Properties

Label 168.4.i.c.125.62
Level $168$
Weight $4$
Character 168.125
Analytic conductor $9.912$
Analytic rank $0$
Dimension $80$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,4,Mod(125,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.125"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 168.i (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.91232088096\)
Analytic rank: \(0\)
Dimension: \(80\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 125.62
Character \(\chi\) \(=\) 168.125
Dual form 168.4.i.c.125.64

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.24057 - 1.72622i) q^{2} +(1.04870 - 5.08923i) q^{3} +(2.04030 - 7.73545i) q^{4} +3.71228i q^{5} +(-6.43546 - 13.2131i) q^{6} +(15.6071 - 9.97081i) q^{7} +(-8.78168 - 20.8538i) q^{8} +(-24.8005 - 10.6741i) q^{9} +(6.40823 + 8.31763i) q^{10} +48.1150 q^{11} +(-37.2278 - 18.4957i) q^{12} -69.5724 q^{13} +(17.7570 - 49.2817i) q^{14} +(18.8927 + 3.89307i) q^{15} +(-55.6743 - 31.5653i) q^{16} +48.9235 q^{17} +(-73.9931 + 18.8950i) q^{18} -62.2883 q^{19} +(28.7162 + 7.57418i) q^{20} +(-34.3765 - 89.8847i) q^{21} +(107.805 - 83.0572i) q^{22} +63.4952i q^{23} +(-115.339 + 22.8225i) q^{24} +111.219 q^{25} +(-155.882 + 120.098i) q^{26} +(-80.3314 + 115.021i) q^{27} +(-45.2854 - 141.072i) q^{28} -20.2759 q^{29} +(49.0506 - 23.8903i) q^{30} +77.3838i q^{31} +(-179.231 + 25.3821i) q^{32} +(50.4582 - 244.868i) q^{33} +(109.617 - 84.4529i) q^{34} +(37.0145 + 57.9382i) q^{35} +(-133.170 + 170.064i) q^{36} +151.811i q^{37} +(-139.561 + 107.524i) q^{38} +(-72.9606 + 354.070i) q^{39} +(77.4153 - 32.6001i) q^{40} +284.960 q^{41} +(-232.184 - 142.051i) q^{42} -441.143i q^{43} +(98.1691 - 372.191i) q^{44} +(39.6255 - 92.0663i) q^{45} +(109.607 + 142.265i) q^{46} +615.429 q^{47} +(-219.029 + 250.237i) q^{48} +(144.166 - 311.232i) q^{49} +(249.194 - 191.989i) q^{50} +(51.3061 - 248.983i) q^{51} +(-141.949 + 538.174i) q^{52} -129.453 q^{53} +(18.5642 + 396.383i) q^{54} +178.616i q^{55} +(-344.986 - 237.908i) q^{56} +(-65.3217 + 316.999i) q^{57} +(-45.4295 + 35.0007i) q^{58} -406.934i q^{59} +(68.6614 - 138.200i) q^{60} +576.405 q^{61} +(133.582 + 173.384i) q^{62} +(-493.494 + 80.6876i) q^{63} +(-357.764 + 366.263i) q^{64} -258.272i q^{65} +(-309.642 - 635.746i) q^{66} +665.046i q^{67} +(99.8187 - 378.445i) q^{68} +(323.142 + 66.5875i) q^{69} +(182.948 + 65.9192i) q^{70} +129.482i q^{71} +(-4.80718 + 610.921i) q^{72} +290.352i q^{73} +(262.059 + 340.142i) q^{74} +(116.635 - 566.018i) q^{75} +(-127.087 + 481.828i) q^{76} +(750.938 - 479.745i) q^{77} +(447.730 + 919.264i) q^{78} -130.921 q^{79} +(117.179 - 206.679i) q^{80} +(501.125 + 529.447i) q^{81} +(638.472 - 491.904i) q^{82} +763.300i q^{83} +(-765.437 + 82.5256i) q^{84} +181.618i q^{85} +(-761.511 - 988.411i) q^{86} +(-21.2633 + 103.189i) q^{87} +(-422.530 - 1003.38i) q^{88} -269.586 q^{89} +(-70.1435 - 274.683i) q^{90} +(-1085.83 + 693.693i) q^{91} +(491.164 + 129.549i) q^{92} +(393.824 + 81.1524i) q^{93} +(1378.91 - 1062.37i) q^{94} -231.232i q^{95} +(-58.7843 + 938.765i) q^{96} -1379.26i q^{97} +(-214.242 - 946.199i) q^{98} +(-1193.27 - 513.586i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 28 q^{4} + 64 q^{7} + 104 q^{9} - 8 q^{15} - 892 q^{16} + 692 q^{18} + 128 q^{22} - 976 q^{25} + 612 q^{28} - 332 q^{30} + 1544 q^{36} + 568 q^{39} + 780 q^{42} + 208 q^{46} - 4048 q^{49} - 1448 q^{57}+ \cdots - 2072 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(85\) \(113\) \(127\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.24057 1.72622i 0.792161 0.610312i
\(3\) 1.04870 5.08923i 0.201822 0.979422i
\(4\) 2.04030 7.73545i 0.255038 0.966931i
\(5\) 3.71228i 0.332037i 0.986123 + 0.166018i \(0.0530911\pi\)
−0.986123 + 0.166018i \(0.946909\pi\)
\(6\) −6.43546 13.2131i −0.437878 0.899035i
\(7\) 15.6071 9.97081i 0.842707 0.538373i
\(8\) −8.78168 20.8538i −0.388099 0.921618i
\(9\) −24.8005 10.6741i −0.918535 0.395339i
\(10\) 6.40823 + 8.31763i 0.202646 + 0.263027i
\(11\) 48.1150 1.31884 0.659419 0.751776i \(-0.270802\pi\)
0.659419 + 0.751776i \(0.270802\pi\)
\(12\) −37.2278 18.4957i −0.895561 0.444938i
\(13\) −69.5724 −1.48430 −0.742150 0.670234i \(-0.766194\pi\)
−0.742150 + 0.670234i \(0.766194\pi\)
\(14\) 17.7570 49.2817i 0.338984 0.940792i
\(15\) 18.8927 + 3.89307i 0.325204 + 0.0670125i
\(16\) −55.6743 31.5653i −0.869911 0.493208i
\(17\) 48.9235 0.697982 0.348991 0.937126i \(-0.386524\pi\)
0.348991 + 0.937126i \(0.386524\pi\)
\(18\) −73.9931 + 18.8950i −0.968908 + 0.247422i
\(19\) −62.2883 −0.752100 −0.376050 0.926599i \(-0.622718\pi\)
−0.376050 + 0.926599i \(0.622718\pi\)
\(20\) 28.7162 + 7.57418i 0.321057 + 0.0846819i
\(21\) −34.3765 89.8847i −0.357217 0.934021i
\(22\) 107.805 83.0572i 1.04473 0.804903i
\(23\) 63.4952i 0.575638i 0.957685 + 0.287819i \(0.0929301\pi\)
−0.957685 + 0.287819i \(0.907070\pi\)
\(24\) −115.339 + 22.8225i −0.980980 + 0.194110i
\(25\) 111.219 0.889752
\(26\) −155.882 + 120.098i −1.17580 + 0.905887i
\(27\) −80.3314 + 115.021i −0.572585 + 0.819846i
\(28\) −45.2854 141.072i −0.305648 0.952145i
\(29\) −20.2759 −0.129832 −0.0649161 0.997891i \(-0.520678\pi\)
−0.0649161 + 0.997891i \(0.520678\pi\)
\(30\) 49.0506 23.8903i 0.298513 0.145391i
\(31\) 77.3838i 0.448340i 0.974550 + 0.224170i \(0.0719671\pi\)
−0.974550 + 0.224170i \(0.928033\pi\)
\(32\) −179.231 + 25.3821i −0.990121 + 0.140218i
\(33\) 50.4582 244.868i 0.266171 1.29170i
\(34\) 109.617 84.4529i 0.552914 0.425987i
\(35\) 37.0145 + 57.9382i 0.178760 + 0.279810i
\(36\) −133.170 + 170.064i −0.616527 + 0.787334i
\(37\) 151.811i 0.674527i 0.941410 + 0.337263i \(0.109501\pi\)
−0.941410 + 0.337263i \(0.890499\pi\)
\(38\) −139.561 + 107.524i −0.595785 + 0.459016i
\(39\) −72.9606 + 354.070i −0.299565 + 1.45376i
\(40\) 77.4153 32.6001i 0.306011 0.128863i
\(41\) 284.960 1.08544 0.542722 0.839912i \(-0.317394\pi\)
0.542722 + 0.839912i \(0.317394\pi\)
\(42\) −232.184 142.051i −0.853018 0.521881i
\(43\) 441.143i 1.56450i −0.622963 0.782252i \(-0.714071\pi\)
0.622963 0.782252i \(-0.285929\pi\)
\(44\) 98.1691 372.191i 0.336353 1.27523i
\(45\) 39.6255 92.0663i 0.131267 0.304988i
\(46\) 109.607 + 142.265i 0.351319 + 0.455998i
\(47\) 615.429 1.90999 0.954996 0.296620i \(-0.0958594\pi\)
0.954996 + 0.296620i \(0.0958594\pi\)
\(48\) −219.029 + 250.237i −0.658626 + 0.752470i
\(49\) 144.166 311.232i 0.420309 0.907381i
\(50\) 249.194 191.989i 0.704826 0.543026i
\(51\) 51.3061 248.983i 0.140868 0.683619i
\(52\) −141.949 + 538.174i −0.378553 + 1.43522i
\(53\) −129.453 −0.335504 −0.167752 0.985829i \(-0.553651\pi\)
−0.167752 + 0.985829i \(0.553651\pi\)
\(54\) 18.5642 + 396.383i 0.0467828 + 0.998905i
\(55\) 178.616i 0.437903i
\(56\) −344.986 237.908i −0.823228 0.567711i
\(57\) −65.3217 + 316.999i −0.151791 + 0.736624i
\(58\) −45.4295 + 35.0007i −0.102848 + 0.0792382i
\(59\) 406.934i 0.897938i −0.893547 0.448969i \(-0.851791\pi\)
0.893547 0.448969i \(-0.148209\pi\)
\(60\) 68.6614 138.200i 0.147736 0.297359i
\(61\) 576.405 1.20985 0.604927 0.796281i \(-0.293202\pi\)
0.604927 + 0.796281i \(0.293202\pi\)
\(62\) 133.582 + 173.384i 0.273627 + 0.355158i
\(63\) −493.494 + 80.6876i −0.986896 + 0.161360i
\(64\) −357.764 + 366.263i −0.698758 + 0.715358i
\(65\) 258.272i 0.492842i
\(66\) −309.642 635.746i −0.577489 1.18568i
