Properties

Label 168.4.i.c.125.63
Level $168$
Weight $4$
Character 168.125
Analytic conductor $9.912$
Analytic rank $0$
Dimension $80$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,4,Mod(125,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.125"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 168.i (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.91232088096\)
Analytic rank: \(0\)
Dimension: \(80\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 125.63
Character \(\chi\) \(=\) 168.125
Dual form 168.4.i.c.125.61

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.24057 + 1.72622i) q^{2} +(-1.04870 - 5.08923i) q^{3} +(2.04030 + 7.73545i) q^{4} +3.71228i q^{5} +(6.43546 - 13.2131i) q^{6} +(15.6071 - 9.97081i) q^{7} +(-8.78168 + 20.8538i) q^{8} +(-24.8005 + 10.6741i) q^{9} +(-6.40823 + 8.31763i) q^{10} +48.1150 q^{11} +(37.2278 - 18.4957i) q^{12} +69.5724 q^{13} +(52.1807 + 4.60114i) q^{14} +(18.8927 - 3.89307i) q^{15} +(-55.6743 + 31.5653i) q^{16} -48.9235 q^{17} +(-73.9931 - 18.8950i) q^{18} +62.2883 q^{19} +(-28.7162 + 7.57418i) q^{20} +(-67.1109 - 68.9719i) q^{21} +(107.805 + 83.0572i) q^{22} -63.4952i q^{23} +(115.339 + 22.8225i) q^{24} +111.219 q^{25} +(155.882 + 120.098i) q^{26} +(80.3314 + 115.021i) q^{27} +(108.972 + 100.385i) q^{28} -20.2759 q^{29} +(49.0506 + 23.8903i) q^{30} +77.3838i q^{31} +(-179.231 - 25.3821i) q^{32} +(-50.4582 - 244.868i) q^{33} +(-109.617 - 84.4529i) q^{34} +(37.0145 + 57.9382i) q^{35} +(-133.170 - 170.064i) q^{36} -151.811i q^{37} +(139.561 + 107.524i) q^{38} +(-72.9606 - 354.070i) q^{39} +(-77.4153 - 32.6001i) q^{40} -284.960 q^{41} +(-31.3057 - 270.385i) q^{42} +441.143i q^{43} +(98.1691 + 372.191i) q^{44} +(-39.6255 - 92.0663i) q^{45} +(109.607 - 142.265i) q^{46} -615.429 q^{47} +(219.029 + 250.237i) q^{48} +(144.166 - 311.232i) q^{49} +(249.194 + 191.989i) q^{50} +(51.3061 + 248.983i) q^{51} +(141.949 + 538.174i) q^{52} -129.453 q^{53} +(-18.5642 + 396.383i) q^{54} +178.616i q^{55} +(70.8726 + 413.029i) q^{56} +(-65.3217 - 316.999i) q^{57} +(-45.4295 - 35.0007i) q^{58} -406.934i q^{59} +(68.6614 + 138.200i) q^{60} -576.405 q^{61} +(-133.582 + 173.384i) q^{62} +(-280.634 + 413.874i) q^{63} +(-357.764 - 366.263i) q^{64} +258.272i q^{65} +(309.642 - 635.746i) q^{66} -665.046i q^{67} +(-99.8187 - 378.445i) q^{68} +(-323.142 + 66.5875i) q^{69} +(-17.0807 + 193.710i) q^{70} -129.482i q^{71} +(-4.80718 - 610.921i) q^{72} +290.352i q^{73} +(262.059 - 340.142i) q^{74} +(-116.635 - 566.018i) q^{75} +(127.087 + 481.828i) q^{76} +(750.938 - 479.745i) q^{77} +(447.730 - 919.264i) q^{78} -130.921 q^{79} +(-117.179 - 206.679i) q^{80} +(501.125 - 529.447i) q^{81} +(-638.472 - 491.904i) q^{82} +763.300i q^{83} +(396.602 - 659.857i) q^{84} -181.618i q^{85} +(-761.511 + 988.411i) q^{86} +(21.2633 + 103.189i) q^{87} +(-422.530 + 1003.38i) q^{88} +269.586 q^{89} +(70.1435 - 274.683i) q^{90} +(1085.83 - 693.693i) q^{91} +(491.164 - 129.549i) q^{92} +(393.824 - 81.1524i) q^{93} +(-1378.91 - 1062.37i) q^{94} +231.232i q^{95} +(58.7843 + 938.765i) q^{96} -1379.26i q^{97} +(860.269 - 448.473i) q^{98} +(-1193.27 + 513.586i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 28 q^{4} + 64 q^{7} + 104 q^{9} - 8 q^{15} - 892 q^{16} + 692 q^{18} + 128 q^{22} - 976 q^{25} + 612 q^{28} - 332 q^{30} + 1544 q^{36} + 568 q^{39} + 780 q^{42} + 208 q^{46} - 4048 q^{49} - 1448 q^{57}+ \cdots - 2072 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(85\) \(113\) \(127\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.24057 + 1.72622i 0.792161 + 0.610312i
\(3\) −1.04870 5.08923i −0.201822 0.979422i
\(4\) 2.04030 + 7.73545i 0.255038 + 0.966931i
\(5\) 3.71228i 0.332037i 0.986123 + 0.166018i \(0.0530911\pi\)
−0.986123 + 0.166018i \(0.946909\pi\)
\(6\) 6.43546 13.2131i 0.437878 0.899035i
\(7\) 15.6071 9.97081i 0.842707 0.538373i
\(8\) −8.78168 + 20.8538i −0.388099 + 0.921618i
\(9\) −24.8005 + 10.6741i −0.918535 + 0.395339i
\(10\) −6.40823 + 8.31763i −0.202646 + 0.263027i
\(11\) 48.1150 1.31884 0.659419 0.751776i \(-0.270802\pi\)
0.659419 + 0.751776i \(0.270802\pi\)
\(12\) 37.2278 18.4957i 0.895561 0.444938i
\(13\) 69.5724 1.48430 0.742150 0.670234i \(-0.233806\pi\)
0.742150 + 0.670234i \(0.233806\pi\)
\(14\) 52.1807 + 4.60114i 0.996135 + 0.0878362i
\(15\) 18.8927 3.89307i 0.325204 0.0670125i
\(16\) −55.6743 + 31.5653i −0.869911 + 0.493208i
\(17\) −48.9235 −0.697982 −0.348991 0.937126i \(-0.613476\pi\)
−0.348991 + 0.937126i \(0.613476\pi\)
\(18\) −73.9931 18.8950i −0.968908 0.247422i
\(19\) 62.2883 0.752100 0.376050 0.926599i \(-0.377282\pi\)
0.376050 + 0.926599i \(0.377282\pi\)
\(20\) −28.7162 + 7.57418i −0.321057 + 0.0846819i
\(21\) −67.1109 68.9719i −0.697372 0.716710i
\(22\) 107.805 + 83.0572i 1.04473 + 0.804903i
\(23\) 63.4952i 0.575638i −0.957685 0.287819i \(-0.907070\pi\)
0.957685 0.287819i \(-0.0929301\pi\)
\(24\) 115.339 + 22.8225i 0.980980 + 0.194110i
\(25\) 111.219 0.889752
\(26\) 155.882 + 120.098i 1.17580 + 0.905887i
\(27\) 80.3314 + 115.021i 0.572585 + 0.819846i
\(28\) 108.972 + 100.385i 0.735492 + 0.677534i
\(29\) −20.2759 −0.129832 −0.0649161 0.997891i \(-0.520678\pi\)
−0.0649161 + 0.997891i \(0.520678\pi\)
\(30\) 49.0506 + 23.8903i 0.298513 + 0.145391i
\(31\) 77.3838i 0.448340i 0.974550 + 0.224170i \(0.0719671\pi\)
−0.974550 + 0.224170i \(0.928033\pi\)
\(32\) −179.231 25.3821i −0.990121 0.140218i
\(33\) −50.4582 244.868i −0.266171 1.29170i
\(34\) −109.617 84.4529i −0.552914 0.425987i
\(35\) 37.0145 + 57.9382i 0.178760 + 0.279810i
\(36\) −133.170 170.064i −0.616527 0.787334i
\(37\) 151.811i 0.674527i −0.941410 0.337263i \(-0.890499\pi\)
0.941410 0.337263i \(-0.109501\pi\)
\(38\) 139.561 + 107.524i 0.595785 + 0.459016i
\(39\) −72.9606 354.070i −0.299565 1.45376i
\(40\) −77.4153 32.6001i −0.306011 0.128863i
\(41\) −284.960 −1.08544 −0.542722 0.839912i \(-0.682606\pi\)
−0.542722 + 0.839912i \(0.682606\pi\)
\(42\) −31.3057 270.385i −0.115014 0.993364i
\(43\) 441.143i 1.56450i 0.622963 + 0.782252i \(0.285929\pi\)
−0.622963 + 0.782252i \(0.714071\pi\)
\(44\) 98.1691 + 372.191i 0.336353 + 1.27523i
\(45\) −39.6255 92.0663i −0.131267 0.304988i
