Properties

Label 405.3.c.a.161.12
Level $405$
Weight $3$
Character 405.161
Analytic conductor $11.035$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(161,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.161"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-32,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 48x^{14} + 912x^{12} + 8704x^{10} + 43602x^{8} + 109032x^{6} + 117844x^{4} + 36000x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{14} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.12
Root \(1.83391i\) of defining polynomial
Character \(\chi\) \(=\) 405.161
Dual form 405.3.c.a.161.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.83391i q^{2} +0.636762 q^{4} +2.23607i q^{5} -6.46796 q^{7} +8.50342i q^{8} -4.10076 q^{10} +10.6775i q^{11} +11.0675 q^{13} -11.8617i q^{14} -13.0475 q^{16} -12.6328i q^{17} -32.1403 q^{19} +1.42384i q^{20} -19.5817 q^{22} +11.3422i q^{23} -5.00000 q^{25} +20.2968i q^{26} -4.11855 q^{28} +40.6724i q^{29} -31.8858 q^{31} +10.0857i q^{32} +23.1674 q^{34} -14.4628i q^{35} +45.4499 q^{37} -58.9425i q^{38} -19.0142 q^{40} +29.4196i q^{41} -37.6185 q^{43} +6.79904i q^{44} -20.8007 q^{46} -57.5178i q^{47} -7.16547 q^{49} -9.16957i q^{50} +7.04735 q^{52} +33.3940i q^{53} -23.8757 q^{55} -54.9998i q^{56} -74.5897 q^{58} -4.09814i q^{59} -66.2390 q^{61} -58.4757i q^{62} -70.6863 q^{64} +24.7477i q^{65} +70.9780 q^{67} -8.04405i q^{68} +26.5235 q^{70} -13.1123i q^{71} +109.273 q^{73} +83.3511i q^{74} -20.4657 q^{76} -69.0618i q^{77} +99.7782 q^{79} -29.1751i q^{80} -53.9530 q^{82} +85.7333i q^{83} +28.2477 q^{85} -68.9891i q^{86} -90.7955 q^{88} -63.6372i q^{89} -71.5841 q^{91} +7.22230i q^{92} +105.483 q^{94} -71.8679i q^{95} +86.4129 q^{97} -13.1409i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 32 q^{4} - 4 q^{7} + 20 q^{13} + 64 q^{16} - 52 q^{19} + 48 q^{22} - 80 q^{25} + 32 q^{28} - 64 q^{31} - 108 q^{34} + 44 q^{37} + 60 q^{40} + 248 q^{43} - 108 q^{46} + 108 q^{49} - 124 q^{52} - 180 q^{58}+ \cdots + 284 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.83391i 0.916957i 0.888706 + 0.458478i \(0.151605\pi\)
−0.888706 + 0.458478i \(0.848395\pi\)
\(3\) 0 0
\(4\) 0.636762 0.159190
\(5\) 2.23607i 0.447214i
\(6\) 0 0
\(7\) −6.46796 −0.923995 −0.461997 0.886881i \(-0.652867\pi\)
−0.461997 + 0.886881i \(0.652867\pi\)
\(8\) 8.50342i 1.06293i
\(9\) 0 0
\(10\) −4.10076 −0.410076
\(11\) 10.6775i 0.970684i 0.874324 + 0.485342i \(0.161305\pi\)
−0.874324 + 0.485342i \(0.838695\pi\)
\(12\) 0 0
\(13\) 11.0675 0.851345 0.425673 0.904877i \(-0.360038\pi\)
0.425673 + 0.904877i \(0.360038\pi\)
\(14\) − 11.8617i − 0.847263i
\(15\) 0 0
\(16\) −13.0475 −0.815468
\(17\) − 12.6328i − 0.743103i −0.928412 0.371552i \(-0.878826\pi\)
0.928412 0.371552i \(-0.121174\pi\)
\(18\) 0 0
\(19\) −32.1403 −1.69159 −0.845797 0.533505i \(-0.820875\pi\)
−0.845797 + 0.533505i \(0.820875\pi\)
\(20\) 1.42384i 0.0711921i
\(21\) 0 0
\(22\) −19.5817 −0.890075
\(23\) 11.3422i 0.493140i 0.969125 + 0.246570i \(0.0793036\pi\)
−0.969125 + 0.246570i \(0.920696\pi\)
\(24\) 0 0
\(25\) −5.00000 −0.200000
\(26\) 20.2968i 0.780647i
\(27\) 0 0
\(28\) −4.11855 −0.147091
\(29\) 40.6724i 1.40250i 0.712916 + 0.701249i \(0.247374\pi\)
−0.712916 + 0.701249i \(0.752626\pi\)
\(30\) 0 0
\(31\) −31.8858 −1.02857 −0.514286 0.857618i \(-0.671943\pi\)
−0.514286 + 0.857618i \(0.671943\pi\)
\(32\) 10.0857i 0.315179i
\(33\) 0 0
\(34\) 23.1674 0.681393
\(35\) − 14.4628i − 0.413223i
\(36\) 0 0
\(37\) 45.4499 1.22837 0.614187 0.789160i \(-0.289484\pi\)
0.614187 + 0.789160i \(0.289484\pi\)
\(38\) − 58.9425i − 1.55112i
\(39\) 0 0
\(40\) −19.0142 −0.475356
\(41\) 29.4196i 0.717552i 0.933424 + 0.358776i \(0.116806\pi\)
−0.933424 + 0.358776i \(0.883194\pi\)
\(42\) 0 0
\(43\) −37.6185 −0.874849 −0.437424 0.899255i \(-0.644109\pi\)
−0.437424 + 0.899255i \(0.644109\pi\)
\(44\) 6.79904i 0.154524i
\(45\) 0 0
\(46\) −20.8007 −0.452188
\(47\) − 57.5178i − 1.22378i −0.790941 0.611892i \(-0.790409\pi\)
0.790941 0.611892i \(-0.209591\pi\)
\(48\) 0 0
\(49\) −7.16547 −0.146234
\(50\) − 9.16957i − 0.183391i
\(51\) 0 0
\(52\) 7.04735 0.135526
\(53\) 33.3940i 0.630075i 0.949079 + 0.315038i \(0.102017\pi\)
−0.949079 + 0.315038i \(0.897983\pi\)
\(54\) 0 0
\(55\) −23.8757 −0.434103
\(56\) − 54.9998i − 0.982139i
\(57\) 0 0
\(58\) −74.5897 −1.28603
\(59\) − 4.09814i − 0.0694600i −0.999397 0.0347300i \(-0.988943\pi\)
0.999397 0.0347300i \(-0.0110571\pi\)
\(60\) 0 0
\(61\) −66.2390 −1.08589 −0.542943 0.839770i \(-0.682690\pi\)
−0.542943 + 0.839770i \(0.682690\pi\)
\(62\) − 58.4757i − 0.943157i
\(63\) 0 0
\(64\) −70.6863 −1.10447
\(65\) 24.7477i 0.380733i
\(66\) 0 0
\(67\) 70.9780 1.05937 0.529686 0.848194i \(-0.322310\pi\)
0.529686 + 0.848194i \(0.322310\pi\)
\(68\) − 8.04405i − 0.118295i
