-0.0843193\pi\)
0.255826 + 0.966723i \(0.417653\pi\)
\(660\) 0 0
\(661\) 463.561 + 802.912i 0.701303 + 1.21469i 0.968009 + 0.250915i \(0.0807314\pi\)
−0.266706 + 0.963778i \(0.585935\pi\)
\(662\) 86.2151 + 149.329i 0.130234 + 0.225572i
\(663\) 0 0
\(664\) −364.513 + 631.355i −0.548966 + 0.950837i
\(665\) 0 0
\(666\) 0 0
\(667\) 461.316i 0.691629i
\(668\) 35.9195 62.2144i 0.0537717 0.0931353i
\(669\) 0 0
\(670\) 0 0
\(671\) −612.513 + 353.634i −0.912836 + 0.527026i
\(672\) 0 0
\(673\) 819.253 + 472.996i 1.21732 + 0.702817i 0.964343 0.264656i \(-0.0852584\pi\)
0.252973 + 0.967473i \(0.418592\pi\)
\(674\) 616.446i 0.914608i
\(675\) 0 0
\(676\) −29.6162 −0.0438110
\(677\) 307.292 532.245i 0.453902 0.786182i −0.544722 0.838617i \(-0.683365\pi\)
0.998624 + 0.0524349i \(0.0166982\pi\)
\(678\) 0 0
\(679\) −279.458 484.035i −0.411572 0.712864i
\(680\) 0 0
\(681\) 0 0
\(682\) −540.726 312.188i −0.792853 0.457754i
\(683\) 258.893 0.379053 0.189527 0.981876i \(-0.439305\pi\)
0.189527 + 0.981876i \(0.439305\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −576.961 333.108i −0.841051 0.485581i
\(687\) 0 0
\(688\) −425.069 + 245.414i −0.617832 + 0.356706i
\(689\) −320.072 + 184.794i −0.464546 + 0.268206i
\(690\) 0 0
\(691\) 485.487 840.888i 0.702586 1.21691i −0.264969 0.964257i \(-0.585362\pi\)
0.967556 0.252658i \(-0.0813048\pi\)
\(692\) −83.6170 −0.120834
\(693\) 0 0
\(694\) −114.663 −0.165220
\(695\) 0 0
\(696\) 0 0
\(697\) 321.859 185.825i 0.461778 0.266607i
\(698\) 294.298 + 509.739i 0.421630 + 0.730285i
\(699\) 0 0
\(700\) 0 0
\(701\) 718.418i 1.02485i 0.858733 + 0.512424i \(0.171252\pi\)
−0.858733 + 0.512424i \(0.828748\pi\)
\(702\) 0 0
\(703\) 1460.77i 2.07791i
\(704\) −653.637 377.377i −0.928461 0.536047i
\(705\) 0 0
\(706\) −152.410 263.983i −0.215879 0.373913i
\(707\) 142.573 + 246.944i 0.201659 + 0.349284i
\(708\) 0 0
\(709\) −494.222 + 856.018i −0.697070 + 1.20736i 0.272408 + 0.962182i \(0.412180\pi\)
−0.969478 + 0.245178i \(0.921153\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 541.134i 0.760020i
\(713\) 180.828 313.203i 0.253615 0.439275i
\(714\) 0 0
\(715\) 0 0
\(716\) 163.823 94.5834i 0.228803 0.132100i
\(717\) 0 0
\(718\) 317.118 + 183.088i 0.441669 + 0.254998i
\(719\) 1280.53i 1.78099i −0.454994 0.890495i \(-0.650358\pi\)
0.454994 0.890495i \(-0.349642\pi\)
\(720\) 0 0
\(721\) −607.158 −0.842106
\(722\) 616.193 1067.28i 0.853453 1.47822i
\(723\) 0 0
\(724\) 8.95186 + 15.5051i 0.0123644 + 0.0214158i
\(725\) 0 0
\(726\) 0 0
\(727\) 562.611 + 324.824i 0.773881 + 0.446800i 0.834257 0.551376i \(-0.185897\pi\)
−0.0603766 + 0.998176i \(0.519230\pi\)
\(728\) −608.710 −0.836140
\(729\) 0 0
\(730\) 0 0
\(731\) −411.557 237.613i −0.563006 0.325052i
\(732\) 0 0
\(733\) −1013.33 + 585.044i −1.38244 + 0.798150i −0.992448 0.122669i \(-0.960855\pi\)
−0.389989 + 0.920820i \(0.627521\pi\)
\(734\) 255.134 147.302i 0.347594 0.200683i
\(735\) 0 0
