Properties

Label 672.4.i.c.209.43
Level $672$
Weight $4$
Character 672.209
Analytic conductor $39.649$
Analytic rank $0$
Dimension $80$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,4,Mod(209,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.209"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 672.i (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.6492835239\)
Analytic rank: \(0\)
Dimension: \(80\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 209.43
Character \(\chi\) \(=\) 672.209
Dual form 672.4.i.c.209.41

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.04870 + 5.08923i) q^{3} +3.71228i q^{5} +(-15.6071 + 9.97081i) q^{7} +(-24.8005 + 10.6741i) q^{9} -48.1150 q^{11} +69.5724 q^{13} +(-18.8927 + 3.89307i) q^{15} -48.9235 q^{17} -62.2883 q^{19} +(-67.1109 - 68.9719i) q^{21} +63.4952i q^{23} +111.219 q^{25} +(-80.3314 - 115.021i) q^{27} -20.2759 q^{29} -77.3838i q^{31} +(-50.4582 - 244.868i) q^{33} +(-37.0145 - 57.9382i) q^{35} -151.811i q^{37} +(72.9606 + 354.070i) q^{39} -284.960 q^{41} -441.143i q^{43} +(-39.6255 - 92.0663i) q^{45} +615.429 q^{47} +(144.166 - 311.232i) q^{49} +(-51.3061 - 248.983i) q^{51} -129.453 q^{53} -178.616i q^{55} +(-65.3217 - 316.999i) q^{57} +406.934i q^{59} -576.405 q^{61} +(280.634 - 413.874i) q^{63} +258.272i q^{65} +665.046i q^{67} +(-323.142 + 66.5875i) q^{69} +129.482i q^{71} +290.352i q^{73} +(116.635 + 566.018i) q^{75} +(750.938 - 479.745i) q^{77} +130.921 q^{79} +(501.125 - 529.447i) q^{81} -763.300i q^{83} -181.618i q^{85} +(-21.2633 - 103.189i) q^{87} +269.586 q^{89} +(-1085.83 + 693.693i) q^{91} +(393.824 - 81.1524i) q^{93} -231.232i q^{95} -1379.26i q^{97} +(1193.27 - 513.586i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 64 q^{7} + 104 q^{9} + 8 q^{15} - 976 q^{25} - 568 q^{39} - 4048 q^{49} - 1448 q^{57} + 2152 q^{63} - 4992 q^{79} + 1568 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.04870 + 5.08923i 0.201822 + 0.979422i
\(4\) 0 0
\(5\) 3.71228i 0.332037i 0.986123 + 0.166018i \(0.0530911\pi\)
−0.986123 + 0.166018i \(0.946909\pi\)
\(6\) 0 0
\(7\) −15.6071 + 9.97081i −0.842707 + 0.538373i
\(8\) 0 0
\(9\) −24.8005 + 10.6741i −0.918535 + 0.395339i
\(10\) 0 0
\(11\) −48.1150 −1.31884 −0.659419 0.751776i \(-0.729198\pi\)
−0.659419 + 0.751776i \(0.729198\pi\)
\(12\) 0 0
\(13\) 69.5724 1.48430 0.742150 0.670234i \(-0.233806\pi\)
0.742150 + 0.670234i \(0.233806\pi\)
\(14\) 0 0
\(15\) −18.8927 + 3.89307i −0.325204 + 0.0670125i
\(16\) 0 0
\(17\) −48.9235 −0.697982 −0.348991 0.937126i \(-0.613476\pi\)
−0.348991 + 0.937126i \(0.613476\pi\)
\(18\) 0 0
\(19\) −62.2883 −0.752100 −0.376050 0.926599i \(-0.622718\pi\)
−0.376050 + 0.926599i \(0.622718\pi\)
\(20\) 0 0
\(21\) −67.1109 68.9719i −0.697372 0.716710i
\(22\) 0 0
\(23\) 63.4952i 0.575638i 0.957685 + 0.287819i \(0.0929301\pi\)
−0.957685 + 0.287819i \(0.907070\pi\)
\(24\) 0 0
\(25\) 111.219 0.889752
\(26\) 0 0
\(27\) −80.3314 115.021i −0.572585 0.819846i
\(28\) 0 0
\(29\) −20.2759 −0.129832 −0.0649161 0.997891i \(-0.520678\pi\)
−0.0649161 + 0.997891i \(0.520678\pi\)
\(30\) 0 0
\(31\) 77.3838i 0.448340i −0.974550 0.224170i \(-0.928033\pi\)
0.974550 0.224170i \(-0.0719671\pi\)
\(32\) 0 0
\(33\) −50.4582 244.868i −0.266171 1.29170i
\(34\) 0 0
\(35\) −37.0145 57.9382i −0.178760 0.279810i
\(36\) 0 0
\(37\) 151.811i 0.674527i −0.941410 0.337263i \(-0.890499\pi\)
0.941410 0.337263i \(-0.109501\pi\)
\(38\) 0 0
\(39\) 72.9606 + 354.070i 0.299565 + 1.45376i
\(40\) 0 0
\(41\) −284.960 −1.08544 −0.542722 0.839912i \(-0.682606\pi\)
−0.542722 + 0.839912i \(0.682606\pi\)
\(42\) 0 0
\(43\) 441.143i 1.56450i −0.622963 0.782252i \(-0.714071\pi\)
0.622963 0.782252i \(-0.285929\pi\)
\(44\) 0 0
\(45\) −39.6255 92.0663i −0.131267 0.304988i
\(46\) 0 0
\(47\) 615.429 1.90999 0.954996 0.296620i \(-0.0958594\pi\)
0.954996 + 0.296620i \(0.0958594\pi\)
\(48\) 0 0
\(49\) 144.166 311.232i 0.420309 0.907381i
\(50\) 0 0
\(51\) −51.3061 248.983i −0.140868 0.683619i
\(52\) 0 0
\(53\) −129.453 −0.335504 −0.167752 0.985829i \(-0.553651\pi\)
−0.167752 + 0.985829i \(0.553651\pi\)
\(54\) 0 0
\(55\) 178.616i 0.437903i
\(56\) 0 0
\(57\) −65.3217 316.999i −0.151791 0.736624i
\(58\) 0 0
\(59\) 406.934i 0.897938i 0.893547 + 0.448969i \(0.148209\pi\)
−0.893547 + 0.448969i \(0.851791\pi\)
\(60\) 0 0
\(61\) −576.405 −1.20985 −0.604927 0.796281i \(-0.706798\pi\)
−0.604927 + 0.796281i \(0.706798\pi\)
\(62\) 0 0
\(63\) 280.634 413.874i 0.561216 0.827669i
\(64\) 0 0
\(65\) 258.272i 0.492842i
\(66\) 0 0
\(67\) 665.046i 1.21266i 0.795212 + 0.606331i \(0.207359\pi\)
−0.795212 + 0.606331i \(0.792641\pi\)
\(68\) 0 0
\(69\) −323.142 + 66.5875i −0.563792 + 0.116177i
\(70\) 0 0
\(71\) 129.482i 0.216432i 0.994127 + 0.108216i \(0.0345139\pi\)
−0.994127 + 0.108216i \(0.965486\pi\)
\(72\) 0 0
\(73\) 290.352i 0.465523i 0.972534 + 0.232761i \(0.0747762\pi\)
−0.972534 + 0.232761i \(0.925224\pi\)
\(74\) 0 0