\(46\) 109.607 142.265i 0.351319 0.455998i
\(47\) −615.429 −1.90999 −0.954996 0.296620i \(-0.904141\pi\)
−0.954996 + 0.296620i \(0.904141\pi\)
\(48\) 219.029 + 250.237i 0.658626 + 0.752470i
\(49\) 144.166 311.232i 0.420309 0.907381i
\(50\) 249.194 + 191.989i 0.704826 + 0.543026i
\(51\) 51.3061 + 248.983i 0.140868 + 0.683619i
\(52\) 141.949 + 538.174i 0.378553 + 1.43522i
\(53\) −129.453 −0.335504 −0.167752 0.985829i \(-0.553651\pi\)
−0.167752 + 0.985829i \(0.553651\pi\)
\(54\) −18.5642 + 396.383i −0.0467828 + 0.998905i
\(55\) 178.616i 0.437903i
\(56\) 70.8726 + 413.029i 0.169121 + 0.985595i
\(57\) −65.3217 316.999i −0.151791 0.736624i
\(58\) −45.4295 35.0007i −0.102848 0.0792382i
\(59\) 406.934i 0.897938i −0.893547 0.448969i \(-0.851791\pi\)
0.893547 0.448969i \(-0.148209\pi\)
\(60\) 68.6614 + 138.200i 0.147736 + 0.297359i
\(61\) −576.405 −1.20985 −0.604927 0.796281i \(-0.706798\pi\)
−0.604927 + 0.796281i \(0.706798\pi\)
\(62\) −133.582 + 173.384i −0.273627 + 0.355158i
\(63\) −280.634 + 413.874i −0.561216 + 0.827669i
\(64\) −357.764 366.263i −0.698758 0.715358i
\(65\) 258.272i 0.492842i
\(66\) 309.642 635.746i 0.577489 1.18568i
\(67\) 665.046i 1.21266i −0.795212 0.606331i \(-0.792641\pi\)
0.795212 0.606331i \(-0.207359\pi\)
\(68\) −99.8187 378.445i −0.178012 0.674901i
\(69\) −323.142 + 66.5875i −0.563792 + 0.116177i
\(70\) −17.0807 + 193.710i −0.0291648 + 0.330753i
\(71\) 129.482i 0.216432i −0.994127 0.108216i \(-0.965486\pi\)
0.994127 0.108216i \(-0.0345139\pi\)
\(72\) −4.80718 610.921i −0.00786849 0.999969i
\(73\) 290.352i 0.465523i 0.972534 + 0.232761i \(0.0747762\pi\)
−0.972534 + 0.232761i \(0.925224\pi\)
\(74\) 262.059 340.142i 0.411672 0.534334i
\(75\) −116.635 566.018i −0.179572 0.871442i
\(76\) 127.087 + 481.828i 0.191814 + 0.727229i
\(77\) 750.938 479.745i 1.11139 0.710027i
\(78\) 447.730 919.264i 0.649942 1.33444i
\(79\) −130.921 −0.186452 −0.0932261 0.995645i \(-0.529718\pi\)
−0.0932261 + 0.995645i \(0.529718\pi\)
\(80\) −117.179 206.679i −0.163763 0.288843i
\(81\) 501.125 529.447i 0.687415 0.726265i
\(82\) −638.472 491.904i −0.859847 0.662460i
\(83\) 763.300i 1.00943i 0.863285 + 0.504717i \(0.168403\pi\)
−0.863285 + 0.504717i \(0.831597\pi\)
\(84\) 396.602 659.857i 0.515153 0.857098i
\(85\) 181.618i 0.231756i
\(86\) −761.511 + 988.411i −0.954836 + 1.23934i
\(87\) 21.2633 + 103.189i 0.0262031 + 0.127161i
\(88\) −422.530 + 1003.38i −0.511840 + 1.21546i
\(89\) 269.586 0.321080 0.160540 0.987029i \(-0.448676\pi\)
0.160540 + 0.987029i \(0.448676\pi\)
\(90\) 70.1435 274.683i 0.0821531 0.321713i
\(91\) 1085.83 693.693i 1.25083 0.799107i
\(92\) 491.164 129.549i 0.556602 0.146809i
\(93\) 393.824 81.1524i 0.439114 0.0904851i
\(94\) −1378.91 1062.37i −1.51302 1.16569i
\(95\) 231.232i 0.249725i
\(96\) 58.7843 + 938.765i 0.0624963 + 0.998045i
\(97\) 1379.26i 1.44374i −0.692030 0.721869i \(-0.743283\pi\)
0.692030 0.721869i \(-0.256717\pi\)
\(98\) 860.269 448.473i 0.886738 0.462272i
\(99\) −1193.27 + 513.586i −1.21140 + 0.521388i
\(100\) 226.920 + 860.328i 0.226920 + 0.860328i
\(101\) 117.695i 0.115952i 0.998318 + 0.0579759i \(0.0184647\pi\)
−0.998318 + 0.0579759i \(0.981535\pi\)
\(102\) −314.845 + 646.429i −0.305631 + 0.627510i
\(103\) 1590.34i 1.52137i 0.649122 + 0.760684i \(0.275137\pi\)
−0.649122 + 0.760684i \(0.724863\pi\)
\(104\) −610.962 + 1450.85i −0.576056 + 1.36796i
\(105\) 256.043 249.135i 0.237974 0.231553i
\(106\) −290.048 223.465i −0.265773 0.204762i
\(107\) 443.102 0.400339 0.200169 0.979761i \(-0.435851\pi\)
0.200169 + 0.979761i \(0.435851\pi\)
\(108\) −725.840 + 856.077i −0.646704 + 0.762741i
\(109\) 1655.46i 1.45472i −0.686256 0.727360i \(-0.740747\pi\)
0.686256 0.727360i \(-0.259253\pi\)
\(110\) −308.332 + 400.203i −0.267257 + 0.346889i
\(111\) −772.598 + 159.204i −0.660647 + 0.136135i
\(112\) −554.186 + 1047.76i −0.467550 + 0.883966i
\(113\) 73.7875i 0.0614278i 0.999528 + 0.0307139i \(0.00977807\pi\)
−0.999528 + 0.0307139i \(0.990222\pi\)
\(114\) 400.854 823.018i 0.329328 0.676164i
\(115\) 235.712 0.191133
\(116\) −41.3689 156.843i −0.0331121 0.125539i
\(117\) −1725.43 + 742.626i −1.36338 + 0.586801i
\(118\) 702.460 911.765i 0.548023 0.711312i
\(119\) −763.556 + 487.807i −0.588194 + 0.375775i
\(120\) −84.7237 + 428.172i −0.0644515 + 0.325721i
\(121\) 984.052 0.739332
\(122\) −1291.48 995.004i −0.958399 0.738389i
\(123\) 298.837 + 1450.22i 0.219067 + 1.06311i
\(124\) −598.599 + 157.886i −0.433514 + 0.114344i
\(125\) 876.912i 0.627467i
\(126\) −1343.22 + 442.874i −0.949710 + 0.313130i
\(127\) −1960.00 −1.36947 −0.684733 0.728794i \(-0.740081\pi\)
−0.684733 + 0.728794i \(0.740081\pi\)
\(128\) −169.343 1438.22i −0.116937 0.993139i
\(129\) 2245.08 462.626i 1.53231 0.315752i
\(130\) −445.836 + 578.677i −0.300788 + 0.390410i
\(131\) 1179.46i 0.786642i 0.919401 + 0.393321i \(0.128674\pi\)
−0.919401 + 0.393321i \(0.871326\pi\)
\(132\) 1791.21 889.922i 1.18110 0.586801i
\(133\) 972.142 621.064i 0.633800 0.404911i
\(134\) 1148.02 1490.08i 0.740102 0.960623i
\(135\) −426.991 + 298.213i −0.272219 + 0.190119i
\(136\) 429.630 1020.24i 0.270886 0.643273i
\(137\) 2694.83i 1.68054i 0.542165 + 0.840272i \(0.317605\pi\)
−0.542165 + 0.840272i \(0.682395\pi\)
\(138\) −838.966 408.621i −0.517518 0.252059i
\(139\) 2581.98 1.57554 0.787771 0.615968i \(-0.211235\pi\)
0.787771 + 0.615968i \(0.211235\pi\)
\(140\) −372.657 + 404.535i −0.224966 + 0.244210i
\(141\) 645.401 + 3132.06i 0.385479 + 1.87069i
\(142\) 223.515 290.114i 0.132091 0.171449i
\(143\) 3347.47 1.95755
\(144\) 1043.82 1377.11i 0.604060 0.796939i
\(145\) 75.2698i 0.0431091i
\(146\) −501.213 + 650.555i −0.284114 + 0.368769i
\(147\) −1735.12 407.305i −0.973537 0.228530i
\(148\) 1174.32 309.739i 0.652221 0.172030i
\(149\) −3252.26 −1.78816 −0.894079 0.447910i \(-0.852168\pi\)
−0.894079 + 0.447910i \(0.852168\pi\)
\(150\) 715.745 1469.54i 0.389602 0.799917i
\(151\) 74.9590 0.0403978 0.0201989 0.999796i \(-0.493570\pi\)
0.0201989 + 0.999796i \(0.493570\pi\)
\(152\) −546.996 + 1298.95i −0.291889 + 0.693149i
\(153\) 1213.33 522.217i 0.641121 0.275939i
\(154\) 2510.68 + 221.384i 1.31374 + 0.115842i
\(155\) −287.271 −0.148865
\(156\) 2590.03 1286.79i 1.32928 0.660422i