\(736\) 57.1972 99.0685i 0.0777136 0.134604i
\(737\) −757.869 −1.02832
\(738\) 0 0
\(739\) −1175.25 −1.59033 −0.795164 0.606394i \(-0.792615\pi\)
−0.795164 + 0.606394i \(0.792615\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 343.040 198.054i 0.462319 0.266920i
\(743\) −508.717 881.124i −0.684680 1.18590i −0.973537 0.228528i \(-0.926609\pi\)
0.288858 0.957372i \(-0.406725\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 314.035i 0.420958i
\(747\) 0 0
\(748\) 85.8906i 0.114827i
\(749\) −775.897 447.964i −1.03591 0.598083i
\(750\) 0 0
\(751\) 497.229 + 861.226i 0.662089 + 1.14677i 0.980066 + 0.198673i \(0.0636633\pi\)
−0.317977 + 0.948099i \(0.603003\pi\)
\(752\) 375.232 + 649.920i 0.498978 + 0.864256i
\(753\) 0 0
\(754\) −412.761 + 714.922i −0.547428 + 0.948173i
\(755\) 0 0
\(756\) 0 0
\(757\) 659.088i 0.870658i −0.900271 0.435329i \(-0.856632\pi\)
0.900271 0.435329i \(-0.143368\pi\)
\(758\) 272.781 472.471i 0.359870 0.623313i
\(759\) 0 0
\(760\) 0 0
\(761\) −559.677 + 323.130i −0.735450 + 0.424612i −0.820413 0.571772i \(-0.806256\pi\)
0.0849628 + 0.996384i \(0.472923\pi\)
\(762\) 0 0
\(763\) −989.954 571.550i −1.29745 0.749083i
\(764\) 5.83933i 0.00764310i
\(765\) 0 0
\(766\) −881.649 −1.15098
\(767\) −22.6781 + 39.2796i −0.0295672 + 0.0512119i
\(768\) 0 0
\(769\) −123.429 213.784i −0.160505 0.278003i 0.774545 0.632519i \(-0.217979\pi\)
−0.935050 + 0.354516i \(0.884646\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −52.2588 30.1717i −0.0676928 0.0390824i
\(773\) −263.071 −0.340325 −0.170162 0.985416i \(-0.554429\pi\)
−0.170162 + 0.985416i \(0.554429\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −636.360 367.402i −0.820051 0.473457i
\(777\) 0 0
\(778\) 944.100 545.076i 1.21350 0.700612i
\(779\) 818.875 472.777i 1.05119 0.606903i
\(780\) 0 0
\(781\) −70.0034 + 121.249i −0.0896330 + 0.155249i
\(782\) −262.770 −0.336023
\(783\) 0 0
\(784\) −93.4914 −0.119249
\(785\) 0 0
\(786\) 0 0
\(787\) 932.515 538.388i 1.18490 0.684102i 0.227756 0.973718i \(-0.426861\pi\)
0.957143 + 0.289617i \(0.0935278\pi\)
\(788\) 85.1129 + 147.420i 0.108011 + 0.187081i
\(789\) 0 0
\(790\) 0 0
\(791\) 573.906i 0.725545i
\(792\) 0 0
\(793\) 733.100i 0.924463i
\(794\) −168.832 97.4751i −0.212635 0.122765i
\(795\) 0 0
\(796\) 50.4084 + 87.3099i 0.0633271 + 0.109686i
\(797\) −456.965 791.487i −0.573356 0.993082i −0.996218 0.0868882i \(-0.972308\pi\)
0.422862 0.906194i \(-0.361026\pi\)
\(798\) 0 0
\(799\) −363.304 + 629.262i −0.454699 + 0.787562i
\(800\) 0 0
\(801\) 0 0
\(802\) 55.7373i 0.0694978i
\(803\) −583.381 + 1010.44i −0.726501 + 1.25834i
\(804\) 0 0
\(805\) 0 0
\(806\) −560.474 + 323.590i −0.695377 + 0.401476i
\(807\) 0 0
\(808\) 324.657 + 187.441i 0.401803 + 0.231981i
\(809\) 1008.67i 1.24681i 0.781897 + 0.623407i \(0.214252\pi\)
−0.781897 + 0.623407i \(0.785748\pi\)
\(810\) 0 0
\(811\) 952.468 1.17444 0.587218 0.809429i \(-0.300223\pi\)
0.587218 + 0.809429i \(0.300223\pi\)
