Properties

Label 672.4.i.c.209.44
Level $672$
Weight $4$
Character 672.209
Analytic conductor $39.649$
Analytic rank $0$
Dimension $80$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,4,Mod(209,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.209"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 672.i (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.6492835239\)
Analytic rank: \(0\)
Dimension: \(80\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 209.44
Character \(\chi\) \(=\) 672.209
Dual form 672.4.i.c.209.42

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.04870 + 5.08923i) q^{3} +3.71228i q^{5} +(-15.6071 - 9.97081i) q^{7} +(-24.8005 + 10.6741i) q^{9} +48.1150 q^{11} +69.5724 q^{13} +(-18.8927 + 3.89307i) q^{15} +48.9235 q^{17} -62.2883 q^{19} +(34.3765 - 89.8847i) q^{21} +63.4952i q^{23} +111.219 q^{25} +(-80.3314 - 115.021i) q^{27} +20.2759 q^{29} +77.3838i q^{31} +(50.4582 + 244.868i) q^{33} +(37.0145 - 57.9382i) q^{35} +151.811i q^{37} +(72.9606 + 354.070i) q^{39} +284.960 q^{41} +441.143i q^{43} +(-39.6255 - 92.0663i) q^{45} -615.429 q^{47} +(144.166 + 311.232i) q^{49} +(51.3061 + 248.983i) q^{51} +129.453 q^{53} +178.616i q^{55} +(-65.3217 - 316.999i) q^{57} +406.934i q^{59} -576.405 q^{61} +(493.494 + 80.6876i) q^{63} +258.272i q^{65} -665.046i q^{67} +(-323.142 + 66.5875i) q^{69} +129.482i q^{71} -290.352i q^{73} +(116.635 + 566.018i) q^{75} +(-750.938 - 479.745i) q^{77} +130.921 q^{79} +(501.125 - 529.447i) q^{81} -763.300i q^{83} +181.618i q^{85} +(21.2633 + 103.189i) q^{87} -269.586 q^{89} +(-1085.83 - 693.693i) q^{91} +(-393.824 + 81.1524i) q^{93} -231.232i q^{95} +1379.26i q^{97} +(-1193.27 + 513.586i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 64 q^{7} + 104 q^{9} + 8 q^{15} - 976 q^{25} - 568 q^{39} - 4048 q^{49} - 1448 q^{57} + 2152 q^{63} - 4992 q^{79} + 1568 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.04870 + 5.08923i 0.201822 + 0.979422i
\(4\) 0 0
\(5\) 3.71228i 0.332037i 0.986123 + 0.166018i \(0.0530911\pi\)
−0.986123 + 0.166018i \(0.946909\pi\)
\(6\) 0 0
\(7\) −15.6071 9.97081i −0.842707 0.538373i
\(8\) 0 0
\(9\) −24.8005 + 10.6741i −0.918535 + 0.395339i
\(10\) 0 0
\(11\) 48.1150 1.31884 0.659419 0.751776i \(-0.270802\pi\)
0.659419 + 0.751776i \(0.270802\pi\)
\(12\) 0 0
\(13\) 69.5724 1.48430 0.742150 0.670234i \(-0.233806\pi\)
0.742150 + 0.670234i \(0.233806\pi\)
\(14\) 0 0
\(15\) −18.8927 + 3.89307i −0.325204 + 0.0670125i
\(16\) 0 0
\(17\) 48.9235 0.697982 0.348991 0.937126i \(-0.386524\pi\)
0.348991 + 0.937126i \(0.386524\pi\)
\(18\) 0 0
\(19\) −62.2883 −0.752100 −0.376050 0.926599i \(-0.622718\pi\)
−0.376050 + 0.926599i \(0.622718\pi\)
\(20\) 0 0
\(21\) 34.3765 89.8847i 0.357217 0.934021i
\(22\) 0 0
\(23\) 63.4952i 0.575638i 0.957685 + 0.287819i \(0.0929301\pi\)
−0.957685 + 0.287819i \(0.907070\pi\)
\(24\) 0 0
\(25\) 111.219 0.889752
\(26\) 0 0
\(27\) −80.3314 115.021i −0.572585 0.819846i
\(28\) 0 0
\(29\) 20.2759 0.129832 0.0649161 0.997891i \(-0.479322\pi\)
0.0649161 + 0.997891i \(0.479322\pi\)
\(30\) 0 0
\(31\) 77.3838i 0.448340i 0.974550 + 0.224170i \(0.0719671\pi\)
−0.974550 + 0.224170i \(0.928033\pi\)
\(32\) 0 0
\(33\) 50.4582 + 244.868i 0.266171 + 1.29170i
\(34\) 0 0
\(35\) 37.0145 57.9382i 0.178760 0.279810i
\(36\) 0 0
\(37\) 151.811i 0.674527i 0.941410 + 0.337263i \(0.109501\pi\)
−0.941410 + 0.337263i \(0.890499\pi\)
\(38\) 0 0
\(39\) 72.9606 + 354.070i 0.299565 + 1.45376i
\(40\) 0 0
\(41\) 284.960 1.08544 0.542722 0.839912i \(-0.317394\pi\)
0.542722 + 0.839912i \(0.317394\pi\)
\(42\) 0 0
\(43\) 441.143i 1.56450i 0.622963 + 0.782252i \(0.285929\pi\)
−0.622963 + 0.782252i \(0.714071\pi\)
\(44\) 0 0
\(45\) −39.6255 92.0663i −0.131267 0.304988i
\(46\) 0 0
\(47\) −615.429 −1.90999 −0.954996 0.296620i \(-0.904141\pi\)
−0.954996 + 0.296620i \(0.904141\pi\)
\(48\) 0 0
\(49\) 144.166 + 311.232i 0.420309 + 0.907381i
\(50\) 0 0
\(51\) 51.3061 + 248.983i 0.140868 + 0.683619i
\(52\) 0 0
\(53\) 129.453 0.335504 0.167752 0.985829i \(-0.446349\pi\)
0.167752 + 0.985829i \(0.446349\pi\)
\(54\) 0 0
\(55\) 178.616i 0.437903i
\(56\) 0 0
\(57\) −65.3217 316.999i −0.151791 0.736624i
\(58\) 0 0
\(59\) 406.934i 0.897938i 0.893547 + 0.448969i \(0.148209\pi\)
−0.893547 + 0.448969i \(0.851791\pi\)
\(60\) 0 0
\(61\) −576.405 −1.20985 −0.604927 0.796281i \(-0.706798\pi\)
−0.604927 + 0.796281i \(0.706798\pi\)
\(62\) 0 0
\(63\) 493.494 + 80.6876i 0.986896 + 0.161360i
\(64\) 0 0
\(65\) 258.272i 0.492842i
\(66\) 0 0
\(67\) 665.046i 1.21266i −0.795212 0.606331i \(-0.792641\pi\)
0.795212 0.606331i \(-0.207359\pi\)
\(68\) 0 0
\(69\) −323.142 + 66.5875i −0.563792 + 0.116177i
\(70\) 0 0
\(71\) 129.482i 0.216432i 0.994127 + 0.108216i \(0.0345139\pi\)
−0.994127 + 0.108216i \(0.965486\pi\)
\(72\) 0 0
\(73\) 290.352i 0.465523i −0.972534 0.232761i \(-0.925224\pi\)
0.972534 0.232761i \(-0.0747762\pi\)
\(74\) 0 0