\(69\) 0 0
\(70\) 26.5235 0.378908
\(71\) − 13.1123i − 0.184680i −0.995728 0.0923400i \(-0.970565\pi\)
0.995728 0.0923400i \(-0.0294347\pi\)
\(72\) 0 0
\(73\) 109.273 1.49688 0.748442 0.663200i \(-0.230802\pi\)
0.748442 + 0.663200i \(0.230802\pi\)
\(74\) 83.3511i 1.12637i
\(75\) 0 0
\(76\) −20.4657 −0.269286
\(77\) − 69.0618i − 0.896907i
\(78\) 0 0
\(79\) 99.7782 1.26301 0.631507 0.775370i \(-0.282437\pi\)
0.631507 + 0.775370i \(0.282437\pi\)
\(80\) − 29.1751i − 0.364688i
\(81\) 0 0
\(82\) −53.9530 −0.657964
\(83\) 85.7333i 1.03293i 0.856308 + 0.516466i \(0.172753\pi\)
−0.856308 + 0.516466i \(0.827247\pi\)
\(84\) 0 0
\(85\) 28.2477 0.332326
\(86\) − 68.9891i − 0.802199i
\(87\) 0 0
\(88\) −90.7955 −1.03177
\(89\) − 63.6372i − 0.715025i −0.933908 0.357513i \(-0.883625\pi\)
0.933908 0.357513i \(-0.116375\pi\)
\(90\) 0 0
\(91\) −71.5841 −0.786638
\(92\) 7.22230i 0.0785032i
\(93\) 0 0
\(94\) 105.483 1.12216
\(95\) − 71.8679i − 0.756504i
\(96\) 0 0
\(97\) 86.4129 0.890854 0.445427 0.895318i \(-0.353052\pi\)
0.445427 + 0.895318i \(0.353052\pi\)
\(98\) − 13.1409i − 0.134090i
\(99\) 0 0
\(100\) −3.18381 −0.0318381
\(101\) − 44.0860i − 0.436495i −0.975893 0.218247i \(-0.929966\pi\)
0.975893 0.218247i \(-0.0700339\pi\)
\(102\) 0 0
\(103\) 93.8716 0.911375 0.455688 0.890140i \(-0.349393\pi\)
0.455688 + 0.890140i \(0.349393\pi\)
\(104\) 94.1115i 0.904918i
\(105\) 0 0
\(106\) −61.2417 −0.577752
\(107\) 138.518i 1.29456i 0.762252 + 0.647280i \(0.224094\pi\)
−0.762252 + 0.647280i \(0.775906\pi\)
\(108\) 0 0
\(109\) 176.733 1.62140 0.810700 0.585461i \(-0.199087\pi\)
0.810700 + 0.585461i \(0.199087\pi\)
\(110\) − 43.7859i − 0.398054i
\(111\) 0 0
\(112\) 84.3907 0.753488
\(113\) 88.7306i 0.785227i 0.919704 + 0.392613i \(0.128429\pi\)
−0.919704 + 0.392613i \(0.871571\pi\)
\(114\) 0 0
\(115\) −25.3620 −0.220539
\(116\) 25.8986i 0.223264i
\(117\) 0 0
\(118\) 7.51564 0.0636918
\(119\) 81.7082i 0.686623i
\(120\) 0 0
\(121\) 6.99045 0.0577723
\(122\) − 121.477i − 0.995710i
\(123\) 0 0
\(124\) −20.3036 −0.163739
\(125\) − 11.1803i − 0.0894427i
\(126\) 0 0
\(127\) 92.0203 0.724569 0.362285 0.932068i \(-0.381997\pi\)
0.362285 + 0.932068i \(0.381997\pi\)
\(128\) − 89.2897i − 0.697576i
\(129\) 0 0
\(130\) −45.3851 −0.349116
\(131\) 160.480i 1.22504i 0.790457 + 0.612518i \(0.209843\pi\)
−0.790457 + 0.612518i \(0.790157\pi\)
\(132\) 0 0
\(133\) 207.882 1.56302
\(134\) 130.167i 0.971399i
\(135\) 0 0
\(136\) 107.422 0.789865
\(137\) − 90.8642i − 0.663243i −0.943413 0.331621i \(-0.892404\pi\)
0.943413 0.331621i \(-0.107596\pi\)
\(138\) 0 0
\(139\) −64.9730 −0.467431 −0.233716 0.972305i \(-0.575088\pi\)
−0.233716 + 0.972305i \(0.575088\pi\)
\(140\) − 9.20936i − 0.0657811i
\(141\) 0 0
\(142\) 24.0468 0.169344
\(143\) 118.173i 0.826387i
\(144\) 0 0
\(145\) −90.9464 −0.627216
\(146\) 200.396i 1.37258i
\(147\) 0 0
\(148\) 28.9407 0.195545
\(149\) 144.297i 0.968433i 0.874948 + 0.484217i \(0.160895\pi\)
−0.874948 + 0.484217i \(0.839105\pi\)
\(150\) 0 0
\(151\) 136.775 0.905796 0.452898 0.891562i \(-0.350390\pi\)
0.452898 + 0.891562i \(0.350390\pi\)
\(152\) − 273.302i − 1.79804i
\(153\) 0 0
\(154\) 126.653 0.822425
\(155\) − 71.2987i − 0.459992i
\(156\) 0 0
\(157\) −52.1929 −0.332439 −0.166220 0.986089i \(-0.553156\pi\)
−0.166220 + 0.986089i \(0.553156\pi\)
\(158\) 182.985i 1.15813i
\(159\) 0 0
\(160\) −22.5523 −0.140952
\(161\) − 73.3611i − 0.455659i
\(162\) 0 0
\(163\) −103.226 −0.633287 −0.316643 0.948545i \(-0.602556\pi\)
−0.316643 + 0.948545i \(0.602556\pi\)
\(164\) 18.7333i 0.114227i
\(165\) 0 0
\(166\) −157.228 −0.947154
\(167\) − 112.819i − 0.675565i −0.941224 0.337782i \(-0.890323\pi\)
0.941224 0.337782i \(-0.109677\pi\)
\(168\) 0 0
\(169\) −46.5107 −0.275211
\(170\) 51.8038i 0.304728i
\(171\) 0 0
\(172\) −23.9540 −0.139268
\(173\) 131.316i 0.759052i 0.925181 + 0.379526i \(0.123913\pi\)
−0.925181 + 0.379526i \(0.876087\pi\)
\(174\) 0 0
\(175\) 32.3398 0.184799
\(176\) − 139.315i − 0.791562i
\(177\) 0 0
\(178\) 116.705 0.655647
\(179\) 297.076i 1.65964i 0.558028 + 0.829822i \(0.311558\pi\)
−0.558028 + 0.829822i \(0.688442\pi\)
\(180\) 0 0
\(181\) 28.1168 0.155342 0.0776708 0.996979i \(-0.475252\pi\)
0.0776708 + 0.996979i \(0.475252\pi\)
\(182\) − 131.279i − 0.721313i
\(183\) 0 0
\(184\) −96.4477 −0.524173
\(185\) 101.629i 0.549346i
\(186\) 0 0
\(187\) 134.887 0.721318
\(188\) − 36.6252i − 0.194815i
\(189\) 0 0
\(190\) 131.799 0.693681
\(191\) 9.17035i 0.0480123i 0.999712 + 0.0240062i \(0.00764213\pi\)
−0.999712 + 0.0240062i \(0.992358\pi\)
\(192\) 0 0
\(193\) 94.7659 0.491015 0.245508 0.969395i \(-0.421045\pi\)
0.245508 + 0.969395i \(0.421045\pi\)
\(194\) 158.474i 0.816875i
\(195\) 0 0
\(196\) −4.56270 −0.0232791
\(197\) − 267.330i − 1.35701i −0.734597 0.678504i \(-0.762629\pi\)
0.734597 0.678504i \(-0.237371\pi\)