\(157\) −706.105 −0.358938 −0.179469 0.983764i \(-0.557438\pi\)
−0.179469 + 0.983764i \(0.557438\pi\)
\(158\) −293.337 225.998i −0.147700 0.113794i
\(159\) 135.757 + 658.815i 0.0677123 + 0.328600i
\(160\) 94.2256 665.356i 0.0465574 0.328756i
\(161\) −633.099 990.979i −0.309908 0.485094i
\(162\) 2036.75 321.209i 0.987792 0.155781i
\(163\) 1520.38i 0.730586i 0.930893 + 0.365293i \(0.119031\pi\)
−0.930893 + 0.365293i \(0.880969\pi\)
\(164\) −581.404 2204.29i −0.276829 1.04955i
\(165\) 909.020 187.315i 0.428891 0.0883786i
\(166\) −1317.63 + 1710.23i −0.616070 + 0.799634i
\(167\) 1959.42 0.907933 0.453966 0.891019i \(-0.350009\pi\)
0.453966 + 0.891019i \(0.350009\pi\)
\(168\) 2027.67 793.830i 0.931182 0.364556i
\(169\) 2643.32 1.20315
\(170\) 313.513 406.928i 0.141443 0.183588i
\(171\) −1544.78 + 664.874i −0.690831 + 0.297334i
\(172\) −3412.44 + 900.065i −1.51277 + 0.399007i
\(173\) 3842.54i 1.68869i −0.535800 0.844345i \(-0.679990\pi\)
0.535800 0.844345i \(-0.320010\pi\)
\(174\) −130.485 + 267.906i −0.0568506 + 0.116724i
\(175\) 1735.81 1108.94i 0.749800 0.479018i
\(176\) −2678.77 + 1518.76i −1.14727 + 0.650461i
\(177\) −2070.98 + 426.752i −0.879461 + 0.181224i
\(178\) 604.027 + 465.367i 0.254347 + 0.195959i
\(179\) 2750.46 1.14849 0.574243 0.818685i \(-0.305296\pi\)
0.574243 + 0.818685i \(0.305296\pi\)
\(180\) 631.326 494.364i 0.261424 0.204709i
\(181\) 1299.66 0.533718 0.266859 0.963736i \(-0.414014\pi\)
0.266859 + 0.963736i \(0.414014\pi\)
\(182\) 3630.34 + 320.112i 1.47856 + 0.130375i
\(183\) 604.476 + 2933.45i 0.244176 + 1.18496i
\(184\) 1324.12 + 557.595i 0.530518 + 0.223404i
\(185\) 563.564 0.223968
\(186\) 1022.48 + 498.000i 0.403073 + 0.196318i
\(187\) −2353.95 −0.920525
\(188\) −1255.66 4760.62i −0.487120 1.84683i
\(189\) 2400.60 + 994.183i 0.923904 + 0.382625i
\(190\) −399.158 + 518.091i −0.152410 + 0.197822i
\(191\) 3914.42i 1.48292i −0.670998 0.741459i \(-0.734134\pi\)
0.670998 0.741459i \(-0.265866\pi\)
\(192\) −1488.81 + 2204.84i −0.559612 + 0.828755i
\(193\) −3648.18 −1.36063 −0.680316 0.732919i \(-0.738157\pi\)
−0.680316 + 0.732919i \(0.738157\pi\)
\(194\) 2380.91 3090.33i 0.881131 1.14367i
\(195\) 1314.41 270.850i 0.482701 0.0994666i
\(196\) 2701.66 + 480.182i 0.984570 + 0.174993i
\(197\) −79.0843 −0.0286016 −0.0143008 0.999898i \(-0.504552\pi\)
−0.0143008 + 0.999898i \(0.504552\pi\)
\(198\) −3560.18 909.131i −1.27783 0.326309i
\(199\) 710.675i 0.253158i 0.991957 + 0.126579i \(0.0403997\pi\)
−0.991957 + 0.126579i \(0.959600\pi\)
\(200\) −976.689 + 2319.34i −0.345312 + 0.820011i
\(201\) −3384.57 + 697.434i −1.18771 + 0.244742i
\(202\) −203.169 + 263.705i −0.0707668 + 0.0918525i
\(203\) −316.449 + 202.167i −0.109411 + 0.0698982i
\(204\) −1821.31 + 904.876i −0.625086 + 0.310559i
\(205\) 1057.85i 0.360408i
\(206\) −2745.29 + 3563.27i −0.928510 + 1.20517i
\(207\) 677.757 + 1574.71i 0.227572 + 0.528744i
\(208\) −3873.40 + 2196.07i −1.29121 + 0.732069i
\(209\) 2997.00 0.991898
\(210\) 1003.75 116.216i 0.329833 0.0381888i
\(211\) 2273.94i 0.741915i −0.928650 0.370958i \(-0.879029\pi\)
0.928650 0.370958i \(-0.120971\pi\)
\(212\) −264.123 1001.38i −0.0855663 0.324410i
\(213\) −658.964 + 135.788i −0.211979 + 0.0436809i
\(214\) 992.800 + 764.893i 0.317133 + 0.244332i
\(215\) −1637.65 −0.519473
\(216\) −3104.08 + 665.138i −0.977804 + 0.209523i
\(217\) 771.579 + 1207.74i 0.241374 + 0.377819i
\(218\) 2857.70 3709.18i 0.887833 1.15237i
\(219\) 1477.67 304.493i 0.455944 0.0939530i
\(220\) −1381.68 + 364.432i −0.423422 + 0.111682i
\(221\) −3403.72 −1.03602
\(222\) −2005.88 976.971i −0.606423 0.295360i
\(223\) 3196.79i 0.959968i 0.877277 + 0.479984i \(0.159358\pi\)
−0.877277 + 0.479984i \(0.840642\pi\)
\(224\) −3050.36 + 1390.94i −0.909871 + 0.414892i
\(225\) −2758.28 + 1187.17i −0.817268 + 0.351753i
\(226\) −127.374 + 165.326i −0.0374901 + 0.0486607i
\(227\) 3103.70i 0.907487i 0.891132 + 0.453744i \(0.149912\pi\)
−0.891132 + 0.453744i \(0.850088\pi\)
\(228\) 2318.85 1152.07i 0.673552 0.334638i
\(229\) −693.650 −0.200165 −0.100082 0.994979i \(-0.531911\pi\)
−0.100082 + 0.994979i \(0.531911\pi\)
\(230\) 528.130 + 406.892i 0.151408 + 0.116651i
\(231\) −3229.04 3318.58i −0.919720 0.945224i
\(232\) 178.056 422.830i 0.0503878 0.119656i
\(233\) 3188.80i 0.896589i 0.893886 + 0.448294i \(0.147968\pi\)
−0.893886 + 0.448294i \(0.852032\pi\)
\(234\) −5147.88 1314.57i −1.43815 0.367248i
\(235\) 2284.65i 0.634187i
\(236\) 3147.82 830.269i 0.868244 0.229008i
\(237\) 137.297 + 666.285i 0.0376302 + 0.182615i
\(238\) −2552.86 225.104i −0.695284 0.0613081i
\(239\) 1879.03i 0.508554i −0.967131 0.254277i \(-0.918162\pi\)
0.967131 0.254277i \(-0.0818375\pi\)
\(240\) −928.950 + 813.097i −0.249848 + 0.218688i
\(241\) 3281.84i 0.877187i 0.898685 + 0.438594i \(0.144523\pi\)
−0.898685 + 0.438594i \(0.855477\pi\)
\(242\) 2204.84 + 1698.69i 0.585670 + 0.451224i
\(243\) −3220.01 1995.11i −0.850056 0.526692i
\(244\) −1176.04 4458.75i −0.308558 1.16985i
\(245\) 1155.38 + 535.185i 0.301284 + 0.139558i
\(246\) −1833.85 + 3765.19i −0.475292 + 0.975852i
\(247\) 4333.54 1.11634
\(248\) −1613.75 679.560i −0.413198 0.174000i
\(249\) 3884.60 800.472i 0.988662 0.203726i
\(250\) −1513.75 + 1964.78i −0.382951 + 0.497055i
\(251\) 1680.42i 0.422578i −0.977424 0.211289i \(-0.932234\pi\)
0.977424 0.211289i \(-0.0677661\pi\)
\(252\) −3774.08 1326.41i −0.943430 0.331570i
\(253\) 3055.07i 0.759173i
\(254\) −4391.53 3383.41i −1.08484 0.835803i
\(255\) −924.295 + 190.463i −0.226987 + 0.0467735i
\(256\) 2103.26 3514.75i 0.513492 0.858094i
\(257\) −6706.25 −1.62772 −0.813861 0.581059i \(-0.802638\pi\)
−0.813861 + 0.581059i \(0.802638\pi\)
\(258\) 5828.84 + 2838.96i 1.40654 + 0.685061i
\(259\) −1513.67 2369.33i −0.363147 0.568428i
\(260\) −1997.85 + 526.954i −0.476545 + 0.125693i
\(261\) 502.851 216.428i 0.119256 0.0513277i
\(262\) −2036.02 + 2642.67i −0.480097 + 0.623147i
\(263\) 4758.38i 1.11564i −0.829961 0.557822i \(-0.811637\pi\)
0.829961 0.557822i \(-0.188363\pi\)
\(264\) 5549.54 + 1098.11i 1.29375 + 0.255999i
\(265\) 480.566i 0.111400i
\(266\) 3250.25 + 286.597i 0.749194 + 0.0660616i
\(267\) −282.715 1371.99i −0.0648011 0.314473i
\(268\) 5144.43 1356.90i 1.17256 0.309275i