\(75\) 116.635 + 566.018i 0.179572 + 0.871442i
\(76\) 0 0
\(77\) −750.938 479.745i −1.11139 0.710027i
\(78\) 0 0
\(79\) 130.921 0.186452 0.0932261 0.995645i \(-0.470282\pi\)
0.0932261 + 0.995645i \(0.470282\pi\)
\(80\) 0 0
\(81\) 501.125 529.447i 0.687415 0.726265i
\(82\) 0 0
\(83\) 763.300i 1.00943i −0.863285 0.504717i \(-0.831597\pi\)
0.863285 0.504717i \(-0.168403\pi\)
\(84\) 0 0
\(85\) 181.618i 0.231756i
\(86\) 0 0
\(87\) 21.2633 + 103.189i 0.0262031 + 0.127161i
\(88\) 0 0
\(89\) −269.586 −0.321080 −0.160540 0.987029i \(-0.551324\pi\)
−0.160540 + 0.987029i \(0.551324\pi\)
\(90\) 0 0
\(91\) −1085.83 693.693i −1.25083 0.799107i
\(92\) 0 0
\(93\) −393.824 + 81.1524i −0.439114 + 0.0904851i
\(94\) 0 0
\(95\) 231.232i 0.249725i
\(96\) 0 0
\(97\) 1379.26i 1.44374i 0.692030 + 0.721869i \(0.256717\pi\)
−0.692030 + 0.721869i \(0.743283\pi\)
\(98\) 0 0
\(99\) −1193.27 + 513.586i −1.21140 + 0.521388i
\(100\) 0 0
\(101\) 117.695i 0.115952i 0.998318 + 0.0579759i \(0.0184647\pi\)
−0.998318 + 0.0579759i \(0.981535\pi\)
\(102\) 0 0
\(103\) 1590.34i 1.52137i 0.649122 + 0.760684i \(0.275137\pi\)
−0.649122 + 0.760684i \(0.724863\pi\)
\(104\) 0 0
\(105\) 333.677 + 127.615i 0.310129 + 0.118609i
\(106\) 0 0
\(107\) 443.102 0.400339 0.200169 0.979761i \(-0.435851\pi\)
0.200169 + 0.979761i \(0.435851\pi\)
\(108\) 0 0
\(109\) 1655.46i 1.45472i 0.686256 + 0.727360i \(0.259253\pi\)
−0.686256 + 0.727360i \(0.740747\pi\)
\(110\) 0 0
\(111\) −772.598 + 159.204i −0.660647 + 0.136135i
\(112\) 0 0
\(113\) 73.7875i 0.0614278i 0.999528 + 0.0307139i \(0.00977807\pi\)
−0.999528 + 0.0307139i \(0.990222\pi\)
\(114\) 0 0
\(115\) −235.712 −0.191133
\(116\) 0 0
\(117\) −1725.43 + 742.626i −1.36338 + 0.586801i
\(118\) 0 0
\(119\) −763.556 487.807i −0.588194 0.375775i
\(120\) 0 0
\(121\) 984.052 0.739332
\(122\) 0 0
\(123\) 298.837 + 1450.22i 0.219067 + 1.06311i
\(124\) 0 0
\(125\) 876.912i 0.627467i
\(126\) 0 0
\(127\) 1960.00 1.36947 0.684733 0.728794i \(-0.259919\pi\)
0.684733 + 0.728794i \(0.259919\pi\)
\(128\) 0 0
\(129\) −2245.08 + 462.626i −1.53231 + 0.315752i
\(130\) 0 0
\(131\) 1179.46i 0.786642i −0.919401 0.393321i \(-0.871326\pi\)
0.919401 0.393321i \(-0.128674\pi\)
\(132\) 0 0
\(133\) 972.142 + 621.064i 0.633800 + 0.404911i
\(134\) 0 0
\(135\) 426.991 298.213i 0.272219 0.190119i
\(136\) 0 0
\(137\) 2694.83i 1.68054i 0.542165 + 0.840272i \(0.317605\pi\)
−0.542165 + 0.840272i \(0.682395\pi\)
\(138\) 0 0
\(139\) −2581.98 −1.57554 −0.787771 0.615968i \(-0.788765\pi\)
−0.787771 + 0.615968i \(0.788765\pi\)
\(140\) 0 0
\(141\) −645.401 3132.06i −0.385479 1.87069i
\(142\) 0 0
\(143\) 3347.47 1.95755
\(144\) 0 0
\(145\) 75.2698i 0.0431091i
\(146\) 0 0
\(147\) −1432.74 + 1060.08i −0.803881 + 0.594790i
\(148\) 0 0
\(149\) 3252.26 1.78816 0.894079 0.447910i \(-0.147832\pi\)
0.894079 + 0.447910i \(0.147832\pi\)
\(150\) 0 0
\(151\) −74.9590 −0.0403978 −0.0201989 0.999796i \(-0.506430\pi\)
−0.0201989 + 0.999796i \(0.506430\pi\)
\(152\) 0 0
\(153\) −1213.33 + 522.217i −0.641121 + 0.275939i
\(154\) 0 0
\(155\) −287.271 −0.148865
\(156\) 0 0
\(157\) −706.105 −0.358938 −0.179469 0.983764i \(-0.557438\pi\)
−0.179469 + 0.983764i \(0.557438\pi\)
\(158\) 0 0
\(159\) 135.757 + 658.815i 0.0677123 + 0.328600i
\(160\) 0 0
\(161\) 633.099 990.979i 0.309908 0.485094i
\(162\) 0 0
\(163\) 1520.38i 0.730586i 0.930893 + 0.365293i \(0.119031\pi\)
−0.930893 + 0.365293i \(0.880969\pi\)
\(164\) 0 0
\(165\) −909.020 + 187.315i −0.428891 + 0.0883786i
\(166\) 0 0
\(167\) 1959.42 0.907933 0.453966 0.891019i \(-0.350009\pi\)
0.453966 + 0.891019i \(0.350009\pi\)
\(168\) 0 0
\(169\) 2643.32 1.20315
\(170\) 0 0
\(171\) 1544.78 664.874i 0.690831 0.297334i
\(172\) 0 0
\(173\) 3842.54i 1.68869i −0.535800 0.844345i \(-0.679990\pi\)
0.535800 0.844345i \(-0.320010\pi\)
\(174\) 0 0
\(175\) −1735.81 1108.94i −0.749800 0.479018i
\(176\) 0 0
\(177\) −2070.98 + 426.752i −0.879461 + 0.181224i
\(178\) 0 0
\(179\) 2750.46 1.14849 0.574243 0.818685i \(-0.305296\pi\)
0.574243 + 0.818685i \(0.305296\pi\)
\(180\) 0 0
\(181\) 1299.66 0.533718 0.266859 0.963736i \(-0.414014\pi\)
0.266859 + 0.963736i \(0.414014\pi\)
\(182\) 0 0
\(183\) −604.476 2933.45i −0.244176 1.18496i
\(184\) 0 0
\(185\) −563.564 −0.223968
\(186\) 0 0
\(187\) 2353.95 0.920525
\(188\) 0 0
\(189\) 106.890 + 2596.12i 0.0411380 + 0.999153i
\(190\) 0 0
\(191\) 3914.42i 1.48292i 0.670998 + 0.741459i \(0.265866\pi\)
−0.670998 + 0.741459i \(0.734134\pi\)
\(192\) 0 0
\(193\) −3648.18 −1.36063 −0.680316 0.732919i \(-0.738157\pi\)
−0.680316 + 0.732919i \(0.738157\pi\)
\(194\) 0 0
\(195\) −1314.41 + 270.850i −0.482701 + 0.0994666i
\(196\) 0 0
\(197\) 79.0843 0.0286016 0.0143008 0.999898i \(-0.495448\pi\)
0.0143008 + 0.999898i \(0.495448\pi\)
\(198\) 0 0
\(199\) 710.675i 0.253158i 0.991957 + 0.126579i \(0.0403997\pi\)
−0.991957 + 0.126579i \(0.959600\pi\)
\(200\) 0 0
\(201\) 3384.57 697.434i 1.18771 0.244742i