\(198\) 0 0
\(199\) −158.327 −0.795615 −0.397808 0.917469i \(-0.630229\pi\)
−0.397808 + 0.917469i \(0.630229\pi\)
\(200\) − 42.5171i − 0.212585i
\(201\) 0 0
\(202\) 80.8498 0.400247
\(203\) − 263.068i − 1.29590i
\(204\) 0 0
\(205\) −65.7843 −0.320899
\(206\) 172.152i 0.835692i
\(207\) 0 0
\(208\) −144.403 −0.694245
\(209\) − 343.179i − 1.64200i
\(210\) 0 0
\(211\) 317.573 1.50508 0.752542 0.658545i \(-0.228828\pi\)
0.752542 + 0.658545i \(0.228828\pi\)
\(212\) 21.2640i 0.100302i
\(213\) 0 0
\(214\) −254.030 −1.18706
\(215\) − 84.1175i − 0.391244i
\(216\) 0 0
\(217\) 206.236 0.950396
\(218\) 324.112i 1.48675i
\(219\) 0 0
\(220\) −15.2031 −0.0691050
\(221\) − 139.813i − 0.632637i
\(222\) 0 0
\(223\) −123.991 −0.556013 −0.278007 0.960579i \(-0.589674\pi\)
−0.278007 + 0.960579i \(0.589674\pi\)
\(224\) − 65.2340i − 0.291223i
\(225\) 0 0
\(226\) −162.724 −0.720019
\(227\) − 217.477i − 0.958049i −0.877801 0.479025i \(-0.840990\pi\)
0.877801 0.479025i \(-0.159010\pi\)
\(228\) 0 0
\(229\) 74.9546 0.327313 0.163656 0.986517i \(-0.447671\pi\)
0.163656 + 0.986517i \(0.447671\pi\)
\(230\) − 46.5117i − 0.202225i
\(231\) 0 0
\(232\) −345.855 −1.49075
\(233\) − 142.781i − 0.612792i −0.951904 0.306396i \(-0.900877\pi\)
0.951904 0.306396i \(-0.0991232\pi\)
\(234\) 0 0
\(235\) 128.614 0.547293
\(236\) − 2.60954i − 0.0110574i
\(237\) 0 0
\(238\) −149.846 −0.629604
\(239\) − 200.181i − 0.837577i −0.908084 0.418789i \(-0.862455\pi\)
0.908084 0.418789i \(-0.137545\pi\)
\(240\) 0 0
\(241\) 193.920 0.804647 0.402324 0.915498i \(-0.368203\pi\)
0.402324 + 0.915498i \(0.368203\pi\)
\(242\) 12.8199i 0.0529747i
\(243\) 0 0
\(244\) −42.1784 −0.172862
\(245\) − 16.0225i − 0.0653979i
\(246\) 0 0
\(247\) −355.712 −1.44013
\(248\) − 271.138i − 1.09330i
\(249\) 0 0
\(250\) 20.5038 0.0820151
\(251\) − 301.288i − 1.20035i −0.799868 0.600176i \(-0.795097\pi\)
0.799868 0.600176i \(-0.204903\pi\)
\(252\) 0 0
\(253\) −121.107 −0.478684
\(254\) 168.757i 0.664398i
\(255\) 0 0
\(256\) −118.996 −0.464827
\(257\) − 210.010i − 0.817158i −0.912723 0.408579i \(-0.866025\pi\)
0.912723 0.408579i \(-0.133975\pi\)
\(258\) 0 0
\(259\) −293.968 −1.13501
\(260\) 15.7584i 0.0606091i
\(261\) 0 0
\(262\) −294.306 −1.12330
\(263\) 151.418i 0.575735i 0.957670 + 0.287868i \(0.0929463\pi\)
−0.957670 + 0.287868i \(0.907054\pi\)
\(264\) 0 0
\(265\) −74.6712 −0.281778
\(266\) 381.238i 1.43323i
\(267\) 0 0
\(268\) 45.1960 0.168642
\(269\) 411.264i 1.52886i 0.644706 + 0.764431i \(0.276980\pi\)
−0.644706 + 0.764431i \(0.723020\pi\)
\(270\) 0 0
\(271\) −255.156 −0.941534 −0.470767 0.882257i \(-0.656023\pi\)
−0.470767 + 0.882257i \(0.656023\pi\)
\(272\) 164.826i 0.605977i
\(273\) 0 0
\(274\) 166.637 0.608165
\(275\) − 53.3876i − 0.194137i
\(276\) 0 0
\(277\) −185.560 −0.669891 −0.334945 0.942238i \(-0.608718\pi\)
−0.334945 + 0.942238i \(0.608718\pi\)
\(278\) − 119.155i − 0.428614i
\(279\) 0 0
\(280\) 122.983 0.439226
\(281\) 104.142i 0.370610i 0.982681 + 0.185305i \(0.0593274\pi\)
−0.982681 + 0.185305i \(0.940673\pi\)
\(282\) 0 0
\(283\) −51.8563 −0.183238 −0.0916189 0.995794i \(-0.529204\pi\)
−0.0916189 + 0.995794i \(0.529204\pi\)
\(284\) − 8.34940i − 0.0293993i
\(285\) 0 0
\(286\) −216.720 −0.757762
\(287\) − 190.285i − 0.663014i
\(288\) 0 0
\(289\) 129.414 0.447798
\(290\) − 166.788i − 0.575130i
\(291\) 0 0
\(292\) 69.5806 0.238290
\(293\) 331.670i 1.13198i 0.824412 + 0.565990i \(0.191506\pi\)
−0.824412 + 0.565990i \(0.808494\pi\)
\(294\) 0 0
\(295\) 9.16372 0.0310635
\(296\) 386.479i 1.30567i
\(297\) 0 0
\(298\) −264.627 −0.888012
\(299\) 125.530i 0.419833i
\(300\) 0 0
\(301\) 243.315 0.808356
\(302\) 250.834i 0.830576i
\(303\) 0 0
\(304\) 419.350 1.37944
\(305\) − 148.115i − 0.485623i
\(306\) 0 0
\(307\) −292.274 −0.952031 −0.476016 0.879437i \(-0.657919\pi\)
−0.476016 + 0.879437i \(0.657919\pi\)
\(308\) − 43.9759i − 0.142779i
\(309\) 0 0
\(310\) 130.756 0.421793
\(311\) − 197.791i − 0.635985i −0.948093 0.317992i \(-0.896991\pi\)
0.948093 0.317992i \(-0.103009\pi\)
\(312\) 0 0
\(313\) 215.698 0.689130 0.344565 0.938762i \(-0.388026\pi\)
0.344565 + 0.938762i \(0.388026\pi\)
\(314\) − 95.7173i − 0.304832i
\(315\) 0 0
\(316\) 63.5349 0.201060
\(317\) − 203.636i − 0.642384i −0.947014 0.321192i \(-0.895916\pi\)
0.947014 0.321192i \(-0.104084\pi\)
\(318\) 0 0
\(319\) −434.281 −1.36138
\(320\) − 158.059i − 0.493935i
\(321\) 0 0
\(322\) 134.538 0.417820
\(323\) 406.020i 1.25703i
\(324\) 0 0
\(325\) −55.3374 −0.170269
\(326\) − 189.307i − 0.580697i
\(327\) 0 0
\(328\) −250.167 −0.762705
\(329\) 372.023i 1.13077i
\(330\) 0 0
\(331\) 94.0231 0.284058 0.142029 0.989863i \(-0.454637\pi\)
0.142029 + 0.989863i \(0.454637\pi\)
\(332\) 54.5917i 0.164433i
\(333\) 0 0
\(334\) 206.901 0.619464
\(335\) 158.712i 0.473766i
\(336\) 0 0