\(269\) 2644.09i 0.599306i 0.954048 + 0.299653i \(0.0968708\pi\)
−0.954048 + 0.299653i \(0.903129\pi\)
\(270\) −1471.49 68.9157i −0.331673 0.0155336i
\(271\) 7621.80i 1.70846i −0.519899 0.854228i \(-0.674030\pi\)
0.519899 0.854228i \(-0.325970\pi\)
\(272\) 2723.78 1544.29i 0.607183 0.344250i
\(273\) −4669.07 4798.54i −1.03511 1.06381i
\(274\) −4651.87 + 6037.95i −1.02566 + 1.33126i
\(275\) 5351.30 1.17344
\(276\) −1174.39 2363.79i −0.256123 0.515519i
\(277\) 3715.63i 0.805960i 0.915209 + 0.402980i \(0.132026\pi\)
−0.915209 + 0.402980i \(0.867974\pi\)
\(278\) 5785.10 + 4457.07i 1.24808 + 0.961573i
\(279\) −826.006 1919.15i −0.177246 0.411816i
\(280\) −1533.28 + 263.099i −0.327254 + 0.0561542i
\(281\) 7823.45i 1.66088i −0.557106 0.830441i \(-0.688088\pi\)
0.557106 0.830441i \(-0.311912\pi\)
\(282\) −3960.57 + 8131.70i −0.836342 + 1.71715i
\(283\) −4118.81 −0.865151 −0.432575 0.901598i \(-0.642395\pi\)
−0.432575 + 0.901598i \(0.642395\pi\)
\(284\) 1001.60 264.183i 0.209275 0.0551984i
\(285\) 1176.79 242.493i 0.244586 0.0504001i
\(286\) 7500.25 + 5778.49i 1.55070 + 1.19472i
\(287\) −4447.41 + 2841.28i −0.914711 + 0.584374i
\(288\) 4715.94 1283.65i 0.964894 0.262638i
\(289\) −2519.49 −0.512821
\(290\) 129.933 168.647i 0.0263100 0.0341493i
\(291\) −7019.37 + 1446.43i −1.41403 + 0.291379i
\(292\) −2246.01 + 592.407i −0.450129 + 0.118726i
\(293\) 6032.10i 1.20273i −0.798976 0.601363i \(-0.794624\pi\)
0.798976 0.601363i \(-0.205376\pi\)
\(294\) −3184.55 3907.79i −0.631723 0.775194i
\(295\) 1510.66 0.298148
\(296\) 3165.83 + 1333.15i 0.621656 + 0.261783i
\(297\) 3865.14 + 5534.24i 0.755146 + 1.08124i
\(298\) −7286.91 5614.13i −1.41651 1.09133i
\(299\) 4417.51i 0.854420i
\(300\) 4140.44 2057.08i 0.796827 0.395884i
\(301\) 4398.55 + 6884.98i 0.842286 + 1.31842i
\(302\) 167.951 + 129.396i 0.0320016 + 0.0246553i
\(303\) 598.979 123.427i 0.113566 0.0234017i
\(304\) −3467.86 + 1966.15i −0.654261 + 0.370942i
\(305\) 2139.78i 0.401716i
\(306\) 3620.00 + 924.409i 0.676280 + 0.172696i
\(307\) 2031.61 0.377688 0.188844 0.982007i \(-0.439526\pi\)
0.188844 + 0.982007i \(0.439526\pi\)
\(308\) 5243.18 + 4830.01i 0.969994 + 0.893557i
\(309\) 8093.61 1667.79i 1.49006 0.307046i
\(310\) −643.650 495.894i −0.117925 0.0908544i
\(311\) 6093.07 1.11095 0.555477 0.831532i \(-0.312536\pi\)
0.555477 + 0.831532i \(0.312536\pi\)
\(312\) 8024.42 + 1587.82i 1.45607 + 0.288117i
\(313\) 2761.91i 0.498762i 0.968405 + 0.249381i \(0.0802271\pi\)
−0.968405 + 0.249381i \(0.919773\pi\)
\(314\) −1582.08 1218.89i −0.284337 0.219064i
\(315\) −1536.42 1041.79i −0.274817 0.186344i
\(316\) −267.118 1012.73i −0.0475524 0.180286i
\(317\) −3870.63 −0.685792 −0.342896 0.939373i \(-0.611408\pi\)
−0.342896 + 0.939373i \(0.611408\pi\)
\(318\) −833.089 + 1710.47i −0.146910 + 0.301630i
\(319\) −975.573 −0.171228
\(320\) 1359.67 1328.12i 0.237525 0.232013i
\(321\) −464.681 2255.05i −0.0807974 0.392101i
\(322\) 292.151 3313.23i 0.0505618 0.573413i
\(323\) −3047.36 −0.524953
\(324\) 5117.96 + 2796.20i 0.877565 + 0.479457i
\(325\) 7737.77 1.32066
\(326\) −2624.52 + 3406.52i −0.445885 + 0.578741i
\(327\) −8425.02 + 1736.08i −1.42478 + 0.293595i
\(328\) 2502.42 5942.50i 0.421260 1.00036i
\(329\) −9605.09 + 6136.33i −1.60956 + 1.02829i
\(330\) 2360.07 + 1149.48i 0.393690 + 0.191748i
\(331\) 4264.16i 0.708095i 0.935227 + 0.354048i \(0.115195\pi\)
−0.935227 + 0.354048i \(0.884805\pi\)
\(332\) −5904.47 + 1557.36i −0.976053 + 0.257444i
\(333\) 1620.45 + 3764.97i 0.266667 + 0.619577i
\(334\) 4390.22 + 3382.40i 0.719229 + 0.554123i
\(335\) 2468.84 0.402648
\(336\) 5913.48 + 1721.59i 0.960138 + 0.279525i
\(337\) −3256.10 −0.526323 −0.263162 0.964752i \(-0.584765\pi\)
−0.263162 + 0.964752i \(0.584765\pi\)
\(338\) 5922.53 + 4562.95i 0.953087 + 0.734296i
\(339\) 375.521 77.3809i 0.0601637 0.0123975i
\(340\) 1404.90 370.556i 0.224092 0.0591065i
\(341\) 3723.32i 0.591288i
\(342\) −4608.90 1176.94i −0.728716 0.186086i
\(343\) −853.212 6294.89i −0.134312 0.990939i
\(344\) −9199.52 3873.97i −1.44187 0.607182i
\(345\) −247.192 1199.59i −0.0385749 0.187200i
\(346\) 6633.09 8609.49i 1.03063 1.33771i
\(347\) 6076.58 0.940081 0.470041 0.882645i \(-0.344239\pi\)
0.470041 + 0.882645i \(0.344239\pi\)
\(348\) −754.826 + 375.017i −0.116273 + 0.0577673i
\(349\) −6858.46 −1.05193 −0.525967 0.850505i \(-0.676296\pi\)
−0.525967 + 0.850505i \(0.676296\pi\)
\(350\) 5803.49 + 511.734i 0.886313 + 0.0781524i
\(351\) 5588.85 + 8002.30i 0.849887 + 1.21690i
\(352\) −8623.70 1221.26i −1.30581 0.184924i
\(353\) 6340.22 0.955965 0.477983 0.878369i \(-0.341368\pi\)
0.477983 + 0.878369i \(0.341368\pi\)
\(354\) −5376.85 2618.81i −0.807278 0.393187i
\(355\) 480.674 0.0718635
\(356\) 550.038 + 2085.37i 0.0818875 + 0.310462i
\(357\) 3283.30 + 3374.35i 0.486753 + 0.500251i
\(358\) 6162.60 + 4747.91i 0.909786 + 0.700935i
\(359\) 79.4813i 0.0116849i 0.999983 + 0.00584243i \(0.00185971\pi\)
−0.999983 + 0.00584243i \(0.998140\pi\)
\(360\) 2267.91 17.8456i 0.332026 0.00261263i
\(361\) −2979.17 −0.434345
\(362\) 2911.98 + 2243.50i 0.422791 + 0.325735i
\(363\) −1031.97 5008.06i −0.149214 0.724119i
\(364\) 7581.44 + 6984.01i 1.09169 + 1.00566i
\(365\) −1077.87 −0.154571
\(366\) −3709.43 + 7616.07i −0.529768 + 1.08770i
\(367\) 11025.8i 1.56824i −0.620610 0.784120i \(-0.713115\pi\)
0.620610 0.784120i \(-0.286885\pi\)
\(368\) 2004.25 + 3535.05i 0.283909 + 0.500754i
\(369\) 7067.13 3041.70i 0.997019 0.429118i
\(370\) 1262.70 + 972.837i 0.177418 + 0.136690i
\(371\) −2020.39 + 1290.75i −0.282732 + 0.180626i
\(372\) 1431.27 + 2880.83i 0.199484 + 0.401516i
\(373\) 5947.81i 0.825646i 0.910811 + 0.412823i \(0.135457\pi\)
−0.910811 + 0.412823i \(0.864543\pi\)
\(374\) −5274.20 4063.45i −0.729204 0.561808i
\(375\) 4462.80 919.617i 0.614555 0.126637i
\(376\) 5404.50 12834.1i 0.741266 1.76028i
\(377\) −1410.64 −0.192710
\(378\) 3662.52 + 6371.51i 0.498359 + 0.866971i
\(379\) 4855.67i 0.658098i −0.944313 0.329049i \(-0.893272\pi\)
0.944313 0.329049i \(-0.106728\pi\)
\(380\) −1788.68 + 471.783i −0.241467 + 0.0636893i
\(381\) 2055.46 + 9974.91i 0.276389 + 1.34129i
\(382\) 6757.16 8770.53i 0.905043 1.17471i