\(202\) 0 0
\(203\) −316.449 202.167i −0.109411 0.0698982i
\(204\) 0 0
\(205\) 1057.85i 0.360408i
\(206\) 0 0
\(207\) −677.757 1574.71i −0.227572 0.528744i
\(208\) 0 0
\(209\) −2997.00 −0.991898
\(210\) 0 0
\(211\) 2273.94i 0.741915i −0.928650 0.370958i \(-0.879029\pi\)
0.928650 0.370958i \(-0.120971\pi\)
\(212\) 0 0
\(213\) −658.964 + 135.788i −0.211979 + 0.0436809i
\(214\) 0 0
\(215\) −1637.65 −0.519473
\(216\) 0 0
\(217\) 771.579 1207.74i 0.241374 0.377819i
\(218\) 0 0
\(219\) 1477.67 304.493i 0.455944 0.0939530i
\(220\) 0 0
\(221\) 3403.72 1.03602
\(222\) 0 0
\(223\) 3196.79i 0.959968i 0.877277 + 0.479984i \(0.159358\pi\)
−0.877277 + 0.479984i \(0.840642\pi\)
\(224\) 0 0
\(225\) −2758.28 + 1187.17i −0.817268 + 0.351753i
\(226\) 0 0
\(227\) 3103.70i 0.907487i −0.891132 0.453744i \(-0.850088\pi\)
0.891132 0.453744i \(-0.149912\pi\)
\(228\) 0 0
\(229\) −693.650 −0.200165 −0.100082 0.994979i \(-0.531911\pi\)
−0.100082 + 0.994979i \(0.531911\pi\)
\(230\) 0 0
\(231\) 1654.02 4324.80i 0.471112 1.23182i
\(232\) 0 0
\(233\) 3188.80i 0.896589i 0.893886 + 0.448294i \(0.147968\pi\)
−0.893886 + 0.448294i \(0.852032\pi\)
\(234\) 0 0
\(235\) 2284.65i 0.634187i
\(236\) 0 0
\(237\) 137.297 + 666.285i 0.0376302 + 0.182615i
\(238\) 0 0
\(239\) 1879.03i 0.508554i 0.967131 + 0.254277i \(0.0818375\pi\)
−0.967131 + 0.254277i \(0.918162\pi\)
\(240\) 0 0
\(241\) 3281.84i 0.877187i −0.898685 0.438594i \(-0.855477\pi\)
0.898685 0.438594i \(-0.144523\pi\)
\(242\) 0 0
\(243\) 3220.01 + 1995.11i 0.850056 + 0.526692i
\(244\) 0 0
\(245\) −1155.38 + 535.185i −0.301284 + 0.139558i
\(246\) 0 0
\(247\) −4333.54 −1.11634
\(248\) 0 0
\(249\) 3884.60 800.472i 0.988662 0.203726i
\(250\) 0 0
\(251\) 1680.42i 0.422578i 0.977424 + 0.211289i \(0.0677661\pi\)
−0.977424 + 0.211289i \(0.932234\pi\)
\(252\) 0 0
\(253\) 3055.07i 0.759173i
\(254\) 0 0
\(255\) −924.295 + 190.463i −0.226987 + 0.0467735i
\(256\) 0 0
\(257\) 6706.25 1.62772 0.813861 0.581059i \(-0.197362\pi\)
0.813861 + 0.581059i \(0.197362\pi\)
\(258\) 0 0
\(259\) 1513.67 2369.33i 0.363147 0.568428i
\(260\) 0 0
\(261\) −502.851 + 216.428i −0.119256 + 0.0513277i
\(262\) 0 0
\(263\) 4758.38i 1.11564i 0.829961 + 0.557822i \(0.188363\pi\)
−0.829961 + 0.557822i \(0.811637\pi\)
\(264\) 0 0
\(265\) 480.566i 0.111400i
\(266\) 0 0
\(267\) −282.715 1371.99i −0.0648011 0.314473i
\(268\) 0 0
\(269\) 2644.09i 0.599306i 0.954048 + 0.299653i \(0.0968708\pi\)
−0.954048 + 0.299653i \(0.903129\pi\)
\(270\) 0 0
\(271\) 7621.80i 1.70846i −0.519899 0.854228i \(-0.674030\pi\)
0.519899 0.854228i \(-0.325970\pi\)
\(272\) 0 0
\(273\) 2391.65 6253.49i 0.530218 1.38637i
\(274\) 0 0
\(275\) 5351.30 1.17344
\(276\) 0 0
\(277\) 3715.63i 0.805960i −0.915209 0.402980i \(-0.867974\pi\)
0.915209 0.402980i \(-0.132026\pi\)
\(278\) 0 0
\(279\) −826.006 1919.15i −0.177246 0.411816i
\(280\) 0 0
\(281\) 7823.45i 1.66088i −0.557106 0.830441i \(-0.688088\pi\)
0.557106 0.830441i \(-0.311912\pi\)
\(282\) 0 0
\(283\) 4118.81 0.865151 0.432575 0.901598i \(-0.357605\pi\)
0.432575 + 0.901598i \(0.357605\pi\)
\(284\) 0 0
\(285\) 1176.79 242.493i 0.244586 0.0504001i
\(286\) 0 0
\(287\) −4447.41 2841.28i −0.914711 0.584374i
\(288\) 0 0
\(289\) −2519.49 −0.512821
\(290\) 0 0
\(291\) −7019.37 + 1446.43i −1.41403 + 0.291379i
\(292\) 0 0
\(293\) 6032.10i 1.20273i −0.798976 0.601363i \(-0.794624\pi\)
0.798976 0.601363i \(-0.205376\pi\)
\(294\) 0 0
\(295\) −1510.66 −0.298148
\(296\) 0 0
\(297\) −3865.14 5534.24i −0.755146 1.08124i
\(298\) 0 0
\(299\) 4417.51i 0.854420i
\(300\) 0 0
\(301\) 4398.55 6884.98i 0.842286 1.31842i
\(302\) 0 0
\(303\) −598.979 + 123.427i −0.113566 + 0.0234017i
\(304\) 0 0
\(305\) 2139.78i 0.401716i
\(306\) 0 0
\(307\) −2031.61 −0.377688 −0.188844 0.982007i \(-0.560474\pi\)
−0.188844 + 0.982007i \(0.560474\pi\)
\(308\) 0 0
\(309\) −8093.61 + 1667.79i −1.49006 + 0.307046i
\(310\) 0 0
\(311\) 6093.07 1.11095 0.555477 0.831532i \(-0.312536\pi\)
0.555477 + 0.831532i \(0.312536\pi\)
\(312\) 0 0
\(313\) 2761.91i 0.498762i −0.968405 0.249381i \(-0.919773\pi\)
0.968405 0.249381i \(-0.0802271\pi\)
\(314\) 0 0
\(315\) −299.535 + 1831.99i −0.0535775 + 0.327686i
\(316\) 0 0
\(317\) 3870.63 0.685792 0.342896 0.939373i \(-0.388592\pi\)
0.342896 + 0.939373i \(0.388592\pi\)
\(318\) 0 0
\(319\) 975.573 0.171228
\(320\) 0 0
\(321\) 464.681 + 2255.05i 0.0807974 + 0.392101i
\(322\) 0 0
\(323\) −3047.36 −0.524953
\(324\) 0 0
\(325\) 7737.77 1.32066
\(326\) 0 0
\(327\) −8425.02 + 1736.08i −1.42478 + 0.293595i
\(328\) 0 0
\(329\) 9605.09 + 6136.33i 1.60956 + 1.02829i
\(330\) 0 0
\(331\) 4264.16i 0.708095i 0.935227 + 0.354048i \(0.115195\pi\)
−0.935227 + 0.354048i \(0.884805\pi\)
\(332\) 0 0
\(333\) −1620.45 3764.97i −0.266667 0.619577i
\(334\) 0 0
\(335\) 2468.84 0.402648
\(336\) 0 0
\(337\) −3256.10 −0.526323 −0.263162 0.964752i \(-0.584765\pi\)
−0.263162 + 0.964752i \(0.584765\pi\)
\(338\) 0 0
