Properties

Label 720.3.bs.c.401.4
Level $720$
Weight $3$
Character 720.401
Analytic conductor $19.619$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [720,3,Mod(401,720)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("720.401"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(720, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 720.bs (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.6185790339\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 48x^{14} + 912x^{12} + 8704x^{10} + 43602x^{8} + 109032x^{6} + 117844x^{4} + 36000x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 401.4
Root \(-1.83391i\) of defining polynomial
Character \(\chi\) \(=\) 720.401
Dual form 720.3.bs.c.641.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.822398 + 2.88508i) q^{3} +(-1.93649 - 1.11803i) q^{5} +(-3.23398 - 5.60142i) q^{7} +(-7.64732 - 4.74536i) q^{9} +(-9.24701 + 5.33876i) q^{11} +(-5.53374 + 9.58473i) q^{13} +(4.81818 - 4.66746i) q^{15} -12.6328i q^{17} +32.1403 q^{19} +(18.8201 - 4.72368i) q^{21} +(9.82266 + 5.67112i) q^{23} +(2.50000 + 4.33013i) q^{25} +(19.9799 - 18.1605i) q^{27} +(35.2234 - 20.3362i) q^{29} +(-15.9429 + 27.6139i) q^{31} +(-7.79801 - 31.0689i) q^{33} +14.4628i q^{35} +45.4499 q^{37} +(-23.1017 - 23.8477i) q^{39} +(-25.4781 - 14.7098i) q^{41} +(-18.8093 - 32.5786i) q^{43} +(9.50350 + 17.7393i) q^{45} +(49.8119 - 28.7589i) q^{47} +(3.58274 - 6.20548i) q^{49} +(36.4465 + 10.3891i) q^{51} +33.3940i q^{53} +23.8757 q^{55} +(-26.4321 + 92.7272i) q^{57} +(-3.54909 - 2.04907i) q^{59} +(33.1195 + 57.3647i) q^{61} +(-1.84945 + 58.1823i) q^{63} +(21.4321 - 12.3738i) q^{65} +(35.4890 - 61.4687i) q^{67} +(-24.4397 + 23.6752i) q^{69} +13.1123i q^{71} +109.273 q^{73} +(-14.5487 + 3.65160i) q^{75} +(59.8093 + 34.5309i) q^{77} +(49.8891 + 86.4104i) q^{79} +(35.9631 + 72.5786i) q^{81} +(-74.2472 + 42.8667i) q^{83} +(-14.1238 + 24.4632i) q^{85} +(29.7039 + 118.347i) q^{87} -63.6372i q^{89} +71.5841 q^{91} +(-66.5567 - 68.7060i) q^{93} +(-62.2394 - 35.9339i) q^{95} +(-43.2064 - 74.8357i) q^{97} +(96.0492 + 3.05314i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{3} - 2 q^{7} + 8 q^{9} + 18 q^{11} - 10 q^{13} - 10 q^{15} + 52 q^{19} + 72 q^{21} + 54 q^{23} + 40 q^{25} - 34 q^{27} - 54 q^{29} - 32 q^{31} + 62 q^{33} + 44 q^{37} - 160 q^{39} + 144 q^{41}+ \cdots + 824 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.822398 + 2.88508i −0.274133 + 0.961692i
\(4\) 0 0
\(5\) −1.93649 1.11803i −0.387298 0.223607i
\(6\) 0 0
\(7\) −3.23398 5.60142i −0.461997 0.800203i 0.537063 0.843542i \(-0.319534\pi\)
−0.999060 + 0.0433393i \(0.986200\pi\)
\(8\) 0 0
\(9\) −7.64732 4.74536i −0.849703 0.527262i
\(10\) 0 0
\(11\) −9.24701 + 5.33876i −0.840637 + 0.485342i −0.857481 0.514516i \(-0.827972\pi\)
0.0168436 + 0.999858i \(0.494638\pi\)
\(12\) 0 0
\(13\) −5.53374 + 9.58473i −0.425673 + 0.737287i −0.996483 0.0837952i \(-0.973296\pi\)
0.570810 + 0.821082i \(0.306629\pi\)
\(14\) 0 0
\(15\) 4.81818 4.66746i 0.321212 0.311164i
\(16\) 0 0
\(17\) 12.6328i 0.743103i −0.928412 0.371552i \(-0.878826\pi\)
0.928412 0.371552i \(-0.121174\pi\)
\(18\) 0 0
\(19\) 32.1403 1.69159 0.845797 0.533505i \(-0.179125\pi\)
0.845797 + 0.533505i \(0.179125\pi\)
\(20\) 0 0
\(21\) 18.8201 4.72368i 0.896197 0.224937i
\(22\) 0 0
\(23\) 9.82266 + 5.67112i 0.427072 + 0.246570i 0.698099 0.716002i \(-0.254030\pi\)
−0.271026 + 0.962572i \(0.587363\pi\)
\(24\) 0 0
\(25\) 2.50000 + 4.33013i 0.100000 + 0.173205i
\(26\) 0 0
\(27\) 19.9799 18.1605i 0.739995 0.672612i
\(28\) 0 0
\(29\) 35.2234 20.3362i 1.21460 0.701249i 0.250841 0.968028i \(-0.419293\pi\)
0.963758 + 0.266779i \(0.0859594\pi\)
\(30\) 0 0
\(31\) −15.9429 + 27.6139i −0.514286 + 0.890770i 0.485576 + 0.874194i \(0.338610\pi\)
−0.999863 + 0.0165759i \(0.994723\pi\)
\(32\) 0 0
\(33\) −7.79801 31.0689i −0.236303 0.941482i
\(34\) 0 0
\(35\) 14.4628i 0.413223i
\(36\) 0 0
\(37\) 45.4499 1.22837 0.614187 0.789160i \(-0.289484\pi\)
0.614187 + 0.789160i \(0.289484\pi\)
\(38\) 0 0
\(39\) −23.1017 23.8477i −0.592352 0.611480i
\(40\) 0 0
\(41\) −25.4781 14.7098i −0.621418 0.358776i 0.156003 0.987757i \(-0.450139\pi\)
−0.777421 + 0.628981i \(0.783472\pi\)
\(42\) 0 0
\(43\) −18.8093 32.5786i −0.437424 0.757641i 0.560066 0.828448i \(-0.310776\pi\)
−0.997490 + 0.0708069i \(0.977443\pi\)
\(44\) 0 0
\(45\) 9.50350 + 17.7393i 0.211189 + 0.394207i
\(46\) 0 0
\(47\) 49.8119 28.7589i 1.05983 0.611892i 0.134443 0.990921i \(-0.457075\pi\)
0.925385 + 0.379029i \(0.123742\pi\)
\(48\) 0 0
\(49\) 3.58274 6.20548i 0.0731171 0.126642i
\(50\) 0 0
\(51\) 36.4465 + 10.3891i 0.714636 + 0.203709i
\(52\) 0 0
\(53\) 33.3940i 0.630075i 0.949079 + 0.315038i \(0.102017\pi\)
−0.949079 + 0.315038i \(0.897983\pi\)
\(54\) 0 0
\(55\) 23.8757 0.434103
\(56\) 0 0
\(57\) −26.4321 + 92.7272i −0.463721 + 1.62679i
\(58\) 0 0
\(59\) −3.54909 2.04907i −0.0601541 0.0347300i 0.469621 0.882868i \(-0.344390\pi\)
−0.529775 + 0.848138i \(0.677724\pi\)
\(60\) 0 0
\(61\) 33.1195 + 57.3647i 0.542943 + 0.940404i 0.998733 + 0.0503172i \(0.0160232\pi\)
−0.455791 + 0.890087i \(0.650643\pi\)
\(62\) 0 0
\(63\) −1.84945 + 58.1823i −0.0293564 + 0.923528i
\(64\) 0 0
\(65\) 21.4321 12.3738i 0.329725 0.190367i
\(66\) 0 0
\(67\) 35.4890 61.4687i 0.529686 0.917444i −0.469714 0.882819i \(-0.655643\pi\)
0.999400 0.0346251i \(-0.0110237\pi\)
\(68\) 0 0
\(69\) −24.4397 + 23.6752i −0.354199 + 0.343119i
\(70\) 0 0