\(383\) −4314.03 −0.575553 −0.287777 0.957698i \(-0.592916\pi\)
−0.287777 + 0.957698i \(0.592916\pi\)
\(384\) −7141.83 + 2370.09i −0.949102 + 0.314969i
\(385\) 1780.95 + 2787.69i 0.235755 + 0.369023i
\(386\) −8174.00 6297.58i −1.07784 0.830410i
\(387\) −4708.82 10940.5i −0.618509 1.43705i
\(388\) 10669.2 2814.11i 1.39600 0.368208i
\(389\) −1492.00 −0.194466 −0.0972330 0.995262i \(-0.530999\pi\)
−0.0972330 + 0.995262i \(0.530999\pi\)
\(390\) 3412.57 + 1662.10i 0.443082 + 0.215805i
\(391\) 3106.41i 0.401785i
\(392\) 5224.35 + 5739.55i 0.673137 + 0.739518i
\(393\) 6002.55 1236.90i 0.770454 0.158762i
\(394\) −177.194 136.517i −0.0226571 0.0174559i
\(395\) 486.015i 0.0619090i
\(396\) −6407.46 8182.63i −0.813098 1.03837i
\(397\) 2577.45 0.325840 0.162920 0.986639i \(-0.447909\pi\)
0.162920 + 0.986639i \(0.447909\pi\)
\(398\) −1226.78 + 1592.32i −0.154505 + 0.200542i
\(399\) −4180.22 4296.14i −0.524493 0.539038i
\(400\) −6192.04 + 3510.66i −0.774005 + 0.438833i
\(401\) 3185.37i 0.396682i 0.980133 + 0.198341i \(0.0635554\pi\)
−0.980133 + 0.198341i \(0.936445\pi\)
\(402\) −8787.29 4279.88i −1.09022 0.530997i
\(403\) 5383.78i 0.665471i
\(404\) −910.427 + 240.134i −0.112117 + 0.0295721i
\(405\) 1965.46 + 1860.32i 0.241147 + 0.228247i
\(406\) −1058.01 93.2922i −0.129330 0.0114040i
\(407\) 7304.36i 0.889592i
\(408\) −5642.80 1116.56i −0.684706 0.135485i
\(409\) 9157.04i 1.10706i 0.832830 + 0.553529i \(0.186719\pi\)
−0.832830 + 0.553529i \(0.813281\pi\)
\(410\) 1826.09 2370.19i 0.219961 0.285501i
\(411\) 13714.6 2826.06i 1.64596 0.339172i
\(412\) −12302.0 + 3244.78i −1.47106 + 0.388007i
\(413\) −4057.47 6351.09i −0.483426 0.756699i
\(414\) −1199.74 + 4698.21i −0.142425 + 0.557740i
\(415\) −2833.58 −0.335169
\(416\) −12469.5 1765.89i −1.46964 0.208125i
\(417\) −2707.72 13140.3i −0.317980 1.54312i
\(418\) 6714.98 + 5173.49i 0.785743 + 0.605368i
\(419\) 16278.2i 1.89796i 0.315339 + 0.948979i \(0.397882\pi\)
−0.315339 + 0.948979i \(0.602118\pi\)
\(420\) 2449.57 + 1472.30i 0.284588 + 0.171050i
\(421\) 14.4956i 0.00167808i 1.00000 0.000839038i \(0.000267074\pi\)
−1.00000 0.000839038i \(0.999733\pi\)
\(422\) 3925.32 5094.91i 0.452800 0.587716i
\(423\) 15262.9 6569.18i 1.75439 0.755093i
\(424\) 1136.81 2699.59i 0.130209 0.309207i
\(425\) −5441.22 −0.621031
\(426\) −1710.85 833.276i −0.194580 0.0947708i
\(427\) −8996.03 + 5747.22i −1.01955 + 0.651353i
\(428\) 904.062 + 3427.59i 0.102102 + 0.387100i
\(429\) −3510.50 17036.1i −0.395078 1.91727i
\(430\) −3669.26 2826.95i −0.411506 0.317041i
\(431\) 6800.15i 0.759981i 0.924990 + 0.379991i \(0.124073\pi\)
−0.924990 + 0.379991i \(0.875927\pi\)
\(432\) −8103.07 3868.04i −0.902452 0.430790i
\(433\) 11155.5i 1.23811i −0.785349 0.619053i \(-0.787517\pi\)
0.785349 0.619053i \(-0.212483\pi\)
\(434\) −356.054 + 4037.94i −0.0393805 + 0.446607i
\(435\) −383.065 + 78.9355i −0.0422220 + 0.00870038i
\(436\) 12805.7 3377.64i 1.40661 0.371009i
\(437\) 3955.01i 0.432938i
\(438\) 3836.44 + 1868.55i 0.418521 + 0.203842i
\(439\) 12426.7i 1.35101i 0.737357 + 0.675504i \(0.236074\pi\)
−0.737357 + 0.675504i \(0.763926\pi\)
\(440\) −3724.84 1568.55i −0.403579 0.169950i
\(441\) −253.250 + 9257.54i −0.0273458 + 0.999626i
\(442\) −7626.28 5875.59i −0.820691 0.632293i
\(443\) 10870.0 1.16580 0.582900 0.812544i \(-0.301918\pi\)
0.582900 + 0.812544i \(0.301918\pi\)
\(444\) −2807.85 5651.57i −0.300123 0.604080i
\(445\) 1000.78i 0.106610i
\(446\) −5518.38 + 7162.63i −0.585880 + 0.760449i
\(447\) 3410.64 + 16551.5i 0.360890 + 1.75136i
\(448\) −9235.62 2149.12i −0.973978 0.226644i
\(449\) 11786.4i 1.23883i 0.785063 + 0.619416i \(0.212631\pi\)
−0.785063 + 0.619416i \(0.787369\pi\)
\(450\) −8229.44 2101.48i −0.862087 0.220144i
\(451\) −13710.8 −1.43153
\(452\) −570.779 + 150.549i −0.0593964 + 0.0156664i
\(453\) −78.6095 381.483i −0.00815319 0.0395665i
\(454\) −5357.67 + 6954.05i −0.553850 + 0.718876i
\(455\) 2575.18 + 4030.90i 0.265333 + 0.415321i
\(456\) 7184.28 + 1421.58i 0.737795 + 0.145990i
\(457\) −1151.19 −0.117834 −0.0589171 0.998263i \(-0.518765\pi\)
−0.0589171 + 0.998263i \(0.518765\pi\)
\(458\) −1554.17 1197.40i −0.158563 0.122163i
\(459\) −3930.09 5627.24i −0.399654 0.572238i
\(460\) 480.924 + 1823.34i 0.0487461 + 0.184812i
\(461\) 1149.15i 0.116098i 0.998314 + 0.0580491i \(0.0184880\pi\)
−0.998314 + 0.0580491i \(0.981512\pi\)
\(462\) −1506.27 13009.6i −0.151684 1.31009i
\(463\) 511.258 0.0513179 0.0256590 0.999671i \(-0.491832\pi\)
0.0256590 + 0.999671i \(0.491832\pi\)
\(464\) 1128.85 640.014i 0.112943 0.0640343i
\(465\) 301.261 + 1461.99i 0.0300444 + 0.145802i
\(466\) −5504.58 + 7144.73i −0.547199 + 0.710243i
\(467\) 7738.29i 0.766779i 0.923587 + 0.383389i \(0.125243\pi\)
−0.923587 + 0.383389i \(0.874757\pi\)
\(468\) −9264.93 11831.8i −0.915111 1.16864i
\(469\) −6631.05 10379.5i −0.652864 1.02192i
\(470\) 3943.81 5118.91i 0.387052 0.502378i
\(471\) 740.492 + 3593.53i 0.0724418 + 0.351552i
\(472\) 8486.14 + 3573.57i 0.827556 + 0.348489i
\(473\) 21225.6i 2.06333i
\(474\) −842.535 + 1729.86i −0.0816433 + 0.167627i
\(475\) 6927.64 0.669183
\(476\) −5331.29 4911.18i −0.513360 0.472906i
\(477\) 3210.49 1381.80i 0.308173 0.132638i
\(478\) 3243.63 4210.10i 0.310377 0.402857i
\(479\) 15169.4 1.44699 0.723493 0.690332i \(-0.242535\pi\)
0.723493 + 0.690332i \(0.242535\pi\)
\(480\) −3484.96 + 218.224i −0.331388 + 0.0207511i
\(481\) 10561.8i 1.00120i
\(482\) −5665.20 + 7353.20i −0.535358 + 0.694874i
\(483\) −4379.39 + 4261.22i −0.412565 + 0.401433i
\(484\) 2007.76 + 7612.08i 0.188558 + 0.714884i
\(485\) 5120.20 0.479374
\(486\) −3770.65 10028.6i −0.351934 0.936025i
\(487\) −7078.96 −0.658683 −0.329341 0.944211i \(-0.606827\pi\)
−0.329341 + 0.944211i \(0.606827\pi\)
\(488\) 5061.80 12020.2i 0.469543 1.11502i
\(489\) 7737.57 1594.42i 0.715552 0.147449i
\(490\) 1664.86 + 3193.56i 0.153491 + 0.294430i
\(491\) 8864.05 0.814723 0.407361 0.913267i \(-0.366449\pi\)
0.407361 + 0.913267i \(0.366449\pi\)
\(492\) −10608.4 + 5270.54i −0.972082 + 0.482956i
\(493\) 991.967 0.0906206
\(494\) 9709.60 + 7480.67i 0.884323 + 0.681318i
\(495\) −1906.58 4429.77i −0.173120 0.402229i
\(496\) −2442.64 4308.29i −0.221125 0.390016i