\(75\) 116.635 + 566.018i 0.179572 + 0.871442i
\(76\) 0 0
\(77\) 750.938 479.745i 1.11139 0.710027i
\(78\) 0 0
\(79\) 130.921 0.186452 0.0932261 0.995645i \(-0.470282\pi\)
0.0932261 + 0.995645i \(0.470282\pi\)
\(80\) 0 0
\(81\) 501.125 529.447i 0.687415 0.726265i
\(82\) 0 0
\(83\) 763.300i 1.00943i −0.863285 0.504717i \(-0.831597\pi\)
0.863285 0.504717i \(-0.168403\pi\)
\(84\) 0 0
\(85\) 181.618i 0.231756i
\(86\) 0 0
\(87\) −21.2633 103.189i −0.0262031 0.127161i
\(88\) 0 0
\(89\) 269.586 0.321080 0.160540 0.987029i \(-0.448676\pi\)
0.160540 + 0.987029i \(0.448676\pi\)
\(90\) 0 0
\(91\) −1085.83 + 693.693i −1.25083 + 0.799107i
\(92\) 0 0
\(93\) 393.824 81.1524i 0.439114 0.0904851i
\(94\) 0 0
\(95\) 231.232i 0.249725i
\(96\) 0 0
\(97\) 1379.26i 1.44374i −0.692030 0.721869i \(-0.743283\pi\)
0.692030 0.721869i \(-0.256717\pi\)
\(98\) 0 0
\(99\) 1193.27 513.586i 1.21140 0.521388i
\(100\) 0 0
\(101\) 117.695i 0.115952i 0.998318 + 0.0579759i \(0.0184647\pi\)
−0.998318 + 0.0579759i \(0.981535\pi\)
\(102\) 0 0
\(103\) 1590.34i 1.52137i −0.649122 0.760684i \(-0.724863\pi\)
0.649122 0.760684i \(-0.275137\pi\)
\(104\) 0 0
\(105\) 256.043 249.135i 0.237974 0.231553i
\(106\) 0 0
\(107\) −443.102 −0.400339 −0.200169 0.979761i \(-0.564149\pi\)
−0.200169 + 0.979761i \(0.564149\pi\)
\(108\) 0 0
\(109\) 1655.46i 1.45472i −0.686256 0.727360i \(-0.740747\pi\)
0.686256 0.727360i \(-0.259253\pi\)
\(110\) 0 0
\(111\) 772.598 159.204i 0.660647 0.136135i
\(112\) 0 0
\(113\) 73.7875i 0.0614278i 0.999528 + 0.0307139i \(0.00977807\pi\)
−0.999528 + 0.0307139i \(0.990222\pi\)
\(114\) 0 0
\(115\) −235.712 −0.191133
\(116\) 0 0
\(117\) −1725.43 + 742.626i −1.36338 + 0.586801i
\(118\) 0 0
\(119\) 763.556 487.807i 0.588194 0.375775i
\(120\) 0 0
\(121\) 984.052 0.739332
\(122\) 0 0
\(123\) −298.837 1450.22i −0.219067 1.06311i
\(124\) 0 0
\(125\) 876.912i 0.627467i
\(126\) 0 0
\(127\) 1960.00 1.36947 0.684733 0.728794i \(-0.259919\pi\)
0.684733 + 0.728794i \(0.259919\pi\)
\(128\) 0 0
\(129\) 2245.08 462.626i 1.53231 0.315752i
\(130\) 0 0
\(131\) 1179.46i 0.786642i −0.919401 0.393321i \(-0.871326\pi\)
0.919401 0.393321i \(-0.128674\pi\)
\(132\) 0 0
\(133\) 972.142 621.064i 0.633800 0.404911i
\(134\) 0 0
\(135\) 426.991 298.213i 0.272219 0.190119i
\(136\) 0 0
\(137\) 2694.83i 1.68054i 0.542165 + 0.840272i \(0.317605\pi\)
−0.542165 + 0.840272i \(0.682395\pi\)
\(138\) 0 0
\(139\) −2581.98 −1.57554 −0.787771 0.615968i \(-0.788765\pi\)
−0.787771 + 0.615968i \(0.788765\pi\)
\(140\) 0 0
\(141\) 645.401 + 3132.06i 0.385479 + 1.87069i
\(142\) 0 0
\(143\) −3347.47 −1.95755
\(144\) 0 0
\(145\) 75.2698i 0.0431091i
\(146\) 0 0
\(147\) 1735.12 + 407.305i 0.973537 + 0.228530i
\(148\) 0 0
\(149\) −3252.26 −1.78816 −0.894079 0.447910i \(-0.852168\pi\)
−0.894079 + 0.447910i \(0.852168\pi\)
\(150\) 0 0
\(151\) −74.9590 −0.0403978 −0.0201989 0.999796i \(-0.506430\pi\)
−0.0201989 + 0.999796i \(0.506430\pi\)
\(152\) 0 0
\(153\) 1213.33 522.217i 0.641121 0.275939i
\(154\) 0 0
\(155\) 287.271 0.148865
\(156\) 0 0
\(157\) −706.105 −0.358938 −0.179469 0.983764i \(-0.557438\pi\)
−0.179469 + 0.983764i \(0.557438\pi\)
\(158\) 0 0
\(159\) −135.757 658.815i −0.0677123 0.328600i
\(160\) 0 0
\(161\) −633.099 990.979i −0.309908 0.485094i
\(162\) 0 0
\(163\) 1520.38i 0.730586i −0.930893 0.365293i \(-0.880969\pi\)
0.930893 0.365293i \(-0.119031\pi\)
\(164\) 0 0
\(165\) 909.020 187.315i 0.428891 0.0883786i
\(166\) 0 0
\(167\) −1959.42 −0.907933 −0.453966 0.891019i \(-0.649991\pi\)
−0.453966 + 0.891019i \(0.649991\pi\)
\(168\) 0 0
\(169\) 2643.32 1.20315
\(170\) 0 0
\(171\) 1544.78 664.874i 0.690831 0.297334i
\(172\) 0 0
\(173\) 3842.54i 1.68869i −0.535800 0.844345i \(-0.679990\pi\)
0.535800 0.844345i \(-0.320010\pi\)
\(174\) 0 0
\(175\) −1735.81 + 1108.94i −0.749800 + 0.479018i
\(176\) 0 0
\(177\) −2070.98 + 426.752i −0.879461 + 0.181224i
\(178\) 0 0
\(179\) −2750.46 −1.14849 −0.574243 0.818685i \(-0.694704\pi\)
−0.574243 + 0.818685i \(0.694704\pi\)
\(180\) 0 0
\(181\) 1299.66 0.533718 0.266859 0.963736i \(-0.414014\pi\)
0.266859 + 0.963736i \(0.414014\pi\)
\(182\) 0 0
\(183\) −604.476 2933.45i −0.244176 1.18496i
\(184\) 0 0
\(185\) 563.564 0.223968
\(186\) 0 0
\(187\) 2353.95 0.920525
\(188\) 0 0
\(189\) 2400.60 + 994.183i 0.923904 + 0.382625i
\(190\) 0 0
\(191\) 3914.42i 1.48292i 0.670998 + 0.741459i \(0.265866\pi\)
−0.670998 + 0.741459i \(0.734134\pi\)
\(192\) 0 0
\(193\) −3648.18 −1.36063 −0.680316 0.732919i \(-0.738157\pi\)
−0.680316 + 0.732919i \(0.738157\pi\)
\(194\) 0 0
\(195\) −1314.41 + 270.850i −0.482701 + 0.0994666i
\(196\) 0 0
\(197\) −79.0843 −0.0286016 −0.0143008 0.999898i \(-0.504552\pi\)
−0.0143008 + 0.999898i \(0.504552\pi\)
\(198\) 0 0
\(199\) 710.675i 0.253158i −0.991957 0.126579i \(-0.959600\pi\)
0.991957 0.126579i \(-0.0403997\pi\)
\(200\) 0 0
\(201\) −3384.57 + 697.434i −1.18771 + 0.244742i
\(202\) 0 0