\(67\) 665.046i 1.21266i 0.795212 + 0.606331i \(0.207359\pi\)
−0.795212 + 0.606331i \(0.792641\pi\)
\(68\) 99.8187 378.445i 0.178012 0.674901i
\(69\) 323.142 + 66.5875i 0.563792 + 0.116177i
\(70\) 182.948 + 65.9192i 0.312378 + 0.112555i
\(71\) 129.482i 0.216432i 0.994127 + 0.108216i \(0.0345139\pi\)
−0.994127 + 0.108216i \(0.965486\pi\)
\(72\) −4.80718 + 610.921i −0.00786849 + 0.999969i
\(73\) 290.352i 0.465523i 0.972534 + 0.232761i \(0.0747762\pi\)
−0.972534 + 0.232761i \(0.925224\pi\)
\(74\) 262.059 + 340.142i 0.411672 + 0.534334i
\(75\) 116.635 566.018i 0.179572 0.871442i
\(76\) −127.087 + 481.828i −0.191814 + 0.727229i
\(77\) 750.938 479.745i 1.11139 0.710027i
\(78\) 447.730 + 919.264i 0.649942 + 1.33444i
\(79\) −130.921 −0.186452 −0.0932261 0.995645i \(-0.529718\pi\)
−0.0932261 + 0.995645i \(0.529718\pi\)
\(80\) 117.179 206.679i 0.163763 0.288843i
\(81\) 501.125 + 529.447i 0.687415 + 0.726265i
\(82\) 638.472 491.904i 0.859847 0.662460i
\(83\) 763.300i 1.00943i 0.863285 + 0.504717i \(0.168403\pi\)
−0.863285 + 0.504717i \(0.831597\pi\)
\(84\) −765.437 + 82.5256i −0.994238 + 0.107194i
\(85\) 181.618i 0.231756i
\(86\) −761.511 988.411i −0.954836 1.23934i
\(87\) −21.2633 + 103.189i −0.0262031 + 0.127161i
\(88\) −422.530 1003.38i −0.511840 1.21546i
\(89\) −269.586 −0.321080 −0.160540 0.987029i \(-0.551324\pi\)
−0.160540 + 0.987029i \(0.551324\pi\)
\(90\) −70.1435 274.683i −0.0821531 0.321713i
\(91\) −1085.83 + 693.693i −1.25083 + 0.799107i
\(92\) 491.164 + 129.549i 0.556602 + 0.146809i
\(93\) 393.824 + 81.1524i 0.439114 + 0.0904851i
\(94\) 1378.91 1062.37i 1.51302 1.16569i
\(95\) 231.232i 0.249725i
\(96\) −58.7843 + 938.765i −0.0624963 + 0.998045i
\(97\) 1379.26i 1.44374i −0.692030 0.721869i \(-0.743283\pi\)
0.692030 0.721869i \(-0.256717\pi\)
\(98\) −214.242 946.199i −0.220833 0.975312i
\(99\) −1193.27 513.586i −1.21140 0.521388i
\(100\) 226.920 860.328i 0.226920 0.860328i
\(101\) 117.695i 0.115952i 0.998318 + 0.0579759i \(0.0184647\pi\)
−0.998318 + 0.0579759i \(0.981535\pi\)
\(102\) −314.845 646.429i −0.305631 0.627510i
\(103\) 1590.34i 1.52137i 0.649122 + 0.760684i \(0.275137\pi\)
−0.649122 + 0.760684i \(0.724863\pi\)
\(104\) 610.962 + 1450.85i 0.576056 + 1.36796i
\(105\) 333.677 127.615i 0.310129 0.118609i
\(106\) −290.048 + 223.465i −0.265773 + 0.204762i
\(107\) 443.102 0.400339 0.200169 0.979761i \(-0.435851\pi\)
0.200169 + 0.979761i \(0.435851\pi\)
\(108\) 725.840 + 856.077i 0.646704 + 0.762741i
\(109\) 1655.46i 1.45472i 0.686256 + 0.727360i \(0.259253\pi\)
−0.686256 + 0.727360i \(0.740747\pi\)
\(110\) 308.332 + 400.203i 0.267257 + 0.346889i
\(111\) 772.598 + 159.204i 0.660647 + 0.136135i
\(112\) −1183.65 + 62.4737i −0.998610 + 0.0527073i
\(113\) 73.7875i 0.0614278i −0.999528 0.0307139i \(-0.990222\pi\)
0.999528 0.0307139i \(-0.00977807\pi\)
\(114\) 400.854 + 823.018i 0.329328 + 0.676164i
\(115\) −235.712 −0.191133
\(116\) −41.3689 + 156.843i −0.0331121 + 0.125539i
\(117\) 1725.43 + 742.626i 1.36338 + 0.586801i
\(118\) −702.460 911.765i −0.548023 0.711312i
\(119\) 763.556 487.807i 0.588194 0.375775i
\(120\) −84.7237 428.172i −0.0644515 0.325721i
\(121\) 984.052 0.739332
\(122\) 1291.48 995.004i 0.958399 0.738389i
\(123\) 298.837 1450.22i 0.219067 1.06311i
\(124\) 598.599 + 157.886i 0.433514 + 0.114344i
\(125\) 876.912i 0.627467i
\(126\) −966.423 + 1032.67i −0.683300 + 0.730138i
\(127\) −1960.00 −1.36947 −0.684733 0.728794i \(-0.740081\pi\)
−0.684733 + 0.728794i \(0.740081\pi\)
\(128\) −169.343 + 1438.22i −0.116937 + 0.993139i
\(129\) −2245.08 462.626i −1.53231 0.315752i
\(130\) −445.836 578.677i −0.300788 0.390410i
\(131\) 1179.46i 0.786642i 0.919401 + 0.393321i \(0.128674\pi\)
−0.919401 + 0.393321i \(0.871326\pi\)
\(132\) −1791.21 889.922i −1.18110 0.586801i
\(133\) −972.142 + 621.064i −0.633800 + 0.404911i
\(134\) 1148.02 + 1490.08i 0.740102 + 0.960623i
\(135\) −426.991 298.213i −0.272219 0.190119i
\(136\) −429.630 1020.24i −0.270886 0.643273i
\(137\) 2694.83i 1.68054i −0.542165 0.840272i \(-0.682395\pi\)
0.542165 0.840272i \(-0.317605\pi\)
\(138\) 838.966 408.621i 0.517518 0.252059i
\(139\) −2581.98 −1.57554 −0.787771 0.615968i \(-0.788765\pi\)
−0.787771 + 0.615968i \(0.788765\pi\)
\(140\) 523.698 168.112i 0.316147 0.101486i
\(141\) 645.401 3132.06i 0.385479 1.87069i
\(142\) 223.515 + 290.114i 0.132091 + 0.171449i
\(143\) −3347.47 −1.95755
\(144\) 1043.82 + 1377.11i 0.604060 + 0.796939i
\(145\) 75.2698i 0.0431091i
\(146\) 501.213 + 650.555i 0.284114 + 0.368769i
\(147\) −1432.74 1060.08i −0.803881 0.594790i
\(148\) 1174.32 + 309.739i 0.652221 + 0.172030i
\(149\) −3252.26 −1.78816 −0.894079 0.447910i \(-0.852168\pi\)
−0.894079 + 0.447910i \(0.852168\pi\)
\(150\) −715.745 1469.54i −0.389602 0.799917i
\(151\) 74.9590 0.0403978 0.0201989 0.999796i \(-0.493570\pi\)
0.0201989 + 0.999796i \(0.493570\pi\)
\(152\) 546.996 + 1298.95i 0.291889 + 0.693149i
\(153\) −1213.33 522.217i −0.641121 0.275939i
\(154\) 854.380 2371.19i 0.447064 1.24075i
\(155\) −287.271 −0.148865
\(156\) 2590.03 + 1286.79i 1.32928 + 0.660422i
\(157\) 706.105 0.358938 0.179469 0.983764i \(-0.442562\pi\)
0.179469 + 0.983764i \(0.442562\pi\)
\(158\) −293.337 + 225.998i −0.147700 + 0.113794i
\(159\) −135.757 + 658.815i −0.0677123 + 0.328600i
\(160\) −94.2256 665.356i −0.0465574 0.328756i
\(161\) 633.099 + 990.979i 0.309908 + 0.485094i
\(162\) 2036.75 + 321.209i 0.987792 + 0.155781i
\(163\) 1520.38i 0.730586i −0.930893 0.365293i \(-0.880969\pi\)
0.930893 0.365293i \(-0.119031\pi\)
\(164\) 581.404 2204.29i 0.276829 1.04955i
\(165\) 909.020 + 187.315i 0.428891 + 0.0883786i
\(166\) 1317.63 + 1710.23i 0.616070 + 0.799634i
\(167\) −1959.42 −0.907933 −0.453966 0.891019i \(-0.649991\pi\)
−0.453966 + 0.891019i \(0.649991\pi\)
\(168\) −1572.56 + 1506.22i −0.722175 + 0.691711i
\(169\) 2643.32 1.20315
\(170\) 313.513 + 406.928i 0.141443 + 0.183588i
\(171\) 1544.78 + 664.874i 0.690831 + 0.297334i
\(172\) −3412.44 900.065i −1.51277 0.399007i
\(173\) 3842.54i 1.68869i −0.535800 0.844345i \(-0.679990\pi\)
0.535800 0.844345i \(-0.320010\pi\)
\(174\) 130.485 + 267.906i 0.0568506 + 0.116724i
\(175\) 1735.81 1108.94i 0.749800 0.479018i
\(176\) −2678.77 1518.76i −1.14727 0.650461i
\(177\) −2070.98 426.752i −0.879461 0.181224i
\(178\) −604.027 + 465.367i −0.254347 + 0.195959i
\(179\) 2750.46 1.14849 0.574243 0.818685i \(-0.305296\pi\)
0.574243 + 0.818685i \(0.305296\pi\)
\(180\) −631.326 494.364i −0.261424 0.204709i
\(181\) −1299.66 −0.533718 −0.266859 0.963736i \(-0.585986\pi\)
−0.266859 + 0.963736i \(0.585986\pi\)
\(182\) −1235.40 + 3428.65i −0.503153 + 1.39642i
\(183\) 604.476 2933.45i 0.244176 1.18496i
\(184\) 1324.12 557.595i 0.530518 0.223404i
\(185\) −563.564 −0.223968
\(186\) 1022.48 498.000i 0.403073 0.196318i
\(187\) 2353.95 0.920525
\(188\) 1255.66 4760.62i 0.487120 1.84683i
\(189\) −106.890 + 2596.12i −0.0411380 + 0.999153i
\(190\) −399.158 518.091i −0.152410 0.197822i
\(191\) 3914.42i 1.48292i 0.670998 + 0.741459i \(0.265866\pi\)
−0.670998 + 0.741459i \(0.734134\pi\)
\(192\) 1488.81 + 2204.84i 0.559612 + 0.828755i
\(193\) −3648.18 −1.36063 −0.680316 0.732919i \(-0.738157\pi\)
−0.680316 + 0.732919i \(0.738157\pi\)
\(194\) −2380.91 3090.33i −0.881131 1.14367i
\(195\) −1314.41 270.850i −0.482701 0.0994666i
\(196\) −2113.37 1750.20i −0.770180 0.637826i