\(71\) 13.1123i 0.184680i 0.995728 + 0.0923400i \(0.0294347\pi\)
−0.995728 + 0.0923400i \(0.970565\pi\)
\(72\) 0 0
\(73\) 109.273 1.49688 0.748442 0.663200i \(-0.230802\pi\)
0.748442 + 0.663200i \(0.230802\pi\)
\(74\) 0 0
\(75\) −14.5487 + 3.65160i −0.193983 + 0.0486880i
\(76\) 0 0
\(77\) 59.8093 + 34.5309i 0.776744 + 0.448453i
\(78\) 0 0
\(79\) 49.8891 + 86.4104i 0.631507 + 1.09380i 0.987244 + 0.159217i \(0.0508968\pi\)
−0.355736 + 0.934586i \(0.615770\pi\)
\(80\) 0 0
\(81\) 35.9631 + 72.5786i 0.443989 + 0.896032i
\(82\) 0 0
\(83\) −74.2472 + 42.8667i −0.894545 + 0.516466i −0.875426 0.483351i \(-0.839419\pi\)
−0.0191187 + 0.999817i \(0.506086\pi\)
\(84\) 0 0
\(85\) −14.1238 + 24.4632i −0.166163 + 0.287803i
\(86\) 0 0
\(87\) 29.7039 + 118.347i 0.341424 + 1.36031i
\(88\) 0 0
\(89\) 63.6372i 0.715025i −0.933908 0.357513i \(-0.883625\pi\)
0.933908 0.357513i \(-0.116375\pi\)
\(90\) 0 0
\(91\) 71.5841 0.786638
\(92\) 0 0
\(93\) −66.5567 68.7060i −0.715664 0.738774i
\(94\) 0 0
\(95\) −62.2394 35.9339i −0.655152 0.378252i
\(96\) 0 0
\(97\) −43.2064 74.8357i −0.445427 0.771503i 0.552655 0.833410i \(-0.313615\pi\)
−0.998082 + 0.0619078i \(0.980282\pi\)
\(98\) 0 0
\(99\) 96.0492 + 3.05314i 0.970194 + 0.0308398i
\(100\) 0 0
\(101\) −38.1796 + 22.0430i −0.378015 + 0.218247i −0.676954 0.736025i \(-0.736701\pi\)
0.298939 + 0.954272i \(0.403367\pi\)
\(102\) 0 0
\(103\) 46.9358 81.2952i 0.455688 0.789274i −0.543040 0.839707i \(-0.682727\pi\)
0.998727 + 0.0504329i \(0.0160601\pi\)
\(104\) 0 0
\(105\) −41.7263 11.8942i −0.397393 0.113278i
\(106\) 0 0
\(107\) 138.518i 1.29456i −0.762252 0.647280i \(-0.775906\pi\)
0.762252 0.647280i \(-0.224094\pi\)
\(108\) 0 0
\(109\) 176.733 1.62140 0.810700 0.585461i \(-0.199087\pi\)
0.810700 + 0.585461i \(0.199087\pi\)
\(110\) 0 0
\(111\) −37.3779 + 131.126i −0.336738 + 1.18132i
\(112\) 0 0
\(113\) −76.8430 44.3653i −0.680026 0.392613i 0.119839 0.992793i \(-0.461762\pi\)
−0.799865 + 0.600180i \(0.795096\pi\)
\(114\) 0 0
\(115\) −12.6810 21.9641i −0.110270 0.190992i
\(116\) 0 0
\(117\) 87.8013 47.0379i 0.750439 0.402033i
\(118\) 0 0
\(119\) −70.7613 + 40.8541i −0.594633 + 0.343312i
\(120\) 0 0
\(121\) −3.49522 + 6.05390i −0.0288861 + 0.0500323i
\(122\) 0 0
\(123\) 63.3921 61.4090i 0.515383 0.499260i
\(124\) 0 0
\(125\) 11.1803i 0.0894427i
\(126\) 0 0
\(127\) −92.0203 −0.724569 −0.362285 0.932068i \(-0.618003\pi\)
−0.362285 + 0.932068i \(0.618003\pi\)
\(128\) 0 0
\(129\) 109.460 27.4736i 0.848530 0.212973i
\(130\) 0 0
\(131\) 138.979 + 80.2398i 1.06091 + 0.612518i 0.925684 0.378297i \(-0.123490\pi\)
0.135228 + 0.990815i \(0.456823\pi\)
\(132\) 0 0
\(133\) −103.941 180.031i −0.781512 1.35362i
\(134\) 0 0
\(135\) −58.9949 + 12.8296i −0.437000 + 0.0950337i
\(136\) 0 0
\(137\) −78.6907 + 45.4321i −0.574385 + 0.331621i −0.758899 0.651209i \(-0.774262\pi\)
0.184514 + 0.982830i \(0.440929\pi\)
\(138\) 0 0
\(139\) −32.4865 + 56.2682i −0.233716 + 0.404807i −0.958899 0.283749i \(-0.908422\pi\)
0.725183 + 0.688556i \(0.241755\pi\)
\(140\) 0 0
\(141\) 42.0065 + 167.362i 0.297918 + 1.18697i
\(142\) 0 0
\(143\) 118.173i 0.826387i
\(144\) 0 0
\(145\) −90.9464 −0.627216
\(146\) 0 0
\(147\) 14.9568 + 15.4398i 0.101747 + 0.105033i
\(148\) 0 0
\(149\) −124.965 72.1483i −0.838688 0.484217i 0.0181301 0.999836i \(-0.494229\pi\)
−0.856818 + 0.515619i \(0.827562\pi\)
\(150\) 0 0
\(151\) 68.3876 + 118.451i 0.452898 + 0.784442i 0.998565 0.0535600i \(-0.0170568\pi\)
−0.545667 + 0.838002i \(0.683724\pi\)
\(152\) 0 0
\(153\) −59.9470 + 96.6068i −0.391810 + 0.631417i
\(154\) 0 0
\(155\) 61.7465 35.6494i 0.398365 0.229996i
\(156\) 0 0
\(157\) 26.0965 45.2004i 0.166220 0.287901i −0.770868 0.636995i \(-0.780177\pi\)
0.937088 + 0.349094i \(0.113511\pi\)
\(158\) 0 0
\(159\) −96.3442 27.4631i −0.605938 0.172724i
\(160\) 0 0
\(161\) 73.3611i 0.455659i
\(162\) 0 0
\(163\) 103.226 0.633287 0.316643 0.948545i \(-0.397444\pi\)
0.316643 + 0.948545i \(0.397444\pi\)
\(164\) 0 0
\(165\) −19.6353 + 68.8831i −0.119002 + 0.417473i
\(166\) 0 0
\(167\) −97.7044 56.4096i −0.585056 0.337782i 0.178084 0.984015i \(-0.443010\pi\)
−0.763140 + 0.646233i \(0.776343\pi\)
\(168\) 0 0
\(169\) 23.2553 + 40.2794i 0.137606 + 0.238340i
\(170\) 0 0
\(171\) −245.787 152.517i −1.43735 0.891914i
\(172\) 0 0
\(173\) 113.723 65.6580i 0.657359 0.379526i −0.133911 0.990993i \(-0.542754\pi\)
0.791270 + 0.611467i \(0.209420\pi\)
\(174\) 0 0
\(175\) 16.1699 28.0071i 0.0923995 0.160041i
\(176\) 0 0
\(177\) 8.83049 8.55425i 0.0498898 0.0483291i
\(178\) 0 0
\(179\) 297.076i 1.65964i −0.558028 0.829822i \(-0.688442\pi\)
0.558028 0.829822i \(-0.311558\pi\)
\(180\) 0 0
\(181\) 28.1168 0.155342 0.0776708 0.996979i \(-0.475252\pi\)
0.0776708 + 0.996979i \(0.475252\pi\)
\(182\) 0 0
\(183\) −192.739 + 48.3757i −1.05322 + 0.264348i
\(184\) 0 0
\(185\) −88.0133 50.8145i −0.475748 0.274673i
\(186\) 0 0
\(187\) 67.4433 + 116.815i 0.360659 + 0.624680i
\(188\) 0 0
\(189\) −166.339 53.1848i −0.880102 0.281401i
\(190\) 0 0
\(191\) −7.94176 + 4.58518i −0.0415799 + 0.0240062i −0.520646 0.853773i \(-0.674309\pi\)
0.479066 + 0.877779i \(0.340975\pi\)
\(192\) 0 0
\(193\) −47.3830 + 82.0697i −0.245508 + 0.425232i −0.962274 0.272082i \(-0.912288\pi\)
0.716767 + 0.697313i \(0.245621\pi\)
\(194\) 0 0
\(195\) 18.0737 + 72.0094i 0.0926857 + 0.369279i
\(196\) 0 0
\(197\) 267.330i 1.35701i −0.734597 0.678504i \(-0.762629\pi\)
0.734597 0.678504i \(-0.237371\pi\)
\(198\) 0 0
\(199\) 158.327 0.795615 0.397808 0.917469i \(-0.369771\pi\)