\(203\) 316.449 202.167i 0.109411 0.0698982i
\(204\) 0 0
\(205\) 1057.85i 0.360408i
\(206\) 0 0
\(207\) −677.757 1574.71i −0.227572 0.528744i
\(208\) 0 0
\(209\) 2997.00 0.991898
\(210\) 0 0
\(211\) 2273.94i 0.741915i 0.928650 + 0.370958i \(0.120971\pi\)
−0.928650 + 0.370958i \(0.879029\pi\)
\(212\) 0 0
\(213\) −658.964 + 135.788i −0.211979 + 0.0436809i
\(214\) 0 0
\(215\) 1637.65 0.519473
\(216\) 0 0
\(217\) 771.579 + 1207.74i 0.241374 + 0.377819i
\(218\) 0 0
\(219\) −1477.67 + 304.493i −0.455944 + 0.0939530i
\(220\) 0 0
\(221\) −3403.72 −1.03602
\(222\) 0 0
\(223\) 3196.79i 0.959968i −0.877277 0.479984i \(-0.840642\pi\)
0.877277 0.479984i \(-0.159358\pi\)
\(224\) 0 0
\(225\) −2758.28 + 1187.17i −0.817268 + 0.351753i
\(226\) 0 0
\(227\) 3103.70i 0.907487i −0.891132 0.453744i \(-0.850088\pi\)
0.891132 0.453744i \(-0.149912\pi\)
\(228\) 0 0
\(229\) −693.650 −0.200165 −0.100082 0.994979i \(-0.531911\pi\)
−0.100082 + 0.994979i \(0.531911\pi\)
\(230\) 0 0
\(231\) 3229.04 + 3318.58i 0.919720 + 0.945224i
\(232\) 0 0
\(233\) 3188.80i 0.896589i 0.893886 + 0.448294i \(0.147968\pi\)
−0.893886 + 0.448294i \(0.852032\pi\)
\(234\) 0 0
\(235\) 2284.65i 0.634187i
\(236\) 0 0
\(237\) 137.297 + 666.285i 0.0376302 + 0.182615i
\(238\) 0 0
\(239\) 1879.03i 0.508554i 0.967131 + 0.254277i \(0.0818375\pi\)
−0.967131 + 0.254277i \(0.918162\pi\)
\(240\) 0 0
\(241\) 3281.84i 0.877187i 0.898685 + 0.438594i \(0.144523\pi\)
−0.898685 + 0.438594i \(0.855477\pi\)
\(242\) 0 0
\(243\) 3220.01 + 1995.11i 0.850056 + 0.526692i
\(244\) 0 0
\(245\) 1155.38 + 535.185i 0.301284 + 0.139558i
\(246\) 0 0
\(247\) −4333.54 −1.11634
\(248\) 0 0
\(249\) 3884.60 800.472i 0.988662 0.203726i
\(250\) 0 0
\(251\) 1680.42i 0.422578i 0.977424 + 0.211289i \(0.0677661\pi\)
−0.977424 + 0.211289i \(0.932234\pi\)
\(252\) 0 0
\(253\) 3055.07i 0.759173i
\(254\) 0 0
\(255\) 924.295 190.463i 0.226987 0.0467735i
\(256\) 0 0
\(257\) −6706.25 −1.62772 −0.813861 0.581059i \(-0.802638\pi\)
−0.813861 + 0.581059i \(0.802638\pi\)
\(258\) 0 0
\(259\) 1513.67 + 2369.33i 0.363147 + 0.568428i
\(260\) 0 0
\(261\) 502.851 216.428i 0.119256 0.0513277i
\(262\) 0 0
\(263\) 4758.38i 1.11564i 0.829961 + 0.557822i \(0.188363\pi\)
−0.829961 + 0.557822i \(0.811637\pi\)
\(264\) 0 0
\(265\) 480.566i 0.111400i
\(266\) 0 0
\(267\) 282.715 + 1371.99i 0.0648011 + 0.314473i
\(268\) 0 0
\(269\) 2644.09i 0.599306i 0.954048 + 0.299653i \(0.0968708\pi\)
−0.954048 + 0.299653i \(0.903129\pi\)
\(270\) 0 0
\(271\) 7621.80i 1.70846i 0.519899 + 0.854228i \(0.325970\pi\)
−0.519899 + 0.854228i \(0.674030\pi\)
\(272\) 0 0
\(273\) −4669.07 4798.54i −1.03511 1.06381i
\(274\) 0 0
\(275\) −5351.30 −1.17344
\(276\) 0 0
\(277\) 3715.63i 0.805960i 0.915209 + 0.402980i \(0.132026\pi\)
−0.915209 + 0.402980i \(0.867974\pi\)
\(278\) 0 0
\(279\) 826.006 + 1919.15i 0.177246 + 0.411816i
\(280\) 0 0
\(281\) 7823.45i 1.66088i −0.557106 0.830441i \(-0.688088\pi\)
0.557106 0.830441i \(-0.311912\pi\)
\(282\) 0 0
\(283\) 4118.81 0.865151 0.432575 0.901598i \(-0.357605\pi\)
0.432575 + 0.901598i \(0.357605\pi\)
\(284\) 0 0
\(285\) 1176.79 242.493i 0.244586 0.0504001i
\(286\) 0 0
\(287\) 4447.41 2841.28i 0.914711 0.584374i
\(288\) 0 0
\(289\) −2519.49 −0.512821
\(290\) 0 0
\(291\) 7019.37 1446.43i 1.41403 0.291379i
\(292\) 0 0
\(293\) 6032.10i 1.20273i −0.798976 0.601363i \(-0.794624\pi\)
0.798976 0.601363i \(-0.205376\pi\)
\(294\) 0 0
\(295\) −1510.66 −0.298148
\(296\) 0 0
\(297\) 3865.14 + 5534.24i 0.755146 + 1.08124i
\(298\) 0 0
\(299\) 4417.51i 0.854420i
\(300\) 0 0
\(301\) 4398.55 + 6884.98i 0.842286 + 1.31842i
\(302\) 0 0
\(303\) −598.979 + 123.427i −0.113566 + 0.0234017i
\(304\) 0 0
\(305\) 2139.78i 0.401716i
\(306\) 0 0
\(307\) −2031.61 −0.377688 −0.188844 0.982007i \(-0.560474\pi\)
−0.188844 + 0.982007i \(0.560474\pi\)
\(308\) 0 0
\(309\) 8093.61 1667.79i 1.49006 0.307046i
\(310\) 0 0
\(311\) −6093.07 −1.11095 −0.555477 0.831532i \(-0.687464\pi\)
−0.555477 + 0.831532i \(0.687464\pi\)
\(312\) 0 0
\(313\) 2761.91i 0.498762i 0.968405 + 0.249381i \(0.0802271\pi\)
−0.968405 + 0.249381i \(0.919773\pi\)
\(314\) 0 0
\(315\) 1536.42 + 1041.79i 0.274817 + 0.186344i
\(316\) 0 0
\(317\) −3870.63 −0.685792 −0.342896 0.939373i \(-0.611408\pi\)
−0.342896 + 0.939373i \(0.611408\pi\)
\(318\) 0 0
\(319\) 975.573 0.171228
\(320\) 0 0
\(321\) −464.681 2255.05i −0.0807974 0.392101i
\(322\) 0 0
\(323\) 3047.36 0.524953
\(324\) 0 0
\(325\) 7737.77 1.32066
\(326\) 0 0
\(327\) 8425.02 1736.08i 1.42478 0.293595i
\(328\) 0 0
\(329\) −9605.09 + 6136.33i −1.60956 + 1.02829i
\(330\) 0 0
\(331\) 4264.16i 0.708095i −0.935227 0.354048i \(-0.884805\pi\)
0.935227 0.354048i \(-0.115195\pi\)
\(332\) 0 0
\(333\) 1620.45 + 3764.97i 0.266667 + 0.619577i
\(334\) 0 0
\(335\) −2468.84 −0.402648
\(336\) 0 0
\(337\) −3256.10 −0.526323 −0.263162 0.964752i \(-0.584765\pi\)
−0.263162 + 0.964752i \(0.584765\pi\)
\(338\) 0 0