\(197\) −79.0843 −0.0286016 −0.0143008 0.999898i \(-0.504552\pi\)
−0.0143008 + 0.999898i \(0.504552\pi\)
\(198\) −3560.18 + 909.131i −1.27783 + 0.326309i
\(199\) 710.675i 0.253158i 0.991957 + 0.126579i \(0.0403997\pi\)
−0.991957 + 0.126579i \(0.959600\pi\)
\(200\) −976.689 2319.34i −0.345312 0.820011i
\(201\) 3384.57 + 697.434i 1.18771 + 0.244742i
\(202\) 203.169 + 263.705i 0.0707668 + 0.0918525i
\(203\) −316.449 + 202.167i −0.109411 + 0.0698982i
\(204\) −1821.31 904.876i −0.625086 0.310559i
\(205\) 1057.85i 0.360408i
\(206\) 2745.29 + 3563.27i 0.928510 + 1.20517i
\(207\) 677.757 1574.71i 0.227572 0.528744i
\(208\) 3873.40 + 2196.07i 1.29121 + 0.732069i
\(209\) −2997.00 −0.991898
\(210\) 527.335 861.933i 0.173284 0.283233i
\(211\) 2273.94i 0.741915i 0.928650 + 0.370958i \(0.120971\pi\)
−0.928650 + 0.370958i \(0.879029\pi\)
\(212\) −264.123 + 1001.38i −0.0855663 + 0.324410i
\(213\) 658.964 + 135.788i 0.211979 + 0.0436809i
\(214\) 992.800 764.893i 0.317133 0.244332i
\(215\) 1637.65 0.519473
\(216\) 3104.08 + 665.138i 0.977804 + 0.209523i
\(217\) 771.579 + 1207.74i 0.241374 + 0.377819i
\(218\) 2857.70 + 3709.18i 0.887833 + 1.15237i
\(219\) 1477.67 + 304.493i 0.455944 + 0.0939530i
\(220\) 1381.68 + 364.432i 0.423422 + 0.111682i
\(221\) −3403.72 −1.03602
\(222\) 2005.88 976.971i 0.606423 0.295360i
\(223\) 3196.79i 0.959968i 0.877277 + 0.479984i \(0.159358\pi\)
−0.877277 + 0.479984i \(0.840642\pi\)
\(224\) −2544.20 + 2183.22i −0.758892 + 0.651217i
\(225\) −2758.28 1187.17i −0.817268 0.351753i
\(226\) −127.374 165.326i −0.0374901 0.0486607i
\(227\) 3103.70i 0.907487i 0.891132 + 0.453744i \(0.149912\pi\)
−0.891132 + 0.453744i \(0.850088\pi\)
\(228\) 2318.85 + 1152.07i 0.673552 + 0.334638i
\(229\) 693.650 0.200165 0.100082 0.994979i \(-0.468089\pi\)
0.100082 + 0.994979i \(0.468089\pi\)
\(230\) −528.130 + 406.892i −0.151408 + 0.116651i
\(231\) −1654.02 4324.80i −0.471112 1.23182i
\(232\) 178.056 + 422.830i 0.0503878 + 0.119656i
\(233\) 3188.80i 0.896589i −0.893886 0.448294i \(-0.852032\pi\)
0.893886 0.448294i \(-0.147968\pi\)
\(234\) 5147.88 1314.57i 1.43815 0.367248i
\(235\) 2284.65i 0.634187i
\(236\) −3147.82 830.269i −0.868244 0.229008i
\(237\) −137.297 + 666.285i −0.0376302 + 0.182615i
\(238\) 868.737 2411.03i 0.236604 0.656656i
\(239\) 1879.03i 0.508554i 0.967131 + 0.254277i \(0.0818375\pi\)
−0.967131 + 0.254277i \(0.918162\pi\)
\(240\) −928.950 813.097i −0.249848 0.218688i
\(241\) 3281.84i 0.877187i 0.898685 + 0.438594i \(0.144523\pi\)
−0.898685 + 0.438594i \(0.855477\pi\)
\(242\) 2204.84 1698.69i 0.585670 0.451224i
\(243\) 3220.01 1995.11i 0.850056 0.526692i
\(244\) 1176.04 4458.75i 0.308558 1.16985i
\(245\) 1155.38 + 535.185i 0.301284 + 0.139558i
\(246\) −1833.85 3765.19i −0.475292 0.975852i
\(247\) 4333.54 1.11634
\(248\) 1613.75 679.560i 0.413198 0.174000i
\(249\) 3884.60 + 800.472i 0.988662 + 0.203726i
\(250\) 1513.75 + 1964.78i 0.382951 + 0.497055i
\(251\) 1680.42i 0.422578i −0.977424 0.211289i \(-0.932234\pi\)
0.977424 0.211289i \(-0.0677661\pi\)
\(252\) −382.722 + 3982.03i −0.0956715 + 0.995413i
\(253\) 3055.07i 0.759173i
\(254\) −4391.53 + 3383.41i −1.08484 + 0.835803i
\(255\) 924.295 + 190.463i 0.226987 + 0.0467735i
\(256\) 2103.26 + 3514.75i 0.513492 + 0.858094i
\(257\) 6706.25 1.62772 0.813861 0.581059i \(-0.197362\pi\)
0.813861 + 0.581059i \(0.197362\pi\)
\(258\) −5828.84 + 2838.96i −1.40654 + 0.685061i
\(259\) 1513.67 + 2369.33i 0.363147 + 0.568428i
\(260\) −1997.85 526.954i −0.476545 0.125693i
\(261\) 502.851 + 216.428i 0.119256 + 0.0513277i
\(262\) 2036.02 + 2642.67i 0.480097 + 0.623147i
\(263\) 4758.38i 1.11564i 0.829961 + 0.557822i \(0.188363\pi\)
−0.829961 + 0.557822i \(0.811637\pi\)
\(264\) −5549.54 + 1098.11i −1.29375 + 0.255999i
\(265\) 480.566i 0.111400i
\(266\) −1106.06 + 3069.67i −0.254950 + 0.707570i
\(267\) −282.715 + 1371.99i −0.0648011 + 0.314473i
\(268\) 5144.43 + 1356.90i 1.17256 + 0.309275i
\(269\) 2644.09i 0.599306i 0.954048 + 0.299653i \(0.0968708\pi\)
−0.954048 + 0.299653i \(0.903129\pi\)
\(270\) −1471.49 + 68.9157i −0.331673 + 0.0155336i
\(271\) 7621.80i 1.70846i −0.519899 0.854228i \(-0.674030\pi\)
0.519899 0.854228i \(-0.325970\pi\)
\(272\) −2723.78 1544.29i −0.607183 0.344250i
\(273\) 2391.65 + 6253.49i 0.530218 + 1.38637i
\(274\) −4651.87 6037.95i −1.02566 1.33126i
\(275\) 5351.30 1.17344
\(276\) 1174.39 2363.79i 0.256123 0.515519i
\(277\) 3715.63i 0.805960i −0.915209 0.402980i \(-0.867974\pi\)
0.915209 0.402980i \(-0.132026\pi\)
\(278\) −5785.10 + 4457.07i −1.24808 + 0.961573i
\(279\) 826.006 1919.15i 0.177246 0.411816i
\(280\) 883.183 1280.69i 0.188501 0.273342i
\(281\) 7823.45i 1.66088i 0.557106 + 0.830441i \(0.311912\pi\)
−0.557106 + 0.830441i \(0.688088\pi\)
\(282\) −3960.57 8131.70i −0.836342 1.71715i
\(283\) 4118.81 0.865151 0.432575 0.901598i \(-0.357605\pi\)
0.432575 + 0.901598i \(0.357605\pi\)
\(284\) 1001.60 + 264.183i 0.209275 + 0.0551984i
\(285\) −1176.79 242.493i −0.244586 0.0504001i
\(286\) −7500.25 + 5778.49i −1.55070 + 1.19472i
\(287\) 4447.41 2841.28i 0.914711 0.584374i
\(288\) 4715.94 + 1283.65i 0.964894 + 0.262638i
\(289\) −2519.49 −0.512821
\(290\) −129.933 168.647i −0.0263100 0.0341493i
\(291\) −7019.37 1446.43i −1.41403 0.291379i
\(292\) 2246.01 + 592.407i 0.450129 + 0.118726i
\(293\) 6032.10i 1.20273i −0.798976 0.601363i \(-0.794624\pi\)
0.798976 0.601363i \(-0.205376\pi\)
\(294\) −5040.10 + 98.0456i −0.999811 + 0.0194494i
\(295\) 1510.66 0.298148
\(296\) 3165.83 1333.15i 0.621656 0.261783i
\(297\) −3865.14 + 5534.24i −0.755146 + 1.08124i
\(298\) −7286.91 + 5614.13i −1.41651 + 1.09133i
\(299\) 4417.51i 0.854420i
\(300\) −4140.44 2057.08i −0.796827 0.395884i
\(301\) −4398.55 6884.98i −0.842286 1.31842i
\(302\) 167.951 129.396i 0.0320016 0.0246553i
\(303\) 598.979 + 123.427i 0.113566 + 0.0234017i
\(304\) 3467.86 + 1966.15i 0.654261 + 0.370942i
\(305\) 2139.78i 0.401716i
\(306\) −3620.00 + 924.409i −0.676280 + 0.172696i
\(307\) −2031.61 −0.377688 −0.188844 0.982007i \(-0.560474\pi\)
−0.188844 + 0.982007i \(0.560474\pi\)
\(308\) −2178.91 6787.66i −0.403099 1.25572i
\(309\) 8093.61 + 1667.79i 1.49006 + 0.307046i
\(310\) −643.650 + 495.894i −0.117925 + 0.0908544i
\(311\) −6093.07 −1.11095 −0.555477 0.831532i \(-0.687464\pi\)
−0.555477 + 0.831532i \(0.687464\pi\)
\(312\) 8024.42 1587.82i 1.45607 0.288117i
\(313\) 2761.91i 0.498762i 0.968405 + 0.249381i \(0.0802271\pi\)
−0.968405 + 0.249381i \(0.919773\pi\)
\(314\) 1582.08 1218.89i 0.284337 0.219064i
\(315\) −299.535 1831.99i −0.0535775 0.327686i
\(316\) −267.118 + 1012.73i −0.0475524 + 0.180286i
\(317\) −3870.63 −0.685792 −0.342896 0.939373i \(-0.611408\pi\)
−0.342896 + 0.939373i \(0.611408\pi\)
\(318\) 833.089 + 1710.47i 0.146910 + 0.301630i
\(319\) −975.573 −0.171228
\(320\) −1359.67 1328.12i −0.237525 0.232013i
\(321\) 464.681 2255.05i 0.0807974 0.392101i
\(322\) 3129.15 + 1127.49i 0.541556 + 0.195132i
\(323\) −3047.36 −0.524953
\(324\) 5117.96 2796.20i 0.877565 0.479457i
\(325\) −7737.77 −1.32066
\(326\) −2624.52 3406.52i −0.445885 0.578741i
\(327\) 8425.02 + 1736.08i 1.42478 + 0.293595i
\(328\) −2502.42 5942.50i −0.421260 1.00036i
\(329\) 9605.09 6136.33i 1.60956 1.02829i
\(330\) 2360.07 1149.48i 0.393690 0.191748i
\(331\) 4264.16i 0.708095i −0.935227 0.354048i \(-0.884805\pi\)
0.935227 0.354048i \(-0.115195\pi\)