\(339\) −375.521 + 77.3809i −0.0601637 + 0.0123975i
\(340\) 0 0
\(341\) 3723.32i 0.591288i
\(342\) 0 0
\(343\) 853.212 6294.89i 0.134312 0.990939i
\(344\) 0 0
\(345\) −247.192 1199.59i −0.0385749 0.187200i
\(346\) 0 0
\(347\) 6076.58 0.940081 0.470041 0.882645i \(-0.344239\pi\)
0.470041 + 0.882645i \(0.344239\pi\)
\(348\) 0 0
\(349\) −6858.46 −1.05193 −0.525967 0.850505i \(-0.676296\pi\)
−0.525967 + 0.850505i \(0.676296\pi\)
\(350\) 0 0
\(351\) −5588.85 8002.30i −0.849887 1.21690i
\(352\) 0 0
\(353\) −6340.22 −0.955965 −0.477983 0.878369i \(-0.658632\pi\)
−0.477983 + 0.878369i \(0.658632\pi\)
\(354\) 0 0
\(355\) −480.674 −0.0718635
\(356\) 0 0
\(357\) 1681.82 4397.47i 0.249331 0.651930i
\(358\) 0 0
\(359\) 79.4813i 0.0116849i −0.999983 0.00584243i \(-0.998140\pi\)
0.999983 0.00584243i \(-0.00185971\pi\)
\(360\) 0 0
\(361\) −2979.17 −0.434345
\(362\) 0 0
\(363\) 1031.97 + 5008.06i 0.149214 + 0.724119i
\(364\) 0 0
\(365\) 1077.87 0.154571
\(366\) 0 0
\(367\) 11025.8i 1.56824i −0.620610 0.784120i \(-0.713115\pi\)
0.620610 0.784120i \(-0.286885\pi\)
\(368\) 0 0
\(369\) −7067.13 + 3041.70i −0.997019 + 0.429118i
\(370\) 0 0
\(371\) −2020.39 1290.75i −0.282732 0.180626i
\(372\) 0 0
\(373\) 5947.81i 0.825646i −0.910811 0.412823i \(-0.864543\pi\)
0.910811 0.412823i \(-0.135457\pi\)
\(374\) 0 0
\(375\) −4462.80 + 919.617i −0.614555 + 0.126637i
\(376\) 0 0
\(377\) 1410.64 0.192710
\(378\) 0 0
\(379\) 4855.67i 0.658098i −0.944313 0.329049i \(-0.893272\pi\)
0.944313 0.329049i \(-0.106728\pi\)
\(380\) 0 0
\(381\) 2055.46 + 9974.91i 0.276389 + 1.34129i
\(382\) 0 0
\(383\) −4314.03 −0.575553 −0.287777 0.957698i \(-0.592916\pi\)
−0.287777 + 0.957698i \(0.592916\pi\)
\(384\) 0 0
\(385\) 1780.95 2787.69i 0.235755 0.369023i
\(386\) 0 0
\(387\) −4708.82 10940.5i −0.618509 1.43705i
\(388\) 0 0
\(389\) 1492.00 0.194466 0.0972330 0.995262i \(-0.469001\pi\)
0.0972330 + 0.995262i \(0.469001\pi\)
\(390\) 0 0
\(391\) 3106.41i 0.401785i
\(392\) 0 0
\(393\) 6002.55 1236.90i 0.770454 0.158762i
\(394\) 0 0
\(395\) 486.015i 0.0619090i
\(396\) 0 0
\(397\) 2577.45 0.325840 0.162920 0.986639i \(-0.447909\pi\)
0.162920 + 0.986639i \(0.447909\pi\)
\(398\) 0 0
\(399\) −2141.25 + 5598.76i −0.268663 + 0.702478i
\(400\) 0 0
\(401\) 3185.37i 0.396682i 0.980133 + 0.198341i \(0.0635554\pi\)
−0.980133 + 0.198341i \(0.936445\pi\)
\(402\) 0 0
\(403\) 5383.78i 0.665471i
\(404\) 0 0
\(405\) 1965.46 + 1860.32i 0.241147 + 0.228247i
\(406\) 0 0
\(407\) 7304.36i 0.889592i
\(408\) 0 0
\(409\) 9157.04i 1.10706i −0.832830 0.553529i \(-0.813281\pi\)
0.832830 0.553529i \(-0.186719\pi\)
\(410\) 0 0
\(411\) −13714.6 + 2826.06i −1.64596 + 0.339172i
\(412\) 0 0
\(413\) 4057.47 6351.09i 0.483426 0.756699i
\(414\) 0 0
\(415\) 2833.58 0.335169
\(416\) 0 0
\(417\) −2707.72 13140.3i −0.317980 1.54312i
\(418\) 0 0
\(419\) 16278.2i 1.89796i −0.315339 0.948979i \(-0.602118\pi\)
0.315339 0.948979i \(-0.397882\pi\)
\(420\) 0 0
\(421\) 14.4956i 0.00167808i −1.00000 0.000839038i \(-0.999733\pi\)
1.00000 0.000839038i \(-0.000267074\pi\)
\(422\) 0 0
\(423\) 15262.9 6569.18i 1.75439 0.755093i
\(424\) 0 0
\(425\) 5441.22 0.621031
\(426\) 0 0
\(427\) 8996.03 + 5747.22i 1.01955 + 0.651353i
\(428\) 0 0
\(429\) 3510.50 + 17036.1i 0.395078 + 1.91727i
\(430\) 0 0
\(431\) 6800.15i 0.759981i −0.924990 0.379991i \(-0.875927\pi\)
0.924990 0.379991i \(-0.124073\pi\)
\(432\) 0 0
\(433\) 11155.5i 1.23811i 0.785349 + 0.619053i \(0.212483\pi\)
−0.785349 + 0.619053i \(0.787517\pi\)
\(434\) 0 0
\(435\) −383.065 + 78.9355i −0.0422220 + 0.00870038i
\(436\) 0 0
\(437\) 3955.01i 0.432938i
\(438\) 0 0
\(439\) 12426.7i 1.35101i 0.737357 + 0.675504i \(0.236074\pi\)
−0.737357 + 0.675504i \(0.763926\pi\)
\(440\) 0 0
\(441\) −6897.51 6179.84i −0.744792 0.667297i
\(442\) 0 0
\(443\) 10870.0 1.16580 0.582900 0.812544i \(-0.301918\pi\)
0.582900 + 0.812544i \(0.301918\pi\)
\(444\) 0 0
\(445\) 1000.78i 0.106610i
\(446\) 0 0
\(447\) 3410.64 + 16551.5i 0.360890 + 1.75136i
\(448\) 0 0
\(449\) 11786.4i 1.23883i 0.785063 + 0.619416i \(0.212631\pi\)
−0.785063 + 0.619416i \(0.787369\pi\)
\(450\) 0 0
\(451\) 13710.8 1.43153
\(452\) 0 0
\(453\) −78.6095 381.483i −0.00815319 0.0395665i
\(454\) 0 0
\(455\) 2575.18 4030.90i 0.265333 0.415321i
\(456\) 0 0
\(457\) −1151.19 −0.117834 −0.0589171 0.998263i \(-0.518765\pi\)
−0.0589171 + 0.998263i \(0.518765\pi\)
\(458\) 0 0
\(459\) −3930.09 5627.24i −0.399654 0.572238i
\(460\) 0 0
\(461\) 1149.15i 0.116098i 0.998314 + 0.0580491i \(0.0184880\pi\)
−0.998314 + 0.0580491i \(0.981512\pi\)
\(462\) 0 0
\(463\) −511.258 −0.0513179 −0.0256590 0.999671i \(-0.508168\pi\)
−0.0256590 + 0.999671i \(0.508168\pi\)
\(464\) 0 0
\(465\) −301.261 1461.99i −0.0300444 0.145802i
\(466\) 0 0
\(467\) 7738.29i 0.766779i −0.923587 0.383389i \(-0.874757\pi\)
0.923587 0.383389i \(-0.125243\pi\)
\(468\) 0 0
\(469\) −6631.05 + 10379.5i −0.652864 + 1.02192i
\(470\) 0 0