\(812\) −83.7557 + 145.069i −0.103147 + 0.178657i
\(813\) 0 0
\(814\) −444.992 770.749i −0.546673 0.946866i
\(815\) 0 0
\(816\) 0 0
\(817\) −1047.08 604.535i −1.28162 0.739945i
\(818\) 134.681 0.164646
\(819\) 0 0
\(820\) 0 0
\(821\) 1222.35 + 705.724i 1.48885 + 0.859590i 0.999919 0.0127295i \(-0.00405205\pi\)
0.488935 + 0.872320i \(0.337385\pi\)
\(822\) 0 0
\(823\) −659.680 + 380.867i −0.801556 + 0.462778i −0.844015 0.536320i \(-0.819814\pi\)
0.0424591 + 0.999098i \(0.486481\pi\)
\(824\) −691.287 + 399.115i −0.838941 + 0.484363i
\(825\) 0 0
\(826\) 24.3054 42.0982i 0.0294255 0.0509664i
\(827\) 718.144 0.868373 0.434186 0.900823i \(-0.357036\pi\)
0.434186 + 0.900823i \(0.357036\pi\)
\(828\) 0 0
\(829\) −400.411 −0.483005 −0.241503 0.970400i \(-0.577640\pi\)
−0.241503 + 0.970400i \(0.577640\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −677.509 + 391.160i −0.814313 + 0.470144i
\(833\) −45.2598 78.3923i −0.0543335 0.0941084i
\(834\) 0 0
\(835\) 0 0
\(836\) 218.523i 0.261391i
\(837\) 0 0
\(838\) 306.105i 0.365281i
\(839\) −614.302 354.667i −0.732183 0.422726i 0.0870370 0.996205i \(-0.472260\pi\)
−0.819220 + 0.573479i \(0.805593\pi\)
\(840\) 0 0
\(841\) 406.624 + 704.293i 0.483500 + 0.837447i
\(842\) −280.122 485.186i −0.332687 0.576230i
\(843\) 0 0
\(844\) 101.109 175.126i 0.119797 0.207495i
\(845\) 0 0
\(846\) 0 0
\(847\) 45.2139i 0.0533813i
\(848\) 217.854 377.334i 0.256903 0.444969i
\(849\) 0 0
\(850\) 0 0
\(851\) 446.439 257.751i 0.524605 0.302881i
\(852\) 0 0
\(853\) 767.495 + 443.113i 0.899760 + 0.519476i 0.877122 0.480267i \(-0.159460\pi\)
0.0226375 + 0.999744i \(0.492794\pi\)
\(854\) 785.706i 0.920030i
\(855\) 0 0
\(856\) −1177.88 −1.37602
\(857\) 163.757 283.635i 0.191081 0.330963i −0.754527 0.656268i \(-0.772134\pi\)
0.945609 + 0.325306i \(0.105467\pi\)
\(858\) 0 0
\(859\) −35.0835 60.7664i −0.0408423 0.0707409i 0.844882 0.534953i \(-0.179671\pi\)
−0.885724 + 0.464212i \(0.846337\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −351.036 202.671i −0.407235 0.235117i
\(863\) −982.709 −1.13871 −0.569356 0.822091i \(-0.692807\pi\)
−0.569356 + 0.822091i \(0.692807\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −308.201 177.940i −0.355891 0.205474i
\(867\) 0 0
\(868\) −113.729 + 65.6615i −0.131024 + 0.0756469i
\(869\) −922.650 + 532.692i −1.06174 + 0.612994i
\(870\) 0 0
\(871\) −392.774 + 680.305i −0.450946 + 0.781062i
\(872\) −1502.83 −1.72343
\(873\) 0 0
\(874\) −668.539 −0.764919
\(875\) 0 0
\(876\) 0 0
\(877\) 802.714 463.447i 0.915296 0.528446i 0.0331646 0.999450i \(-0.489441\pi\)
0.882131 + 0.471004i \(0.156108\pi\)
\(878\) 141.844 + 245.681i 0.161553 + 0.279819i
\(879\) 0 0
\(880\) 0 0
\(881\) 766.920i 0.870510i −0.900307 0.435255i \(-0.856658\pi\)
0.900307 0.435255i \(-0.143342\pi\)
\(882\) 0 0
\(883\) 1206.08i 1.36589i −0.730469 0.682946i \(-0.760699\pi\)
0.730469 0.682946i \(-0.239301\pi\)