\(337\) −336.137 −0.997438 −0.498719 0.866764i \(-0.666196\pi\)
−0.498719 + 0.866764i \(0.666196\pi\)
\(338\) − 85.2965i − 0.252357i
\(339\) 0 0
\(340\) 17.9870 0.0529031
\(341\) − 340.461i − 0.998419i
\(342\) 0 0
\(343\) 363.276 1.05911
\(344\) − 319.886i − 0.929901i
\(345\) 0 0
\(346\) −240.822 −0.696018
\(347\) − 62.5234i − 0.180183i −0.995934 0.0900914i \(-0.971284\pi\)
0.995934 0.0900914i \(-0.0287159\pi\)
\(348\) 0 0
\(349\) −320.951 −0.919629 −0.459815 0.888015i \(-0.652084\pi\)
−0.459815 + 0.888015i \(0.652084\pi\)
\(350\) 59.3084i 0.169453i
\(351\) 0 0
\(352\) −107.690 −0.305939
\(353\) − 166.213i − 0.470859i −0.971891 0.235430i \(-0.924350\pi\)
0.971891 0.235430i \(-0.0756497\pi\)
\(354\) 0 0
\(355\) 29.3200 0.0825914
\(356\) − 40.5217i − 0.113825i
\(357\) 0 0
\(358\) −544.812 −1.52182
\(359\) − 199.670i − 0.556183i −0.960555 0.278091i \(-0.910298\pi\)
0.960555 0.278091i \(-0.0897018\pi\)
\(360\) 0 0
\(361\) 671.998 1.86149
\(362\) 51.5638i 0.142442i
\(363\) 0 0
\(364\) −45.5820 −0.125225
\(365\) 244.341i 0.669427i
\(366\) 0 0
\(367\) −160.642 −0.437716 −0.218858 0.975757i \(-0.570233\pi\)
−0.218858 + 0.975757i \(0.570233\pi\)
\(368\) − 147.988i − 0.402140i
\(369\) 0 0
\(370\) −186.379 −0.503726
\(371\) − 215.991i − 0.582186i
\(372\) 0 0
\(373\) −171.238 −0.459082 −0.229541 0.973299i \(-0.573723\pi\)
−0.229541 + 0.973299i \(0.573723\pi\)
\(374\) 247.370i 0.661418i
\(375\) 0 0
\(376\) 489.098 1.30079
\(377\) 450.142i 1.19401i
\(378\) 0 0
\(379\) −297.486 −0.784922 −0.392461 0.919769i \(-0.628376\pi\)
−0.392461 + 0.919769i \(0.628376\pi\)
\(380\) − 45.7627i − 0.120428i
\(381\) 0 0
\(382\) −16.8176 −0.0440252
\(383\) 480.748i 1.25522i 0.778530 + 0.627608i \(0.215966\pi\)
−0.778530 + 0.627608i \(0.784034\pi\)
\(384\) 0 0
\(385\) 154.427 0.401109
\(386\) 173.793i 0.450240i
\(387\) 0 0
\(388\) 55.0244 0.141815
\(389\) 594.441i 1.52812i 0.645142 + 0.764062i \(0.276798\pi\)
−0.645142 + 0.764062i \(0.723202\pi\)
\(390\) 0 0
\(391\) 143.284 0.366454
\(392\) − 60.9310i − 0.155436i
\(393\) 0 0
\(394\) 490.261 1.24432
\(395\) 223.111i 0.564837i
\(396\) 0 0
\(397\) −106.303 −0.267765 −0.133883 0.990997i \(-0.542745\pi\)
−0.133883 + 0.990997i \(0.542745\pi\)
\(398\) − 290.359i − 0.729545i
\(399\) 0 0
\(400\) 65.2374 0.163094
\(401\) 30.3925i 0.0757918i 0.999282 + 0.0378959i \(0.0120655\pi\)
−0.999282 + 0.0378959i \(0.987934\pi\)
\(402\) 0 0
\(403\) −352.895 −0.875671
\(404\) − 28.0722i − 0.0694857i
\(405\) 0 0
\(406\) 482.444 1.18828
\(407\) 485.292i 1.19236i
\(408\) 0 0
\(409\) 73.4390 0.179557 0.0897787 0.995962i \(-0.471384\pi\)
0.0897787 + 0.995962i \(0.471384\pi\)
\(410\) − 120.643i − 0.294250i
\(411\) 0 0
\(412\) 59.7738 0.145082
\(413\) 26.5066i 0.0641807i
\(414\) 0 0
\(415\) −191.706 −0.461941
\(416\) 111.624i 0.268326i
\(417\) 0 0
\(418\) 629.360 1.50565
\(419\) − 166.914i − 0.398362i −0.979963 0.199181i \(-0.936172\pi\)
0.979963 0.199181i \(-0.0638282\pi\)
\(420\) 0 0
\(421\) −305.491 −0.725632 −0.362816 0.931861i \(-0.618185\pi\)
−0.362816 + 0.931861i \(0.618185\pi\)
\(422\) 582.401i 1.38010i
\(423\) 0 0
\(424\) −283.963 −0.669724
\(425\) 63.1638i 0.148621i
\(426\) 0 0
\(427\) 428.431 1.00335
\(428\) 88.2029i 0.206081i
\(429\) 0 0
\(430\) 154.264 0.358754
\(431\) − 221.026i − 0.512820i −0.966568 0.256410i \(-0.917460\pi\)
0.966568 0.256410i \(-0.0825398\pi\)
\(432\) 0 0
\(433\) 194.055 0.448164 0.224082 0.974570i \(-0.428062\pi\)
0.224082 + 0.974570i \(0.428062\pi\)
\(434\) 378.219i 0.871472i
\(435\) 0 0
\(436\) 112.537 0.258111
\(437\) − 364.543i − 0.834193i
\(438\) 0 0
\(439\) −154.690 −0.352369 −0.176184 0.984357i \(-0.556376\pi\)
−0.176184 + 0.984357i \(0.556376\pi\)
\(440\) − 203.025i − 0.461420i
\(441\) 0 0
\(442\) 256.405 0.580101
\(443\) − 483.147i − 1.09063i −0.838233 0.545313i \(-0.816411\pi\)
0.838233 0.545313i \(-0.183589\pi\)
\(444\) 0 0
\(445\) 142.297 0.319769
\(446\) − 227.389i − 0.509840i
\(447\) 0 0
\(448\) 457.196 1.02053
\(449\) − 679.146i − 1.51257i −0.654240 0.756287i \(-0.727011\pi\)
0.654240 0.756287i \(-0.272989\pi\)
\(450\) 0 0
\(451\) −314.129 −0.696516
\(452\) 56.5002i 0.125001i
\(453\) 0 0
\(454\) 398.834 0.878490
\(455\) − 160.067i − 0.351795i
\(456\) 0 0
\(457\) −80.5139 −0.176179 −0.0880896 0.996113i \(-0.528076\pi\)
−0.0880896 + 0.996113i \(0.528076\pi\)
\(458\) 137.460i 0.300131i
\(459\) 0 0
\(460\) −16.1495 −0.0351077
\(461\) 618.742i 1.34217i 0.741379 + 0.671087i \(0.234172\pi\)
−0.741379 + 0.671087i \(0.765828\pi\)
\(462\) 0 0
\(463\) 329.457 0.711570 0.355785 0.934568i \(-0.384213\pi\)
0.355785 + 0.934568i \(0.384213\pi\)
\(464\) − 530.673i − 1.14369i
\(465\) 0 0
\(466\) 261.847 0.561904
\(467\) − 216.349i − 0.463275i −0.972802 0.231637i \(-0.925592\pi\)
0.972802 0.231637i \(-0.0744083\pi\)
\(468\) 0 0
\(469\) −459.083 −0.978855