\(339\) −375.521 + 77.3809i −0.0601637 + 0.0123975i
\(340\) 0 0
\(341\) 3723.32i 0.591288i
\(342\) 0 0
\(343\) 853.212 + 6294.89i 0.134312 + 0.990939i
\(344\) 0 0
\(345\) −247.192 1199.59i −0.0385749 0.187200i
\(346\) 0 0
\(347\) −6076.58 −0.940081 −0.470041 0.882645i \(-0.655761\pi\)
−0.470041 + 0.882645i \(0.655761\pi\)
\(348\) 0 0
\(349\) −6858.46 −1.05193 −0.525967 0.850505i \(-0.676296\pi\)
−0.525967 + 0.850505i \(0.676296\pi\)
\(350\) 0 0
\(351\) −5588.85 8002.30i −0.849887 1.21690i
\(352\) 0 0
\(353\) 6340.22 0.955965 0.477983 0.878369i \(-0.341368\pi\)
0.477983 + 0.878369i \(0.341368\pi\)
\(354\) 0 0
\(355\) −480.674 −0.0718635
\(356\) 0 0
\(357\) 3283.30 + 3374.35i 0.486753 + 0.500251i
\(358\) 0 0
\(359\) 79.4813i 0.0116849i −0.999983 0.00584243i \(-0.998140\pi\)
0.999983 0.00584243i \(-0.00185971\pi\)
\(360\) 0 0
\(361\) −2979.17 −0.434345
\(362\) 0 0
\(363\) 1031.97 + 5008.06i 0.149214 + 0.724119i
\(364\) 0 0
\(365\) −1077.87 −0.154571
\(366\) 0 0
\(367\) 11025.8i 1.56824i 0.620610 + 0.784120i \(0.286885\pi\)
−0.620610 + 0.784120i \(0.713115\pi\)
\(368\) 0 0
\(369\) 7067.13 3041.70i 0.997019 0.429118i
\(370\) 0 0
\(371\) 2020.39 1290.75i 0.282732 0.180626i
\(372\) 0 0
\(373\) 5947.81i 0.825646i 0.910811 + 0.412823i \(0.135457\pi\)
−0.910811 + 0.412823i \(0.864543\pi\)
\(374\) 0 0
\(375\) −4462.80 + 919.617i −0.614555 + 0.126637i
\(376\) 0 0
\(377\) −1410.64 −0.192710
\(378\) 0 0
\(379\) 4855.67i 0.658098i 0.944313 + 0.329049i \(0.106728\pi\)
−0.944313 + 0.329049i \(0.893272\pi\)
\(380\) 0 0
\(381\) 2055.46 + 9974.91i 0.276389 + 1.34129i
\(382\) 0 0
\(383\) 4314.03 0.575553 0.287777 0.957698i \(-0.407084\pi\)
0.287777 + 0.957698i \(0.407084\pi\)
\(384\) 0 0
\(385\) 1780.95 + 2787.69i 0.235755 + 0.369023i
\(386\) 0 0
\(387\) 4708.82 + 10940.5i 0.618509 + 1.43705i
\(388\) 0 0
\(389\) −1492.00 −0.194466 −0.0972330 0.995262i \(-0.530999\pi\)
−0.0972330 + 0.995262i \(0.530999\pi\)
\(390\) 0 0
\(391\) 3106.41i 0.401785i
\(392\) 0 0
\(393\) 6002.55 1236.90i 0.770454 0.158762i
\(394\) 0 0
\(395\) 486.015i 0.0619090i
\(396\) 0 0
\(397\) 2577.45 0.325840 0.162920 0.986639i \(-0.447909\pi\)
0.162920 + 0.986639i \(0.447909\pi\)
\(398\) 0 0
\(399\) 4180.22 + 4296.14i 0.524493 + 0.539038i
\(400\) 0 0
\(401\) 3185.37i 0.396682i 0.980133 + 0.198341i \(0.0635554\pi\)
−0.980133 + 0.198341i \(0.936445\pi\)
\(402\) 0 0
\(403\) 5383.78i 0.665471i
\(404\) 0 0
\(405\) 1965.46 + 1860.32i 0.241147 + 0.228247i
\(406\) 0 0
\(407\) 7304.36i 0.889592i
\(408\) 0 0
\(409\) 9157.04i 1.10706i 0.832830 + 0.553529i \(0.186719\pi\)
−0.832830 + 0.553529i \(0.813281\pi\)
\(410\) 0 0
\(411\) −13714.6 + 2826.06i −1.64596 + 0.339172i
\(412\) 0 0
\(413\) −4057.47 6351.09i −0.483426 0.756699i
\(414\) 0 0
\(415\) 2833.58 0.335169
\(416\) 0 0
\(417\) −2707.72 13140.3i −0.317980 1.54312i
\(418\) 0 0
\(419\) 16278.2i 1.89796i −0.315339 0.948979i \(-0.602118\pi\)
0.315339 0.948979i \(-0.397882\pi\)
\(420\) 0 0
\(421\) 14.4956i 0.00167808i 1.00000 0.000839038i \(0.000267074\pi\)
−1.00000 0.000839038i \(0.999733\pi\)
\(422\) 0 0
\(423\) −15262.9 + 6569.18i −1.75439 + 0.755093i
\(424\) 0 0
\(425\) −5441.22 −0.621031
\(426\) 0 0
\(427\) 8996.03 5747.22i 1.01955 0.651353i
\(428\) 0 0
\(429\) −3510.50 17036.1i −0.395078 1.91727i
\(430\) 0 0
\(431\) 6800.15i 0.759981i −0.924990 0.379991i \(-0.875927\pi\)
0.924990 0.379991i \(-0.124073\pi\)
\(432\) 0 0
\(433\) 11155.5i 1.23811i −0.785349 0.619053i \(-0.787517\pi\)
0.785349 0.619053i \(-0.212483\pi\)
\(434\) 0 0
\(435\) 383.065 78.9355i 0.0422220 0.00870038i
\(436\) 0 0
\(437\) 3955.01i 0.432938i
\(438\) 0 0
\(439\) 12426.7i 1.35101i −0.737357 0.675504i \(-0.763926\pi\)
0.737357 0.675504i \(-0.236074\pi\)
\(440\) 0 0
\(441\) −253.250 + 9257.54i −0.0273458 + 0.999626i
\(442\) 0 0
\(443\) −10870.0 −1.16580 −0.582900 0.812544i \(-0.698082\pi\)
−0.582900 + 0.812544i \(0.698082\pi\)
\(444\) 0 0
\(445\) 1000.78i 0.106610i
\(446\) 0 0
\(447\) −3410.64 16551.5i −0.360890 1.75136i
\(448\) 0 0
\(449\) 11786.4i 1.23883i 0.785063 + 0.619416i \(0.212631\pi\)
−0.785063 + 0.619416i \(0.787369\pi\)
\(450\) 0 0
\(451\) 13710.8 1.43153
\(452\) 0 0
\(453\) −78.6095 381.483i −0.00815319 0.0395665i
\(454\) 0 0
\(455\) −2575.18 4030.90i −0.265333 0.415321i
\(456\) 0 0
\(457\) −1151.19 −0.117834 −0.0589171 0.998263i \(-0.518765\pi\)
−0.0589171 + 0.998263i \(0.518765\pi\)
\(458\) 0 0
\(459\) 3930.09 + 5627.24i 0.399654 + 0.572238i
\(460\) 0 0
\(461\) 1149.15i 0.116098i 0.998314 + 0.0580491i \(0.0184880\pi\)
−0.998314 + 0.0580491i \(0.981512\pi\)
\(462\) 0 0
\(463\) −511.258 −0.0513179 −0.0256590 0.999671i \(-0.508168\pi\)
−0.0256590 + 0.999671i \(0.508168\pi\)
\(464\) 0 0
\(465\) 301.261 + 1461.99i 0.0300444 + 0.145802i
\(466\) 0 0
\(467\) 7738.29i 0.766779i −0.923587 0.383389i \(-0.874757\pi\)
0.923587 0.383389i \(-0.125243\pi\)
\(468\) 0 0
\(469\) −6631.05 10379.5i −0.652864 1.02192i
\(470\) 0 0