\(332\) 5904.47 + 1557.36i 0.976053 + 0.257444i
\(333\) 1620.45 3764.97i 0.266667 0.619577i
\(334\) −4390.22 + 3382.40i −0.719229 + 0.554123i
\(335\) −2468.84 −0.402648
\(336\) −923.350 + 6089.37i −0.149919 + 0.988698i
\(337\) −3256.10 −0.526323 −0.263162 0.964752i \(-0.584765\pi\)
−0.263162 + 0.964752i \(0.584765\pi\)
\(338\) 5922.53 4562.95i 0.953087 0.734296i
\(339\) −375.521 77.3809i −0.0601637 0.0123975i
\(340\) 1404.90 + 370.556i 0.224092 + 0.0591065i
\(341\) 3723.32i 0.591288i
\(342\) 4608.90 1176.94i 0.728716 0.186086i
\(343\) −853.212 6294.89i −0.134312 0.990939i
\(344\) −9199.52 + 3873.97i −1.44187 + 0.607182i
\(345\) −247.192 + 1199.59i −0.0385749 + 0.187200i
\(346\) −6633.09 8609.49i −1.03063 1.33771i
\(347\) 6076.58 0.940081 0.470041 0.882645i \(-0.344239\pi\)
0.470041 + 0.882645i \(0.344239\pi\)
\(348\) 754.826 + 375.017i 0.116273 + 0.0577673i
\(349\) 6858.46 1.05193 0.525967 0.850505i \(-0.323704\pi\)
0.525967 + 0.850505i \(0.323704\pi\)
\(350\) 1974.92 5481.06i 0.301611 0.837071i
\(351\) 5588.85 8002.30i 0.849887 1.21690i
\(352\) −8623.70 + 1221.26i −1.30581 + 0.184924i
\(353\) −6340.22 −0.955965 −0.477983 0.878369i \(-0.658632\pi\)
−0.477983 + 0.878369i \(0.658632\pi\)
\(354\) −5376.85 + 2618.81i −0.807278 + 0.393187i
\(355\) −480.674 −0.0718635
\(356\) −550.038 + 2085.37i −0.0818875 + 0.310462i
\(357\) −1681.82 4397.47i −0.249331 0.651930i
\(358\) 6162.60 4747.91i 0.909786 0.700935i
\(359\) 79.4813i 0.0116849i −0.999983 0.00584243i \(-0.998140\pi\)
0.999983 0.00584243i \(-0.00185971\pi\)
\(360\) −2267.91 17.8456i −0.332026 0.00261263i
\(361\) −2979.17 −0.434345
\(362\) −2911.98 + 2243.50i −0.422791 + 0.325735i
\(363\) 1031.97 5008.06i 0.149214 0.724119i
\(364\) 3150.61 + 9814.70i 0.453673 + 1.41327i
\(365\) −1077.87 −0.154571
\(366\) −3709.43 7616.07i −0.529768 1.08770i
\(367\) 11025.8i 1.56824i −0.620610 0.784120i \(-0.713115\pi\)
0.620610 0.784120i \(-0.286885\pi\)
\(368\) 2004.25 3535.05i 0.283909 0.500754i
\(369\) −7067.13 3041.70i −0.997019 0.429118i
\(370\) −1262.70 + 972.837i −0.177418 + 0.136690i
\(371\) −2020.39 + 1290.75i −0.282732 + 0.180626i
\(372\) 1431.27 2880.83i 0.199484 0.401516i
\(373\) 5947.81i 0.825646i −0.910811 0.412823i \(-0.864543\pi\)
0.910811 0.412823i \(-0.135457\pi\)
\(374\) 5274.20 4063.45i 0.729204 0.561808i
\(375\) 4462.80 + 919.617i 0.614555 + 0.126637i
\(376\) −5404.50 12834.1i −0.741266 1.76028i
\(377\) 1410.64 0.192710
\(378\) 4241.99 + 6001.30i 0.577208 + 0.816597i
\(379\) 4855.67i 0.658098i 0.944313 + 0.329049i \(0.106728\pi\)
−0.944313 + 0.329049i \(0.893272\pi\)
\(380\) −1788.68 471.783i −0.241467 0.0636893i
\(381\) −2055.46 + 9974.91i −0.276389 + 1.34129i
\(382\) 6757.16 + 8770.53i 0.905043 + 1.17471i
\(383\) 4314.03 0.575553 0.287777 0.957698i \(-0.407084\pi\)
0.287777 + 0.957698i \(0.407084\pi\)
\(384\) 7141.83 + 2370.09i 0.949102 + 0.314969i
\(385\) 1780.95 + 2787.69i 0.235755 + 0.369023i
\(386\) −8174.00 + 6297.58i −1.07784 + 0.830410i
\(387\) −4708.82 + 10940.5i −0.618509 + 1.43705i
\(388\) −10669.2 2814.11i −1.39600 0.368208i
\(389\) −1492.00 −0.194466 −0.0972330 0.995262i \(-0.530999\pi\)
−0.0972330 + 0.995262i \(0.530999\pi\)
\(390\) −3412.57 + 1662.10i −0.443082 + 0.215805i
\(391\) 3106.41i 0.401785i
\(392\) −7756.39 273.276i −0.999380 0.0352105i
\(393\) 6002.55 + 1236.90i 0.770454 + 0.158762i
\(394\) −177.194 + 136.517i −0.0226571 + 0.0174559i
\(395\) 486.015i 0.0619090i
\(396\) −6407.46 + 8182.63i −0.813098 + 1.03837i
\(397\) −2577.45 −0.325840 −0.162920 0.986639i \(-0.552091\pi\)
−0.162920 + 0.986639i \(0.552091\pi\)
\(398\) 1226.78 + 1592.32i 0.154505 + 0.200542i
\(399\) 2141.25 + 5598.76i 0.268663 + 0.702478i
\(400\) −6192.04 3510.66i −0.774005 0.438833i
\(401\) 3185.37i 0.396682i −0.980133 0.198341i \(-0.936445\pi\)
0.980133 0.198341i \(-0.0635554\pi\)
\(402\) 8787.29 4279.88i 1.09022 0.530997i
\(403\) 5383.78i 0.665471i
\(404\) 910.427 + 240.134i 0.112117 + 0.0295721i
\(405\) −1965.46 + 1860.32i −0.241147 + 0.228247i
\(406\) −360.040 + 999.230i −0.0440110 + 0.122145i
\(407\) 7304.36i 0.889592i
\(408\) −5642.80 + 1116.56i −0.684706 + 0.135485i
\(409\) 9157.04i 1.10706i 0.832830 + 0.553529i \(0.186719\pi\)
−0.832830 + 0.553529i \(0.813281\pi\)
\(410\) 1826.09 + 2370.19i 0.219961 + 0.285501i
\(411\) −13714.6 2826.06i −1.64596 0.339172i
\(412\) 12302.0 + 3244.78i 1.47106 + 0.388007i
\(413\) −4057.47 6351.09i −0.483426 0.756699i
\(414\) −1199.74 4698.21i −0.142425 0.557740i
\(415\) −2833.58 −0.335169
\(416\) 12469.5 1765.89i 1.46964 0.208125i
\(417\) −2707.72 + 13140.3i −0.317980 + 1.54312i
\(418\) −6714.98 + 5173.49i −0.785743 + 0.605368i
\(419\) 16278.2i 1.89796i 0.315339 + 0.948979i \(0.397882\pi\)
−0.315339 + 0.948979i \(0.602118\pi\)
\(420\) −306.358 2841.52i −0.0355923 0.330124i
\(421\) 14.4956i 0.00167808i −1.00000 0.000839038i \(-0.999733\pi\)
1.00000 0.000839038i \(-0.000267074\pi\)
\(422\) 3925.32 + 5094.91i 0.452800 + 0.587716i
\(423\) −15262.9 6569.18i −1.75439 0.755093i
\(424\) 1136.81 + 2699.59i 0.130209 + 0.309207i
\(425\) 5441.22 0.621031
\(426\) 1710.85 833.276i 0.194580 0.0947708i
\(427\) 8996.03 5747.22i 1.01955 0.651353i
\(428\) 904.062 3427.59i 0.102102 0.387100i
\(429\) −3510.50 + 17036.1i −0.395078 + 1.91727i
\(430\) 3669.26 2826.95i 0.411506 0.317041i
\(431\) 6800.15i 0.759981i −0.924990 0.379991i \(-0.875927\pi\)
0.924990 0.379991i \(-0.124073\pi\)
\(432\) 8103.07 3868.04i 0.902452 0.430790i
\(433\) 11155.5i 1.23811i −0.785349 0.619053i \(-0.787517\pi\)
0.785349 0.619053i \(-0.212483\pi\)
\(434\) 3813.61 + 1374.11i 0.421795 + 0.151980i
\(435\) −383.065 78.9355i −0.0422220 0.00870038i
\(436\) 12805.7 + 3377.64i 1.40661 + 0.371009i
\(437\) 3955.01i 0.432938i
\(438\) 3836.44 1868.55i 0.418521 0.203842i
\(439\) 12426.7i 1.35101i 0.737357 + 0.675504i \(0.236074\pi\)
−0.737357 + 0.675504i \(0.763926\pi\)
\(440\) 3724.84 1568.55i 0.403579 0.169950i
\(441\) −6897.51 + 6179.84i −0.744792 + 0.667297i
\(442\) −7626.28 + 5875.59i −0.820691 + 0.632293i
\(443\) 10870.0 1.16580 0.582900 0.812544i \(-0.301918\pi\)
0.582900 + 0.812544i \(0.301918\pi\)
\(444\) 2807.85 5651.57i 0.300123 0.604080i
\(445\) 1000.78i 0.106610i
\(446\) 5518.38 + 7162.63i 0.585880 + 0.760449i
\(447\) −3410.64 + 16551.5i −0.360890 + 1.75136i
\(448\) −1931.74 + 9283.52i −0.203719 + 0.979029i
\(449\) 11786.4i 1.23883i −0.785063 0.619416i \(-0.787369\pi\)
0.785063 0.619416i \(-0.212631\pi\)
\(450\) −8229.44 + 2101.48i −0.862087 + 0.220144i
\(451\) 13710.8 1.43153
\(452\) −570.779 150.549i −0.0593964 0.0156664i
\(453\) 78.6095 381.483i 0.00815319 0.0395665i
\(454\) 5357.67 + 6954.05i 0.553850 + 0.718876i
\(455\) −2575.18 4030.90i −0.265333 0.415321i
\(456\) 7184.28 1421.58i 0.737795 0.145990i
\(457\) −1151.19 −0.117834 −0.0589171 0.998263i \(-0.518765\pi\)
−0.0589171 + 0.998263i \(0.518765\pi\)
\(458\) 1554.17 1197.40i 0.158563 0.122163i
\(459\) −3930.09 + 5627.24i −0.399654 + 0.572238i
\(460\) −480.924 + 1823.34i −0.0487461 + 0.184812i
\(461\) 1149.15i 0.116098i 0.998314 + 0.0580491i \(0.0184880\pi\)
−0.998314 + 0.0580491i \(0.981512\pi\)
\(462\) −11171.5 6834.80i −1.12499 0.688276i
\(463\) 511.258 0.0513179 0.0256590 0.999671i \(-0.491832\pi\)
0.0256590 + 0.999671i \(0.491832\pi\)
\(464\) 1128.85 + 640.014i 0.112943 + 0.0640343i
\(465\) −301.261 + 1461.99i −0.0300444 + 0.145802i