\(470\) 235.867i 0.501844i
\(471\) 0 0
\(472\) 34.8482 0.0738310
\(473\) − 401.673i − 0.849202i
\(474\) 0 0
\(475\) 160.701 0.338319
\(476\) 52.0286i 0.109304i
\(477\) 0 0
\(478\) 367.114 0.768022
\(479\) − 138.523i − 0.289193i −0.989491 0.144596i \(-0.953812\pi\)
0.989491 0.144596i \(-0.0461884\pi\)
\(480\) 0 0
\(481\) 503.016 1.04577
\(482\) 355.632i 0.737827i
\(483\) 0 0
\(484\) 4.45125 0.00919679
\(485\) 193.225i 0.398402i
\(486\) 0 0
\(487\) 93.0290 0.191025 0.0955123 0.995428i \(-0.469551\pi\)
0.0955123 + 0.995428i \(0.469551\pi\)
\(488\) − 563.258i − 1.15422i
\(489\) 0 0
\(490\) 29.3838 0.0599670
\(491\) 234.598i 0.477796i 0.971045 + 0.238898i \(0.0767861\pi\)
−0.971045 + 0.238898i \(0.923214\pi\)
\(492\) 0 0
\(493\) 513.805 1.04220
\(494\) − 652.346i − 1.32054i
\(495\) 0 0
\(496\) 416.029 0.838768
\(497\) 84.8097i 0.170643i
\(498\) 0 0
\(499\) −661.151 −1.32495 −0.662476 0.749083i \(-0.730494\pi\)
−0.662476 + 0.749083i \(0.730494\pi\)
\(500\) − 7.11921i − 0.0142384i
\(501\) 0 0
\(502\) 552.537 1.10067
\(503\) − 184.352i − 0.366504i −0.983066 0.183252i \(-0.941338\pi\)
0.983066 0.183252i \(-0.0586624\pi\)
\(504\) 0 0
\(505\) 98.5792 0.195206
\(506\) − 222.100i − 0.438932i
\(507\) 0 0
\(508\) 58.5950 0.115344
\(509\) − 810.916i − 1.59316i −0.604536 0.796578i \(-0.706642\pi\)
0.604536 0.796578i \(-0.293358\pi\)
\(510\) 0 0
\(511\) −706.771 −1.38311
\(512\) − 575.386i − 1.12380i
\(513\) 0 0
\(514\) 385.139 0.749298
\(515\) 209.903i 0.407579i
\(516\) 0 0
\(517\) 614.148 1.18791
\(518\) − 539.112i − 1.04076i
\(519\) 0 0
\(520\) −210.440 −0.404692
\(521\) 787.925i 1.51233i 0.654379 + 0.756167i \(0.272930\pi\)
−0.654379 + 0.756167i \(0.727070\pi\)
\(522\) 0 0
\(523\) 495.806 0.948004 0.474002 0.880524i \(-0.342809\pi\)
0.474002 + 0.880524i \(0.342809\pi\)
\(524\) 102.187i 0.195014i
\(525\) 0 0
\(526\) −277.688 −0.527924
\(527\) 402.805i 0.764336i
\(528\) 0 0
\(529\) 400.354 0.756812
\(530\) − 136.941i − 0.258378i
\(531\) 0 0
\(532\) 132.371 0.248818
\(533\) 325.601i 0.610884i
\(534\) 0 0
\(535\) −309.735 −0.578945
\(536\) 603.556i 1.12604i
\(537\) 0 0
\(538\) −754.222 −1.40190
\(539\) − 76.5095i − 0.141947i
\(540\) 0 0
\(541\) −395.636 −0.731305 −0.365652 0.930751i \(-0.619154\pi\)
−0.365652 + 0.930751i \(0.619154\pi\)
\(542\) − 467.934i − 0.863346i
\(543\) 0 0
\(544\) 127.410 0.234210
\(545\) 395.186i 0.725112i
\(546\) 0 0
\(547\) 161.798 0.295792 0.147896 0.989003i \(-0.452750\pi\)
0.147896 + 0.989003i \(0.452750\pi\)
\(548\) − 57.8589i − 0.105582i
\(549\) 0 0
\(550\) 97.9083 0.178015
\(551\) − 1307.22i − 2.37246i
\(552\) 0 0
\(553\) −645.361 −1.16702
\(554\) − 340.300i − 0.614261i
\(555\) 0 0
\(556\) −41.3723 −0.0744106
\(557\) 199.042i 0.357347i 0.983908 + 0.178673i \(0.0571806\pi\)
−0.983908 + 0.178673i \(0.942819\pi\)
\(558\) 0 0
\(559\) −416.342 −0.744799
\(560\) 188.703i 0.336970i
\(561\) 0 0
\(562\) −190.987 −0.339834
\(563\) 907.583i 1.61205i 0.591882 + 0.806024i \(0.298385\pi\)
−0.591882 + 0.806024i \(0.701615\pi\)
\(564\) 0 0
\(565\) −198.408 −0.351164
\(566\) − 95.1000i − 0.168021i
\(567\) 0 0
\(568\) 111.499 0.196301
\(569\) − 896.509i − 1.57559i −0.615940 0.787793i \(-0.711224\pi\)
0.615940 0.787793i \(-0.288776\pi\)
\(570\) 0 0
\(571\) −609.617 −1.06763 −0.533815 0.845601i \(-0.679242\pi\)
−0.533815 + 0.845601i \(0.679242\pi\)
\(572\) 75.2483i 0.131553i
\(573\) 0 0
\(574\) 348.966 0.607955
\(575\) − 56.7112i − 0.0986281i
\(576\) 0 0
\(577\) 477.854 0.828170 0.414085 0.910238i \(-0.364102\pi\)
0.414085 + 0.910238i \(0.364102\pi\)
\(578\) 237.333i 0.410611i
\(579\) 0 0
\(580\) −57.9111 −0.0998468
\(581\) − 554.520i − 0.954423i
\(582\) 0 0
\(583\) −356.565 −0.611604
\(584\) 929.191i 1.59108i
\(585\) 0 0
\(586\) −608.254 −1.03798
\(587\) − 254.840i − 0.434139i −0.976156 0.217070i \(-0.930350\pi\)
0.976156 0.217070i \(-0.0696499\pi\)
\(588\) 0 0
\(589\) 1024.82 1.73993
\(590\) 16.8055i 0.0284839i
\(591\) 0 0
\(592\) −593.007 −1.00170
\(593\) 604.184i 1.01886i 0.860512 + 0.509430i \(0.170144\pi\)
−0.860512 + 0.509430i \(0.829856\pi\)
\(594\) 0 0
\(595\) −182.705 −0.307067
\(596\) 91.8825i 0.154165i
\(597\) 0 0
\(598\) −230.211 −0.384969
\(599\) 190.331i 0.317749i 0.987299 + 0.158874i \(0.0507865\pi\)
−0.987299 + 0.158874i \(0.949214\pi\)
\(600\) 0 0
\(601\) 937.324 1.55961 0.779804 0.626024i \(-0.215319\pi\)
0.779804 + 0.626024i \(0.215319\pi\)
\(602\) 446.219i 0.741227i
\(603\) 0 0
\(604\) 87.0932 0.144194
\(605\) 15.6311i 0.0258366i
\(606\) 0 0
\(607\) −967.995 −1.59472 −0.797360 0.603504i \(-0.793771\pi\)
−0.797360 + 0.603504i \(0.793771\pi\)
\(608\) − 324.158i − 0.533154i
\(609\) 0 0
\(610\) 271.630 0.445295
\(611\) − 636.578i − 1.04186i
\(612\) 0 0
\(613\) 14.3244 0.0233677 0.0116839 0.999932i \(-0.496281\pi\)
0.0116839 + 0.999932i \(0.496281\pi\)