\(884\) −77.1000 44.5137i −0.0872172 0.0503549i
\(885\) 0 0
\(886\) −443.025 767.341i −0.500028 0.866074i
\(887\) −376.283 651.741i −0.424220 0.734771i 0.572127 0.820165i \(-0.306118\pi\)
−0.996347 + 0.0853943i \(0.972785\pi\)
\(888\) 0 0
\(889\) −297.592 + 515.444i −0.334749 + 0.579802i
\(890\) 0 0
\(891\) 0 0
\(892\) 78.9527i 0.0885120i
\(893\) −924.320 + 1600.97i −1.03507 + 1.79280i
\(894\) 0 0
\(895\) 0 0
\(896\) 500.149 288.761i 0.558202 0.322278i
\(897\) 0 0
\(898\) 1078.63 + 622.747i 1.20115 + 0.693482i
\(899\) 1296.87i 1.44257i
\(900\) 0 0
\(901\) 421.858 0.468211
\(902\) −288.042 + 498.904i −0.319338 + 0.553109i
\(903\) 0 0
\(904\) −377.257 653.428i −0.417319 0.722818i
\(905\) 0 0
\(906\) 0 0
\(907\) 307.213 + 177.370i 0.338713 + 0.195556i 0.659703 0.751526i \(-0.270682\pi\)
−0.320989 + 0.947083i \(0.604015\pi\)
\(908\) −138.481 −0.152512
\(909\) 0 0
\(910\) 0 0
\(911\) −280.940 162.201i −0.308387 0.178047i 0.337818 0.941212i \(-0.390311\pi\)
−0.646204 + 0.763164i \(0.723645\pi\)
\(912\) 0 0
\(913\) 792.777 457.710i 0.868321 0.501325i
\(914\) 127.873 73.8277i 0.139905 0.0807743i
\(915\) 0 0
\(916\) −23.8641 + 41.3338i −0.0260525 + 0.0451243i
\(917\) 1037.98 1.13193
\(918\) 0 0
\(919\) 604.200 0.657453 0.328727 0.944425i \(-0.393381\pi\)
0.328727 + 0.944425i \(0.393381\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −982.696 + 567.360i −1.06583 + 0.615357i
\(923\) 72.5600 + 125.678i 0.0786133 + 0.136162i
\(924\) 0 0
\(925\) 0 0
\(926\) 604.196i 0.652479i
\(927\) 0 0
\(928\) 410.211i 0.442037i
\(929\) −1417.48 818.384i −1.52582 0.880930i −0.999531 0.0306220i \(-0.990251\pi\)
−0.526285 0.850308i \(-0.676415\pi\)
\(930\) 0 0
\(931\) −115.150 199.446i −0.123684 0.214228i
\(932\) −45.4586 78.7366i −0.0487753 0.0844813i
\(933\) 0 0
\(934\) 198.383 343.609i 0.212401 0.367890i
\(935\) 0 0
\(936\) 0 0
\(937\) 266.212i 0.284111i −0.989859 0.142055i \(-0.954629\pi\)
0.989859 0.142055i \(-0.0453711\pi\)
\(938\) 420.959 729.123i 0.448784 0.777316i
\(939\) 0 0
\(940\) 0 0
\(941\) −140.374 + 81.0449i −0.149175 + 0.0861264i −0.572730 0.819744i \(-0.694116\pi\)
0.423554 + 0.905871i \(0.360782\pi\)
\(942\) 0 0
\(943\) −288.979 166.842i −0.306446 0.176927i
\(944\) 53.4704i 0.0566424i
\(945\) 0 0
\(946\) 736.633 0.778681
\(947\) −398.717 + 690.598i −0.421032 + 0.729248i −0.996041 0.0888989i \(-0.971665\pi\)
0.575009 + 0.818147i \(0.304999\pi\)
\(948\) 0 0
\(949\) 604.687 + 1047.35i 0.637183 + 1.10363i
\(950\) 0 0
\(951\) 0 0
\(952\) 601.713 + 347.399i 0.632052 + 0.364915i
\(953\) 1382.90 1.45110 0.725551 0.688168i \(-0.241585\pi\)
0.725551 + 0.688168i \(0.241585\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 110.390 + 63.7338i 0.115471 + 0.0666671i
\(957\) 0 0
\(958\) −220.005 + 127.020i −0.229650 + 0.132589i
\(959\) −508.969 + 293.853i −0.530729 + 0.306416i
\(960\) 0 0
\(961\) −27.8509 + 48.2391i −0.0289811 + 0.0501968i
\(962\) −922.488 −0.958927
\(963\) 0 0