0.397808 + 0.917469i \(0.369771\pi\)
\(200\) 0 0
\(201\) 148.156 + 152.940i 0.737094 + 0.760896i
\(202\) 0 0
\(203\) −227.823 131.534i −1.12228 0.647950i
\(204\) 0 0
\(205\) 32.8921 + 56.9708i 0.160449 + 0.277907i
\(206\) 0 0
\(207\) −48.2056 89.9809i −0.232877 0.434690i
\(208\) 0 0
\(209\) −297.202 + 171.589i −1.42202 + 0.821002i
\(210\) 0 0
\(211\) 158.786 275.026i 0.752542 1.30344i −0.194045 0.980993i \(-0.562161\pi\)
0.946587 0.322448i \(-0.104506\pi\)
\(212\) 0 0
\(213\) −37.8299 10.7835i −0.177605 0.0506268i
\(214\) 0 0
\(215\) 84.1175i 0.391244i
\(216\) 0 0
\(217\) 206.236 0.950396
\(218\) 0 0
\(219\) −89.8656 + 315.260i −0.410345 + 1.43954i
\(220\) 0 0
\(221\) 121.081 + 69.9064i 0.547880 + 0.316319i
\(222\) 0 0
\(223\) −61.9955 107.379i −0.278007 0.481522i 0.692883 0.721050i \(-0.256340\pi\)
−0.970889 + 0.239529i \(0.923007\pi\)
\(224\) 0 0
\(225\) 1.42970 44.9773i 0.00635424 0.199899i
\(226\) 0 0
\(227\) 188.341 108.739i 0.829695 0.479025i −0.0240532 0.999711i \(-0.507657\pi\)
0.853748 + 0.520686i \(0.174324\pi\)
\(228\) 0 0
\(229\) −37.4773 + 64.9126i −0.163656 + 0.283461i −0.936177 0.351528i \(-0.885662\pi\)
0.772521 + 0.634989i \(0.218995\pi\)
\(230\) 0 0
\(231\) −148.811 + 144.156i −0.644205 + 0.624053i
\(232\) 0 0
\(233\) 142.781i 0.612792i −0.951904 0.306396i \(-0.900877\pi\)
0.951904 0.306396i \(-0.0991232\pi\)
\(234\) 0 0
\(235\) −128.614 −0.547293
\(236\) 0 0
\(237\) −290.329 + 72.8700i −1.22502 + 0.307469i
\(238\) 0 0
\(239\) −173.362 100.090i −0.725363 0.418789i 0.0913604 0.995818i \(-0.470878\pi\)
−0.816723 + 0.577029i \(0.804212\pi\)
\(240\) 0 0
\(241\) −96.9600 167.940i −0.402324 0.696845i 0.591682 0.806171i \(-0.298464\pi\)
−0.994006 + 0.109326i \(0.965131\pi\)
\(242\) 0 0
\(243\) −238.971 + 44.0678i −0.983419 + 0.181349i
\(244\) 0 0
\(245\) −13.8759 + 8.01124i −0.0566362 + 0.0326989i
\(246\) 0 0
\(247\) −177.856 + 308.056i −0.720065 + 1.24719i
\(248\) 0 0
\(249\) −62.6128 249.462i −0.251457 1.00186i
\(250\) 0 0
\(251\) 301.288i 1.20035i 0.799868 + 0.600176i \(0.204903\pi\)
−0.799868 + 0.600176i \(0.795097\pi\)
\(252\) 0 0
\(253\) −121.107 −0.478684
\(254\) 0 0
\(255\) −58.9628 60.8669i −0.231227 0.238694i
\(256\) 0 0
\(257\) 181.874 + 105.005i 0.707679 + 0.408579i 0.810201 0.586152i \(-0.199358\pi\)
−0.102522 + 0.994731i \(0.532691\pi\)
\(258\) 0 0
\(259\) −146.984 254.584i −0.567506 0.982949i
\(260\) 0 0
\(261\) −365.867 11.6299i −1.40179 0.0445591i
\(262\) 0 0
\(263\) −131.132 + 75.7092i −0.498601 + 0.287868i −0.728136 0.685433i \(-0.759613\pi\)
0.229534 + 0.973301i \(0.426280\pi\)
\(264\) 0 0
\(265\) 37.3356 64.6672i 0.140889 0.244027i
\(266\) 0 0
\(267\) 183.598 + 52.3351i 0.687634 + 0.196012i
\(268\) 0 0
\(269\) 411.264i 1.52886i 0.644706 + 0.764431i \(0.276980\pi\)
−0.644706 + 0.764431i \(0.723020\pi\)
\(270\) 0 0
\(271\) 255.156 0.941534 0.470767 0.882257i \(-0.343977\pi\)
0.470767 + 0.882257i \(0.343977\pi\)
\(272\) 0 0
\(273\) −58.8706 + 206.526i −0.215643 + 0.756504i
\(274\) 0 0
\(275\) −46.2350 26.6938i −0.168127 0.0970684i
\(276\) 0 0
\(277\) 92.7798 + 160.699i 0.334945 + 0.580142i 0.983474 0.181048i \(-0.0579488\pi\)
−0.648529 + 0.761190i \(0.724615\pi\)
\(278\) 0 0
\(279\) 252.958 135.518i 0.906660 0.485726i
\(280\) 0 0
\(281\) 90.1892 52.0708i 0.320958 0.185305i −0.330862 0.943679i \(-0.607339\pi\)
0.651820 + 0.758374i \(0.274006\pi\)
\(282\) 0 0
\(283\) −25.9282 + 44.9089i −0.0916189 + 0.158689i −0.908192 0.418553i \(-0.862537\pi\)
0.816574 + 0.577241i \(0.195871\pi\)
\(284\) 0 0
\(285\) 154.858 150.013i 0.543360 0.526363i
\(286\) 0 0
\(287\) 190.285i 0.663014i
\(288\) 0 0
\(289\) 129.414 0.447798
\(290\) 0 0
\(291\) 251.440 63.1091i 0.864054 0.216870i
\(292\) 0 0
\(293\) −287.235 165.835i −0.980323 0.565990i −0.0779553 0.996957i \(-0.524839\pi\)
−0.902368 + 0.430967i \(0.858172\pi\)
\(294\) 0 0
\(295\) 4.58186 + 7.93602i 0.0155317 + 0.0269017i
\(296\) 0 0
\(297\) −87.7992 + 274.598i −0.295620 + 0.924574i
\(298\) 0 0
\(299\) −108.712 + 62.7650i −0.363586 + 0.209916i
\(300\) 0 0
\(301\) −121.658 + 210.717i −0.404178 + 0.700057i
\(302\) 0 0
\(303\) −32.1969 128.279i −0.106260 0.423363i
\(304\) 0 0
\(305\) 148.115i 0.485623i
\(306\) 0 0
\(307\) 292.274 0.952031 0.476016 0.879437i \(-0.342081\pi\)
0.476016 + 0.879437i \(0.342081\pi\)
\(308\) 0 0
\(309\) 195.943 + 202.270i 0.634120 + 0.654597i
\(310\) 0 0
\(311\) −171.292 98.8956i −0.550779 0.317992i 0.198657 0.980069i \(-0.436342\pi\)
−0.749436 + 0.662077i \(0.769675\pi\)
\(312\) 0 0
\(313\) −107.849 186.800i −0.344565 0.596804i 0.640710 0.767783i \(-0.278640\pi\)
−0.985275 + 0.170979i \(0.945307\pi\)
\(314\) 0 0
\(315\) 68.6312 110.602i 0.217877 0.351117i
\(316\) 0 0
\(317\) −176.354 + 101.818i −0.556321 + 0.321192i −0.751668 0.659542i \(-0.770750\pi\)
0.195346 + 0.980734i \(0.437417\pi\)
\(318\) 0 0
\(319\) −217.141 + 376.098i −0.680691 + 1.17899i
\(320\) 0 0
\(321\) 399.635 + 113.917i 1.24497 + 0.354881i
\(322\) 0 0
\(323\) 406.020i 1.25703i
\(324\) 0 0
\(325\) −55.3374 −0.170269
\(326\) 0 0
\(327\) −145.345 + 509.887i −0.444479 + 1.55929i
\(328\) 0 0
\(329\) −322.182 186.012i −0.979275 0.565385i
\(330\) 0 0
\(331\) 47.0115 + 81.4264i 0.142029 + 0.246001i 0.928260 0.371931i \(-0.121304\pi\)
−0.786232 + 0.617932i \(0.787971\pi\)
\(332\) 0 0
\(333\) −347.570 215.676i −1.04375 0.647676i
\(334\) 0 0
\(335\) −137.448 + 79.3558i −0.410293 + 0.236883i
\(336\) 0 0