\(471\) −740.492 3593.53i −0.0724418 0.351552i
\(472\) 0 0
\(473\) 21225.6i 2.06333i
\(474\) 0 0
\(475\) −6927.64 −0.669183
\(476\) 0 0
\(477\) 3210.49 1381.80i 0.308173 0.132638i
\(478\) 0 0
\(479\) −15169.4 −1.44699 −0.723493 0.690332i \(-0.757465\pi\)
−0.723493 + 0.690332i \(0.757465\pi\)
\(480\) 0 0
\(481\) 10561.8i 1.00120i
\(482\) 0 0
\(483\) 4379.39 4261.22i 0.412565 0.401433i
\(484\) 0 0
\(485\) 5120.20 0.479374
\(486\) 0 0
\(487\) 7078.96 0.658683 0.329341 0.944211i \(-0.393173\pi\)
0.329341 + 0.944211i \(0.393173\pi\)
\(488\) 0 0
\(489\) 7737.57 1594.42i 0.715552 0.147449i
\(490\) 0 0
\(491\) −8864.05 −0.814723 −0.407361 0.913267i \(-0.633551\pi\)
−0.407361 + 0.913267i \(0.633551\pi\)
\(492\) 0 0
\(493\) 991.967 0.0906206
\(494\) 0 0
\(495\) 1906.58 + 4429.77i 0.173120 + 0.402229i
\(496\) 0 0
\(497\) −1291.04 2020.85i −0.116521 0.182389i
\(498\) 0 0
\(499\) 9294.42i 0.833818i −0.908948 0.416909i \(-0.863113\pi\)
0.908948 0.416909i \(-0.136887\pi\)
\(500\) 0 0
\(501\) −2054.85 9971.95i −0.183241 0.889249i
\(502\) 0 0
\(503\) 3930.02 0.348372 0.174186 0.984713i \(-0.444271\pi\)
0.174186 + 0.984713i \(0.444271\pi\)
\(504\) 0 0
\(505\) −436.919 −0.0385003
\(506\) 0 0
\(507\) 2772.05 + 13452.4i 0.242822 + 1.17839i
\(508\) 0 0
\(509\) 4139.73i 0.360491i −0.983622 0.180246i \(-0.942311\pi\)
0.983622 0.180246i \(-0.0576893\pi\)
\(510\) 0 0
\(511\) −2895.05 4531.57i −0.250625 0.392299i
\(512\) 0 0
\(513\) 5003.70 + 7164.47i 0.430641 + 0.616606i
\(514\) 0 0
\(515\) 5903.80 0.505150
\(516\) 0 0
\(517\) −29611.4 −2.51897
\(518\) 0 0
\(519\) 19555.6 4029.68i 1.65394 0.340815i
\(520\) 0 0
\(521\) 15730.9 1.32281 0.661406 0.750028i \(-0.269960\pi\)
0.661406 + 0.750028i \(0.269960\pi\)
\(522\) 0 0
\(523\) −12687.5 −1.06078 −0.530388 0.847755i \(-0.677954\pi\)
−0.530388 + 0.847755i \(0.677954\pi\)
\(524\) 0 0
\(525\) −7464.01 7670.98i −0.620487 0.637694i
\(526\) 0 0
\(527\) 3785.89i 0.312933i
\(528\) 0 0
\(529\) 8135.36 0.668641
\(530\) 0 0
\(531\) −4343.68 10092.2i −0.354990 0.824788i
\(532\) 0 0
\(533\) −19825.3 −1.61113
\(534\) 0 0
\(535\) 1644.92i 0.132927i
\(536\) 0 0
\(537\) −2884.41 13997.7i −0.231790 1.12485i
\(538\) 0 0
\(539\) −6936.54 + 14974.9i −0.554319 + 1.19669i
\(540\) 0 0
\(541\) 16674.9i 1.32516i 0.748991 + 0.662580i \(0.230538\pi\)
−0.748991 + 0.662580i \(0.769462\pi\)
\(542\) 0 0
\(543\) 1362.95 + 6614.26i 0.107716 + 0.522735i
\(544\) 0 0
\(545\) 6145.54 0.483020
\(546\) 0 0
\(547\) 3533.79i 0.276223i 0.990417 + 0.138111i \(0.0441032\pi\)
−0.990417 + 0.138111i \(0.955897\pi\)
\(548\) 0 0
\(549\) 14295.1 6152.63i 1.11129 0.478302i
\(550\) 0 0
\(551\) 1262.95 0.0976469
\(552\) 0 0
\(553\) −2043.30 + 1305.39i −0.157125 + 0.100381i
\(554\) 0 0
\(555\) 591.009 + 2868.10i 0.0452017 + 0.219359i
\(556\) 0 0
\(557\) 8507.84 0.647197 0.323599 0.946194i \(-0.395107\pi\)
0.323599 + 0.946194i \(0.395107\pi\)
\(558\) 0 0
\(559\) 30691.4i 2.32219i
\(560\) 0 0
\(561\) 2468.59 + 11979.8i 0.185783 + 0.901582i
\(562\) 0 0
\(563\) 12127.1i 0.907808i −0.891051 0.453904i \(-0.850031\pi\)
0.891051 0.453904i \(-0.149969\pi\)
\(564\) 0 0
\(565\) −273.920 −0.0203963
\(566\) 0 0
\(567\) −2542.12 + 13259.8i −0.188287 + 0.982114i
\(568\) 0 0
\(569\) 16103.5i 1.18646i −0.805034 0.593228i \(-0.797853\pi\)
0.805034 0.593228i \(-0.202147\pi\)
\(570\) 0 0
\(571\) 16824.4i 1.23307i −0.787329 0.616533i \(-0.788537\pi\)
0.787329 0.616533i \(-0.211463\pi\)
\(572\) 0 0
\(573\) −19921.4 + 4105.05i −1.45240 + 0.299286i
\(574\) 0 0
\(575\) 7061.87i 0.512175i
\(576\) 0 0
\(577\) 12917.3i 0.931986i 0.884788 + 0.465993i \(0.154303\pi\)
−0.884788 + 0.465993i \(0.845697\pi\)
\(578\) 0 0
\(579\) −3825.85 18566.4i −0.274606 1.33263i
\(580\) 0 0
\(581\) 7610.71 + 11912.9i 0.543452 + 0.850657i
\(582\) 0 0
\(583\) 6228.63 0.442476
\(584\) 0 0
\(585\) −2756.84 6405.27i −0.194840 0.452693i
\(586\) 0 0
\(587\) 15149.6i 1.06523i 0.846357 + 0.532617i \(0.178791\pi\)
−0.846357 + 0.532617i \(0.821209\pi\)
\(588\) 0 0
\(589\) 4820.10i 0.337197i
\(590\) 0 0
\(591\) −82.9357 402.478i −0.00577245 0.0280131i
\(592\) 0 0
\(593\) −5091.10 −0.352558 −0.176279 0.984340i \(-0.556406\pi\)
−0.176279 + 0.984340i \(0.556406\pi\)
\(594\) 0 0
\(595\) 1810.88 + 2834.54i 0.124771 + 0.195302i
\(596\) 0 0
\(597\) 3616.78 745.285i 0.247948 0.0510929i
\(598\) 0 0
\(599\) 18901.6i 1.28931i −0.764472 0.644657i \(-0.777000\pi\)
0.764472 0.644657i \(-0.223000\pi\)
\(600\) 0 0
\(601\) 28238.3i 1.91658i −0.285803 0.958288i \(-0.592260\pi\)
0.285803 0.958288i \(-0.407740\pi\)
\(602\) 0 0
\(603\) −7098.80 16493.5i −0.479412 1.11387i
\(604\) 0 0
\(605\) 3653.08i 0.245486i
\(606\) 0 0
\(607\) 11435.7i 0.764683i 0.924021 + 0.382342i \(0.124882\pi\)
−0.924021 + 0.382342i \(0.875118\pi\)
\(608\) 0 0
\(609\) 1360.73 + 1398.47i 0.0905413 + 0.0930521i
\(610\) 0 0
\(611\) 42816.9 2.83500
\(612\) 0 0
\(613\) 577.455i 0.0380476i −0.999819 0.0190238i \(-0.993944\pi\)