\(471\) −740.492 3593.53i −0.0724418 0.351552i
\(472\) 0 0
\(473\) 21225.6i 2.06333i
\(474\) 0 0
\(475\) −6927.64 −0.669183
\(476\) 0 0
\(477\) −3210.49 + 1381.80i −0.308173 + 0.132638i
\(478\) 0 0
\(479\) 15169.4 1.44699 0.723493 0.690332i \(-0.242535\pi\)
0.723493 + 0.690332i \(0.242535\pi\)
\(480\) 0 0
\(481\) 10561.8i 1.00120i
\(482\) 0 0
\(483\) 5707.25 + 2182.74i 0.537658 + 0.205628i
\(484\) 0 0
\(485\) −5120.20 −0.479374
\(486\) 0 0
\(487\) 7078.96 0.658683 0.329341 0.944211i \(-0.393173\pi\)
0.329341 + 0.944211i \(0.393173\pi\)
\(488\) 0 0
\(489\) −7737.57 + 1594.42i −0.715552 + 0.147449i
\(490\) 0 0
\(491\) 8864.05 0.814723 0.407361 0.913267i \(-0.366449\pi\)
0.407361 + 0.913267i \(0.366449\pi\)
\(492\) 0 0
\(493\) 991.967 0.0906206
\(494\) 0 0
\(495\) −1906.58 4429.77i −0.173120 0.402229i
\(496\) 0 0
\(497\) 1291.04 2020.85i 0.116521 0.182389i
\(498\) 0 0
\(499\) 9294.42i 0.833818i 0.908948 + 0.416909i \(0.136887\pi\)
−0.908948 + 0.416909i \(0.863113\pi\)
\(500\) 0 0
\(501\) 2054.85 + 9971.95i 0.183241 + 0.889249i
\(502\) 0 0
\(503\) −3930.02 −0.348372 −0.174186 0.984713i \(-0.555729\pi\)
−0.174186 + 0.984713i \(0.555729\pi\)
\(504\) 0 0
\(505\) −436.919 −0.0385003
\(506\) 0 0
\(507\) 2772.05 + 13452.4i 0.242822 + 1.17839i
\(508\) 0 0
\(509\) 4139.73i 0.360491i −0.983622 0.180246i \(-0.942311\pi\)
0.983622 0.180246i \(-0.0576893\pi\)
\(510\) 0 0
\(511\) −2895.05 + 4531.57i −0.250625 + 0.392299i
\(512\) 0 0
\(513\) 5003.70 + 7164.47i 0.430641 + 0.616606i
\(514\) 0 0
\(515\) −5903.80 −0.505150
\(516\) 0 0
\(517\) −29611.4 −2.51897
\(518\) 0 0
\(519\) 19555.6 4029.68i 1.65394 0.340815i
\(520\) 0 0
\(521\) −15730.9 −1.32281 −0.661406 0.750028i \(-0.730040\pi\)
−0.661406 + 0.750028i \(0.730040\pi\)
\(522\) 0 0
\(523\) −12687.5 −1.06078 −0.530388 0.847755i \(-0.677954\pi\)
−0.530388 + 0.847755i \(0.677954\pi\)
\(524\) 0 0
\(525\) 3823.32 9996.88i 0.317835 0.831047i
\(526\) 0 0
\(527\) 3785.89i 0.312933i
\(528\) 0 0
\(529\) 8135.36 0.668641
\(530\) 0 0
\(531\) −4343.68 10092.2i −0.354990 0.824788i
\(532\) 0 0
\(533\) 19825.3 1.61113
\(534\) 0 0
\(535\) 1644.92i 0.132927i
\(536\) 0 0
\(537\) 2884.41 + 13997.7i 0.231790 + 1.12485i
\(538\) 0 0
\(539\) 6936.54 + 14974.9i 0.554319 + 1.19669i
\(540\) 0 0
\(541\) 16674.9i 1.32516i −0.748991 0.662580i \(-0.769462\pi\)
0.748991 0.662580i \(-0.230538\pi\)
\(542\) 0 0
\(543\) 1362.95 + 6614.26i 0.107716 + 0.522735i
\(544\) 0 0
\(545\) −6145.54 −0.483020
\(546\) 0 0
\(547\) 3533.79i 0.276223i −0.990417 0.138111i \(-0.955897\pi\)
0.990417 0.138111i \(-0.0441032\pi\)
\(548\) 0 0
\(549\) 14295.1 6152.63i 1.11129 0.478302i
\(550\) 0 0
\(551\) −1262.95 −0.0976469
\(552\) 0 0
\(553\) −2043.30 1305.39i −0.157125 0.100381i
\(554\) 0 0
\(555\) −591.009 2868.10i −0.0452017 0.219359i
\(556\) 0 0
\(557\) −8507.84 −0.647197 −0.323599 0.946194i \(-0.604893\pi\)
−0.323599 + 0.946194i \(0.604893\pi\)
\(558\) 0 0
\(559\) 30691.4i 2.32219i
\(560\) 0 0
\(561\) 2468.59 + 11979.8i 0.185783 + 0.901582i
\(562\) 0 0
\(563\) 12127.1i 0.907808i −0.891051 0.453904i \(-0.850031\pi\)
0.891051 0.453904i \(-0.149969\pi\)
\(564\) 0 0
\(565\) −273.920 −0.0203963
\(566\) 0 0
\(567\) −13100.2 + 3266.54i −0.970290 + 0.241943i
\(568\) 0 0
\(569\) 16103.5i 1.18646i −0.805034 0.593228i \(-0.797853\pi\)
0.805034 0.593228i \(-0.202147\pi\)
\(570\) 0 0
\(571\) 16824.4i 1.23307i 0.787329 + 0.616533i \(0.211463\pi\)
−0.787329 + 0.616533i \(0.788537\pi\)
\(572\) 0 0
\(573\) −19921.4 + 4105.05i −1.45240 + 0.299286i
\(574\) 0 0
\(575\) 7061.87i 0.512175i
\(576\) 0 0
\(577\) 12917.3i 0.931986i −0.884788 0.465993i \(-0.845697\pi\)
0.884788 0.465993i \(-0.154303\pi\)
\(578\) 0 0
\(579\) −3825.85 18566.4i −0.274606 1.33263i
\(580\) 0 0
\(581\) −7610.71 + 11912.9i −0.543452 + 0.850657i
\(582\) 0 0
\(583\) 6228.63 0.442476
\(584\) 0 0
\(585\) −2756.84 6405.27i −0.194840 0.452693i
\(586\) 0 0
\(587\) 15149.6i 1.06523i 0.846357 + 0.532617i \(0.178791\pi\)
−0.846357 + 0.532617i \(0.821209\pi\)
\(588\) 0 0
\(589\) 4820.10i 0.337197i
\(590\) 0 0
\(591\) 82.9357 + 402.478i 0.00577245 + 0.0280131i
\(592\) 0 0
\(593\) 5091.10 0.352558 0.176279 0.984340i \(-0.443594\pi\)
0.176279 + 0.984340i \(0.443594\pi\)
\(594\) 0 0
\(595\) 1810.88 2834.54i 0.124771 0.195302i
\(596\) 0 0
\(597\) −3616.78 + 745.285i −0.247948 + 0.0510929i
\(598\) 0 0
\(599\) 18901.6i 1.28931i −0.764472 0.644657i \(-0.777000\pi\)
0.764472 0.644657i \(-0.223000\pi\)
\(600\) 0 0
\(601\) 28238.3i 1.91658i 0.285803 + 0.958288i \(0.407740\pi\)
−0.285803 + 0.958288i \(0.592260\pi\)
\(602\) 0 0
\(603\) 7098.80 + 16493.5i 0.479412 + 1.11387i
\(604\) 0 0
\(605\) 3653.08i 0.245486i
\(606\) 0 0
\(607\) 11435.7i 0.764683i −0.924021 0.382342i \(-0.875118\pi\)
0.924021 0.382342i \(-0.124882\pi\)
\(608\) 0 0
\(609\) 697.013 1822.49i 0.0463783 0.121266i
\(610\) 0 0
\(611\) −42816.9 −2.83500
\(612\) 0 0
\(613\) 577.455i 0.0380476i 0.999819 + 0.0190238i \(0.00605583\pi\)