\(497\) −1291.04 2020.85i −0.116521 0.182389i
\(498\) 10085.5 + 4912.18i 0.907516 + 0.442008i
\(499\) 9294.42i 0.833818i 0.908948 + 0.416909i \(0.136887\pi\)
−0.908948 + 0.416909i \(0.863113\pi\)
\(500\) −6783.31 + 1789.17i −0.606717 + 0.160028i
\(501\) −2054.85 9971.95i −0.183241 0.889249i
\(502\) 2900.78 3765.09i 0.257904 0.334749i
\(503\) −3930.02 −0.348372 −0.174186 0.984713i \(-0.555729\pi\)
−0.174186 + 0.984713i \(0.555729\pi\)
\(504\) −6166.41 9486.81i −0.544987 0.838444i
\(505\) −436.919 −0.0385003
\(506\) 5273.74 6845.10i 0.463333 0.601387i
\(507\) −2772.05 13452.4i −0.242822 1.17839i
\(508\) −3999.00 15161.5i −0.349266 1.32418i
\(509\) 4139.73i 0.360491i −0.983622 0.180246i \(-0.942311\pi\)
0.983622 0.180246i \(-0.0576893\pi\)
\(510\) −2399.73 1168.79i −0.208356 0.101481i
\(511\) 2895.05 + 4531.57i 0.250625 + 0.392299i
\(512\) 10779.8 4244.35i 0.930474 0.366358i
\(513\) 5003.70 + 7164.47i 0.430641 + 0.616606i
\(514\) −15025.8 11576.5i −1.28942 0.993419i
\(515\) −5903.80 −0.505150
\(516\) 8159.26 + 16422.8i 0.696107 + 1.40111i
\(517\) −29611.4 −2.51897
\(518\) 698.502 7921.59i 0.0592479 0.671920i
\(519\) −19555.6 + 4029.68i −1.65394 + 0.340815i
\(520\) −5385.97 2268.07i −0.454212 0.191272i
\(521\) 15730.9 1.32281 0.661406 0.750028i \(-0.269960\pi\)
0.661406 + 0.750028i \(0.269960\pi\)
\(522\) 1500.28 + 383.112i 0.125796 + 0.0321233i
\(523\) 12687.5 1.06078 0.530388 0.847755i \(-0.322046\pi\)
0.530388 + 0.847755i \(0.322046\pi\)
\(524\) −9123.67 + 2406.46i −0.760628 + 0.200623i
\(525\) −7464.01 7670.98i −0.620487 0.637694i
\(526\) 8214.03 10661.5i 0.680891 0.883769i
\(527\) 3785.89i 0.312933i
\(528\) 10538.6 + 12040.1i 0.868621 + 0.992386i
\(529\) 8135.36 0.668641
\(530\) 829.565 1076.74i 0.0679887 0.0882465i
\(531\) 4343.68 + 10092.2i 0.354990 + 0.824788i
\(532\) 6787.68 + 6252.80i 0.553164 + 0.509574i
\(533\) −19825.3 −1.61113
\(534\) 1734.91 3562.06i 0.140594 0.288662i
\(535\) 1644.92i 0.132927i
\(536\) 13868.8 + 5840.22i 1.11761 + 0.470633i
\(537\) −2884.41 13997.7i −0.231790 1.12485i
\(538\) −4564.30 + 5924.27i −0.365764 + 0.474746i
\(539\) 6936.54 14974.9i 0.554319 1.19669i
\(540\) −3178.00 2694.52i −0.253258 0.214729i
\(541\) 16674.9i 1.32516i 0.748991 + 0.662580i \(0.230538\pi\)
−0.748991 + 0.662580i \(0.769462\pi\)
\(542\) 13156.9 17077.2i 1.04269 1.35337i
\(543\) −1362.95 6614.26i −0.107716 0.522735i
\(544\) 8768.61 + 1241.78i 0.691086 + 0.0978694i
\(545\) 6145.54 0.483020
\(546\) −2178.01 18811.3i −0.170715 1.47445i
\(547\) 3533.79i 0.276223i −0.990417 0.138111i \(-0.955897\pi\)
0.990417 0.138111i \(-0.0441032\pi\)
\(548\) −20845.7 + 5498.26i −1.62497 + 0.428602i
\(549\) 14295.1 6152.63i 1.11129 0.478302i
\(550\) 11990.0 + 9237.54i 0.929552 + 0.716164i
\(551\) −1262.95 −0.0976469
\(552\) 1449.12 7323.49i 0.111737 0.564689i
\(553\) −2043.30 + 1305.39i −0.157125 + 0.100381i
\(554\) −6414.02 + 8325.14i −0.491887 + 0.638450i
\(555\) −591.009 2868.10i −0.0452017 0.219359i
\(556\) 5268.01 + 19972.8i 0.401823 + 1.52344i
\(557\) 8507.84 0.647197 0.323599 0.946194i \(-0.395107\pi\)
0.323599 + 0.946194i \(0.395107\pi\)
\(558\) 1462.17 5725.87i 0.110929 0.434400i
\(559\) 30691.4i 2.32219i
\(560\) −3889.59 2057.30i −0.293509 0.155244i
\(561\) 2468.59 + 11979.8i 0.185783 + 0.901582i
\(562\) 13505.0 17529.0i 1.01366 1.31569i
\(563\) 12127.1i 0.907808i 0.891051 + 0.453904i \(0.149969\pi\)
−0.891051 + 0.453904i \(0.850031\pi\)
\(564\) −22911.1 + 11382.8i −1.71051 + 0.849828i
\(565\) −273.920 −0.0203963
\(566\) −9228.47 7109.98i −0.685338 0.528012i
\(567\) 2542.12 13259.8i 0.188287 0.982114i
\(568\) 2700.20 + 1137.07i 0.199468 + 0.0839972i
\(569\) 16103.5i 1.18646i −0.805034 0.593228i \(-0.797853\pi\)
0.805034 0.593228i \(-0.202147\pi\)
\(570\) 3055.28 + 1488.08i 0.224511 + 0.109349i
\(571\) 16824.4i 1.23307i 0.787329 + 0.616533i \(0.211463\pi\)
−0.787329 + 0.616533i \(0.788537\pi\)
\(572\) 6829.86 + 25894.2i 0.499250 + 1.89282i
\(573\) −19921.4 + 4105.05i −1.45240 + 0.299286i
\(574\) −14869.4 1311.14i −1.08125 0.0953413i
\(575\) 7061.87i 0.512175i
\(576\) 12782.3 + 5264.67i 0.924643 + 0.380835i
\(577\) 12917.3i 0.931986i 0.884788 + 0.465993i \(0.154303\pi\)
−0.884788 + 0.465993i \(0.845697\pi\)
\(578\) −5645.09 4349.20i −0.406237 0.312981i
\(579\) 3825.85 + 18566.4i 0.274606 + 1.33263i
\(580\) 582.246 153.573i 0.0416835 0.0109944i
\(581\) 7610.71 + 11912.9i 0.543452 + 0.850657i
\(582\) −18224.2 8876.17i −1.29797 0.632181i
\(583\) −6228.63 −0.442476
\(584\) −6054.96 2549.78i −0.429034 0.180669i
\(585\) −2756.84 6405.27i −0.194840 0.452693i
\(586\) 10412.8 13515.3i 0.734039 0.952753i
\(587\) 15149.6i 1.06523i −0.846357 0.532617i \(-0.821209\pi\)
0.846357 0.532617i \(-0.178791\pi\)
\(588\) −389.476 14252.9i −0.0273158 0.999627i
\(589\) 4820.10i 0.337197i
\(590\) 3384.73 + 2607.73i 0.236182 + 0.181964i
\(591\) 82.9357 + 402.478i 0.00577245 + 0.0280131i
\(592\) 4791.95 + 8451.95i 0.332682 + 0.586779i
\(593\) −5091.10 −0.352558 −0.176279 0.984340i \(-0.556406\pi\)
−0.176279 + 0.984340i \(0.556406\pi\)
\(594\) −893.218 + 19072.0i −0.0616990 + 1.31739i
\(595\) −1810.88 2834.54i −0.124771 0.195302i
\(596\) −6635.59 25157.7i −0.456048 1.72902i
\(597\) 3616.78 745.285i 0.247948 0.0510929i
\(598\) 7625.62 9897.75i 0.521463 0.676838i
\(599\) 18901.6i 1.28931i 0.764472 + 0.644657i \(0.223000\pi\)
−0.764472 + 0.644657i \(0.777000\pi\)
\(600\) 12827.9 + 2538.30i 0.872828 + 0.172709i
\(601\) 28238.3i 1.91658i −0.285803 0.958288i \(-0.592260\pi\)
0.285803 0.958288i \(-0.407740\pi\)
\(602\) −2029.76 + 23019.2i −0.137420 + 1.55846i
\(603\) 7098.80 + 16493.5i 0.479412 + 1.11387i
\(604\) 152.939 + 579.841i 0.0103030 + 0.0390619i
\(605\) 3653.08i 0.245486i
\(606\) 1555.12 + 757.424i 0.104245 + 0.0507727i
\(607\) 11435.7i 0.764683i −0.924021 0.382342i \(-0.875118\pi\)
0.924021 0.382342i \(-0.124882\pi\)
\(608\) −11164.0 1581.01i −0.744670 0.105458i
\(609\) 1360.73 + 1398.47i 0.0905413 + 0.0930521i
\(610\) 3693.74 4794.32i 0.245172 0.318224i
\(611\) −42816.9 −2.83500
\(612\) 6515.13 + 8320.14i 0.430324 + 0.549545i
\(613\) 577.455i 0.0380476i −0.999819 0.0190238i \(-0.993944\pi\)
0.999819 0.0190238i \(-0.00605583\pi\)
\(614\) 4551.97 + 3507.02i 0.299190 + 0.230508i