\(466\) −5504.58 7144.73i −0.547199 0.710243i
\(467\) 7738.29i 0.766779i 0.923587 + 0.383389i \(0.125243\pi\)
−0.923587 + 0.383389i \(0.874757\pi\)
\(468\) 9264.93 11831.8i 0.915111 1.16864i
\(469\) 6631.05 + 10379.5i 0.652864 + 1.02192i
\(470\) 3943.81 + 5118.91i 0.387052 + 0.502378i
\(471\) 740.492 3593.53i 0.0724418 0.351552i
\(472\) −8486.14 + 3573.57i −0.827556 + 0.348489i
\(473\) 21225.6i 2.06333i
\(474\) 842.535 + 1729.86i 0.0816433 + 0.167627i
\(475\) −6927.64 −0.669183
\(476\) −2215.52 6901.72i −0.213337 0.664580i
\(477\) 3210.49 + 1381.80i 0.308173 + 0.132638i
\(478\) 3243.63 + 4210.10i 0.310377 + 0.402857i
\(479\) −15169.4 −1.44699 −0.723493 0.690332i \(-0.757465\pi\)
−0.723493 + 0.690332i \(0.757465\pi\)
\(480\) −3484.96 218.224i −0.331388 0.0207511i
\(481\) 10561.8i 1.00120i
\(482\) 5665.20 + 7353.20i 0.535358 + 0.694874i
\(483\) 5707.25 2182.74i 0.537658 0.205628i
\(484\) 2007.76 7612.08i 0.188558 0.714884i
\(485\) 5120.20 0.479374
\(486\) 3770.65 10028.6i 0.351934 0.936025i
\(487\) −7078.96 −0.658683 −0.329341 0.944211i \(-0.606827\pi\)
−0.329341 + 0.944211i \(0.606827\pi\)
\(488\) −5061.80 12020.2i −0.469543 1.11502i
\(489\) −7737.57 1594.42i −0.715552 0.147449i
\(490\) 3512.56 795.326i 0.323839 0.0733248i
\(491\) 8864.05 0.814723 0.407361 0.913267i \(-0.366449\pi\)
0.407361 + 0.913267i \(0.366449\pi\)
\(492\) −10608.4 5270.54i −0.972082 0.482956i
\(493\) −991.967 −0.0906206
\(494\) 9709.60 7480.67i 0.884323 0.681318i
\(495\) 1906.58 4429.77i 0.173120 0.402229i
\(496\) 2442.64 4308.29i 0.221125 0.390016i
\(497\) 1291.04 + 2020.85i 0.116521 + 0.182389i
\(498\) 10085.5 4912.18i 0.907516 0.442008i
\(499\) 9294.42i 0.833818i −0.908948 0.416909i \(-0.863113\pi\)
0.908948 0.416909i \(-0.136887\pi\)
\(500\) 6783.31 + 1789.17i 0.606717 + 0.160028i
\(501\) −2054.85 + 9971.95i −0.183241 + 0.889249i
\(502\) −2900.78 3765.09i −0.257904 0.334749i
\(503\) 3930.02 0.348372 0.174186 0.984713i \(-0.444271\pi\)
0.174186 + 0.984713i \(0.444271\pi\)
\(504\) 6016.35 + 9582.67i 0.531726 + 0.846917i
\(505\) −436.919 −0.0385003
\(506\) 5273.74 + 6845.10i 0.463333 + 0.601387i
\(507\) 2772.05 13452.4i 0.242822 1.17839i
\(508\) −3999.00 + 15161.5i −0.349266 + 1.32418i
\(509\) 4139.73i 0.360491i −0.983622 0.180246i \(-0.942311\pi\)
0.983622 0.180246i \(-0.0576893\pi\)
\(510\) 2399.73 1168.79i 0.208356 0.101481i
\(511\) 2895.05 + 4531.57i 0.250625 + 0.392299i
\(512\) 10779.8 + 4244.35i 0.930474 + 0.366358i
\(513\) 5003.70 7164.47i 0.430641 0.616606i
\(514\) 15025.8 11576.5i 1.28942 0.993419i
\(515\) −5903.80 −0.505150
\(516\) −8159.26 + 16422.8i −0.696107 + 1.40111i
\(517\) 29611.4 2.51897
\(518\) 7481.48 + 2695.71i 0.634590 + 0.228654i
\(519\) −19555.6 4029.68i −1.65394 0.340815i
\(520\) −5385.97 + 2268.07i −0.454212 + 0.191272i
\(521\) −15730.9 −1.32281 −0.661406 0.750028i \(-0.730040\pi\)
−0.661406 + 0.750028i \(0.730040\pi\)
\(522\) 1500.28 383.112i 0.125796 0.0321233i
\(523\) −12687.5 −1.06078 −0.530388 0.847755i \(-0.677954\pi\)
−0.530388 + 0.847755i \(0.677954\pi\)
\(524\) 9123.67 + 2406.46i 0.760628 + 0.200623i
\(525\) −3823.32 9996.88i −0.317835 0.831047i
\(526\) 8214.03 + 10661.5i 0.680891 + 0.883769i
\(527\) 3785.89i 0.312933i
\(528\) −10538.6 + 12040.1i −0.868621 + 0.992386i
\(529\) 8135.36 0.668641
\(530\) −829.565 1076.74i −0.0679887 0.0882465i
\(531\) −4343.68 + 10092.2i −0.354990 + 0.824788i
\(532\) 2820.75 + 8787.11i 0.229878 + 0.716109i
\(533\) −19825.3 −1.61113
\(534\) 1734.91 + 3562.06i 0.140594 + 0.288662i
\(535\) 1644.92i 0.132927i
\(536\) 13868.8 5840.22i 1.11761 0.470633i
\(537\) 2884.41 13997.7i 0.231790 1.12485i
\(538\) 4564.30 + 5924.27i 0.365764 + 0.474746i
\(539\) 6936.54 14974.9i 0.554319 1.19669i
\(540\) −3178.00 + 2694.52i −0.253258 + 0.214729i
\(541\) 16674.9i 1.32516i −0.748991 0.662580i \(-0.769462\pi\)
0.748991 0.662580i \(-0.230538\pi\)
\(542\) −13156.9 17077.2i −1.04269 1.35337i
\(543\) −1362.95 + 6614.26i −0.107716 + 0.522735i
\(544\) −8768.61 + 1241.78i −0.691086 + 0.0978694i
\(545\) −6145.54 −0.483020
\(546\) 16153.6 + 9882.85i 1.26614 + 0.774628i
\(547\) 3533.79i 0.276223i 0.990417 + 0.138111i \(0.0441032\pi\)
−0.990417 + 0.138111i \(0.955897\pi\)
\(548\) −20845.7 5498.26i −1.62497 0.428602i
\(549\) −14295.1 6152.63i −1.11129 0.478302i
\(550\) 11990.0 9237.54i 0.929552 0.716164i
\(551\) 1262.95 0.0976469
\(552\) −1449.12 7323.49i −0.111737 0.564689i
\(553\) −2043.30 + 1305.39i −0.157125 + 0.100381i
\(554\) −6414.02 8325.14i −0.491887 0.638450i
\(555\) −591.009 + 2868.10i −0.0452017 + 0.219359i
\(556\) −5268.01 + 19972.8i −0.401823 + 1.52344i
\(557\) 8507.84 0.647197 0.323599 0.946194i \(-0.395107\pi\)
0.323599 + 0.946194i \(0.395107\pi\)
\(558\) −1462.17 5725.87i −0.110929 0.434400i
\(559\) 30691.4i 2.32219i
\(560\) −231.920 4394.04i −0.0175008 0.331575i
\(561\) 2468.59 11979.8i 0.185783 0.901582i
\(562\) 13505.0 + 17529.0i 1.01366 + 1.31569i
\(563\) 12127.1i 0.907808i 0.891051 + 0.453904i \(0.149969\pi\)
−0.891051 + 0.453904i \(0.850031\pi\)
\(564\) −22911.1 11382.8i −1.71051 0.849828i
\(565\) 273.920 0.0203963
\(566\) 9228.47 7109.98i 0.685338 0.528012i
\(567\) 13100.2 + 3266.54i 0.970290 + 0.241943i
\(568\) 2700.20 1137.07i 0.199468 0.0839972i
\(569\) 16103.5i 1.18646i 0.805034 + 0.593228i \(0.202147\pi\)
−0.805034 + 0.593228i \(0.797853\pi\)
\(570\) −3055.28 + 1488.08i −0.224511 + 0.109349i
\(571\) 16824.4i 1.23307i −0.787329 0.616533i \(-0.788537\pi\)
0.787329 0.616533i \(-0.211463\pi\)
\(572\) −6829.86 + 25894.2i −0.499250 + 1.89282i
\(573\) 19921.4 + 4105.05i 1.45240 + 0.299286i
\(574\) 5060.04 14043.3i 0.367948 1.02118i
\(575\) 7061.87i 0.512175i
\(576\) 12782.3 5264.67i 0.924643 0.380835i
\(577\) 12917.3i 0.931986i 0.884788 + 0.465993i \(0.154303\pi\)
−0.884788 + 0.465993i \(0.845697\pi\)
\(578\) −5645.09 + 4349.20i −0.406237 + 0.312981i
\(579\) −3825.85 + 18566.4i −0.274606 + 1.33263i
\(580\) −582.246 153.573i −0.0416835 0.0109944i
\(581\) 7610.71 + 11912.9i 0.543452 + 0.850657i
\(582\) −18224.2 + 8876.17i −1.29797 + 0.632181i
\(583\) −6228.63 −0.442476
\(584\) 6054.96 2549.78i 0.429034 0.180669i
\(585\) −2756.84 + 6405.27i −0.194840 + 0.452693i
\(586\) −10412.8 13515.3i −0.734039 0.952753i
\(587\) 15149.6i 1.06523i −0.846357 0.532617i \(-0.821209\pi\)
0.846357 0.532617i \(-0.178791\pi\)
\(588\) −11123.4 + 8920.01i −0.780141 + 0.625604i
\(589\) 4820.10i 0.337197i
\(590\) 3384.73 2607.73i 0.236182 0.181964i
\(591\) −82.9357 + 402.478i −0.00577245 + 0.0280131i
\(592\) 4791.95 8451.95i 0.332682 0.586779i
\(593\) 5091.10 0.352558 0.176279 0.984340i \(-0.443594\pi\)
0.176279 + 0.984340i \(0.443594\pi\)
\(594\) 893.218 + 19072.0i 0.0616990 + 1.31739i
\(595\) 1810.88 + 2834.54i 0.124771 + 0.195302i
\(596\) −6635.59 + 25157.7i −0.456048 + 1.72902i
\(597\) 3616.78 + 745.285i 0.247948 + 0.0510929i
\(598\) −7625.62 9897.75i −0.521463 0.676838i
\(599\) 18901.6i 1.28931i −0.764472 0.644657i \(-0.777000\pi\)
0.764472 0.644657i \(-0.223000\pi\)
\(600\) −12827.9 + 2538.30i −0.872828 + 0.172709i
\(601\) 28238.3i 1.91658i −0.285803 0.958288i \(-0.592260\pi\)
0.285803 0.958288i \(-0.407740\pi\)
\(602\) −21740.3 7833.39i −1.47187 0.530341i
\(603\) 7098.80 16493.5i 0.479412 1.11387i
\(604\) 152.939 579.841i 0.0103030 0.0390619i
\(605\) 3653.08i 0.245486i
\(606\) 1555.12 757.424i 0.104245 0.0507727i