\(337\) 168.068 291.103i 0.498719 0.863807i −0.501280 0.865285i \(-0.667137\pi\)
0.999999 + 0.00147845i \(0.000470606\pi\)
\(338\) 0 0
\(339\) 191.193 185.212i 0.563990 0.546348i
\(340\) 0 0
\(341\) 340.461i 0.998419i
\(342\) 0 0
\(343\) −363.276 −1.05911
\(344\) 0 0
\(345\) 73.7970 18.5224i 0.213904 0.0536881i
\(346\) 0 0
\(347\) −54.1469 31.2617i −0.156043 0.0900914i 0.419945 0.907549i \(-0.362049\pi\)
−0.575988 + 0.817458i \(0.695383\pi\)
\(348\) 0 0
\(349\) 160.475 + 277.951i 0.459815 + 0.796422i 0.998951 0.0457962i \(-0.0145825\pi\)
−0.539136 + 0.842219i \(0.681249\pi\)
\(350\) 0 0
\(351\) 63.5003 + 291.997i 0.180912 + 0.831901i
\(352\) 0 0
\(353\) −143.945 + 83.1067i −0.407776 + 0.235430i −0.689834 0.723968i \(-0.742316\pi\)
0.282058 + 0.959397i \(0.408983\pi\)
\(354\) 0 0
\(355\) 14.6600 25.3918i 0.0412957 0.0715263i
\(356\) 0 0
\(357\) −59.6731 237.750i −0.167152 0.665967i
\(358\) 0 0
\(359\) 199.670i 0.556183i 0.960555 + 0.278091i \(0.0897018\pi\)
−0.960555 + 0.278091i \(0.910298\pi\)
\(360\) 0 0
\(361\) 671.998 1.86149
\(362\) 0 0
\(363\) −14.5915 15.0627i −0.0401970 0.0414950i
\(364\) 0 0
\(365\) −211.605 122.170i −0.579741 0.334714i
\(366\) 0 0
\(367\) −80.3209 139.120i −0.218858 0.379073i 0.735601 0.677415i \(-0.236900\pi\)
−0.954459 + 0.298342i \(0.903567\pi\)
\(368\) 0 0
\(369\) 125.036 + 233.394i 0.338852 + 0.632503i
\(370\) 0 0
\(371\) 187.054 107.996i 0.504188 0.291093i
\(372\) 0 0
\(373\) 85.6188 148.296i 0.229541 0.397577i −0.728131 0.685438i \(-0.759611\pi\)
0.957672 + 0.287861i \(0.0929442\pi\)
\(374\) 0 0
\(375\) 32.2561 + 9.19469i 0.0860163 + 0.0245192i
\(376\) 0 0
\(377\) 450.142i 1.19401i
\(378\) 0 0
\(379\) 297.486 0.784922 0.392461 0.919769i \(-0.371624\pi\)
0.392461 + 0.919769i \(0.371624\pi\)
\(380\) 0 0
\(381\) 75.6773 265.485i 0.198628 0.696812i
\(382\) 0 0
\(383\) 416.340 + 240.374i 1.08705 + 0.627608i 0.932789 0.360423i \(-0.117368\pi\)
0.154259 + 0.988030i \(0.450701\pi\)
\(384\) 0 0
\(385\) −77.2135 133.738i −0.200554 0.347371i
\(386\) 0 0
\(387\) −10.7567 + 338.396i −0.0277950 + 0.874407i
\(388\) 0 0
\(389\) 514.801 297.220i 1.32340 0.764062i 0.339126 0.940741i \(-0.389869\pi\)
0.984269 + 0.176678i \(0.0565352\pi\)
\(390\) 0 0
\(391\) 71.6418 124.087i 0.183227 0.317359i
\(392\) 0 0
\(393\) −345.794 + 334.977i −0.879884 + 0.852359i
\(394\) 0 0
\(395\) 223.111i 0.564837i
\(396\) 0 0
\(397\) −106.303 −0.267765 −0.133883 0.990997i \(-0.542745\pi\)
−0.133883 + 0.990997i \(0.542745\pi\)
\(398\) 0 0
\(399\) 604.885 151.821i 1.51600 0.380503i
\(400\) 0 0
\(401\) −26.3207 15.1963i −0.0656376 0.0378959i 0.466822 0.884351i \(-0.345399\pi\)
−0.532460 + 0.846455i \(0.678732\pi\)
\(402\) 0 0
\(403\) −176.448 305.616i −0.437835 0.758353i
\(404\) 0 0
\(405\) 11.5031 180.756i 0.0284027 0.446311i
\(406\) 0 0
\(407\) −420.275 + 242.646i −1.03262 + 0.596182i
\(408\) 0 0
\(409\) −36.7195 + 63.6000i −0.0897787 + 0.155501i −0.907418 0.420230i \(-0.861949\pi\)
0.817639 + 0.575732i \(0.195283\pi\)
\(410\) 0 0
\(411\) −66.3600 264.392i −0.161460 0.643290i
\(412\) 0 0
\(413\) 26.5066i 0.0641807i
\(414\) 0 0
\(415\) 191.706 0.461941
\(416\) 0 0
\(417\) −135.621 140.001i −0.325231 0.335733i
\(418\) 0 0
\(419\) −144.551 83.4568i −0.344992 0.199181i 0.317486 0.948263i \(-0.397162\pi\)
−0.662477 + 0.749082i \(0.730495\pi\)
\(420\) 0 0
\(421\) 152.746 + 264.563i 0.362816 + 0.628416i 0.988423 0.151722i \(-0.0484820\pi\)
−0.625607 + 0.780138i \(0.715149\pi\)
\(422\) 0 0
\(423\) −517.399 16.4467i −1.22317 0.0388811i
\(424\) 0 0
\(425\) 54.7014 31.5819i 0.128709 0.0743103i
\(426\) 0 0
\(427\) 214.216 371.032i 0.501676 0.868928i
\(428\) 0 0
\(429\) 340.939 + 97.1856i 0.794730 + 0.226540i
\(430\) 0 0
\(431\) 221.026i 0.512820i 0.966568 + 0.256410i \(0.0825398\pi\)
−0.966568 + 0.256410i \(0.917460\pi\)
\(432\) 0 0
\(433\) 194.055 0.448164 0.224082 0.974570i \(-0.428062\pi\)
0.224082 + 0.974570i \(0.428062\pi\)
\(434\) 0 0
\(435\) 74.7941 262.387i 0.171940 0.603189i
\(436\) 0 0
\(437\) 315.703 + 182.271i 0.722433 + 0.417097i
\(438\) 0 0
\(439\) −77.3450 133.965i −0.176184 0.305160i 0.764386 0.644759i \(-0.223042\pi\)
−0.940571 + 0.339598i \(0.889709\pi\)
\(440\) 0 0
\(441\) −56.8456 + 30.4539i −0.128902 + 0.0690566i
\(442\) 0 0
\(443\) 418.418 241.573i 0.944509 0.545313i 0.0531381 0.998587i \(-0.483078\pi\)
0.891371 + 0.453275i \(0.149744\pi\)
\(444\) 0 0
\(445\) −71.1486 + 123.233i −0.159884 + 0.276928i
\(446\) 0 0
\(447\) 310.924 301.197i 0.695579 0.673820i
\(448\) 0 0
\(449\) 679.146i 1.51257i −0.654240 0.756287i \(-0.727011\pi\)
0.654240 0.756287i \(-0.272989\pi\)
\(450\) 0 0
\(451\) 314.129 0.696516
\(452\) 0 0
\(453\) −397.981 + 99.8897i −0.878546 + 0.220507i
\(454\) 0 0
\(455\) −138.622 80.0335i −0.304664 0.175898i
\(456\) 0 0
\(457\) 40.2569 + 69.7270i 0.0880896 + 0.152576i 0.906704 0.421768i \(-0.138590\pi\)
−0.818614 + 0.574344i \(0.805257\pi\)
\(458\) 0 0
\(459\) −229.418 252.401i −0.499820 0.549893i
\(460\) 0 0
\(461\) 535.846 309.371i 1.16236 0.671087i 0.210489 0.977596i \(-0.432495\pi\)
0.951868 + 0.306510i \(0.0991612\pi\)
\(462\) 0 0
\(463\) 164.729 285.318i 0.355785 0.616238i −0.631467 0.775403i \(-0.717547\pi\)
0.987252 + 0.159165i \(0.0508801\pi\)
\(464\) 0 0
\(465\) 52.0709 + 207.461i 0.111980 + 0.446153i
\(466\) 0 0
\(467\) 216.349i 0.463275i 0.972802 + 0.231637i \(0.0744083\pi\)
−0.972802 + 0.231637i \(0.925592\pi\)
\(468\) 0 0
\(469\) −459.083 −0.978855
\(470\) 0 0
\(471\) 108.945 + 112.463i 0.231306 + 0.238775i
\(472\) 0 0