\(614\) − 536.005i − 0.872972i
\(615\) 0 0
\(616\) 587.262 0.953347
\(617\) 1067.61i 1.73033i 0.501488 + 0.865165i \(0.332786\pi\)
−0.501488 + 0.865165i \(0.667214\pi\)
\(618\) 0 0
\(619\) 1164.33 1.88099 0.940494 0.339810i \(-0.110363\pi\)
0.940494 + 0.339810i \(0.110363\pi\)
\(620\) − 45.4003i − 0.0732263i
\(621\) 0 0
\(622\) 362.732 0.583170
\(623\) 411.603i 0.660679i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 395.571i 0.631902i
\(627\) 0 0
\(628\) −33.2344 −0.0529211
\(629\) − 574.157i − 0.912809i
\(630\) 0 0
\(631\) −88.9538 −0.140973 −0.0704864 0.997513i \(-0.522455\pi\)
−0.0704864 + 0.997513i \(0.522455\pi\)
\(632\) 848.456i 1.34249i
\(633\) 0 0
\(634\) 373.451 0.589039
\(635\) 205.764i 0.324037i
\(636\) 0 0
\(637\) −79.3038 −0.124496
\(638\) − 796.434i − 1.24833i
\(639\) 0 0
\(640\) 199.658 0.311965
\(641\) 133.208i 0.207813i 0.994587 + 0.103906i \(0.0331343\pi\)
−0.994587 + 0.103906i \(0.966866\pi\)
\(642\) 0 0
\(643\) −483.457 −0.751877 −0.375939 0.926645i \(-0.622680\pi\)
−0.375939 + 0.926645i \(0.622680\pi\)
\(644\) − 46.7135i − 0.0725365i
\(645\) 0 0
\(646\) −744.606 −1.15264
\(647\) 347.759i 0.537495i 0.963211 + 0.268748i \(0.0866097\pi\)
−0.963211 + 0.268748i \(0.913390\pi\)
\(648\) 0 0
\(649\) 43.7580 0.0674237
\(650\) − 101.484i − 0.156129i
\(651\) 0 0
\(652\) −65.7302 −0.100813
\(653\) − 867.744i − 1.32886i −0.747352 0.664428i \(-0.768675\pi\)
0.747352 0.664428i \(-0.231325\pi\)
\(654\) 0 0
\(655\) −358.843 −0.547853
\(656\) − 383.852i − 0.585140i
\(657\) 0 0
\(658\) −682.258 −1.03687
\(659\) 929.076i 1.40983i 0.709294 + 0.704913i \(0.249014\pi\)
−0.709294 + 0.704913i \(0.750986\pi\)
\(660\) 0 0
\(661\) −927.123 −1.40261 −0.701303 0.712863i \(-0.747398\pi\)
−0.701303 + 0.712863i \(0.747398\pi\)
\(662\) 172.430i 0.260469i
\(663\) 0 0
\(664\) −729.027 −1.09793
\(665\) 464.839i 0.699005i
\(666\) 0 0
\(667\) −461.316 −0.691629
\(668\) − 71.8390i − 0.107543i
\(669\) 0 0
\(670\) −291.063 −0.434423
\(671\) − 707.269i − 1.05405i
\(672\) 0 0
\(673\) 945.992 1.40563 0.702817 0.711370i \(-0.251925\pi\)
0.702817 + 0.711370i \(0.251925\pi\)
\(674\) − 616.446i − 0.914608i
\(675\) 0 0
\(676\) −29.6162 −0.0438110
\(677\) 614.584i 0.907804i 0.891051 + 0.453902i \(0.149968\pi\)
−0.891051 + 0.453902i \(0.850032\pi\)
\(678\) 0 0
\(679\) −558.915 −0.823145
\(680\) 240.202i 0.353238i
\(681\) 0 0
\(682\) 624.376 0.915507
\(683\) 258.893i 0.379053i 0.981876 + 0.189527i \(0.0606954\pi\)
−0.981876 + 0.189527i \(0.939305\pi\)
\(684\) 0 0
\(685\) 203.179 0.296611
\(686\) 666.217i 0.971162i
\(687\) 0 0
\(688\) 490.827 0.713411
\(689\) 369.588i 0.536412i
\(690\) 0 0
\(691\) −970.974 −1.40517 −0.702586 0.711599i \(-0.747971\pi\)
−0.702586 + 0.711599i \(0.747971\pi\)
\(692\) 83.6170i 0.120834i
\(693\) 0 0
\(694\) 114.663 0.165220
\(695\) − 145.284i − 0.209042i
\(696\) 0 0
\(697\) 371.651 0.533215
\(698\) − 588.596i − 0.843260i
\(699\) 0 0
\(700\) 20.5927 0.0294182
\(701\) 718.418i 1.02485i 0.858733 + 0.512424i \(0.171252\pi\)
−0.858733 + 0.512424i \(0.828748\pi\)
\(702\) 0 0
\(703\) −1460.77 −2.07791
\(704\) − 754.755i − 1.07209i
\(705\) 0 0
\(706\) 304.821 0.431758
\(707\) 285.146i 0.403319i
\(708\) 0 0
\(709\) −988.445 −1.39414 −0.697070 0.717003i \(-0.745513\pi\)
−0.697070 + 0.717003i \(0.745513\pi\)
\(710\) 53.7703i 0.0757328i
\(711\) 0 0
\(712\) 541.134 0.760020
\(713\) − 361.656i − 0.507231i
\(714\) 0 0
\(715\) −264.244 −0.369572
\(716\) 189.167i 0.264199i
\(717\) 0 0
\(718\) 366.177 0.509995
\(719\) 1280.53i 1.78099i 0.454994 + 0.890495i \(0.349642\pi\)
−0.454994 + 0.890495i \(0.650358\pi\)
\(720\) 0 0
\(721\) −607.158 −0.842106
\(722\) 1232.39i 1.70691i
\(723\) 0 0
\(724\) 17.9037 0.0247289
\(725\) − 203.362i − 0.280500i
\(726\) 0 0
\(727\) −649.647 −0.893600 −0.446800 0.894634i \(-0.647436\pi\)
−0.446800 + 0.894634i \(0.647436\pi\)
\(728\) − 608.710i − 0.836140i
\(729\) 0 0
\(730\) −448.100 −0.613836
\(731\) 475.225i 0.650103i
\(732\) 0 0
\(733\) 1170.09 1.59630 0.798150 0.602459i \(-0.205812\pi\)
0.798150 + 0.602459i \(0.205812\pi\)
\(734\) − 294.603i − 0.401367i
\(735\) 0 0
\(736\) −114.394 −0.155427
\(737\) 757.869i 1.02832i
\(738\) 0 0
\(739\) 1175.25 1.59033 0.795164 0.606394i \(-0.207385\pi\)
0.795164 + 0.606394i \(0.207385\pi\)
\(740\) 64.7134i 0.0874506i
\(741\) 0 0
\(742\) 396.109 0.533840
\(743\) 1017.43i 1.36936i 0.728844 + 0.684680i \(0.240058\pi\)
−0.728844 + 0.684680i \(0.759942\pi\)
\(744\) 0 0
\(745\) −322.657 −0.433097
\(746\) − 314.035i − 0.420958i
\(747\) 0 0
\(748\) 85.8906 0.114827
\(749\) − 895.928i − 1.19617i
\(750\) 0 0
\(751\) −994.458 −1.32418 −0.662089 0.749425i \(-0.730330\pi\)
−0.662089 + 0.749425i \(0.730330\pi\)
\(752\) 750.463i 0.997957i
\(753\) 0 0
\(754\) −825.521 −1.09486
\(755\) 305.839i 0.405084i
\(756\) 0 0