\(607\) 11435.7i 0.764683i −0.924021 0.382342i \(-0.875118\pi\)
0.924021 0.382342i \(-0.124882\pi\)
\(608\) 11164.0 1581.01i 0.744670 0.105458i
\(609\) 697.013 + 1822.49i 0.0463783 + 0.121266i
\(610\) 3693.74 + 4794.32i 0.245172 + 0.318224i
\(611\) −42816.9 −2.83500
\(612\) −6515.13 + 8320.14i −0.430324 + 0.549545i
\(613\) 577.455i 0.0380476i 0.999819 + 0.0190238i \(0.00605583\pi\)
−0.999819 + 0.0190238i \(0.993944\pi\)
\(614\) −4551.97 + 3507.02i −0.299190 + 0.230508i
\(615\) 5383.65 + 1109.37i 0.352991 + 0.0727383i
\(616\) −16599.0 11447.0i −1.08570 0.748719i
\(617\) 22282.8i 1.45393i 0.686677 + 0.726963i \(0.259069\pi\)
−0.686677 + 0.726963i \(0.740931\pi\)
\(618\) 21013.3 10234.6i 1.36776 0.666173i
\(619\) −16401.1 −1.06497 −0.532484 0.846440i \(-0.678741\pi\)
−0.532484 + 0.846440i \(0.678741\pi\)
\(620\) −586.119 + 2222.17i −0.0379663 + 0.143943i
\(621\) −7303.30 5100.66i −0.471934 0.329601i
\(622\) −13652.0 + 10518.0i −0.880054 + 0.678028i
\(623\) −4207.48 + 2688.00i −0.270576 + 0.172861i
\(624\) 15238.3 17409.6i 0.977599 1.11689i
\(625\) 10647.0 0.681409
\(626\) 4767.68 + 6188.26i 0.304401 + 0.395100i
\(627\) −3142.95 + 15252.4i −0.200187 + 0.971487i
\(628\) 1440.67 5462.04i 0.0915428 0.347068i
\(629\) 7427.10i 0.470808i
\(630\) −3833.56 3587.64i −0.242433 0.226881i
\(631\) 6542.50 0.412762 0.206381 0.978472i \(-0.433831\pi\)
0.206381 + 0.978472i \(0.433831\pi\)
\(632\) 1149.70 + 2730.20i 0.0723619 + 0.171838i
\(633\) 11572.6 + 2384.68i 0.726648 + 0.149735i
\(634\) −8672.40 + 6681.57i −0.543257 + 0.418547i
\(635\) 7276.09i 0.454713i
\(636\) 4819.25 + 2394.33i 0.300465 + 0.149279i
\(637\) −10030.0 + 21653.1i −0.623865 + 1.34683i
\(638\) −2185.84 + 1684.06i −0.135640 + 0.104502i
\(639\) 1382.11 3211.21i 0.0855641 0.198801i
\(640\) −5339.08 628.651i −0.329759 0.0388275i
\(641\) 634.500i 0.0390971i 0.999809 + 0.0195486i \(0.00622290\pi\)
−0.999809 + 0.0195486i \(0.993777\pi\)
\(642\) −2851.56 5854.73i −0.175299 0.359919i
\(643\) −4543.63 −0.278668 −0.139334 0.990245i \(-0.544496\pi\)
−0.139334 + 0.990245i \(0.544496\pi\)
\(644\) 8957.38 2875.41i 0.548091 0.175942i
\(645\) 1717.40 8334.36i 0.104841 0.508783i
\(646\) −6827.82 + 5260.43i −0.415847 + 0.320385i
\(647\) 18802.6 1.14252 0.571258 0.820771i \(-0.306456\pi\)
0.571258 + 0.820771i \(0.306456\pi\)
\(648\) 6640.28 15099.8i 0.402554 0.915396i
\(649\) 19579.6i 1.18423i
\(650\) −17337.0 + 13357.1i −1.04617 + 0.806014i
\(651\) 6955.62 2660.18i 0.418759 0.160155i
\(652\) −11760.8 3102.04i −0.706426 0.186327i
\(653\) 20232.4 1.21249 0.606243 0.795279i \(-0.292676\pi\)
0.606243 + 0.795279i \(0.292676\pi\)
\(654\) 21873.7 10653.7i 1.30784 0.636989i
\(655\) −4378.50 −0.261194
\(656\) −15864.9 8994.84i −0.944241 0.535350i
\(657\) 3099.26 7200.87i 0.184039 0.427599i
\(658\) 10928.2 30329.4i 0.647456 1.79691i
\(659\) −13420.3 −0.793295 −0.396648 0.917971i \(-0.629827\pi\)
−0.396648 + 0.917971i \(0.629827\pi\)
\(660\) 3303.64 6649.50i 0.194839 0.392169i
\(661\) −8321.89 −0.489689 −0.244844 0.969562i \(-0.578737\pi\)
−0.244844 + 0.969562i \(0.578737\pi\)
\(662\) −7360.90 9554.15i −0.432159 0.560925i
\(663\) −3569.49 + 17322.3i −0.209091 + 1.01470i
\(664\) 15917.7 6703.05i 0.930312 0.391760i
\(665\) −2305.57 3608.87i −0.134445 0.210445i
\(666\) −2868.46 11232.9i −0.166893 0.653555i
\(667\) 1287.42i 0.0747364i
\(668\) −3997.82 + 15157.0i −0.231557 + 0.877908i
\(669\) 16269.2 + 3352.47i 0.940214 + 0.193743i
\(670\) −5531.61 + 4261.77i −0.318962 + 0.245741i
\(671\) 27733.7 1.59560
\(672\) 8442.79 + 15237.6i 0.484655 + 0.874706i
\(673\) 2322.47 0.133023 0.0665117 0.997786i \(-0.478813\pi\)
0.0665117 + 0.997786i \(0.478813\pi\)
\(674\) −7295.51 + 5620.75i −0.416933 + 0.321221i
\(675\) −8934.37 + 12792.5i −0.509458 + 0.729459i
\(676\) 5393.16 20447.2i 0.306848 1.16336i
\(677\) 1313.39i 0.0745606i −0.999305 0.0372803i \(-0.988131\pi\)
0.999305 0.0372803i \(-0.0118694\pi\)
\(678\) −974.958 + 474.856i −0.0552257 + 0.0268979i
\(679\) −13752.3 21526.3i −0.777270 1.21665i
\(680\) 3787.43 1594.91i 0.213590 0.0899441i
\(681\) 15795.4 + 3254.85i 0.888813 + 0.183151i
\(682\) 6427.29 + 8342.36i 0.360870 + 0.468395i
\(683\) 20367.6 1.14106 0.570532 0.821276i \(-0.306737\pi\)
0.570532 + 0.821276i \(0.306737\pi\)
\(684\) 8294.91 10593.0i 0.463690 0.592154i
\(685\) 10004.0 0.558002
\(686\) −12778.1 12631.3i −0.711179 0.703011i
\(687\) 727.431 3530.14i 0.0403977 0.196046i
\(688\) −13924.8 + 24560.3i −0.771625 + 1.36098i
\(689\) 9006.35 0.497989
\(690\) 1516.92 + 3114.48i 0.0836928 + 0.171835i
\(691\) −19327.1 −1.06402 −0.532010 0.846738i \(-0.678563\pi\)
−0.532010 + 0.846738i \(0.678563\pi\)
\(692\) −29723.8 7839.95i −1.63285 0.430680i
\(693\) −23744.5 + 3882.28i −1.30155 + 0.212808i
\(694\) 13615.0 10489.5i 0.744696 0.573743i
\(695\) 9585.03i 0.523138i
\(696\) 2338.60 462.747i 0.127363 0.0252017i
\(697\) 13941.2 0.757621
\(698\) 15366.9 11839.2i 0.833301 0.642008i
\(699\) −16228.5 3344.09i −0.878139 0.180952i
\(700\) −5036.59 15689.9i −0.271950 0.847172i
\(701\) 7068.43 0.380843 0.190422 0.981702i \(-0.439015\pi\)
0.190422 + 0.981702i \(0.439015\pi\)
\(702\) −1291.56 27577.3i −0.0694398 1.48268i
\(703\) 9456.02i 0.507312i
\(704\) −17213.8 + 17622.7i −0.921549 + 0.943441i
\(705\) 11627.1 + 2395.91i 0.621137 + 0.127993i
\(706\) −14205.7 + 10944.6i −0.757278 + 0.583437i
\(707\) 1173.52 + 1836.89i 0.0624253 + 0.0977134i
\(708\) −7526.55 + 15149.3i −0.399527 + 0.804159i
\(709\) 5102.93i 0.270303i −0.990825 0.135151i \(-0.956848\pi\)
0.990825 0.135151i \(-0.0431520\pi\)
\(710\) −1076.98 + 829.751i −0.0569274 + 0.0438592i
\(711\) 3246.89 + 1397.47i 0.171263 + 0.0737118i
\(712\) 2367.42 + 5621.91i 0.124611 + 0.295913i
\(713\) −4913.50 −0.258082
\(714\) −11359.3 6949.65i −0.595391 0.364264i
\(715\) 12426.8i 0.649979i
\(716\) 5611.77 21276.0i 0.292907 1.11051i
\(717\) 9562.82 + 1970.54i 0.498089 + 0.102638i
\(718\) −137.202 178.083i −0.00713141 0.00925628i
\(719\) −2163.33 −0.112209 −0.0561046 0.998425i \(-0.517868\pi\)
−0.0561046 + 0.998425i \(0.517868\pi\)
\(720\) −5112.22 + 3874.94i −0.264613 + 0.200570i
\(721\) 15857.0 + 24820.7i 0.819064 + 1.28207i
\(722\) −6675.04 + 5142.72i −0.344071 + 0.265086i
\(723\) 16702.0 + 3441.67i 0.859137 + 0.177036i
\(724\) −2651.70 + 10053.5i −0.136118 + 0.516068i
\(725\) −2255.06 −0.115518
\(726\) −6332.82 13002.3i −0.323737 0.664685i
\(727\) 24985.1i 1.27462i 0.770609 + 0.637309i \(0.219952\pi\)
−0.770609 + 0.637309i \(0.780048\pi\)
\(728\) 24001.5 + 16551.8i 1.22192 + 0.842654i
\(729\) −6776.74 18479.6i −0.344294 0.938862i
\(730\) −2415.04 + 1860.65i −0.122445 + 0.0943364i
\(731\) 21582.3i 1.09200i
\(732\) −21458.3 10661.0i −1.08350 0.538310i
\(733\) −2600.09 −0.131018 −0.0655092 0.997852i \(-0.520867\pi\)
−0.0655092 + 0.997852i \(0.520867\pi\)
\(734\) −19033.1 24704.1i −0.957116 1.24230i
\(735\) 3935.33 5318.74i 0.197492 0.266918i
\(736\) −1611.64 11380.3i −0.0807146 0.569951i
\(737\) 31998.7i 1.59930i
\(738\) −21085.1 + 5384.31i −1.05170 + 0.268562i
\(739\) 17370.8i 0.864675i 0.901712 + 0.432338i \(0.142311\pi\)
−0.901712 + 0.432338i \(0.857689\pi\)
\(740\) −1149.84 + 4359.42i −0.0571202 + 0.216561i
\(741\) 4544.59 22054.4i 0.225303 1.09337i
\(742\) −2298.70 + 6379.66i −0.113730 + 0.315640i
\(743\) 28215.9i 1.39319i 0.717463 + 0.696597i \(0.245303\pi\)