\(615\) −5383.65 + 1109.37i −0.352991 + 0.0727383i
\(616\) 3410.03 + 19872.9i 0.223042 + 1.29984i
\(617\) 22282.8i 1.45393i −0.686677 0.726963i \(-0.740931\pi\)
0.686677 0.726963i \(-0.259069\pi\)
\(618\) 21013.3 + 10234.6i 1.36776 + 0.666173i
\(619\) 16401.1 1.06497 0.532484 0.846440i \(-0.321259\pi\)
0.532484 + 0.846440i \(0.321259\pi\)
\(620\) −586.119 2222.17i −0.0379663 0.143943i
\(621\) 7303.30 5100.66i 0.471934 0.329601i
\(622\) 13652.0 + 10518.0i 0.880054 + 0.678028i
\(623\) 4207.48 2688.00i 0.270576 0.172861i
\(624\) 15238.3 + 17409.6i 0.977599 + 1.11689i
\(625\) 10647.0 0.681409
\(626\) −4767.68 + 6188.26i −0.304401 + 0.395100i
\(627\) −3142.95 15252.4i −0.200187 0.971487i
\(628\) −1440.67 5462.04i −0.0915428 0.347068i
\(629\) 7427.10i 0.470808i
\(630\) −1644.08 4986.41i −0.103971 0.315339i
\(631\) 6542.50 0.412762 0.206381 0.978472i \(-0.433831\pi\)
0.206381 + 0.978472i \(0.433831\pi\)
\(632\) 1149.70 2730.20i 0.0723619 0.171838i
\(633\) −11572.6 + 2384.68i −0.726648 + 0.149735i
\(634\) −8672.40 6681.57i −0.543257 0.418547i
\(635\) 7276.09i 0.454713i
\(636\) −4819.25 + 2394.33i −0.300465 + 0.149279i
\(637\) 10030.0 21653.1i 0.623865 1.34683i
\(638\) −2185.84 1684.06i −0.135640 0.104502i
\(639\) 1382.11 + 3211.21i 0.0855641 + 0.198801i
\(640\) 5339.08 628.651i 0.329759 0.0388275i
\(641\) 634.500i 0.0390971i −0.999809 0.0195486i \(-0.993777\pi\)
0.999809 0.0195486i \(-0.00622290\pi\)
\(642\) 2851.56 5854.73i 0.175299 0.359919i
\(643\) 4543.63 0.278668 0.139334 0.990245i \(-0.455504\pi\)
0.139334 + 0.990245i \(0.455504\pi\)
\(644\) 6373.96 6919.20i 0.390014 0.423377i
\(645\) 1717.40 + 8334.36i 0.104841 + 0.508783i
\(646\) −6827.82 5260.43i −0.415847 0.320385i
\(647\) −18802.6 −1.14252 −0.571258 0.820771i \(-0.693544\pi\)
−0.571258 + 0.820771i \(0.693544\pi\)
\(648\) 6640.28 + 15099.8i 0.402554 + 0.915396i
\(649\) 19579.6i 1.18423i
\(650\) 17337.0 + 13357.1i 1.04617 + 0.806014i
\(651\) 5337.31 5193.30i 0.321330 0.312660i
\(652\) −11760.8 + 3102.04i −0.706426 + 0.186327i
\(653\) 20232.4 1.21249 0.606243 0.795279i \(-0.292676\pi\)
0.606243 + 0.795279i \(0.292676\pi\)
\(654\) −21873.7 10653.7i −1.30784 0.636989i
\(655\) −4378.50 −0.261194
\(656\) 15864.9 8994.84i 0.944241 0.535350i
\(657\) −3099.26 7200.87i −0.184039 0.427599i
\(658\) −32113.6 2831.68i −1.90261 0.167766i
\(659\) −13420.3 −0.793295 −0.396648 0.917971i \(-0.629827\pi\)
−0.396648 + 0.917971i \(0.629827\pi\)
\(660\) 3303.64 + 6649.50i 0.194839 + 0.392169i
\(661\) 8321.89 0.489689 0.244844 0.969562i \(-0.421263\pi\)
0.244844 + 0.969562i \(0.421263\pi\)
\(662\) −7360.90 + 9554.15i −0.432159 + 0.560925i
\(663\) 3569.49 + 17322.3i 0.209091 + 1.01470i
\(664\) −15917.7 6703.05i −0.930312 0.391760i
\(665\) 2305.57 + 3608.87i 0.134445 + 0.210445i
\(666\) −2868.46 + 11232.9i −0.166893 + 0.653555i
\(667\) 1287.42i 0.0747364i
\(668\) 3997.82 + 15157.0i 0.231557 + 0.877908i
\(669\) 16269.2 3352.47i 0.940214 0.193743i
\(670\) 5531.61 + 4261.77i 0.318962 + 0.245741i
\(671\) −27733.7 −1.59560
\(672\) 10277.7 + 14065.3i 0.589987 + 0.807413i
\(673\) 2322.47 0.133023 0.0665117 0.997786i \(-0.478813\pi\)
0.0665117 + 0.997786i \(0.478813\pi\)
\(674\) −7295.51 5620.75i −0.416933 0.321221i
\(675\) 8934.37 + 12792.5i 0.509458 + 0.729459i
\(676\) 5393.16 + 20447.2i 0.306848 + 1.16336i
\(677\) 1313.39i 0.0745606i −0.999305 0.0372803i \(-0.988131\pi\)
0.999305 0.0372803i \(-0.0118694\pi\)
\(678\) 974.958 + 474.856i 0.0552257 + 0.0268979i
\(679\) −13752.3 21526.3i −0.777270 1.21665i
\(680\) 3787.43 + 1594.91i 0.213590 + 0.0899441i
\(681\) 15795.4 3254.85i 0.888813 0.183151i
\(682\) −6427.29 + 8342.36i −0.360870 + 0.468395i
\(683\) 20367.6 1.14106 0.570532 0.821276i \(-0.306737\pi\)
0.570532 + 0.821276i \(0.306737\pi\)
\(684\) −8294.91 10593.0i −0.463690 0.592154i
\(685\) −10004.0 −0.558002
\(686\) 8954.71 15577.0i 0.498385 0.866956i
\(687\) 727.431 + 3530.14i 0.0403977 + 0.196046i
\(688\) −13924.8 24560.3i −0.771625 1.36098i
\(689\) −9006.35 −0.497989
\(690\) 1516.92 3114.48i 0.0836928 0.171835i
\(691\) 19327.1 1.06402 0.532010 0.846738i \(-0.321437\pi\)
0.532010 + 0.846738i \(0.321437\pi\)
\(692\) 29723.8 7839.95i 1.63285 0.430680i
\(693\) −13502.7 + 19913.5i −0.740153 + 1.09156i
\(694\) 13615.0 + 10489.5i 0.744696 + 0.573743i
\(695\) 9585.03i 0.523138i
\(696\) −2338.60 462.747i −0.127363 0.0252017i
\(697\) 13941.2 0.757621
\(698\) −15366.9 11839.2i −0.833301 0.642008i
\(699\) 16228.5 3344.09i 0.878139 0.180952i
\(700\) 12119.7 + 11164.7i 0.654405 + 0.602837i
\(701\) 7068.43 0.380843 0.190422 0.981702i \(-0.439015\pi\)
0.190422 + 0.981702i \(0.439015\pi\)
\(702\) −1291.56 + 27577.3i −0.0694398 + 1.48268i
\(703\) 9456.02i 0.507312i
\(704\) −17213.8 17622.7i −0.921549 0.943441i
\(705\) −11627.1 + 2395.91i −0.621137 + 0.127993i
\(706\) 14205.7 + 10944.6i 0.757278 + 0.583437i
\(707\) 1173.52 + 1836.89i 0.0624253 + 0.0977134i
\(708\) −7526.55 15149.3i −0.399527 0.804159i
\(709\) 5102.93i 0.270303i 0.990825 + 0.135151i \(0.0431520\pi\)
−0.990825 + 0.135151i \(0.956848\pi\)
\(710\) 1076.98 + 829.751i 0.0569274 + 0.0438592i
\(711\) 3246.89 1397.47i 0.171263 0.0737118i
\(712\) −2367.42 + 5621.91i −0.124611 + 0.295913i
\(713\) 4913.50 0.258082
\(714\) 1531.58 + 13228.2i 0.0802775 + 0.693350i
\(715\) 12426.8i 0.649979i
\(716\) 5611.77 + 21276.0i 0.292907 + 1.11051i
\(717\) −9562.82 + 1970.54i −0.498089 + 0.102638i
\(718\) −137.202 + 178.083i −0.00713141 + 0.00925628i
\(719\) 2163.33 0.112209 0.0561046 0.998425i \(-0.482132\pi\)
0.0561046 + 0.998425i \(0.482132\pi\)
\(720\) 5112.22 + 3874.94i 0.264613 + 0.200570i
\(721\) 15857.0 + 24820.7i 0.819064 + 1.28207i
\(722\) −6675.04 5142.72i −0.344071 0.265086i
\(723\) 16702.0 3441.67i 0.859137 0.177036i
\(724\) 2651.70 + 10053.5i 0.136118 + 0.516068i
\(725\) −2255.06 −0.115518
\(726\) 6332.82 13002.3i 0.323737 0.664685i
\(727\) 24985.1i 1.27462i 0.770609 + 0.637309i \(0.219952\pi\)
−0.770609 + 0.637309i \(0.780048\pi\)
\(728\) 4930.77 + 28735.4i 0.251026 + 1.46292i
\(729\) −6776.74 + 18479.6i −0.344294 + 0.938862i
\(730\) −2415.04 1860.65i −0.122445 0.0943364i
\(731\) 21582.3i 1.09200i