\(757\) −659.088 −0.870658 −0.435329 0.900271i \(-0.643368\pi\)
−0.435329 + 0.900271i \(0.643368\pi\)
\(758\) − 545.563i − 0.719740i
\(759\) 0 0
\(760\) 611.123 0.804109
\(761\) − 646.260i − 0.849224i −0.905375 0.424612i \(-0.860410\pi\)
0.905375 0.424612i \(-0.139590\pi\)
\(762\) 0 0
\(763\) −1143.10 −1.49817
\(764\) 5.83933i 0.00764310i
\(765\) 0 0
\(766\) −881.649 −1.15098
\(767\) − 45.3561i − 0.0591345i
\(768\) 0 0
\(769\) −246.857 −0.321010 −0.160505 0.987035i \(-0.551312\pi\)
−0.160505 + 0.987035i \(0.551312\pi\)
\(770\) 283.206i 0.367800i
\(771\) 0 0
\(772\) 60.3433 0.0781649
\(773\) − 263.071i − 0.340325i −0.985416 0.170162i \(-0.945571\pi\)
0.985416 0.170162i \(-0.0544292\pi\)
\(774\) 0 0
\(775\) 159.429 0.205715
\(776\) 734.805i 0.946914i
\(777\) 0 0
\(778\) −1090.15 −1.40122
\(779\) − 945.555i − 1.21381i
\(780\) 0 0
\(781\) 140.007 0.179266
\(782\) 262.770i 0.336023i
\(783\) 0 0
\(784\) 93.4914 0.119249
\(785\) − 116.707i − 0.148671i
\(786\) 0 0
\(787\) 1076.78 1.36820 0.684102 0.729387i \(-0.260194\pi\)
0.684102 + 0.729387i \(0.260194\pi\)
\(788\) − 170.226i − 0.216022i
\(789\) 0 0
\(790\) −409.166 −0.517931
\(791\) − 573.906i − 0.725545i
\(792\) 0 0
\(793\) −733.100 −0.924463
\(794\) − 194.950i − 0.245529i
\(795\) 0 0
\(796\) −100.817 −0.126654
\(797\) − 913.930i − 1.14671i −0.819306 0.573356i \(-0.805641\pi\)
0.819306 0.573356i \(-0.194359\pi\)
\(798\) 0 0
\(799\) −726.609 −0.909398
\(800\) − 50.4286i − 0.0630357i
\(801\) 0 0
\(802\) −55.7373 −0.0694978
\(803\) 1166.76i 1.45300i
\(804\) 0 0
\(805\) 164.040 0.203777
\(806\) − 647.179i − 0.802952i
\(807\) 0 0
\(808\) 374.881 0.463962
\(809\) − 1008.67i − 1.24681i −0.781897 0.623407i \(-0.785748\pi\)
0.781897 0.623407i \(-0.214252\pi\)
\(810\) 0 0
\(811\) 952.468 1.17444 0.587218 0.809429i \(-0.300223\pi\)
0.587218 + 0.809429i \(0.300223\pi\)
\(812\) − 167.511i − 0.206295i
\(813\) 0 0
\(814\) −889.984 −1.09335
\(815\) − 230.820i − 0.283215i
\(816\) 0 0
\(817\) 1209.07 1.47989
\(818\) 134.681i 0.164646i
\(819\) 0 0
\(820\) −41.8889 −0.0510840
\(821\) − 1411.45i − 1.71918i −0.510984 0.859590i \(-0.670719\pi\)
0.510984 0.859590i \(-0.329281\pi\)
\(822\) 0 0
\(823\) 761.733 0.925557 0.462778 0.886474i \(-0.346853\pi\)
0.462778 + 0.886474i \(0.346853\pi\)
\(824\) 798.230i 0.968726i
\(825\) 0 0
\(826\) −48.6108 −0.0588509
\(827\) − 718.144i − 0.868373i −0.900823 0.434186i \(-0.857036\pi\)
0.900823 0.434186i \(-0.142964\pi\)
\(828\) 0 0
\(829\) 400.411 0.483005 0.241503 0.970400i \(-0.422360\pi\)
0.241503 + 0.970400i \(0.422360\pi\)
\(830\) − 351.571i − 0.423580i
\(831\) 0 0
\(832\) −782.320 −0.940288
\(833\) 90.5196i 0.108667i
\(834\) 0 0
\(835\) 252.272 0.302122
\(836\) − 218.523i − 0.261391i
\(837\) 0 0
\(838\) 306.105 0.365281
\(839\) − 709.335i − 0.845453i −0.906257 0.422726i \(-0.861073\pi\)
0.906257 0.422726i \(-0.138927\pi\)
\(840\) 0 0
\(841\) −813.248 −0.967001
\(842\) − 560.244i − 0.665373i
\(843\) 0 0
\(844\) 202.218 0.239595
\(845\) − 104.001i − 0.123078i
\(846\) 0 0
\(847\) −45.2139 −0.0533813
\(848\) − 435.708i − 0.513806i
\(849\) 0 0
\(850\) −115.837 −0.136279
\(851\) 515.503i 0.605761i
\(852\) 0 0
\(853\) 886.227 1.03895 0.519476 0.854485i \(-0.326127\pi\)
0.519476 + 0.854485i \(0.326127\pi\)
\(854\) 785.706i 0.920030i
\(855\) 0 0
\(856\) −1177.88 −1.37602
\(857\) 327.514i 0.382163i 0.981574 + 0.191081i \(0.0611995\pi\)
−0.981574 + 0.191081i \(0.938801\pi\)
\(858\) 0 0
\(859\) −70.1670 −0.0816845 −0.0408423 0.999166i \(-0.513004\pi\)
−0.0408423 + 0.999166i \(0.513004\pi\)
\(860\) − 53.5628i − 0.0622823i
\(861\) 0 0
\(862\) 405.342 0.470234
\(863\) − 982.709i − 1.13871i −0.822091 0.569356i \(-0.807193\pi\)
0.822091 0.569356i \(-0.192807\pi\)
\(864\) 0 0
\(865\) −293.632 −0.339459
\(866\) 355.880i 0.410947i
\(867\) 0 0
\(868\) 131.323 0.151294
\(869\) 1065.38i 1.22599i
\(870\) 0 0
\(871\) 785.548 0.901892
\(872\) 1502.83i 1.72343i
\(873\) 0 0
\(874\) 668.539 0.764919
\(875\) 72.3140i 0.0826446i
\(876\) 0 0
\(877\) 926.895 1.05689 0.528446 0.848967i \(-0.322775\pi\)
0.528446 + 0.848967i \(0.322775\pi\)
\(878\) − 283.688i − 0.323107i
\(879\) 0 0
\(880\) 311.518 0.353997
\(881\) − 766.920i − 0.870510i −0.900307 0.435255i \(-0.856658\pi\)
0.900307 0.435255i \(-0.143342\pi\)
\(882\) 0 0
\(883\) 1206.08 1.36589 0.682946 0.730469i \(-0.260699\pi\)
0.682946 + 0.730469i \(0.260699\pi\)
\(884\) − 89.0275i − 0.100710i
\(885\) 0 0
\(886\) 886.050 1.00006
\(887\) − 752.566i − 0.848440i −0.905559 0.424220i \(-0.860548\pi\)
0.905559 0.424220i \(-0.139452\pi\)
\(888\) 0 0
\(889\) −595.184 −0.669498
\(890\) 260.961i 0.293214i
\(891\) 0 0
\(892\) −78.9527 −0.0885120
\(893\) 1848.64i 2.07015i
\(894\) 0 0
\(895\) −664.283 −0.742216
\(896\) 577.522i 0.644556i
\(897\) 0 0
\(898\) 1245.49 1.38696
\(899\) − 1296.87i − 1.44257i