−0.717463 + 0.696597i \(0.754697\pi\)
\(744\) −1766.09 8925.39i −0.0870271 0.439813i
\(745\) 12073.3i 0.593734i
\(746\) −10267.3 13326.5i −0.503902 0.654045i
\(747\) 8147.57 18930.2i 0.399068 0.927201i
\(748\) 4802.78 18208.9i 0.234769 0.890084i
\(749\) 6915.55 4418.08i 0.337368 0.215532i
\(750\) 11586.7 5643.33i 0.564115 0.274754i
\(751\) −33427.0 −1.62419 −0.812097 0.583522i \(-0.801674\pi\)
−0.812097 + 0.583522i \(0.801674\pi\)
\(752\) −34263.6 19426.2i −1.66152 0.942023i
\(753\) −8552.02 1762.25i −0.413882 0.0852856i
\(754\) 3160.64 2435.08i 0.152657 0.117613i
\(755\) 278.269i 0.0134136i
\(756\) 19864.1 + 6123.71i 0.955621 + 0.294599i
\(757\) 24841.4i 1.19270i 0.802723 + 0.596352i \(0.203384\pi\)
−0.802723 + 0.596352i \(0.796616\pi\)
\(758\) 8381.97 + 10879.5i 0.401645 + 0.521319i
\(759\) 15548.0 + 3203.85i 0.743551 + 0.153218i
\(760\) −4822.07 + 2030.60i −0.230151 + 0.0969180i
\(761\) −20004.6 −0.952912 −0.476456 0.879198i \(-0.658079\pi\)
−0.476456 + 0.879198i \(0.658079\pi\)
\(762\) 12613.5 + 25897.7i 0.599659 + 1.23120i
\(763\) 16506.3 + 25837.0i 0.783182 + 1.22590i
\(764\) 30279.8 + 7986.60i 1.43388 + 0.378200i
\(765\) 1938.62 4504.21i 0.0916220 0.212876i
\(766\) 9665.89 7446.99i 0.455931 0.351267i
\(767\) 28311.4i 1.33281i
\(768\) 20093.1 7018.06i 0.944071 0.329743i
\(769\) 9604.90i 0.450405i −0.974312 0.225203i \(-0.927696\pi\)
0.974312 0.225203i \(-0.0723044\pi\)
\(770\) 8802.53 + 3171.70i 0.411975 + 0.148442i
\(771\) 7032.85 34129.6i 0.328511 1.59423i
\(772\) −7443.39 + 28220.3i −0.347012 + 1.31564i
\(773\) 4885.24i 0.227309i −0.993520 0.113655i \(-0.963744\pi\)
0.993520 0.113655i \(-0.0362557\pi\)
\(774\) 8335.38 + 32641.5i 0.387092 + 1.51586i
\(775\) 8606.55i 0.398911i
\(776\) −28762.8 + 12112.2i −1.33057 + 0.560313i
\(777\) 13645.4 5218.71i 0.630023 0.240953i
\(778\) −3342.92 + 2575.52i −0.154048 + 0.118685i
\(779\) −17749.6 −0.816363
\(780\) −4776.94 + 9614.91i −0.219284 + 0.441371i
\(781\) 6230.03i 0.285439i
\(782\) 5362.36 + 6960.13i 0.245214 + 0.318278i
\(783\) 1628.79 2332.16i 0.0743400 0.106442i
\(784\) −17850.5 + 12777.0i −0.813159 + 0.582041i
\(785\) 2621.26i 0.119181i
\(786\) 15584.3 7590.38i 0.707218 0.344453i
\(787\) 34277.8 1.55257 0.776284 0.630384i \(-0.217103\pi\)
0.776284 + 0.630384i \(0.217103\pi\)
\(788\) −161.356 + 611.752i −0.00729450 + 0.0276558i
\(789\) 24216.5 + 4990.11i 1.09269 + 0.225162i
\(790\) −838.970 1088.95i −0.0377838 0.0490419i
\(791\) −735.721 1151.61i −0.0330711 0.0517656i
\(792\) −231.297 + 29394.5i −0.0103773 + 1.31880i
\(793\) −40101.9 −1.79579
\(794\) −5774.95 + 4449.25i −0.258117 + 0.198864i
\(795\) −2445.71 503.970i −0.109107 0.0224830i
\(796\) 5497.39 + 1449.99i 0.244786 + 0.0645648i
\(797\) 20736.8i 0.921624i −0.887498 0.460812i \(-0.847558\pi\)
0.887498 0.460812i \(-0.152442\pi\)
\(798\) 14462.3 + 8848.13i 0.641555 + 0.392507i
\(799\) 30109.0 1.33314
\(800\) −19933.9 + 2822.97i −0.880961 + 0.124759i
\(801\) 6685.87 + 2877.61i 0.294923 + 0.126935i
\(802\) −5498.66 7137.03i −0.242100 0.314236i
\(803\) 13970.3i 0.613949i
\(804\) 12300.5 24758.2i 0.539559 1.08601i
\(805\) −3678.80 + 2350.24i −0.161069 + 0.102901i
\(806\) −9293.60 12062.7i −0.406145 0.527160i
\(807\) 13456.4 + 2772.86i 0.586973 + 0.120953i
\(808\) 2454.40 1033.56i 0.106863 0.0450008i
\(809\) 15223.1i 0.661576i 0.943705 + 0.330788i \(0.107314\pi\)
−0.943705 + 0.330788i \(0.892686\pi\)
\(810\) −1192.42 + 7561.00i −0.0517251 + 0.327983i
\(811\) −34460.7 −1.49208 −0.746042 0.665899i \(-0.768048\pi\)
−0.746042 + 0.665899i \(0.768048\pi\)
\(812\) 918.201 + 2860.35i 0.0396829 + 0.123619i
\(813\) −38789.1 7992.98i −1.67330 0.344805i
\(814\) 12609.0 + 16365.9i 0.542929 + 0.704700i
\(815\) 5644.09 0.242581
\(816\) −10715.7 + 12242.5i −0.459709 + 0.525211i
\(817\) 27478.0i 1.17666i
\(818\) 15807.1 + 20517.0i 0.675651 + 0.876968i
\(819\) 34333.6 5613.63i 1.46485 0.239507i
\(820\) 8182.95 + 2158.34i 0.348489 + 0.0919175i
\(821\) 8486.07 0.360738 0.180369 0.983599i \(-0.442271\pi\)
0.180369 + 0.983599i \(0.442271\pi\)
\(822\) −35606.9 + 17342.4i −1.51087 + 0.735873i
\(823\) 21594.4 0.914622 0.457311 0.889307i \(-0.348813\pi\)
0.457311 + 0.889307i \(0.348813\pi\)
\(824\) 33164.7 13965.9i 1.40212 0.590442i
\(825\) 5611.91 27234.0i 0.236826 1.14929i
\(826\) −20054.4 7225.95i −0.844773 0.304386i
\(827\) 11423.5 0.480330 0.240165 0.970732i \(-0.422798\pi\)
0.240165 + 0.970732i \(0.422798\pi\)
\(828\) −10798.3 8455.64i −0.453219 0.354896i
\(829\) −6869.52 −0.287802 −0.143901 0.989592i \(-0.545965\pi\)
−0.143901 + 0.989592i \(0.545965\pi\)
\(830\) −6348.84 + 4891.40i −0.265508 + 0.204558i
\(831\) −18909.7 3896.59i −0.789375 0.162661i
\(832\) 24890.5 25481.8i 1.03717 1.06181i
\(833\) 7053.11 15226.5i 0.293368 0.633336i
\(834\) 16616.2 + 34115.8i 0.689895 + 1.41647i
\(835\) 7273.94i 0.301467i
\(836\) −6114.78 + 23183.1i −0.252972 + 0.959097i
\(837\) −8900.78 6216.35i −0.367570 0.256713i
\(838\) 28099.9 + 36472.5i 1.15835 + 1.50349i
\(839\) −29613.1 −1.21854 −0.609272 0.792961i \(-0.708538\pi\)
−0.609272 + 0.792961i \(0.708538\pi\)
\(840\) −5591.51 5837.78i −0.229673 0.239789i
\(841\) −23977.9 −0.983144
\(842\) −25.0226 32.4783i −0.00102415 0.00132931i
\(843\) 39815.3 + 8204.45i 1.62670 + 0.335203i
\(844\) 17589.9 + 4639.51i 0.717381 + 0.189216i
\(845\) 9812.74i 0.399489i
\(846\) −45537.5 + 11628.5i −1.85061 + 0.472573i
\(847\) 15358.2 9811.79i 0.623040 0.398037i
\(848\) 7207.21 + 4086.22i 0.291859 + 0.165473i
\(849\) 4319.39 20961.5i 0.174607 0.847348i
\(850\) 12191.4 9392.77i 0.491956 0.379023i
\(851\) −9639.25 −0.388283
\(852\) 2394.86 4820.33i 0.0962990 0.193828i
\(853\) −15110.8 −0.606545 −0.303273 0.952904i \(-0.598079\pi\)
−0.303273 + 0.952904i \(0.598079\pi\)
\(854\) 10235.2 28406.2i 0.410121 1.13822i
\(855\) −2468.20 + 5734.65i −0.0987260 + 0.229381i
\(856\) −3891.18 9240.37i −0.155371 0.368959i
\(857\) 36848.3 1.46875 0.734373 0.678747i \(-0.237477\pi\)
0.734373 + 0.678747i \(0.237477\pi\)
\(858\) 21542.5 + 44230.4i 0.857168 + 1.75991i
\(859\) 35305.1 1.40232 0.701162 0.713002i \(-0.252665\pi\)
0.701162 + 0.713002i \(0.252665\pi\)
\(860\) 3341.30 12667.9i 0.132485 0.502294i
\(861\) −9795.91 25613.5i −0.387740 1.01383i
\(862\) −11738.6 15236.2i −0.463826 0.602027i
\(863\) 48135.9i 1.89868i −0.314244 0.949342i \(-0.601751\pi\)
0.314244 0.949342i \(-0.398249\pi\)
\(864\) 11478.4 22654.3i 0.451971 0.892033i
\(865\) 14264.6 0.560707
\(866\) −19256.9 24994.7i −0.755631 0.980779i
\(867\) −2642.19 + 12822.3i −0.103499 + 0.502268i
\(868\) 10916.7 3504.36i 0.426885 0.137034i
\(869\) −6299.25 −0.245900
\(870\) −994.544 + 484.396i −0.0387566 + 0.0188765i
\(871\) 46268.9i 1.79995i
\(872\) 34522.7 14537.7i 1.34070 0.564575i
\(873\) −14722.4 + 34206.3i −0.570766 + 1.32612i
\(874\) −6827.23 8861.47i −0.264227 0.342956i
\(875\) 8743.52 + 13686.1i 0.337811 + 0.528771i
\(876\) 5370.28 10809.2i 0.207129 0.416904i
\(877\) 22331.1i 0.859825i −0.902871 0.429912i \(-0.858544\pi\)
0.902871 0.429912i \(-0.141456\pi\)
\(878\) 21451.2 + 27842.8i 0.824537 + 1.07022i
\(879\) −30698.7 6325.86i −1.17798 0.242737i
\(880\) 5638.08 9944.35i 0.215977 0.380936i
\(881\) 9542.16 0.364908 0.182454 0.983214i \(-0.441596\pi\)
0.182454 + 0.983214i \(0.441596\pi\)
\(882\) −4786.57 + 25753.0i −0.182735 + 0.983162i