\(473\) 347.859 + 200.836i 0.735430 + 0.424601i
\(474\) 0 0
\(475\) 80.3507 + 139.172i 0.169159 + 0.292993i
\(476\) 0 0
\(477\) 158.467 255.375i 0.332215 0.535377i
\(478\) 0 0
\(479\) 119.965 69.2617i 0.250448 0.144596i −0.369521 0.929222i \(-0.620478\pi\)
0.619970 + 0.784626i \(0.287145\pi\)
\(480\) 0 0
\(481\) −251.508 + 435.625i −0.522886 + 0.905665i
\(482\) 0 0
\(483\) 211.652 + 60.3320i 0.438204 + 0.124911i
\(484\) 0 0
\(485\) 193.225i 0.398402i
\(486\) 0 0
\(487\) −93.0290 −0.191025 −0.0955123 0.995428i \(-0.530449\pi\)
−0.0955123 + 0.995428i \(0.530449\pi\)
\(488\) 0 0
\(489\) −84.8927 + 297.814i −0.173605 + 0.609027i
\(490\) 0 0
\(491\) 203.168 + 117.299i 0.413783 + 0.238898i 0.692414 0.721501i \(-0.256547\pi\)
−0.278631 + 0.960398i \(0.589881\pi\)
\(492\) 0 0
\(493\) −256.902 444.968i −0.521100 0.902572i
\(494\) 0 0
\(495\) −182.585 113.299i −0.368859 0.228886i
\(496\) 0 0
\(497\) 73.4474 42.4049i 0.147781 0.0853217i
\(498\) 0 0
\(499\) −330.575 + 572.573i −0.662476 + 1.14744i 0.317487 + 0.948262i \(0.397161\pi\)
−0.979963 + 0.199179i \(0.936172\pi\)
\(500\) 0 0
\(501\) 243.098 235.493i 0.485225 0.470047i
\(502\) 0 0
\(503\) 184.352i 0.366504i 0.983066 + 0.183252i \(0.0586624\pi\)
−0.983066 + 0.183252i \(0.941338\pi\)
\(504\) 0 0
\(505\) 98.5792 0.195206
\(506\) 0 0
\(507\) −135.334 + 33.9677i −0.266932 + 0.0669974i
\(508\) 0 0
\(509\) 702.274 + 405.458i 1.37971 + 0.796578i 0.992125 0.125255i \(-0.0399749\pi\)
0.387588 + 0.921833i \(0.373308\pi\)
\(510\) 0 0
\(511\) −353.385 612.082i −0.691557 1.19781i
\(512\) 0 0
\(513\) 642.159 583.685i 1.25177 1.13779i
\(514\) 0 0
\(515\) −181.782 + 104.952i −0.352974 + 0.203790i
\(516\) 0 0
\(517\) −307.074 + 531.868i −0.593954 + 1.02876i
\(518\) 0 0
\(519\) 95.9028 + 382.097i 0.184784 + 0.736217i
\(520\) 0 0
\(521\) 787.925i 1.51233i 0.654379 + 0.756167i \(0.272930\pi\)
−0.654379 + 0.756167i \(0.727070\pi\)
\(522\) 0 0
\(523\) −495.806 −0.948004 −0.474002 0.880524i \(-0.657191\pi\)
−0.474002 + 0.880524i \(0.657191\pi\)
\(524\) 0 0
\(525\) 67.5045 + 69.6844i 0.128580 + 0.132732i
\(526\) 0 0
\(527\) 348.839 + 201.402i 0.661934 + 0.382168i
\(528\) 0 0
\(529\) −200.177 346.717i −0.378406 0.655419i
\(530\) 0 0
\(531\) 17.4175 + 32.5116i 0.0328013 + 0.0612272i
\(532\) 0 0
\(533\) 281.979 162.801i 0.529041 0.305442i
\(534\) 0 0
\(535\) −154.868 + 268.239i −0.289472 + 0.501381i
\(536\) 0 0
\(537\) 857.088 + 244.315i 1.59607 + 0.454963i
\(538\) 0 0
\(539\) 76.5095i 0.141947i
\(540\) 0 0
\(541\) −395.636 −0.731305 −0.365652 0.930751i \(-0.619154\pi\)
−0.365652 + 0.930751i \(0.619154\pi\)
\(542\) 0 0
\(543\) −23.1232 + 81.1192i −0.0425842 + 0.149391i
\(544\) 0 0
\(545\) −342.241 197.593i −0.627966 0.362556i
\(546\) 0 0
\(547\) 80.8992 + 140.121i 0.147896 + 0.256164i 0.930450 0.366420i \(-0.119417\pi\)
−0.782554 + 0.622583i \(0.786083\pi\)
\(548\) 0 0
\(549\) 18.9404 595.850i 0.0344999 1.08534i
\(550\) 0 0
\(551\) 1132.09 653.612i 2.05461 1.18623i
\(552\) 0 0
\(553\) 322.681 558.899i 0.583509 1.01067i
\(554\) 0 0
\(555\) 218.986 212.135i 0.394569 0.382226i
\(556\) 0 0
\(557\) 199.042i 0.357347i 0.983908 + 0.178673i \(0.0571806\pi\)
−0.983908 + 0.178673i \(0.942819\pi\)
\(558\) 0 0
\(559\) 416.342 0.744799
\(560\) 0 0
\(561\) −392.486 + 98.5104i −0.699618 + 0.175598i
\(562\) 0 0
\(563\) 785.990 + 453.792i 1.39608 + 0.806024i 0.993979 0.109573i \(-0.0349484\pi\)
0.402096 + 0.915597i \(0.368282\pi\)
\(564\) 0 0
\(565\) 99.2038 + 171.826i 0.175582 + 0.304117i
\(566\) 0 0
\(567\) 290.239 436.162i 0.511886 0.769246i
\(568\) 0 0
\(569\) −776.399 + 448.254i −1.36450 + 0.787793i −0.990219 0.139523i \(-0.955443\pi\)
−0.374279 + 0.927316i \(0.622110\pi\)
\(570\) 0 0
\(571\) −304.808 + 527.943i −0.533815 + 0.924594i 0.465405 + 0.885098i \(0.345909\pi\)
−0.999220 + 0.0394965i \(0.987425\pi\)
\(572\) 0 0
\(573\) −6.69729 26.6834i −0.0116881 0.0465679i
\(574\) 0 0
\(575\) 56.7112i 0.0986281i
\(576\) 0 0
\(577\) 477.854 0.828170 0.414085 0.910238i \(-0.364102\pi\)
0.414085 + 0.910238i \(0.364102\pi\)
\(578\) 0 0
\(579\) −197.810 204.197i −0.341640 0.352673i
\(580\) 0 0
\(581\) 480.228 + 277.260i 0.826555 + 0.477212i
\(582\) 0 0
\(583\) −178.283 308.795i −0.305802 0.529665i
\(584\) 0 0
\(585\) −222.616 7.07637i −0.380541 0.0120964i
\(586\) 0 0
\(587\) 220.698 127.420i 0.375976 0.217070i −0.300090 0.953911i \(-0.597017\pi\)
0.676066 + 0.736841i \(0.263683\pi\)
\(588\) 0 0
\(589\) −512.409 + 887.518i −0.869964 + 1.50682i
\(590\) 0 0
\(591\) 771.268 + 219.852i 1.30502 + 0.372000i
\(592\) 0 0
\(593\) 604.184i 1.01886i 0.860512 + 0.509430i \(0.170144\pi\)
−0.860512 + 0.509430i \(0.829856\pi\)
\(594\) 0 0
\(595\) 182.705 0.307067
\(596\) 0 0
\(597\) −130.208 + 456.787i −0.218104 + 0.765137i
\(598\) 0 0
\(599\) 164.832 + 95.1657i 0.275178 + 0.158874i 0.631239 0.775589i \(-0.282547\pi\)
−0.356060 + 0.934463i \(0.615880\pi\)
\(600\) 0 0
\(601\) −468.662 811.746i −0.779804 1.35066i −0.932055 0.362318i \(-0.881986\pi\)
0.152251 0.988342i \(-0.451348\pi\)
\(602\) 0 0
\(603\) −563.087 + 301.663i −0.933809 + 0.500271i
\(604\) 0 0
\(605\) 13.5369 7.81556i 0.0223751 0.0129183i
\(606\) 0 0
\(607\) −483.997 + 838.308i −0.797360 + 1.38107i 0.123970 + 0.992286i \(0.460437\pi\)
−0.921330 + 0.388781i \(0.872896\pi\)
\(608\) 0 0
\(609\) 566.847 549.115i 0.930783 0.901666i
\(610\) 0 0
\(611\) 636.578i 1.04186i
\(612\) 0 0
\(613\) 14.3244 0.0233677 0.0116839 0.999932i \(-0.496281\pi\)