\(900\) 0 0
\(901\) 421.858 0.468211
\(902\) − 576.085i − 0.638675i
\(903\) 0 0
\(904\) −754.514 −0.834639
\(905\) 62.8711i 0.0694709i
\(906\) 0 0
\(907\) −354.739 −0.391113 −0.195556 0.980692i \(-0.562651\pi\)
−0.195556 + 0.980692i \(0.562651\pi\)
\(908\) − 138.481i − 0.152512i
\(909\) 0 0
\(910\) 293.549 0.322581
\(911\) 324.402i 0.356094i 0.984022 + 0.178047i \(0.0569780\pi\)
−0.984022 + 0.178047i \(0.943022\pi\)
\(912\) 0 0
\(913\) −915.420 −1.00265
\(914\) − 147.655i − 0.161549i
\(915\) 0 0
\(916\) 47.7282 0.0521050
\(917\) − 1037.98i − 1.13193i
\(918\) 0 0
\(919\) −604.200 −0.657453 −0.328727 0.944425i \(-0.606619\pi\)
−0.328727 + 0.944425i \(0.606619\pi\)
\(920\) − 215.664i − 0.234417i
\(921\) 0 0
\(922\) −1134.72 −1.23071
\(923\) − 145.120i − 0.157227i
\(924\) 0 0
\(925\) −227.249 −0.245675
\(926\) 604.196i 0.652479i
\(927\) 0 0
\(928\) −410.211 −0.442037
\(929\) − 1636.77i − 1.76186i −0.473246 0.880930i \(-0.656918\pi\)
0.473246 0.880930i \(-0.343082\pi\)
\(930\) 0 0
\(931\) 230.300 0.247369
\(932\) − 90.9172i − 0.0975506i
\(933\) 0 0
\(934\) 396.766 0.424803
\(935\) 301.615i 0.322583i
\(936\) 0 0
\(937\) −266.212 −0.284111 −0.142055 0.989859i \(-0.545371\pi\)
−0.142055 + 0.989859i \(0.545371\pi\)
\(938\) − 841.918i − 0.897567i
\(939\) 0 0
\(940\) 81.8963 0.0871238
\(941\) − 162.090i − 0.172253i −0.996284 0.0861264i \(-0.972551\pi\)
0.996284 0.0861264i \(-0.0274489\pi\)
\(942\) 0 0
\(943\) −333.684 −0.353854
\(944\) 53.4704i 0.0566424i
\(945\) 0 0
\(946\) 736.633 0.778681
\(947\) − 797.434i − 0.842063i −0.907046 0.421032i \(-0.861668\pi\)
0.907046 0.421032i \(-0.138332\pi\)
\(948\) 0 0
\(949\) 1209.37 1.27437
\(950\) 294.713i 0.310224i
\(951\) 0 0
\(952\) −694.799 −0.729831
\(953\) 1382.90i 1.45110i 0.688168 + 0.725551i \(0.258415\pi\)
−0.688168 + 0.725551i \(0.741585\pi\)
\(954\) 0 0
\(955\) −20.5055 −0.0214718
\(956\) − 127.468i − 0.133334i
\(957\) 0 0
\(958\) 254.040 0.265177
\(959\) 587.706i 0.612833i
\(960\) 0 0
\(961\) 55.7017 0.0579622
\(962\) 922.488i 0.958927i
\(963\) 0 0
\(964\) 123.481 0.128092
\(965\) 211.903i 0.219589i
\(966\) 0 0
\(967\) 369.511 0.382121 0.191061 0.981578i \(-0.438807\pi\)
0.191061 + 0.981578i \(0.438807\pi\)
\(968\) 59.4427i 0.0614077i
\(969\) 0 0
\(970\) −354.358 −0.365318
\(971\) 961.450i 0.990165i 0.868846 + 0.495082i \(0.164862\pi\)
−0.868846 + 0.495082i \(0.835138\pi\)
\(972\) 0 0
\(973\) 420.243 0.431904
\(974\) 170.607i 0.175161i
\(975\) 0 0
\(976\) 864.253 0.885505
\(977\) 1718.15i 1.75860i 0.476268 + 0.879300i \(0.341989\pi\)
−0.476268 + 0.879300i \(0.658011\pi\)
\(978\) 0 0
\(979\) 679.488 0.694063
\(980\) − 10.2025i − 0.0104107i
\(981\) 0 0
\(982\) −430.232 −0.438118
\(983\) − 1281.67i − 1.30383i −0.758292 0.651915i \(-0.773966\pi\)
0.758292 0.651915i \(-0.226034\pi\)
\(984\) 0 0
\(985\) 597.769 0.606872
\(986\) 942.274i 0.955653i
\(987\) 0 0
\(988\) −226.504 −0.229255
\(989\) − 426.678i − 0.431423i
\(990\) 0 0
\(991\) 952.926 0.961581 0.480790 0.876836i \(-0.340350\pi\)
0.480790 + 0.876836i \(0.340350\pi\)
\(992\) − 321.591i − 0.324184i
\(993\) 0 0
\(994\) −155.534 −0.156473
\(995\) − 354.031i − 0.355810i
\(996\) 0 0
\(997\) 1769.67 1.77499 0.887495 0.460817i \(-0.152444\pi\)
0.887495 + 0.460817i \(0.152444\pi\)
\(998\) − 1212.49i − 1.21492i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.c.a.161.12 16
3.2 odd 2 inner 405.3.c.a.161.5 16
9.2 odd 6 135.3.i.a.71.3 16
9.4 even 3 135.3.i.a.116.3 16
9.5 odd 6 45.3.i.a.11.6 16
9.7 even 3 45.3.i.a.41.6 yes 16
36.7 odd 6 720.3.bs.c.401.4 16
36.11 even 6 2160.3.bs.c.881.6 16
36.23 even 6 720.3.bs.c.641.4 16
36.31 odd 6 2160.3.bs.c.1601.6 16
45.2 even 12 675.3.i.c.449.5 32
45.4 even 6 675.3.j.b.251.6 16
45.7 odd 12 225.3.i.b.149.12 32
45.13 odd 12 675.3.i.c.224.5 32
45.14 odd 6 225.3.j.b.101.3 16
45.22 odd 12 675.3.i.c.224.12 32
45.23 even 12 225.3.i.b.74.12 32
45.29 odd 6 675.3.j.b.476.6 16
45.32 even 12 225.3.i.b.74.5 32
45.34 even 6 225.3.j.b.176.3 16
45.38 even 12 675.3.i.c.449.12 32
45.43 odd 12 225.3.i.b.149.5 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.i.a.11.6 16 9.5 odd 6
45.3.i.a.41.6 yes 16 9.7 even 3
135.3.i.a.71.3 16 9.2 odd 6
135.3.i.a.116.3 16 9.4 even 3
225.3.i.b.74.5 32 45.32 even 12
225.3.i.b.74.12 32 45.23 even 12
225.3.i.b.149.5 32 45.43 odd 12
225.3.i.b.149.12 32 45.7 odd 12
225.3.j.b.101.3 16 45.14 odd 6
225.3.j.b.176.3 16 45.34 even 6
405.3.c.a.161.5 16 3.2 odd 2 inner
405.3.c.a.161.12 16 1.1 even 1 trivial
675.3.i.c.224.5 32 45.13 odd 12
675.3.i.c.224.12 32 45.22 odd 12
675.3.i.c.449.5 32 45.2 even 12
675.3.i.c.449.12 32 45.38 even 12
675.3.j.b.251.6 16 45.4 even 6
675.3.j.b.476.6 16 45.29 odd 6
720.3.bs.c.401.4 16 36.7 odd 6
720.3.bs.c.641.4 16 36.23 even 6
2160.3.bs.c.881.6 16 36.11 even 6
2160.3.bs.c.1601.6 16 36.31 odd 6