−0.999819 + 0.0190238i \(0.993944\pi\)
\(614\) 0 0
\(615\) −5383.65 + 1109.37i −0.352991 + 0.0727383i
\(616\) 0 0
\(617\) 22282.8i 1.45393i −0.686677 0.726963i \(-0.740931\pi\)
0.686677 0.726963i \(-0.259069\pi\)
\(618\) 0 0
\(619\) −16401.1 −1.06497 −0.532484 0.846440i \(-0.678741\pi\)
−0.532484 + 0.846440i \(0.678741\pi\)
\(620\) 0 0
\(621\) 7303.30 5100.66i 0.471934 0.329601i
\(622\) 0 0
\(623\) 4207.48 + 2688.00i 0.270576 + 0.172861i
\(624\) 0 0
\(625\) 10647.0 0.681409
\(626\) 0 0
\(627\) −3142.95 15252.4i −0.200187 0.971487i
\(628\) 0 0
\(629\) 7427.10i 0.470808i
\(630\) 0 0
\(631\) −6542.50 −0.412762 −0.206381 0.978472i \(-0.566169\pi\)
−0.206381 + 0.978472i \(0.566169\pi\)
\(632\) 0 0
\(633\) 11572.6 2384.68i 0.726648 0.149735i
\(634\) 0 0
\(635\) 7276.09i 0.454713i
\(636\) 0 0
\(637\) 10030.0 + 21653.1i 0.623865 + 1.34683i
\(638\) 0 0
\(639\) −1382.11 3211.21i −0.0855641 0.198801i
\(640\) 0 0
\(641\) 634.500i 0.0390971i −0.999809 0.0195486i \(-0.993777\pi\)
0.999809 0.0195486i \(-0.00622290\pi\)
\(642\) 0 0
\(643\) −4543.63 −0.278668 −0.139334 0.990245i \(-0.544496\pi\)
−0.139334 + 0.990245i \(0.544496\pi\)
\(644\) 0 0
\(645\) −1717.40 8334.36i −0.104841 0.508783i
\(646\) 0 0
\(647\) −18802.6 −1.14252 −0.571258 0.820771i \(-0.693544\pi\)
−0.571258 + 0.820771i \(0.693544\pi\)
\(648\) 0 0
\(649\) 19579.6i 1.18423i
\(650\) 0 0
\(651\) 6955.62 + 2660.18i 0.418759 + 0.160155i
\(652\) 0 0
\(653\) −20232.4 −1.21249 −0.606243 0.795279i \(-0.707324\pi\)
−0.606243 + 0.795279i \(0.707324\pi\)
\(654\) 0 0
\(655\) 4378.50 0.261194
\(656\) 0 0
\(657\) 3099.26 + 7200.87i 0.184039 + 0.427599i
\(658\) 0 0
\(659\) −13420.3 −0.793295 −0.396648 0.917971i \(-0.629827\pi\)
−0.396648 + 0.917971i \(0.629827\pi\)
\(660\) 0 0
\(661\) 8321.89 0.489689 0.244844 0.969562i \(-0.421263\pi\)
0.244844 + 0.969562i \(0.421263\pi\)
\(662\) 0 0
\(663\) 3569.49 + 17322.3i 0.209091 + 1.01470i
\(664\) 0 0
\(665\) −2305.57 + 3608.87i −0.134445 + 0.210445i
\(666\) 0 0
\(667\) 1287.42i 0.0747364i
\(668\) 0 0
\(669\) −16269.2 + 3352.47i −0.940214 + 0.193743i
\(670\) 0 0
\(671\) −27733.7 −1.59560
\(672\) 0 0
\(673\) 2322.47 0.133023 0.0665117 0.997786i \(-0.478813\pi\)
0.0665117 + 0.997786i \(0.478813\pi\)
\(674\) 0 0
\(675\) −8934.37 12792.5i −0.509458 0.729459i
\(676\) 0 0
\(677\) 1313.39i 0.0745606i −0.999305 0.0372803i \(-0.988131\pi\)
0.999305 0.0372803i \(-0.0118694\pi\)
\(678\) 0 0
\(679\) 13752.3 21526.3i 0.777270 1.21665i
\(680\) 0 0
\(681\) 15795.4 3254.85i 0.888813 0.183151i
\(682\) 0 0
\(683\) 20367.6 1.14106 0.570532 0.821276i \(-0.306737\pi\)
0.570532 + 0.821276i \(0.306737\pi\)
\(684\) 0 0
\(685\) −10004.0 −0.558002
\(686\) 0 0
\(687\) −727.431 3530.14i −0.0403977 0.196046i
\(688\) 0 0
\(689\) 9006.35 0.497989
\(690\) 0 0
\(691\) −19327.1 −1.06402 −0.532010 0.846738i \(-0.678563\pi\)
−0.532010 + 0.846738i \(0.678563\pi\)
\(692\) 0 0
\(693\) 23744.5 + 3882.28i 1.30155 + 0.212808i
\(694\) 0 0
\(695\) 9585.03i 0.523138i
\(696\) 0 0
\(697\) 13941.2 0.757621
\(698\) 0 0
\(699\) −16228.5 + 3344.09i −0.878139 + 0.180952i
\(700\) 0 0
\(701\) −7068.43 −0.380843 −0.190422 0.981702i \(-0.560985\pi\)
−0.190422 + 0.981702i \(0.560985\pi\)
\(702\) 0 0
\(703\) 9456.02i 0.507312i
\(704\) 0 0
\(705\) 11627.1 2395.91i 0.621137 0.127993i
\(706\) 0 0
\(707\) 1173.52 1836.89i 0.0624253 0.0977134i
\(708\) 0 0
\(709\) 5102.93i 0.270303i −0.990825 0.135151i \(-0.956848\pi\)
0.990825 0.135151i \(-0.0431520\pi\)
\(710\) 0 0
\(711\) −3246.89 + 1397.47i −0.171263 + 0.0737118i
\(712\) 0 0
\(713\) −4913.50 −0.258082
\(714\) 0 0
\(715\) 12426.8i 0.649979i
\(716\) 0 0
\(717\) −9562.82 + 1970.54i −0.498089 + 0.102638i
\(718\) 0 0
\(719\) 2163.33 0.112209 0.0561046 0.998425i \(-0.482132\pi\)
0.0561046 + 0.998425i \(0.482132\pi\)
\(720\) 0 0
\(721\) 15857.0 24820.7i 0.819064 1.28207i
\(722\) 0 0
\(723\) 16702.0 3441.67i 0.859137 0.177036i
\(724\) 0 0
\(725\) 2255.06 0.115518
\(726\) 0 0
\(727\) 24985.1i 1.27462i 0.770609 + 0.637309i \(0.219952\pi\)
−0.770609 + 0.637309i \(0.780048\pi\)
\(728\) 0 0
\(729\) −6776.74 + 18479.6i −0.344294 + 0.938862i
\(730\) 0 0
\(731\) 21582.3i 1.09200i
\(732\) 0 0
\(733\) 2600.09 0.131018 0.0655092 0.997852i \(-0.479133\pi\)
0.0655092 + 0.997852i \(0.479133\pi\)
\(734\) 0 0
\(735\) −3935.33 5318.74i −0.197492 0.266918i
\(736\) 0 0
\(737\) 31998.7i 1.59930i
\(738\) 0 0
\(739\) 17370.8i 0.864675i −0.901712 0.432338i \(-0.857689\pi\)
0.901712 0.432338i \(-0.142311\pi\)
\(740\) 0 0
\(741\) −4544.59 22054.4i −0.225303 1.09337i
\(742\) 0 0
\(743\) 28215.9i 1.39319i 0.717463 + 0.696597i \(0.245303\pi\)
−0.717463 + 0.696597i \(0.754697\pi\)
\(744\) 0 0
\(745\) 12073.3i 0.593734i
\(746\) 0 0
\(747\) 8147.57 + 18930.2i 0.399068 + 0.927201i
\(748\) 0 0
\(749\) −6915.55 4418.08i −0.337368 0.215532i
\(750\) 0 0
\(751\) 33427.0 1.62419 0.812097 0.583522i \(-0.198326\pi\)