0.0116839 + 0.999932i \(0.496281\pi\)
\(614\) 0 0
\(615\) −191.416 + 48.0436i −0.311245 + 0.0781197i
\(616\) 0 0
\(617\) −924.580 533.807i −1.49851 0.865165i −0.498511 0.866884i \(-0.666119\pi\)
−0.999999 + 0.00171906i \(0.999453\pi\)
\(618\) 0 0
\(619\) 582.166 + 1008.34i 0.940494 + 1.62898i 0.764531 + 0.644586i \(0.222970\pi\)
0.175963 + 0.984397i \(0.443696\pi\)
\(620\) 0 0
\(621\) 299.246 65.0766i 0.481877 0.104793i
\(622\) 0 0
\(623\) −356.459 + 205.802i −0.572165 + 0.330340i
\(624\) 0 0
\(625\) −12.5000 + 21.6506i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) −250.630 998.564i −0.399730 1.59261i
\(628\) 0 0
\(629\) 574.157i 0.912809i
\(630\) 0 0
\(631\) 88.9538 0.140973 0.0704864 0.997513i \(-0.477545\pi\)
0.0704864 + 0.997513i \(0.477545\pi\)
\(632\) 0 0
\(633\) 662.885 + 684.291i 1.04721 + 1.08103i
\(634\) 0 0
\(635\) 178.196 + 102.882i 0.280624 + 0.162019i
\(636\) 0 0
\(637\) 39.6519 + 68.6791i 0.0622479 + 0.107816i
\(638\) 0 0
\(639\) 62.2225 100.274i 0.0973748 0.156923i
\(640\) 0 0
\(641\) 115.362 66.6040i 0.179971 0.103906i −0.407308 0.913291i \(-0.633532\pi\)
0.587279 + 0.809384i \(0.300199\pi\)
\(642\) 0 0
\(643\) −241.729 + 418.686i −0.375939 + 0.651145i −0.990467 0.137750i \(-0.956013\pi\)
0.614528 + 0.788895i \(0.289346\pi\)
\(644\) 0 0
\(645\) −242.685 69.1781i −0.376257 0.107253i
\(646\) 0 0
\(647\) 347.759i 0.537495i −0.963211 0.268748i \(-0.913390\pi\)
0.963211 0.268748i \(-0.0866097\pi\)
\(648\) 0 0
\(649\) 43.7580 0.0674237
\(650\) 0 0
\(651\) −169.608 + 595.006i −0.260534 + 0.913988i
\(652\) 0 0
\(653\) 751.488 + 433.872i 1.15082 + 0.664428i 0.949088 0.315011i \(-0.102008\pi\)
0.201736 + 0.979440i \(0.435342\pi\)
\(654\) 0 0
\(655\) −179.422 310.768i −0.273926 0.474454i
\(656\) 0 0
\(657\) −835.643 518.538i −1.27191 0.789251i
\(658\) 0 0
\(659\) −804.603 + 464.538i −1.22095 + 0.704913i −0.965120 0.261810i \(-0.915681\pi\)
−0.255826 + 0.966723i \(0.582347\pi\)
\(660\) 0 0
\(661\) 463.561 802.912i 0.701303 1.21469i −0.266706 0.963778i \(-0.585935\pi\)
0.968009 0.250915i \(-0.0807314\pi\)
\(662\) 0 0
\(663\) −301.263 + 291.838i −0.454393 + 0.440179i
\(664\) 0 0
\(665\) 464.839i 0.699005i
\(666\) 0 0
\(667\) 461.316 0.691629
\(668\) 0 0
\(669\) 360.783 90.5531i 0.539286 0.135356i
\(670\) 0 0
\(671\) −612.513 353.634i −0.912836 0.527026i
\(672\) 0 0
\(673\) −472.996 819.253i −0.702817 1.21732i −0.967473 0.252973i \(-0.918592\pi\)
0.264656 0.964343i \(-0.414742\pi\)
\(674\) 0 0
\(675\) 128.587 + 41.1140i 0.190499 + 0.0609097i
\(676\) 0 0
\(677\) 532.245 307.292i 0.786182 0.453902i −0.0524349 0.998624i \(-0.516698\pi\)
0.838617 + 0.544722i \(0.183365\pi\)
\(678\) 0 0
\(679\) −279.458 + 484.035i −0.411572 + 0.712864i
\(680\) 0 0
\(681\) 158.828 + 632.804i 0.233228 + 0.929227i
\(682\) 0 0
\(683\) 258.893i 0.379053i −0.981876 0.189527i \(-0.939305\pi\)
0.981876 0.189527i \(-0.0606954\pi\)
\(684\) 0 0
\(685\) 203.179 0.296611
\(686\) 0 0
\(687\) −156.456 161.509i −0.227739 0.235093i
\(688\) 0 0
\(689\) −320.072 184.794i −0.464546 0.268206i
\(690\) 0 0
\(691\) −485.487 840.888i −0.702586 1.21691i −0.967556 0.252658i \(-0.918695\pi\)
0.264969 0.964257i \(-0.414638\pi\)
\(692\) 0 0
\(693\) −293.519 547.886i −0.423549 0.790600i
\(694\) 0 0
\(695\) 125.820 72.6420i 0.181035 0.104521i
\(696\) 0 0
\(697\) −185.825 + 321.859i −0.266607 + 0.461778i
\(698\) 0 0
\(699\) 411.933 + 117.422i 0.589317 + 0.167986i
\(700\) 0 0
\(701\) 718.418i 1.02485i 0.858733 + 0.512424i \(0.171252\pi\)
−0.858733 + 0.512424i \(0.828748\pi\)
\(702\) 0 0
\(703\) 1460.77 2.07791
\(704\) 0 0
\(705\) 105.772 371.061i 0.150031 0.526327i
\(706\) 0 0
\(707\) 246.944 + 142.573i 0.349284 + 0.201659i
\(708\) 0 0
\(709\) 494.222 + 856.018i 0.697070 + 1.20736i 0.969478 + 0.245178i \(0.0788465\pi\)
−0.272408 + 0.962182i \(0.587820\pi\)
\(710\) 0 0
\(711\) 28.5307 897.550i 0.0401275 1.26238i
\(712\) 0 0
\(713\) −313.203 + 180.828i −0.439275 + 0.253615i
\(714\) 0 0
\(715\) −132.122 + 228.842i −0.184786 + 0.320058i
\(716\) 0 0
\(717\) 431.341 417.848i 0.601591 0.582772i
\(718\) 0 0
\(719\) 1280.53i 1.78099i −0.454994 0.890495i \(-0.650358\pi\)
0.454994 0.890495i \(-0.349642\pi\)
\(720\) 0 0
\(721\) −607.158 −0.842106
\(722\) 0 0
\(723\) 564.258 141.624i 0.780440 0.195883i
\(724\) 0 0
\(725\) 176.117 + 101.681i 0.242920 + 0.140250i
\(726\) 0 0
\(727\) −324.824 562.611i −0.446800 0.773881i 0.551376 0.834257i \(-0.314103\pi\)
−0.998176 + 0.0603766i \(0.980770\pi\)
\(728\) 0 0
\(729\) 69.3901 725.690i 0.0951853 0.995460i
\(730\) 0 0
\(731\) −411.557 + 237.613i −0.563006 + 0.325052i
\(732\) 0 0
\(733\) −585.044 + 1013.33i −0.798150 + 1.38244i 0.122669 + 0.992448i \(0.460855\pi\)
−0.920820 + 0.389989i \(0.872479\pi\)
\(734\) 0 0
\(735\) −11.7015 46.6214i −0.0159205 0.0634305i
\(736\) 0 0
\(737\) 757.869i 1.02832i
\(738\) 0 0
\(739\) −1175.25 −1.59033 −0.795164 0.606394i \(-0.792615\pi\)
−0.795164 + 0.606394i \(0.792615\pi\)
\(740\) 0 0
\(741\) −742.496 766.473i −1.00202 1.03438i
\(742\) 0 0
\(743\) 881.124 + 508.717i 1.18590 + 0.684680i 0.957372 0.288858i \(-0.0932754\pi\)
0.228528 + 0.973537i \(0.426609\pi\)
\(744\) 0 0
\(745\) 161.328 + 279.429i 0.216548 + 0.375073i
\(746\) 0 0
\(747\) 771.211 + 24.5147i 1.03241 + 0.0328175i
\(748\) 0 0
\(749\) −775.897 + 447.964i −1.03591 + 0.598083i
\(750\) 0 0
\(751\) −497.229 + 861.226i −0.662089 + 1.14677i 0.317977 + 0.948099i \(0.396997\pi\)
−0.980066 + 0.198673i \(0.936337\pi\)
\(752\) 0 0