0.999819 0.0190238i \(-0.00605583\pi\)
\(614\) 0 0
\(615\) 5383.65 1109.37i 0.352991 0.0727383i
\(616\) 0 0
\(617\) 22282.8i 1.45393i −0.686677 0.726963i \(-0.740931\pi\)
0.686677 0.726963i \(-0.259069\pi\)
\(618\) 0 0
\(619\) −16401.1 −1.06497 −0.532484 0.846440i \(-0.678741\pi\)
−0.532484 + 0.846440i \(0.678741\pi\)
\(620\) 0 0
\(621\) 7303.30 5100.66i 0.471934 0.329601i
\(622\) 0 0
\(623\) −4207.48 + 2688.00i −0.270576 + 0.172861i
\(624\) 0 0
\(625\) 10647.0 0.681409
\(626\) 0 0
\(627\) 3142.95 + 15252.4i 0.200187 + 0.971487i
\(628\) 0 0
\(629\) 7427.10i 0.470808i
\(630\) 0 0
\(631\) −6542.50 −0.412762 −0.206381 0.978472i \(-0.566169\pi\)
−0.206381 + 0.978472i \(0.566169\pi\)
\(632\) 0 0
\(633\) −11572.6 + 2384.68i −0.726648 + 0.149735i
\(634\) 0 0
\(635\) 7276.09i 0.454713i
\(636\) 0 0
\(637\) 10030.0 21653.1i 0.623865 1.34683i
\(638\) 0 0
\(639\) −1382.11 3211.21i −0.0855641 0.198801i
\(640\) 0 0
\(641\) 634.500i 0.0390971i −0.999809 0.0195486i \(-0.993777\pi\)
0.999809 0.0195486i \(-0.00622290\pi\)
\(642\) 0 0
\(643\) −4543.63 −0.278668 −0.139334 0.990245i \(-0.544496\pi\)
−0.139334 + 0.990245i \(0.544496\pi\)
\(644\) 0 0
\(645\) 1717.40 + 8334.36i 0.104841 + 0.508783i
\(646\) 0 0
\(647\) 18802.6 1.14252 0.571258 0.820771i \(-0.306456\pi\)
0.571258 + 0.820771i \(0.306456\pi\)
\(648\) 0 0
\(649\) 19579.6i 1.18423i
\(650\) 0 0
\(651\) −5337.31 + 5193.30i −0.321330 + 0.312660i
\(652\) 0 0
\(653\) 20232.4 1.21249 0.606243 0.795279i \(-0.292676\pi\)
0.606243 + 0.795279i \(0.292676\pi\)
\(654\) 0 0
\(655\) 4378.50 0.261194
\(656\) 0 0
\(657\) −3099.26 7200.87i −0.184039 0.427599i
\(658\) 0 0
\(659\) 13420.3 0.793295 0.396648 0.917971i \(-0.370173\pi\)
0.396648 + 0.917971i \(0.370173\pi\)
\(660\) 0 0
\(661\) 8321.89 0.489689 0.244844 0.969562i \(-0.421263\pi\)
0.244844 + 0.969562i \(0.421263\pi\)
\(662\) 0 0
\(663\) −3569.49 17322.3i −0.209091 1.01470i
\(664\) 0 0
\(665\) 2305.57 + 3608.87i 0.134445 + 0.210445i
\(666\) 0 0
\(667\) 1287.42i 0.0747364i
\(668\) 0 0
\(669\) 16269.2 3352.47i 0.940214 0.193743i
\(670\) 0 0
\(671\) 27733.7 1.59560
\(672\) 0 0
\(673\) 2322.47 0.133023 0.0665117 0.997786i \(-0.478813\pi\)
0.0665117 + 0.997786i \(0.478813\pi\)
\(674\) 0 0
\(675\) −8934.37 12792.5i −0.509458 0.729459i
\(676\) 0 0
\(677\) 1313.39i 0.0745606i −0.999305 0.0372803i \(-0.988131\pi\)
0.999305 0.0372803i \(-0.0118694\pi\)
\(678\) 0 0
\(679\) 13752.3 + 21526.3i 0.777270 + 1.21665i
\(680\) 0 0
\(681\) 15795.4 3254.85i 0.888813 0.183151i
\(682\) 0 0
\(683\) −20367.6 −1.14106 −0.570532 0.821276i \(-0.693263\pi\)
−0.570532 + 0.821276i \(0.693263\pi\)
\(684\) 0 0
\(685\) −10004.0 −0.558002
\(686\) 0 0
\(687\) −727.431 3530.14i −0.0403977 0.196046i
\(688\) 0 0
\(689\) −9006.35 −0.497989
\(690\) 0 0
\(691\) −19327.1 −1.06402 −0.532010 0.846738i \(-0.678563\pi\)
−0.532010 + 0.846738i \(0.678563\pi\)
\(692\) 0 0
\(693\) −13502.7 + 19913.5i −0.740153 + 1.09156i
\(694\) 0 0
\(695\) 9585.03i 0.523138i
\(696\) 0 0
\(697\) 13941.2 0.757621
\(698\) 0 0
\(699\) −16228.5 + 3344.09i −0.878139 + 0.180952i
\(700\) 0 0
\(701\) 7068.43 0.380843 0.190422 0.981702i \(-0.439015\pi\)
0.190422 + 0.981702i \(0.439015\pi\)
\(702\) 0 0
\(703\) 9456.02i 0.507312i
\(704\) 0 0
\(705\) −11627.1 + 2395.91i −0.621137 + 0.127993i
\(706\) 0 0
\(707\) −1173.52 1836.89i −0.0624253 0.0977134i
\(708\) 0 0
\(709\) 5102.93i 0.270303i 0.990825 + 0.135151i \(0.0431520\pi\)
−0.990825 + 0.135151i \(0.956848\pi\)
\(710\) 0 0
\(711\) −3246.89 + 1397.47i −0.171263 + 0.0737118i
\(712\) 0 0
\(713\) 4913.50 0.258082
\(714\) 0 0
\(715\) 12426.8i 0.649979i
\(716\) 0 0
\(717\) −9562.82 + 1970.54i −0.498089 + 0.102638i
\(718\) 0 0
\(719\) −2163.33 −0.112209 −0.0561046 0.998425i \(-0.517868\pi\)
−0.0561046 + 0.998425i \(0.517868\pi\)
\(720\) 0 0
\(721\) 15857.0 + 24820.7i 0.819064 + 1.28207i
\(722\) 0 0
\(723\) −16702.0 + 3441.67i −0.859137 + 0.177036i
\(724\) 0 0
\(725\) −2255.06 −0.115518
\(726\) 0 0
\(727\) 24985.1i 1.27462i −0.770609 0.637309i \(-0.780048\pi\)
0.770609 0.637309i \(-0.219952\pi\)
\(728\) 0 0
\(729\) −6776.74 + 18479.6i −0.344294 + 0.938862i
\(730\) 0 0
\(731\) 21582.3i 1.09200i
\(732\) 0 0
\(733\) 2600.09 0.131018 0.0655092 0.997852i \(-0.479133\pi\)
0.0655092 + 0.997852i \(0.479133\pi\)
\(734\) 0 0
\(735\) −1512.03 + 6441.24i −0.0758804 + 0.323250i
\(736\) 0 0
\(737\) 31998.7i 1.59930i
\(738\) 0 0
\(739\) 17370.8i 0.864675i 0.901712 + 0.432338i \(0.142311\pi\)
−0.901712 + 0.432338i \(0.857689\pi\)
\(740\) 0 0
\(741\) −4544.59 22054.4i −0.225303 1.09337i
\(742\) 0 0
\(743\) 28215.9i 1.39319i 0.717463 + 0.696597i \(0.245303\pi\)
−0.717463 + 0.696597i \(0.754697\pi\)
\(744\) 0 0
\(745\) 12073.3i 0.593734i
\(746\) 0 0
\(747\) 8147.57 + 18930.2i 0.399068 + 0.927201i
\(748\) 0 0
\(749\) 6915.55 4418.08i 0.337368 0.215532i
\(750\) 0 0
\(751\) 33427.0 1.62419 0.812097 0.583522i \(-0.198326\pi\)
0.812097 + 0.583522i \(0.198326\pi\)