0.812097 + 0.583522i \(0.198326\pi\)
\(752\) 0 0
\(753\) −8552.02 + 1762.25i −0.413882 + 0.0852856i
\(754\) 0 0
\(755\) 278.269i 0.0134136i
\(756\) 0 0
\(757\) 24841.4i 1.19270i 0.802723 + 0.596352i \(0.203384\pi\)
−0.802723 + 0.596352i \(0.796616\pi\)
\(758\) 0 0
\(759\) −15548.0 + 3203.85i −0.743551 + 0.153218i
\(760\) 0 0
\(761\) −20004.6 −0.952912 −0.476456 0.879198i \(-0.658079\pi\)
−0.476456 + 0.879198i \(0.658079\pi\)
\(762\) 0 0
\(763\) 16506.3 25837.0i 0.783182 1.22590i
\(764\) 0 0
\(765\) −1938.62 4504.21i −0.0916220 0.212876i
\(766\) 0 0
\(767\) 28311.4i 1.33281i
\(768\) 0 0
\(769\) 9604.90i 0.450405i 0.974312 + 0.225203i \(0.0723044\pi\)
−0.974312 + 0.225203i \(0.927696\pi\)
\(770\) 0 0
\(771\) 7032.85 + 34129.6i 0.328511 + 1.59423i
\(772\) 0 0
\(773\) 4885.24i 0.227309i −0.993520 0.113655i \(-0.963744\pi\)
0.993520 0.113655i \(-0.0362557\pi\)
\(774\) 0 0
\(775\) 8606.55i 0.398911i
\(776\) 0 0
\(777\) 13645.4 + 5218.71i 0.630023 + 0.240953i
\(778\) 0 0
\(779\) −17749.6 −0.816363
\(780\) 0 0
\(781\) 6230.03i 0.285439i
\(782\) 0 0
\(783\) −1628.79 2332.16i −0.0743400 0.106442i
\(784\) 0 0
\(785\) 2621.26i 0.119181i
\(786\) 0 0
\(787\) 34277.8 1.55257 0.776284 0.630384i \(-0.217103\pi\)
0.776284 + 0.630384i \(0.217103\pi\)
\(788\) 0 0
\(789\) −24216.5 + 4990.11i −1.09269 + 0.225162i
\(790\) 0 0
\(791\) 735.721 1151.61i 0.0330711 0.0517656i
\(792\) 0 0
\(793\) −40101.9 −1.79579
\(794\) 0 0
\(795\) −2445.71 + 503.970i −0.109107 + 0.0224830i
\(796\) 0 0
\(797\) 20736.8i 0.921624i −0.887498 0.460812i \(-0.847558\pi\)
0.887498 0.460812i \(-0.152442\pi\)
\(798\) 0 0
\(799\) −30109.0 −1.33314
\(800\) 0 0
\(801\) 6685.87 2877.61i 0.294923 0.126935i
\(802\) 0 0
\(803\) 13970.3i 0.613949i
\(804\) 0 0
\(805\) 3678.80 + 2350.24i 0.161069 + 0.102901i
\(806\) 0 0
\(807\) −13456.4 + 2772.86i −0.586973 + 0.120953i
\(808\) 0 0
\(809\) 15223.1i 0.661576i −0.943705 0.330788i \(-0.892686\pi\)
0.943705 0.330788i \(-0.107314\pi\)
\(810\) 0 0
\(811\) −34460.7 −1.49208 −0.746042 0.665899i \(-0.768048\pi\)
−0.746042 + 0.665899i \(0.768048\pi\)
\(812\) 0 0
\(813\) 38789.1 7992.98i 1.67330 0.344805i
\(814\) 0 0
\(815\) −5644.09 −0.242581
\(816\) 0 0
\(817\) 27478.0i 1.17666i
\(818\) 0 0
\(819\) 34333.6 + 5613.63i 1.46485 + 0.239507i
\(820\) 0 0
\(821\) −8486.07 −0.360738 −0.180369 0.983599i \(-0.557729\pi\)
−0.180369 + 0.983599i \(0.557729\pi\)
\(822\) 0 0
\(823\) −21594.4 −0.914622 −0.457311 0.889307i \(-0.651187\pi\)
−0.457311 + 0.889307i \(0.651187\pi\)
\(824\) 0 0
\(825\) 5611.91 + 27234.0i 0.236826 + 1.14929i
\(826\) 0 0
\(827\) 11423.5 0.480330 0.240165 0.970732i \(-0.422798\pi\)
0.240165 + 0.970732i \(0.422798\pi\)
\(828\) 0 0
\(829\) 6869.52 0.287802 0.143901 0.989592i \(-0.454035\pi\)
0.143901 + 0.989592i \(0.454035\pi\)
\(830\) 0 0
\(831\) 18909.7 3896.59i 0.789375 0.162661i
\(832\) 0 0
\(833\) 7053.11 + 15226.5i 0.293368 + 0.633336i
\(834\) 0 0
\(835\) 7273.94i 0.301467i
\(836\) 0 0
\(837\) 8900.78 6216.35i 0.367570 0.256713i
\(838\) 0 0
\(839\) 29613.1 1.21854 0.609272 0.792961i \(-0.291462\pi\)
0.609272 + 0.792961i \(0.291462\pi\)
\(840\) 0 0
\(841\) −23977.9 −0.983144
\(842\) 0 0
\(843\) 39815.3 8204.45i 1.62670 0.335203i
\(844\) 0 0
\(845\) 9812.74i 0.399489i
\(846\) 0 0
\(847\) −15358.2 9811.79i −0.623040 0.398037i
\(848\) 0 0
\(849\) 4319.39 + 20961.5i 0.174607 + 0.847348i
\(850\) 0 0
\(851\) −9639.25 −0.388283
\(852\) 0 0
\(853\) 15110.8 0.606545 0.303273 0.952904i \(-0.401921\pi\)
0.303273 + 0.952904i \(0.401921\pi\)
\(854\) 0 0
\(855\) 2468.20 + 5734.65i 0.0987260 + 0.229381i
\(856\) 0 0
\(857\) 36848.3 1.46875 0.734373 0.678747i \(-0.237477\pi\)
0.734373 + 0.678747i \(0.237477\pi\)
\(858\) 0 0
\(859\) 35305.1 1.40232 0.701162 0.713002i \(-0.252665\pi\)
0.701162 + 0.713002i \(0.252665\pi\)
\(860\) 0 0
\(861\) 9795.91 25613.5i 0.387740 1.01383i
\(862\) 0 0
\(863\) 48135.9i 1.89868i −0.314244 0.949342i \(-0.601751\pi\)
0.314244 0.949342i \(-0.398249\pi\)
\(864\) 0 0
\(865\) 14264.6 0.560707
\(866\) 0 0
\(867\) −2642.19 12822.3i −0.103499 0.502268i
\(868\) 0 0
\(869\) 6299.25 0.245900
\(870\) 0 0
\(871\) 46268.9i 1.79995i
\(872\) 0 0
\(873\) −14722.4 34206.3i −0.570766 1.32612i
\(874\) 0 0
\(875\) 8743.52 13686.1i 0.337811 0.528771i
\(876\) 0 0
\(877\) 22331.1i 0.859825i −0.902871 0.429912i \(-0.858544\pi\)
0.902871 0.429912i \(-0.141456\pi\)
\(878\) 0 0
\(879\) 30698.7 6325.86i 1.17798 0.242737i
\(880\) 0 0
\(881\) 9542.16 0.364908 0.182454 0.983214i \(-0.441596\pi\)
0.182454 + 0.983214i \(0.441596\pi\)
\(882\) 0 0
\(883\) 31638.4i 1.20579i −0.797819 0.602897i \(-0.794013\pi\)
0.797819 0.602897i \(-0.205987\pi\)
\(884\) 0 0
\(885\) −1584.23 7688.07i −0.0601731 0.292013i
\(886\) 0 0
\(887\) 368.960 0.0139667 0.00698335 0.999976i \(-0.497777\pi\)
0.00698335 + 0.999976i \(0.497777\pi\)
\(888\) 0 0
\(889\) −30590.1 19542.8i −1.15406 0.737284i
\(890\) 0 0
\(891\) 24111.6 25474.3i 0.906588 0.957826i