\(753\) −869.240 247.779i −1.15437 0.329056i
\(754\) 0 0
\(755\) 305.839i 0.405084i
\(756\) 0 0
\(757\) −659.088 −0.870658 −0.435329 0.900271i \(-0.643368\pi\)
−0.435329 + 0.900271i \(0.643368\pi\)
\(758\) 0 0
\(759\) 99.5981 349.403i 0.131223 0.460346i
\(760\) 0 0
\(761\) 559.677 + 323.130i 0.735450 + 0.424612i 0.820413 0.571772i \(-0.193744\pi\)
−0.0849628 + 0.996384i \(0.527077\pi\)
\(762\) 0 0
\(763\) −571.550 989.954i −0.749083 1.29745i
\(764\) 0 0
\(765\) 224.096 120.055i 0.292937 0.156935i
\(766\) 0 0
\(767\) 39.2796 22.6781i 0.0512119 0.0295672i
\(768\) 0 0
\(769\) 123.429 213.784i 0.160505 0.278003i −0.774545 0.632519i \(-0.782021\pi\)
0.935050 + 0.354516i \(0.115354\pi\)
\(770\) 0 0
\(771\) −452.519 + 438.363i −0.586925 + 0.568565i
\(772\) 0 0
\(773\) 263.071i 0.340325i −0.985416 0.170162i \(-0.945571\pi\)
0.985416 0.170162i \(-0.0544292\pi\)
\(774\) 0 0
\(775\) −159.429 −0.205715
\(776\) 0 0
\(777\) 855.373 214.691i 1.10087 0.276307i
\(778\) 0 0
\(779\) −818.875 472.777i −1.05119 0.606903i
\(780\) 0 0
\(781\) −70.0034 121.249i −0.0896330 0.155249i
\(782\) 0 0
\(783\) 334.442 1045.99i 0.427128 1.33588i
\(784\) 0 0
\(785\) −101.071 + 58.3535i −0.128753 + 0.0743356i
\(786\) 0 0
\(787\) 538.388 932.515i 0.684102 1.18490i −0.289617 0.957143i \(-0.593528\pi\)
0.973718 0.227756i \(-0.0731388\pi\)
\(788\) 0 0
\(789\) −110.584 440.589i −0.140157 0.558415i
\(790\) 0 0
\(791\) 573.906i 0.725545i
\(792\) 0 0
\(793\) −733.100 −0.924463
\(794\) 0 0
\(795\) 155.865 + 160.898i 0.196057 + 0.202388i
\(796\) 0 0
\(797\) 791.487 + 456.965i 0.993082 + 0.573356i 0.906194 0.422862i \(-0.138974\pi\)
0.0868882 + 0.996218i \(0.472308\pi\)
\(798\) 0 0
\(799\) −363.304 629.262i −0.454699 0.787562i
\(800\) 0 0
\(801\) −301.982 + 486.654i −0.377006 + 0.607559i
\(802\) 0 0
\(803\) −1010.44 + 583.381i −1.25834 + 0.726501i
\(804\) 0 0
\(805\) −82.0202 + 142.063i −0.101888 + 0.176476i
\(806\) 0 0
\(807\) −1186.53 338.222i −1.47029 0.419111i
\(808\) 0 0
\(809\) 1008.67i 1.24681i −0.781897 0.623407i \(-0.785748\pi\)
0.781897 0.623407i \(-0.214252\pi\)
\(810\) 0 0
\(811\) −952.468 −1.17444 −0.587218 0.809429i \(-0.699777\pi\)
−0.587218 + 0.809429i \(0.699777\pi\)
\(812\) 0 0
\(813\) −209.840 + 736.144i −0.258105 + 0.905466i
\(814\) 0 0
\(815\) −199.896 115.410i −0.245271 0.141607i
\(816\) 0 0
\(817\) −604.535 1047.08i −0.739945 1.28162i
\(818\) 0 0
\(819\) −547.427 339.692i −0.668409 0.414765i
\(820\) 0 0
\(821\) −1222.35 + 705.724i −1.48885 + 0.859590i −0.999919 0.0127295i \(-0.995948\pi\)
−0.488935 + 0.872320i \(0.662615\pi\)
\(822\) 0 0
\(823\) 380.867 659.680i 0.462778 0.801556i −0.536320 0.844015i \(-0.680186\pi\)
0.999098 + 0.0424591i \(0.0135192\pi\)
\(824\) 0 0
\(825\) 115.037 111.439i 0.139439 0.135077i
\(826\) 0 0
\(827\) 718.144i 0.868373i 0.900823 + 0.434186i \(0.142964\pi\)
−0.900823 + 0.434186i \(0.857036\pi\)
\(828\) 0 0
\(829\) 400.411 0.483005 0.241503 0.970400i \(-0.422360\pi\)
0.241503 + 0.970400i \(0.422360\pi\)
\(830\) 0 0
\(831\) −539.932 + 135.518i −0.649738 + 0.163078i
\(832\) 0 0
\(833\) −78.3923 45.2598i −0.0941084 0.0543335i
\(834\) 0 0
\(835\) 126.136 + 218.474i 0.151061 + 0.261645i
\(836\) 0 0
\(837\) 182.946 + 841.253i 0.218574 + 1.00508i
\(838\) 0 0
\(839\) 614.302 354.667i 0.732183 0.422726i −0.0870370 0.996205i \(-0.527740\pi\)
0.819220 + 0.573479i \(0.194407\pi\)
\(840\) 0 0
\(841\) 406.624 704.293i 0.483500 0.837447i
\(842\) 0 0
\(843\) 76.0567 + 303.026i 0.0902214 + 0.359461i
\(844\) 0 0
\(845\) 104.001i 0.123078i
\(846\) 0 0
\(847\) 45.2139 0.0533813
\(848\) 0 0
\(849\) −108.242 111.738i −0.127494 0.131611i
\(850\) 0 0
\(851\) 446.439 + 257.751i 0.524605 + 0.302881i
\(852\) 0 0
\(853\) −443.113 767.495i −0.519476 0.899760i −0.999744 0.0226375i \(-0.992794\pi\)
0.480267 0.877122i \(-0.340540\pi\)
\(854\) 0 0
\(855\) 305.445 + 570.147i 0.357246 + 0.666838i
\(856\) 0 0
\(857\) 283.635 163.757i 0.330963 0.191081i −0.325306 0.945609i \(-0.605467\pi\)
0.656268 + 0.754527i \(0.272134\pi\)
\(858\) 0 0
\(859\) −35.0835 + 60.7664i −0.0408423 + 0.0707409i −0.885724 0.464212i \(-0.846337\pi\)
0.844882 + 0.534953i \(0.179671\pi\)
\(860\) 0 0
\(861\) −548.987 156.490i −0.637615 0.181754i
\(862\) 0 0
\(863\) 982.709i 1.13871i 0.822091 + 0.569356i \(0.192807\pi\)
−0.822091 + 0.569356i \(0.807193\pi\)
\(864\) 0 0
\(865\) −293.632 −0.339459
\(866\) 0 0
\(867\) −106.429 + 373.368i −0.122756 + 0.430643i
\(868\) 0 0
\(869\) −922.650 532.692i −1.06174 0.612994i
\(870\) 0 0
\(871\) 392.774 + 680.305i 0.450946 + 0.781062i
\(872\) 0 0
\(873\) −24.7090 + 777.323i −0.0283035 + 0.890405i
\(874\) 0 0
\(875\) −62.6258 + 36.1570i −0.0715723 + 0.0413223i
\(876\) 0 0
\(877\) −463.447 + 802.714i −0.528446 + 0.915296i 0.471004 + 0.882131i \(0.343892\pi\)
−0.999450 + 0.0331646i \(0.989441\pi\)
\(878\) 0 0
\(879\) 714.668 692.311i 0.813046 0.787612i
\(880\) 0 0
\(881\) 766.920i 0.870510i −0.900307 0.435255i \(-0.856658\pi\)
0.900307 0.435255i \(-0.143342\pi\)
\(882\) 0 0
\(883\) −1206.08 −1.36589 −0.682946 0.730469i \(-0.739301\pi\)
−0.682946 + 0.730469i \(0.739301\pi\)
\(884\) 0 0
\(885\) −26.6641 + 6.69245i −0.0301289 + 0.00756209i
\(886\) 0 0
\(887\) −651.741 376.283i −0.734771 0.424220i 0.0853943 0.996347i \(-0.472785\pi\)
−0.820165 + 0.572127i \(0.806118\pi\)
\(888\) 0 0
\(889\) 297.592 + 515.444i 0.334749 + 0.579802i
\(890\) 0 0
\(891\) −720.031 479.136i −0.808116 0.537751i
\(892\) 0 0
\(893\) 1600.97 924.320i 1.79280 1.03507i
\(894\) 0 0