\(752\) 0 0
\(753\) −8552.02 + 1762.25i −0.413882 + 0.0852856i
\(754\) 0 0
\(755\) 278.269i 0.0134136i
\(756\) 0 0
\(757\) 24841.4i 1.19270i −0.802723 0.596352i \(-0.796616\pi\)
0.802723 0.596352i \(-0.203384\pi\)
\(758\) 0 0
\(759\) 15548.0 3203.85i 0.743551 0.153218i
\(760\) 0 0
\(761\) 20004.6 0.952912 0.476456 0.879198i \(-0.341921\pi\)
0.476456 + 0.879198i \(0.341921\pi\)
\(762\) 0 0
\(763\) 16506.3 + 25837.0i 0.783182 + 1.22590i
\(764\) 0 0
\(765\) 1938.62 + 4504.21i 0.0916220 + 0.212876i
\(766\) 0 0
\(767\) 28311.4i 1.33281i
\(768\) 0 0
\(769\) 9604.90i 0.450405i −0.974312 0.225203i \(-0.927696\pi\)
0.974312 0.225203i \(-0.0723044\pi\)
\(770\) 0 0
\(771\) −7032.85 34129.6i −0.328511 1.59423i
\(772\) 0 0
\(773\) 4885.24i 0.227309i −0.993520 0.113655i \(-0.963744\pi\)
0.993520 0.113655i \(-0.0362557\pi\)
\(774\) 0 0
\(775\) 8606.55i 0.398911i
\(776\) 0 0
\(777\) −10470.7 + 10188.1i −0.483440 + 0.470396i
\(778\) 0 0
\(779\) 17749.6 0.816363
\(780\) 0 0
\(781\) 6230.03i 0.285439i
\(782\) 0 0
\(783\) 1628.79 + 2332.16i 0.0743400 + 0.106442i
\(784\) 0 0
\(785\) 2621.26i 0.119181i
\(786\) 0 0
\(787\) 34277.8 1.55257 0.776284 0.630384i \(-0.217103\pi\)
0.776284 + 0.630384i \(0.217103\pi\)
\(788\) 0 0
\(789\) −24216.5 + 4990.11i −1.09269 + 0.225162i
\(790\) 0 0
\(791\) −735.721 1151.61i −0.0330711 0.0517656i
\(792\) 0 0
\(793\) −40101.9 −1.79579
\(794\) 0 0
\(795\) 2445.71 503.970i 0.109107 0.0224830i
\(796\) 0 0
\(797\) 20736.8i 0.921624i −0.887498 0.460812i \(-0.847558\pi\)
0.887498 0.460812i \(-0.152442\pi\)
\(798\) 0 0
\(799\) −30109.0 −1.33314
\(800\) 0 0
\(801\) −6685.87 + 2877.61i −0.294923 + 0.126935i
\(802\) 0 0
\(803\) 13970.3i 0.613949i
\(804\) 0 0
\(805\) 3678.80 2350.24i 0.161069 0.102901i
\(806\) 0 0
\(807\) −13456.4 + 2772.86i −0.586973 + 0.120953i
\(808\) 0 0
\(809\) 15223.1i 0.661576i −0.943705 0.330788i \(-0.892686\pi\)
0.943705 0.330788i \(-0.107314\pi\)
\(810\) 0 0
\(811\) −34460.7 −1.49208 −0.746042 0.665899i \(-0.768048\pi\)
−0.746042 + 0.665899i \(0.768048\pi\)
\(812\) 0 0
\(813\) −38789.1 + 7992.98i −1.67330 + 0.344805i
\(814\) 0 0
\(815\) 5644.09 0.242581
\(816\) 0 0
\(817\) 27478.0i 1.17666i
\(818\) 0 0
\(819\) 19524.4 28794.2i 0.833013 1.22851i
\(820\) 0 0
\(821\) 8486.07 0.360738 0.180369 0.983599i \(-0.442271\pi\)
0.180369 + 0.983599i \(0.442271\pi\)
\(822\) 0 0
\(823\) −21594.4 −0.914622 −0.457311 0.889307i \(-0.651187\pi\)
−0.457311 + 0.889307i \(0.651187\pi\)
\(824\) 0 0
\(825\) −5611.91 27234.0i −0.236826 1.14929i
\(826\) 0 0
\(827\) −11423.5 −0.480330 −0.240165 0.970732i \(-0.577202\pi\)
−0.240165 + 0.970732i \(0.577202\pi\)
\(828\) 0 0
\(829\) 6869.52 0.287802 0.143901 0.989592i \(-0.454035\pi\)
0.143901 + 0.989592i \(0.454035\pi\)
\(830\) 0 0
\(831\) −18909.7 + 3896.59i −0.789375 + 0.162661i
\(832\) 0 0
\(833\) −7053.11 + 15226.5i −0.293368 + 0.633336i
\(834\) 0 0
\(835\) 7273.94i 0.301467i
\(836\) 0 0
\(837\) −8900.78 + 6216.35i −0.367570 + 0.256713i
\(838\) 0 0
\(839\) −29613.1 −1.21854 −0.609272 0.792961i \(-0.708538\pi\)
−0.609272 + 0.792961i \(0.708538\pi\)
\(840\) 0 0
\(841\) −23977.9 −0.983144
\(842\) 0 0
\(843\) 39815.3 8204.45i 1.62670 0.335203i
\(844\) 0 0
\(845\) 9812.74i 0.399489i
\(846\) 0 0
\(847\) −15358.2 + 9811.79i −0.623040 + 0.398037i
\(848\) 0 0
\(849\) 4319.39 + 20961.5i 0.174607 + 0.847348i
\(850\) 0 0
\(851\) 9639.25 0.388283
\(852\) 0 0
\(853\) 15110.8 0.606545 0.303273 0.952904i \(-0.401921\pi\)
0.303273 + 0.952904i \(0.401921\pi\)
\(854\) 0 0
\(855\) 2468.20 + 5734.65i 0.0987260 + 0.229381i
\(856\) 0 0
\(857\) −36848.3 −1.46875 −0.734373 0.678747i \(-0.762523\pi\)
−0.734373 + 0.678747i \(0.762523\pi\)
\(858\) 0 0
\(859\) 35305.1 1.40232 0.701162 0.713002i \(-0.252665\pi\)
0.701162 + 0.713002i \(0.252665\pi\)
\(860\) 0 0
\(861\) 19123.9 + 19654.2i 0.756958 + 0.777949i
\(862\) 0 0
\(863\) 48135.9i 1.89868i −0.314244 0.949342i \(-0.601751\pi\)
0.314244 0.949342i \(-0.398249\pi\)
\(864\) 0 0
\(865\) 14264.6 0.560707
\(866\) 0 0
\(867\) −2642.19 12822.3i −0.103499 0.502268i
\(868\) 0 0
\(869\) −6299.25 −0.245900
\(870\) 0 0
\(871\) 46268.9i 1.79995i
\(872\) 0 0
\(873\) 14722.4 + 34206.3i 0.570766 + 1.32612i
\(874\) 0 0
\(875\) −8743.52 13686.1i −0.337811 0.528771i
\(876\) 0 0
\(877\) 22331.1i 0.859825i 0.902871 + 0.429912i \(0.141456\pi\)
−0.902871 + 0.429912i \(0.858544\pi\)
\(878\) 0 0
\(879\) 30698.7 6325.86i 1.17798 0.242737i
\(880\) 0 0
\(881\) −9542.16 −0.364908 −0.182454 0.983214i \(-0.558404\pi\)
−0.182454 + 0.983214i \(0.558404\pi\)
\(882\) 0 0
\(883\) 31638.4i 1.20579i 0.797819 + 0.602897i \(0.205987\pi\)
−0.797819 + 0.602897i \(0.794013\pi\)
\(884\) 0 0
\(885\) −1584.23 7688.07i −0.0601731 0.292013i
\(886\) 0 0
\(887\) −368.960 −0.0139667 −0.00698335 0.999976i \(-0.502223\pi\)
−0.00698335 + 0.999976i \(0.502223\pi\)
\(888\) 0 0
\(889\) −30590.1 + 19542.8i −1.15406 + 0.737284i
\(890\) 0 0