\(883\) 31638.4i 1.20579i 0.797819 + 0.602897i \(0.205987\pi\)
−0.797819 + 0.602897i \(0.794013\pi\)
\(884\) −6944.63 + 26329.3i −0.264223 + 1.00176i
\(885\) 1584.23 7688.07i 0.0601731 0.292013i
\(886\) 24355.0 18764.0i 0.923501 0.711502i
\(887\) −368.960 −0.0139667 −0.00698335 0.999976i \(-0.502223\pi\)
−0.00698335 + 0.999976i \(0.502223\pi\)
\(888\) −3464.70 17509.7i −0.130932 0.661697i
\(889\) −30590.1 + 19542.8i −1.15406 + 0.737284i
\(890\) −1727.57 2242.32i −0.0650656 0.0844525i
\(891\) 24111.6 + 25474.3i 0.906588 + 0.957826i
\(892\) 24728.6 + 6522.42i 0.928223 + 0.244828i
\(893\) −38334.0 −1.43651
\(894\) 20929.8 + 42972.3i 0.782994 + 1.60762i
\(895\) 10210.5i 0.381340i
\(896\) 11697.2 + 24135.0i 0.436135 + 0.899881i
\(897\) −22481.7 4632.65i −0.836837 0.172441i
\(898\) −20346.0 26408.3i −0.756074 0.981354i
\(899\) 1569.02i 0.0582090i
\(900\) −14811.0 + 18914.4i −0.548555 + 0.700532i
\(901\) −6333.29 −0.234176
\(902\) 30720.1 23668.0i 1.13400 0.873677i
\(903\) −39652.0 + 15164.9i −1.46128 + 0.558868i
\(904\) −1538.75 + 647.978i −0.0566129 + 0.0238401i
\(905\) 4824.71i 0.177214i
\(906\) −482.395 990.437i −0.0176893 0.0363191i
\(907\) 13767.1i 0.504003i 0.967727 + 0.252001i \(0.0810888\pi\)
−0.967727 + 0.252001i \(0.918911\pi\)
\(908\) 24008.5 + 6332.48i 0.877477 + 0.231443i
\(909\) 1256.30 2918.90i 0.0458403 0.106506i
\(910\) −12728.1 4586.16i −0.463662 0.167065i
\(911\) 12013.8i 0.436921i −0.975846 0.218461i \(-0.929896\pi\)
0.975846 0.218461i \(-0.0701035\pi\)
\(912\) 13642.9 15586.8i 0.495353 0.565933i
\(913\) 36726.1i 1.33128i
\(914\) −2579.31 + 1987.21i −0.0933436 + 0.0719157i
\(915\) 10889.8 + 2243.99i 0.393449 + 0.0810753i
\(916\) 1415.26 5365.70i 0.0510495 0.193545i
\(917\) 11760.2 + 18408.0i 0.423507 + 0.662908i
\(918\) 908.228 + 19392.4i 0.0326536 + 0.697218i
\(919\) 42760.2 1.53485 0.767425 0.641138i \(-0.221537\pi\)
0.767425 + 0.641138i \(0.221537\pi\)
\(920\) 2069.95 + 4915.50i 0.0741785 + 0.176152i
\(921\) −2130.55 + 10339.3i −0.0762259 + 0.369916i
\(922\) 1983.69 + 2574.75i 0.0708561 + 0.0919684i
\(923\) 9008.37i 0.321251i
\(924\) −36829.0 + 3970.72i −1.31124 + 0.141371i
\(925\) 16884.2i 0.600161i
\(926\) 1145.51 882.546i 0.0406520 0.0313200i
\(927\) 16975.5 39441.2i 0.601456 1.39743i
\(928\) 3634.07 514.644i 0.128550 0.0182048i
\(929\) −46059.3 −1.62665 −0.813324 0.581811i \(-0.802344\pi\)
−0.813324 + 0.581811i \(0.802344\pi\)
\(930\) 1848.72 + 3795.72i 0.0651848 + 0.133835i
\(931\) −8979.85 + 19386.1i −0.316115 + 0.682442i
\(932\) −24666.8 6506.11i −0.866940 0.228664i
\(933\) −6389.81 + 31009.0i −0.224215 + 1.08809i
\(934\) 13358.0 + 17338.2i 0.467974 + 0.607412i
\(935\) 8738.54i 0.305648i
\(936\) 334.447 42503.3i 0.0116792 1.48425i
\(937\) 5647.59i 0.196904i −0.995142 0.0984519i \(-0.968611\pi\)
0.995142 0.0984519i \(-0.0313891\pi\)
\(938\) 32774.6 + 11809.3i 1.14086 + 0.411072i
\(939\) 14056.0 + 2896.42i 0.488499 + 0.100661i
\(940\) 17672.8 + 4661.37i 0.613215 + 0.161742i
\(941\) 41421.7i 1.43497i 0.696572 + 0.717486i \(0.254707\pi\)
−0.696572 + 0.717486i \(0.745293\pi\)
\(942\) −4544.11 9329.80i −0.157171 0.322698i
\(943\) 18093.6i 0.624823i
\(944\) −12845.0 + 22655.8i −0.442870 + 0.781127i
\(945\) −9637.54 396.805i −0.331756 0.0136593i
\(946\) −36640.1 47557.4i −1.25927 1.63449i
\(947\) −21290.6 −0.730571 −0.365285 0.930896i \(-0.619029\pi\)
−0.365285 + 0.930896i \(0.619029\pi\)
\(948\) 4873.89 + 2421.47i 0.166979 + 0.0829597i
\(949\) 20200.5i 0.690976i
\(950\) −15521.8 + 11958.7i −0.530100 + 0.408410i
\(951\) −4059.13 + 19698.5i −0.138408 + 0.671680i
\(952\) −16877.9 11639.3i −0.574598 0.396252i
\(953\) 15236.1i 0.517888i −0.965892 0.258944i \(-0.916626\pi\)
0.965892 0.258944i \(-0.0833745\pi\)
\(954\) 9578.63 2446.01i 0.325073 0.0830110i
\(955\) −14531.4 −0.492383
\(956\) 14535.2 + 3833.79i 0.491737 + 0.129701i
\(957\) −1023.08 + 4964.91i −0.0345576 + 0.167704i
\(958\) −33988.0 + 26185.7i −1.14625 + 0.883113i
\(959\) −26869.6 42058.6i −0.904760 1.41621i
\(960\) −8185.01 + 5526.88i −0.275177 + 0.185812i
\(961\) 23802.7 0.798991
\(962\) −18232.1 23664.5i −0.611045 0.793112i
\(963\) −10989.1 4729.73i −0.367726 0.158269i
\(964\) 25386.5 + 6695.95i 0.848180 + 0.223716i
\(965\) 13543.1i 0.451780i
\(966\) 9019.58 14742.6i 0.300414 0.491030i
\(967\) −29677.9 −0.986945 −0.493472 0.869761i \(-0.664273\pi\)
−0.493472 + 0.869761i \(0.664273\pi\)
\(968\) −8641.62 20521.2i −0.286934 0.681382i
\(969\) −3195.77 + 15508.7i −0.105947 + 0.514150i
\(970\) 11472.2 8838.62i 0.379741 0.292568i
\(971\) 39536.5i 1.30668i −0.757065 0.653340i \(-0.773367\pi\)
0.757065 0.653340i \(-0.226633\pi\)
\(972\) −8863.27 28978.8i −0.292479 0.956272i
\(973\) −40297.3 + 25744.4i −1.32772 + 0.848230i
\(974\) −15860.9 + 12219.9i −0.521783 + 0.402002i
\(975\) −8114.60 + 39379.2i −0.266539 + 1.29348i
\(976\) −32091.0 18194.4i −1.05247 0.596709i
\(977\) 29672.8i 0.971665i −0.874052 0.485832i \(-0.838517\pi\)
0.874052 0.485832i \(-0.161483\pi\)
\(978\) −20088.9 + 9784.35i −0.656822 + 0.319907i
\(979\) −12971.1 −0.423452
\(980\) 6497.22 7845.45i 0.211782 0.255728i
\(981\) 17670.6 41056.2i 0.575107 1.33621i
\(982\) 19860.5 15301.3i 0.645391 0.497235i
\(983\) 4423.26 0.143520 0.0717599 0.997422i \(-0.477138\pi\)
0.0717599 + 0.997422i \(0.477138\pi\)
\(984\) −32867.0 + 6503.50i −1.06480 + 0.210695i
\(985\) 293.583i 0.00949679i
\(986\) −2222.57 + 1712.36i −0.0717861 + 0.0553069i
\(987\) −21156.3 55317.7i −0.682282 1.78397i
\(988\) 8841.74 33521.9i 0.284710 1.07943i
\(989\) 28010.5 0.900587
\(990\) −3374.95 13216.4i −0.108347 0.424287i
\(991\) 38967.8 1.24910 0.624548 0.780986i \(-0.285283\pi\)
0.624548 + 0.780986i \(0.285283\pi\)
\(992\) −1964.16 13869.6i −0.0628652 0.443911i
\(993\) −21701.3 4471.83i −0.693524 0.142909i
\(994\) 6381.10 + 2299.22i 0.203618 + 0.0733670i
\(995\) −2638.23 −0.0840577
\(996\) 14117.8 28416.0i 0.449136 0.904010i
\(997\) −43802.8 −1.39142 −0.695712 0.718321i \(-0.744911\pi\)
−0.695712 + 0.718321i \(0.744911\pi\)
\(998\) −16044.3 20824.8i −0.508890 0.660518i
\(999\) −17461.4 12195.2i −0.553008 0.386224i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 168.4.i.c.125.62 yes 80
3.2 odd 2 inner 168.4.i.c.125.20 yes 80
4.3 odd 2 672.4.i.c.209.39 80
7.6 odd 2 inner 168.4.i.c.125.61 yes 80
8.3 odd 2 672.4.i.c.209.42 80
8.5 even 2 inner 168.4.i.c.125.17 80
12.11 even 2 672.4.i.c.209.38 80
21.20 even 2 inner 168.4.i.c.125.19 yes 80
24.5 odd 2 inner 168.4.i.c.125.63 yes 80
24.11 even 2 672.4.i.c.209.43 80
28.27 even 2 672.4.i.c.209.41 80
56.13 odd 2 inner 168.4.i.c.125.18 yes 80
56.27 even 2 672.4.i.c.209.40 80
84.83 odd 2 672.4.i.c.209.44 80
168.83 odd 2 672.4.i.c.209.37 80
168.125 even 2 inner 168.4.i.c.125.64 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.i.c.125.17 80 8.5 even 2 inner
168.4.i.c.125.18 yes 80 56.13 odd 2 inner
168.4.i.c.125.19 yes 80 21.20 even 2 inner
168.4.i.c.125.20 yes 80 3.2 odd 2 inner
168.4.i.c.125.61 yes 80 7.6 odd 2 inner
168.4.i.c.125.62 yes 80 1.1 even 1 trivial
168.4.i.c.125.63 yes 80 24.5 odd 2 inner
168.4.i.c.125.64 yes 80 168.125 even 2 inner
672.4.i.c.209.37 80 168.83 odd 2
672.4.i.c.209.38 80 12.11 even 2
672.4.i.c.209.39 80 4.3 odd 2
672.4.i.c.209.40 80 56.27 even 2
672.4.i.c.209.41 80 28.27 even 2
672.4.i.c.209.42 80 8.3 odd 2
672.4.i.c.209.43 80 24.11 even 2
672.4.i.c.209.44 80 84.83 odd 2