\(964\) −123.481 −0.128092
\(965\) 0 0
\(966\) 0 0
\(967\) 320.006 184.756i 0.330927 0.191061i −0.325326 0.945602i \(-0.605474\pi\)
0.656252 + 0.754541i \(0.272141\pi\)
\(968\) −29.7214 51.4789i −0.0307039 0.0531807i
\(969\) 0 0
\(970\) 0 0
\(971\) 961.450i 0.990165i 0.868846 + 0.495082i \(0.164862\pi\)
−0.868846 + 0.495082i \(0.835138\pi\)
\(972\) 0 0
\(973\) 420.243i 0.431904i
\(974\) 147.750 + 85.3036i 0.151694 + 0.0875807i
\(975\) 0 0
\(976\) −432.126 748.465i −0.442752 0.766870i
\(977\) 859.076 + 1487.96i 0.879300 + 1.52299i 0.852110 + 0.523362i \(0.175323\pi\)
0.0271901 + 0.999630i \(0.491344\pi\)
\(978\) 0 0
\(979\) 339.744 588.454i 0.347032 0.601077i
\(980\) 0 0
\(981\) 0 0
\(982\) 430.232i 0.438118i
\(983\) 640.833 1109.96i 0.651915 1.12915i −0.330742 0.943721i \(-0.607299\pi\)
0.982658 0.185430i \(-0.0593676\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 816.033 471.137i 0.827620 0.477826i
\(987\) 0 0
\(988\) −196.158 113.252i −0.198541 0.114627i
\(989\) 426.678i 0.431423i
\(990\) 0 0
\(991\) 952.926 0.961581 0.480790 0.876836i \(-0.340350\pi\)
0.480790 + 0.876836i \(0.340350\pi\)
\(992\) −160.795 + 278.506i −0.162092 + 0.280752i
\(993\) 0 0
\(994\) −77.7669 134.696i −0.0782363 0.135509i
\(995\) 0 0
\(996\) 0 0
\(997\) −1532.57 884.833i −1.53719 0.887495i −0.999002 0.0446679i \(-0.985777\pi\)
−0.538185 0.842827i \(-0.680890\pi\)
\(998\) −1212.49 −1.21492
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.3.i.c.224.12 32
3.2 odd 2 225.3.i.b.74.5 32
5.2 odd 4 675.3.j.b.251.6 16
5.3 odd 4 135.3.i.a.116.3 16
5.4 even 2 inner 675.3.i.c.224.5 32
9.4 even 3 225.3.i.b.149.12 32
9.5 odd 6 inner 675.3.i.c.449.5 32
15.2 even 4 225.3.j.b.101.3 16
15.8 even 4 45.3.i.a.11.6 16
15.14 odd 2 225.3.i.b.74.12 32
20.3 even 4 2160.3.bs.c.1601.6 16
45.4 even 6 225.3.i.b.149.5 32
45.13 odd 12 45.3.i.a.41.6 yes 16
45.14 odd 6 inner 675.3.i.c.449.12 32
45.22 odd 12 225.3.j.b.176.3 16
45.23 even 12 135.3.i.a.71.3 16
45.32 even 12 675.3.j.b.476.6 16
45.38 even 12 405.3.c.a.161.5 16
45.43 odd 12 405.3.c.a.161.12 16
60.23 odd 4 720.3.bs.c.641.4 16
180.23 odd 12 2160.3.bs.c.881.6 16
180.103 even 12 720.3.bs.c.401.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.i.a.11.6 16 15.8 even 4
45.3.i.a.41.6 yes 16 45.13 odd 12
135.3.i.a.71.3 16 45.23 even 12
135.3.i.a.116.3 16 5.3 odd 4
225.3.i.b.74.5 32 3.2 odd 2
225.3.i.b.74.12 32 15.14 odd 2
225.3.i.b.149.5 32 45.4 even 6
225.3.i.b.149.12 32 9.4 even 3
225.3.j.b.101.3 16 15.2 even 4
225.3.j.b.176.3 16 45.22 odd 12
405.3.c.a.161.5 16 45.38 even 12
405.3.c.a.161.12 16 45.43 odd 12
675.3.i.c.224.5 32 5.4 even 2 inner
675.3.i.c.224.12 32 1.1 even 1 trivial
675.3.i.c.449.5 32 9.5 odd 6 inner
675.3.i.c.449.12 32 45.14 odd 6 inner
675.3.j.b.251.6 16 5.2 odd 4
675.3.j.b.476.6 16 45.32 even 12
720.3.bs.c.401.4 16 180.103 even 12
720.3.bs.c.641.4 16 60.23 odd 4
2160.3.bs.c.881.6 16 180.23 odd 12
2160.3.bs.c.1601.6 16 20.3 even 4