\(895\) −332.142 + 575.286i −0.371108 + 0.642778i
\(896\) 0 0
\(897\) −91.6771 365.261i −0.102204 0.407203i
\(898\) 0 0
\(899\) 1296.87i 1.44257i
\(900\) 0 0
\(901\) 421.858 0.468211
\(902\) 0 0
\(903\) −507.884 524.284i −0.562440 0.580603i
\(904\) 0 0
\(905\) −54.4480 31.4356i −0.0601635 0.0347354i
\(906\) 0 0
\(907\) −177.370 307.213i −0.195556 0.338713i 0.751526 0.659703i \(-0.229318\pi\)
−0.947083 + 0.320989i \(0.895985\pi\)
\(908\) 0 0
\(909\) 396.573 + 12.6060i 0.436274 + 0.0138680i
\(910\) 0 0
\(911\) −280.940 + 162.201i −0.308387 + 0.178047i −0.646204 0.763164i \(-0.723645\pi\)
0.337818 + 0.941212i \(0.390311\pi\)
\(912\) 0 0
\(913\) 457.710 792.777i 0.501325 0.868321i
\(914\) 0 0
\(915\) 427.323 + 121.809i 0.467019 + 0.133125i
\(916\) 0 0
\(917\) 1037.98i 1.13193i
\(918\) 0 0
\(919\) 604.200 0.657453 0.328727 0.944425i \(-0.393381\pi\)
0.328727 + 0.944425i \(0.393381\pi\)
\(920\) 0 0
\(921\) −240.365 + 843.232i −0.260983 + 0.915561i
\(922\) 0 0
\(923\) −125.678 72.5600i −0.136162 0.0786133i
\(924\) 0 0
\(925\) 113.625 + 196.804i 0.122837 + 0.212761i
\(926\) 0 0
\(927\) −744.709 + 398.964i −0.803353 + 0.430381i
\(928\) 0 0
\(929\) −1417.48 + 818.384i −1.52582 + 0.880930i −0.526285 + 0.850308i \(0.676415\pi\)
−0.999531 + 0.0306220i \(0.990251\pi\)
\(930\) 0 0
\(931\) 115.150 199.446i 0.123684 0.214228i
\(932\) 0 0
\(933\) 426.192 412.859i 0.456797 0.442507i
\(934\) 0 0
\(935\) 301.615i 0.322583i
\(936\) 0 0
\(937\) −266.212 −0.284111 −0.142055 0.989859i \(-0.545371\pi\)
−0.142055 + 0.989859i \(0.545371\pi\)
\(938\) 0 0
\(939\) 627.626 157.528i 0.668398 0.167762i
\(940\) 0 0
\(941\) 140.374 + 81.0449i 0.149175 + 0.0861264i 0.572730 0.819744i \(-0.305884\pi\)
−0.423554 + 0.905871i \(0.639218\pi\)
\(942\) 0 0
\(943\) −166.842 288.979i −0.176927 0.306446i
\(944\) 0 0
\(945\) 262.652 + 288.965i 0.277939 + 0.305783i
\(946\) 0 0
\(947\) 690.598 398.717i 0.729248 0.421032i −0.0888989 0.996041i \(-0.528335\pi\)
0.818147 + 0.575009i \(0.195001\pi\)
\(948\) 0 0
\(949\) −604.687 + 1047.35i −0.637183 + 1.10363i
\(950\) 0 0
\(951\) −148.719 592.529i −0.156382 0.623059i
\(952\) 0 0
\(953\) 1382.90i 1.45110i 0.688168 + 0.725551i \(0.258415\pi\)
−0.688168 + 0.725551i \(0.741585\pi\)
\(954\) 0 0
\(955\) 20.5055 0.0214718
\(956\) 0 0
\(957\) −906.497 935.769i −0.947227 0.977816i
\(958\) 0 0
\(959\) 508.969 + 293.853i 0.530729 + 0.306416i
\(960\) 0 0
\(961\) −27.8509 48.2391i −0.0289811 0.0501968i
\(962\) 0 0
\(963\) −657.317 + 1059.29i −0.682573 + 1.09999i
\(964\) 0 0
\(965\) 183.513 105.952i 0.190169 0.109794i
\(966\) 0 0
\(967\) 184.756 320.006i 0.191061 0.330927i −0.754541 0.656252i \(-0.772141\pi\)
0.945602 + 0.325326i \(0.105474\pi\)
\(968\) 0 0
\(969\) 1171.40 + 333.910i 1.20887 + 0.344593i
\(970\) 0 0
\(971\) 961.450i 0.990165i −0.868846 0.495082i \(-0.835138\pi\)
0.868846 0.495082i \(-0.164862\pi\)
\(972\) 0 0
\(973\) 420.243 0.431904
\(974\) 0 0
\(975\) 45.5094 159.653i 0.0466763 0.163746i
\(976\) 0 0
\(977\) −1487.96 859.076i −1.52299 0.879300i −0.999630 0.0271901i \(-0.991344\pi\)
−0.523362 0.852110i \(-0.675323\pi\)
\(978\) 0 0
\(979\) 339.744 + 588.454i 0.347032 + 0.601077i
\(980\) 0 0
\(981\) −1351.53 838.660i −1.37771 0.854903i
\(982\) 0 0
\(983\) 1109.96 640.833i 1.12915 0.651915i 0.185430 0.982658i \(-0.440632\pi\)
0.943721 + 0.330742i \(0.107299\pi\)
\(984\) 0 0
\(985\) −298.884 + 517.683i −0.303436 + 0.525567i
\(986\) 0 0
\(987\) 801.619 776.543i 0.812177 0.786771i
\(988\) 0 0
\(989\) 426.678i 0.431423i
\(990\) 0 0
\(991\) −952.926 −0.961581 −0.480790 0.876836i \(-0.659650\pi\)
−0.480790 + 0.876836i \(0.659650\pi\)
\(992\) 0 0
\(993\) −273.583 + 68.6670i −0.275512 + 0.0691510i
\(994\) 0 0
\(995\) −306.600 177.015i −0.308140 0.177905i
\(996\) 0 0
\(997\) −884.833 1532.57i −0.887495 1.53719i −0.842827 0.538185i \(-0.819110\pi\)
−0.0446679 0.999002i \(-0.514223\pi\)
\(998\) 0 0
\(999\) 908.082 825.394i 0.908991 0.826220i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.3.bs.c.401.4 16
3.2 odd 2 2160.3.bs.c.881.6 16
4.3 odd 2 45.3.i.a.41.6 yes 16
9.2 odd 6 inner 720.3.bs.c.641.4 16
9.7 even 3 2160.3.bs.c.1601.6 16
12.11 even 2 135.3.i.a.71.3 16
20.3 even 4 225.3.i.b.149.5 32
20.7 even 4 225.3.i.b.149.12 32
20.19 odd 2 225.3.j.b.176.3 16
36.7 odd 6 135.3.i.a.116.3 16
36.11 even 6 45.3.i.a.11.6 16
36.23 even 6 405.3.c.a.161.5 16
36.31 odd 6 405.3.c.a.161.12 16
60.23 odd 4 675.3.i.c.449.12 32
60.47 odd 4 675.3.i.c.449.5 32
60.59 even 2 675.3.j.b.476.6 16
180.7 even 12 675.3.i.c.224.12 32
180.43 even 12 675.3.i.c.224.5 32
180.47 odd 12 225.3.i.b.74.5 32
180.79 odd 6 675.3.j.b.251.6 16
180.83 odd 12 225.3.i.b.74.12 32
180.119 even 6 225.3.j.b.101.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.i.a.11.6 16 36.11 even 6
45.3.i.a.41.6 yes 16 4.3 odd 2
135.3.i.a.71.3 16 12.11 even 2
135.3.i.a.116.3 16 36.7 odd 6
225.3.i.b.74.5 32 180.47 odd 12
225.3.i.b.74.12 32 180.83 odd 12
225.3.i.b.149.5 32 20.3 even 4
225.3.i.b.149.12 32 20.7 even 4
225.3.j.b.101.3 16 180.119 even 6
225.3.j.b.176.3 16 20.19 odd 2
405.3.c.a.161.5 16 36.23 even 6
405.3.c.a.161.12 16 36.31 odd 6
675.3.i.c.224.5 32 180.43 even 12
675.3.i.c.224.12 32 180.7 even 12
675.3.i.c.449.5 32 60.47 odd 4
675.3.i.c.449.12 32 60.23 odd 4
675.3.j.b.251.6 16 180.79 odd 6
675.3.j.b.476.6 16 60.59 even 2
720.3.bs.c.401.4 16 1.1 even 1 trivial
720.3.bs.c.641.4 16 9.2 odd 6 inner
2160.3.bs.c.881.6 16 3.2 odd 2
2160.3.bs.c.1601.6 16 9.7 even 3