\(891\) −24111.6 + 25474.3i −0.906588 + 0.957826i
\(892\) 0 0
\(893\) −38334.0 −1.43651
\(894\) 0 0
\(895\) 10210.5i 0.381340i
\(896\) 0 0
\(897\) −22481.7 + 4632.65i −0.836837 + 0.172441i
\(898\) 0 0
\(899\) 1569.02i 0.0582090i
\(900\) 0 0
\(901\) 6333.29 0.234176
\(902\) 0 0
\(903\) −30426.5 + 29605.5i −1.12129 + 1.09104i
\(904\) 0 0
\(905\) 4824.71i 0.177214i
\(906\) 0 0
\(907\) 13767.1i 0.504003i 0.967727 + 0.252001i \(0.0810888\pi\)
−0.967727 + 0.252001i \(0.918911\pi\)
\(908\) 0 0
\(909\) −1256.30 2918.90i −0.0458403 0.106506i
\(910\) 0 0
\(911\) 12013.8i 0.436921i −0.975846 0.218461i \(-0.929896\pi\)
0.975846 0.218461i \(-0.0701035\pi\)
\(912\) 0 0
\(913\) 36726.1i 1.33128i
\(914\) 0 0
\(915\) 10889.8 2243.99i 0.393449 0.0810753i
\(916\) 0 0
\(917\) 11760.2 + 18408.0i 0.423507 + 0.662908i
\(918\) 0 0
\(919\) −42760.2 −1.53485 −0.767425 0.641138i \(-0.778463\pi\)
−0.767425 + 0.641138i \(0.778463\pi\)
\(920\) 0 0
\(921\) −2130.55 10339.3i −0.0762259 0.369916i
\(922\) 0 0
\(923\) 9008.37i 0.321251i
\(924\) 0 0
\(925\) 16884.2i 0.600161i
\(926\) 0 0
\(927\) 16975.5 + 39441.2i 0.601456 + 1.39743i
\(928\) 0 0
\(929\) 46059.3 1.62665 0.813324 0.581811i \(-0.197656\pi\)
0.813324 + 0.581811i \(0.197656\pi\)
\(930\) 0 0
\(931\) −8979.85 + 19386.1i −0.316115 + 0.682442i
\(932\) 0 0
\(933\) −6389.81 31009.0i −0.224215 1.08809i
\(934\) 0 0
\(935\) 8738.54i 0.305648i
\(936\) 0 0
\(937\) 5647.59i 0.196904i −0.995142 0.0984519i \(-0.968611\pi\)
0.995142 0.0984519i \(-0.0313891\pi\)
\(938\) 0 0
\(939\) −14056.0 + 2896.42i −0.488499 + 0.100661i
\(940\) 0 0
\(941\) 41421.7i 1.43497i 0.696572 + 0.717486i \(0.254707\pi\)
−0.696572 + 0.717486i \(0.745293\pi\)
\(942\) 0 0
\(943\) 18093.6i 0.624823i
\(944\) 0 0
\(945\) −3690.69 + 8911.70i −0.127046 + 0.306770i
\(946\) 0 0
\(947\) 21290.6 0.730571 0.365285 0.930896i \(-0.380971\pi\)
0.365285 + 0.930896i \(0.380971\pi\)
\(948\) 0 0
\(949\) 20200.5i 0.690976i
\(950\) 0 0
\(951\) −4059.13 19698.5i −0.138408 0.671680i
\(952\) 0 0
\(953\) 15236.1i 0.517888i 0.965892 + 0.258944i \(0.0833745\pi\)
−0.965892 + 0.258944i \(0.916626\pi\)
\(954\) 0 0
\(955\) −14531.4 −0.492383
\(956\) 0 0
\(957\) 1023.08 + 4964.91i 0.0345576 + 0.167704i
\(958\) 0 0
\(959\) −26869.6 42058.6i −0.904760 1.41621i
\(960\) 0 0
\(961\) 23802.7 0.798991
\(962\) 0 0
\(963\) 10989.1 4729.73i 0.367726 0.158269i
\(964\) 0 0
\(965\) 13543.1i 0.451780i
\(966\) 0 0
\(967\) 29677.9 0.986945 0.493472 0.869761i \(-0.335727\pi\)
0.493472 + 0.869761i \(0.335727\pi\)
\(968\) 0 0
\(969\) 3195.77 + 15508.7i 0.105947 + 0.514150i
\(970\) 0 0
\(971\) 39536.5i 1.30668i 0.757065 + 0.653340i \(0.226633\pi\)
−0.757065 + 0.653340i \(0.773367\pi\)
\(972\) 0 0
\(973\) 40297.3 25744.4i 1.32772 0.848230i
\(974\) 0 0
\(975\) 8114.60 + 39379.2i 0.266539 + 1.29348i
\(976\) 0 0
\(977\) 29672.8i 0.971665i 0.874052 + 0.485832i \(0.161483\pi\)
−0.874052 + 0.485832i \(0.838517\pi\)
\(978\) 0 0
\(979\) −12971.1 −0.423452
\(980\) 0 0
\(981\) 17670.6 + 41056.2i 0.575107 + 1.33621i
\(982\) 0 0
\(983\) 4423.26 0.143520 0.0717599 0.997422i \(-0.477138\pi\)
0.0717599 + 0.997422i \(0.477138\pi\)
\(984\) 0 0
\(985\) 293.583i 0.00949679i
\(986\) 0 0
\(987\) −41302.0 42447.3i −1.33197 1.36891i
\(988\) 0 0
\(989\) 28010.5 0.900587
\(990\) 0 0
\(991\) −38967.8 −1.24910 −0.624548 0.780986i \(-0.714717\pi\)
−0.624548 + 0.780986i \(0.714717\pi\)
\(992\) 0 0
\(993\) 21701.3 4471.83i 0.693524 0.142909i
\(994\) 0 0
\(995\) 2638.23 0.0840577
\(996\) 0 0
\(997\) 43802.8 1.39142 0.695712 0.718321i \(-0.255089\pi\)
0.695712 + 0.718321i \(0.255089\pi\)
\(998\) 0 0
\(999\) −17461.4 + 12195.2i −0.553008 + 0.386224i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.4.i.c.209.43 80
3.2 odd 2 inner 672.4.i.c.209.42 80
4.3 odd 2 168.4.i.c.125.63 yes 80
7.6 odd 2 inner 672.4.i.c.209.37 80
8.3 odd 2 168.4.i.c.125.20 yes 80
8.5 even 2 inner 672.4.i.c.209.38 80
12.11 even 2 168.4.i.c.125.17 80
21.20 even 2 inner 672.4.i.c.209.40 80
24.5 odd 2 inner 672.4.i.c.209.39 80
24.11 even 2 168.4.i.c.125.62 yes 80
28.27 even 2 168.4.i.c.125.64 yes 80
56.13 odd 2 inner 672.4.i.c.209.44 80
56.27 even 2 168.4.i.c.125.19 yes 80
84.83 odd 2 168.4.i.c.125.18 yes 80
168.83 odd 2 168.4.i.c.125.61 yes 80
168.125 even 2 inner 672.4.i.c.209.41 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.i.c.125.17 80 12.11 even 2
168.4.i.c.125.18 yes 80 84.83 odd 2
168.4.i.c.125.19 yes 80 56.27 even 2
168.4.i.c.125.20 yes 80 8.3 odd 2
168.4.i.c.125.61 yes 80 168.83 odd 2
168.4.i.c.125.62 yes 80 24.11 even 2
168.4.i.c.125.63 yes 80 4.3 odd 2
168.4.i.c.125.64 yes 80 28.27 even 2
672.4.i.c.209.37 80 7.6 odd 2 inner
672.4.i.c.209.38 80 8.5 even 2 inner
672.4.i.c.209.39 80 24.5 odd 2 inner
672.4.i.c.209.40 80 21.20 even 2 inner
672.4.i.c.209.41 80 168.125 even 2 inner
672.4.i.c.209.42 80 3.2 odd 2 inner
672.4.i.c.209.43 80 1.1 even 1 trivial
672.4.i.c.209.44 80 56.13 odd 2 inner