\(892\) 0 0
\(893\) 38334.0 1.43651
\(894\) 0 0
\(895\) 10210.5i 0.381340i
\(896\) 0 0
\(897\) −22481.7 + 4632.65i −0.836837 + 0.172441i
\(898\) 0 0
\(899\) 1569.02i 0.0582090i
\(900\) 0 0
\(901\) 6333.29 0.234176
\(902\) 0 0
\(903\) 39652.0 + 15164.9i 1.46128 + 0.558868i
\(904\) 0 0
\(905\) 4824.71i 0.177214i
\(906\) 0 0
\(907\) 13767.1i 0.504003i −0.967727 0.252001i \(-0.918911\pi\)
0.967727 0.252001i \(-0.0810888\pi\)
\(908\) 0 0
\(909\) −1256.30 2918.90i −0.0458403 0.106506i
\(910\) 0 0
\(911\) 12013.8i 0.436921i −0.975846 0.218461i \(-0.929896\pi\)
0.975846 0.218461i \(-0.0701035\pi\)
\(912\) 0 0
\(913\) 36726.1i 1.33128i
\(914\) 0 0
\(915\) 10889.8 2243.99i 0.393449 0.0810753i
\(916\) 0 0
\(917\) −11760.2 + 18408.0i −0.423507 + 0.662908i
\(918\) 0 0
\(919\) −42760.2 −1.53485 −0.767425 0.641138i \(-0.778463\pi\)
−0.767425 + 0.641138i \(0.778463\pi\)
\(920\) 0 0
\(921\) −2130.55 10339.3i −0.0762259 0.369916i
\(922\) 0 0
\(923\) 9008.37i 0.321251i
\(924\) 0 0
\(925\) 16884.2i 0.600161i
\(926\) 0 0
\(927\) −16975.5 39441.2i −0.601456 1.39743i
\(928\) 0 0
\(929\) −46059.3 −1.62665 −0.813324 0.581811i \(-0.802344\pi\)
−0.813324 + 0.581811i \(0.802344\pi\)
\(930\) 0 0
\(931\) −8979.85 19386.1i −0.316115 0.682442i
\(932\) 0 0
\(933\) 6389.81 + 31009.0i 0.224215 + 1.08809i
\(934\) 0 0
\(935\) 8738.54i 0.305648i
\(936\) 0 0
\(937\) 5647.59i 0.196904i 0.995142 + 0.0984519i \(0.0313891\pi\)
−0.995142 + 0.0984519i \(0.968611\pi\)
\(938\) 0 0
\(939\) 14056.0 2896.42i 0.488499 0.100661i
\(940\) 0 0
\(941\) 41421.7i 1.43497i 0.696572 + 0.717486i \(0.254707\pi\)
−0.696572 + 0.717486i \(0.745293\pi\)
\(942\) 0 0
\(943\) 18093.6i 0.624823i
\(944\) 0 0
\(945\) −9637.54 + 396.805i −0.331756 + 0.0136593i
\(946\) 0 0
\(947\) −21290.6 −0.730571 −0.365285 0.930896i \(-0.619029\pi\)
−0.365285 + 0.930896i \(0.619029\pi\)
\(948\) 0 0
\(949\) 20200.5i 0.690976i
\(950\) 0 0
\(951\) 4059.13 + 19698.5i 0.138408 + 0.671680i
\(952\) 0 0
\(953\) 15236.1i 0.517888i 0.965892 + 0.258944i \(0.0833745\pi\)
−0.965892 + 0.258944i \(0.916626\pi\)
\(954\) 0 0
\(955\) −14531.4 −0.492383
\(956\) 0 0
\(957\) 1023.08 + 4964.91i 0.0345576 + 0.167704i
\(958\) 0 0
\(959\) 26869.6 42058.6i 0.904760 1.41621i
\(960\) 0 0
\(961\) 23802.7 0.798991
\(962\) 0 0
\(963\) −10989.1 + 4729.73i −0.367726 + 0.158269i
\(964\) 0 0
\(965\) 13543.1i 0.451780i
\(966\) 0 0
\(967\) 29677.9 0.986945 0.493472 0.869761i \(-0.335727\pi\)
0.493472 + 0.869761i \(0.335727\pi\)
\(968\) 0 0
\(969\) −3195.77 15508.7i −0.105947 0.514150i
\(970\) 0 0
\(971\) 39536.5i 1.30668i 0.757065 + 0.653340i \(0.226633\pi\)
−0.757065 + 0.653340i \(0.773367\pi\)
\(972\) 0 0
\(973\) 40297.3 + 25744.4i 1.32772 + 0.848230i
\(974\) 0 0
\(975\) 8114.60 + 39379.2i 0.266539 + 1.29348i
\(976\) 0 0
\(977\) 29672.8i 0.971665i 0.874052 + 0.485832i \(0.161483\pi\)
−0.874052 + 0.485832i \(0.838517\pi\)
\(978\) 0 0
\(979\) −12971.1 −0.423452
\(980\) 0 0
\(981\) −17670.6 41056.2i −0.575107 1.33621i
\(982\) 0 0
\(983\) −4423.26 −0.143520 −0.0717599 0.997422i \(-0.522862\pi\)
−0.0717599 + 0.997422i \(0.522862\pi\)
\(984\) 0 0
\(985\) 293.583i 0.00949679i
\(986\) 0 0
\(987\) −21156.3 + 55317.7i −0.682282 + 1.78397i
\(988\) 0 0
\(989\) −28010.5 −0.900587
\(990\) 0 0
\(991\) −38967.8 −1.24910 −0.624548 0.780986i \(-0.714717\pi\)
−0.624548 + 0.780986i \(0.714717\pi\)
\(992\) 0 0
\(993\) −21701.3 + 4471.83i −0.693524 + 0.142909i
\(994\) 0 0
\(995\) −2638.23 −0.0840577
\(996\) 0 0
\(997\) 43802.8 1.39142 0.695712 0.718321i \(-0.255089\pi\)
0.695712 + 0.718321i \(0.255089\pi\)
\(998\) 0 0
\(999\) 17461.4 12195.2i 0.553008 0.386224i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.4.i.c.209.44 80
3.2 odd 2 inner 672.4.i.c.209.41 80
4.3 odd 2 168.4.i.c.125.19 yes 80
7.6 odd 2 inner 672.4.i.c.209.38 80
8.3 odd 2 168.4.i.c.125.64 yes 80
8.5 even 2 inner 672.4.i.c.209.37 80
12.11 even 2 168.4.i.c.125.61 yes 80
21.20 even 2 inner 672.4.i.c.209.39 80
24.5 odd 2 inner 672.4.i.c.209.40 80
24.11 even 2 168.4.i.c.125.18 yes 80
28.27 even 2 168.4.i.c.125.20 yes 80
56.13 odd 2 inner 672.4.i.c.209.43 80
56.27 even 2 168.4.i.c.125.63 yes 80
84.83 odd 2 168.4.i.c.125.62 yes 80
168.83 odd 2 168.4.i.c.125.17 80
168.125 even 2 inner 672.4.i.c.209.42 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.i.c.125.17 80 168.83 odd 2
168.4.i.c.125.18 yes 80 24.11 even 2
168.4.i.c.125.19 yes 80 4.3 odd 2
168.4.i.c.125.20 yes 80 28.27 even 2
168.4.i.c.125.61 yes 80 12.11 even 2
168.4.i.c.125.62 yes 80 84.83 odd 2
168.4.i.c.125.63 yes 80 56.27 even 2
168.4.i.c.125.64 yes 80 8.3 odd 2
672.4.i.c.209.37 80 8.5 even 2 inner
672.4.i.c.209.38 80 7.6 odd 2 inner
672.4.i.c.209.39 80 21.20 even 2 inner
672.4.i.c.209.40 80 24.5 odd 2 inner
672.4.i.c.209.41 80 3.2 odd 2 inner
672.4.i.c.209.42 80 168.125 even 2 inner
672.4.i.c.209.43 80 56.13 odd 2 inner
672.4.i.c.209.44 80 1.1 even 1 trivial