\(732\) −21458.3 + 10661.0i −1.08350 + 0.538310i
\(733\) 2600.09 0.131018 0.0655092 0.997852i \(-0.479133\pi\)
0.0655092 + 0.997852i \(0.479133\pi\)
\(734\) 19033.1 24704.1i 0.957116 1.24230i
\(735\) 1512.03 6441.24i 0.0758804 0.323250i
\(736\) −1611.64 + 11380.3i −0.0807146 + 0.569951i
\(737\) 31998.7i 1.59930i
\(738\) 21085.1 + 5384.31i 1.05170 + 0.268562i
\(739\) 17370.8i 0.864675i −0.901712 0.432338i \(-0.857689\pi\)
0.901712 0.432338i \(-0.142311\pi\)
\(740\) 1149.84 + 4359.42i 0.0571202 + 0.216561i
\(741\) −4544.59 22054.4i −0.225303 1.09337i
\(742\) −6754.95 595.631i −0.334208 0.0294694i
\(743\) 28215.9i 1.39319i −0.717463 0.696597i \(-0.754697\pi\)
0.717463 0.696597i \(-0.245303\pi\)
\(744\) −1766.09 + 8925.39i −0.0870271 + 0.439813i
\(745\) 12073.3i 0.593734i
\(746\) −10267.3 + 13326.5i −0.503902 + 0.654045i
\(747\) −8147.57 18930.2i −0.399068 0.927201i
\(748\) −4802.78 18208.9i −0.234769 0.890084i
\(749\) 6915.55 4418.08i 0.337368 0.215532i
\(750\) 11586.7 + 5643.33i 0.564115 + 0.274754i
\(751\) −33427.0 −1.62419 −0.812097 0.583522i \(-0.801674\pi\)
−0.812097 + 0.583522i \(0.801674\pi\)
\(752\) 34263.6 19426.2i 1.66152 0.942023i
\(753\) −8552.02 + 1762.25i −0.413882 + 0.0852856i
\(754\) −3160.64 2435.08i −0.152657 0.117613i
\(755\) 278.269i 0.0134136i
\(756\) −2792.51 + 20598.1i −0.134342 + 0.990935i
\(757\) 24841.4i 1.19270i −0.802723 0.596352i \(-0.796616\pi\)
0.802723 0.596352i \(-0.203384\pi\)
\(758\) 8381.97 10879.5i 0.401645 0.521319i
\(759\) −15548.0 + 3203.85i −0.743551 + 0.153218i
\(760\) −4822.07 2030.60i −0.230151 0.0969180i
\(761\) 20004.6 0.952912 0.476456 0.879198i \(-0.341921\pi\)
0.476456 + 0.879198i \(0.341921\pi\)
\(762\) −12613.5 + 25897.7i −0.599659 + 1.23120i
\(763\) −16506.3 25837.0i −0.783182 1.22590i
\(764\) 30279.8 7986.60i 1.43388 0.378200i
\(765\) 1938.62 + 4504.21i 0.0916220 + 0.212876i
\(766\) −9665.89 7446.99i −0.455931 0.351267i
\(767\) 28311.4i 1.33281i
\(768\) −20093.1 7018.06i −0.944071 0.329743i
\(769\) 9604.90i 0.450405i −0.974312 0.225203i \(-0.927696\pi\)
0.974312 0.225203i \(-0.0723044\pi\)
\(770\) −821.840 + 9320.34i −0.0384637 + 0.436210i
\(771\) 7032.85 + 34129.6i 0.328511 + 1.59423i
\(772\) −7443.39 28220.3i −0.347012 1.31564i
\(773\) 4885.24i 0.227309i −0.993520 0.113655i \(-0.963744\pi\)
0.993520 0.113655i \(-0.0362557\pi\)
\(774\) 8335.38 32641.5i 0.387092 1.51586i
\(775\) 8606.55i 0.398911i
\(776\) 28762.8 + 12112.2i 1.33057 + 0.560313i
\(777\) −10470.7 + 10188.1i −0.483440 + 0.470396i
\(778\) −3342.92 2575.52i −0.154048 0.118685i
\(779\) −17749.6 −0.816363
\(780\) 4776.94 + 9614.91i 0.219284 + 0.441371i
\(781\) 6230.03i 0.285439i
\(782\) −5362.36 + 6960.13i −0.245214 + 0.318278i
\(783\) −1628.79 2332.16i −0.0743400 0.106442i
\(784\) 1797.78 + 21878.3i 0.0818959 + 0.996641i
\(785\) 2621.26i 0.119181i
\(786\) 15584.3 + 7590.38i 0.707218 + 0.344453i
\(787\) −34277.8 −1.55257 −0.776284 0.630384i \(-0.782897\pi\)
−0.776284 + 0.630384i \(0.782897\pi\)
\(788\) −161.356 611.752i −0.00729450 0.0276558i
\(789\) −24216.5 + 4990.11i −1.09269 + 0.225162i
\(790\) 838.970 1088.95i 0.0377838 0.0490419i
\(791\) 735.721 + 1151.61i 0.0330711 + 0.0517656i
\(792\) −231.297 29394.5i −0.0103773 1.31880i
\(793\) −40101.9 −1.79579
\(794\) 5774.95 + 4449.25i 0.258117 + 0.198864i
\(795\) −2445.71 + 503.970i −0.109107 + 0.0224830i
\(796\) −5497.39 + 1449.99i −0.244786 + 0.0645648i
\(797\) 20736.8i 0.921624i −0.887498 0.460812i \(-0.847558\pi\)
0.887498 0.460812i \(-0.152442\pi\)
\(798\) −1949.98 16841.8i −0.0865018 0.747109i
\(799\) 30109.0 1.33314
\(800\) −19933.9 2822.97i −0.880961 0.124759i
\(801\) −6685.87 + 2877.61i −0.294923 + 0.126935i
\(802\) −5498.66 + 7137.03i −0.242100 + 0.314236i
\(803\) 13970.3i 0.613949i
\(804\) −12300.5 24758.2i −0.539559 1.08601i
\(805\) 3678.80 2350.24i 0.161069 0.102901i
\(806\) −9293.60 + 12062.7i −0.406145 + 0.527160i
\(807\) 13456.4 2772.86i 0.586973 0.120953i
\(808\) −2454.40 1033.56i −0.106863 0.0450008i
\(809\) 15223.1i 0.661576i −0.943705 0.330788i \(-0.892686\pi\)
0.943705 0.330788i \(-0.107314\pi\)
\(810\) 1192.42 + 7561.00i 0.0517251 + 0.327983i
\(811\) 34460.7 1.49208 0.746042 0.665899i \(-0.231952\pi\)
0.746042 + 0.665899i \(0.231952\pi\)
\(812\) −2209.50 2035.39i −0.0954906 0.0879658i
\(813\) −38789.1 + 7992.98i −1.67330 + 0.344805i
\(814\) 12609.0 16365.9i 0.542929 0.704700i
\(815\) −5644.09 −0.242581
\(816\) −10715.7 12242.5i −0.459709 0.525211i
\(817\) 27478.0i 1.17666i
\(818\) −15807.1 + 20517.0i −0.675651 + 0.876968i
\(819\) −19524.4 + 28794.2i −0.833013 + 1.22851i
\(820\) 8182.95 2158.34i 0.348489 0.0919175i
\(821\) 8486.07 0.360738 0.180369 0.983599i \(-0.442271\pi\)
0.180369 + 0.983599i \(0.442271\pi\)
\(822\) 35606.9 + 17342.4i 1.51087 + 0.735873i
\(823\) 21594.4 0.914622 0.457311 0.889307i \(-0.348813\pi\)
0.457311 + 0.889307i \(0.348813\pi\)
\(824\) −33164.7 13965.9i −1.40212 0.590442i
\(825\) −5611.91 27234.0i −0.236826 1.14929i
\(826\) 1872.36 21234.1i 0.0788715 0.894468i
\(827\) 11423.5 0.480330 0.240165 0.970732i \(-0.422798\pi\)
0.240165 + 0.970732i \(0.422798\pi\)
\(828\) −10798.3 + 8455.64i −0.453219 + 0.354896i
\(829\) 6869.52 0.287802 0.143901 0.989592i \(-0.454035\pi\)
0.143901 + 0.989592i \(0.454035\pi\)
\(830\) −6348.84 4891.40i −0.265508 0.204558i
\(831\) 18909.7 3896.59i 0.789375 0.162661i
\(832\) −24890.5 25481.8i −1.03717 1.06181i
\(833\) −7053.11 + 15226.5i −0.293368 + 0.633336i
\(834\) 16616.2 34115.8i 0.689895 1.41647i
\(835\) 7273.94i 0.301467i
\(836\) 6114.78 + 23183.1i 0.252972 + 0.959097i
\(837\) −8900.78 + 6216.35i −0.367570 + 0.256713i
\(838\) −28099.9 + 36472.5i −1.15835 + 1.50349i
\(839\) 29613.1 1.21854 0.609272 0.792961i \(-0.291462\pi\)
0.609272 + 0.792961i \(0.291462\pi\)
\(840\) 2946.92 + 7527.30i 0.121046 + 0.309187i
\(841\) −23977.9 −0.983144
\(842\) −25.0226 + 32.4783i −0.00102415 + 0.00132931i
\(843\) −39815.3 + 8204.45i −1.62670 + 0.335203i
\(844\) 17589.9 4639.51i 0.717381 0.189216i
\(845\) 9812.74i 0.399489i
\(846\) 45537.5 + 11628.5i 1.85061 + 0.472573i
\(847\) 15358.2 9811.79i 0.623040 0.398037i
\(848\) 7207.21 4086.22i 0.291859 0.165473i
\(849\) 4319.39 + 20961.5i 0.174607 + 0.847348i
\(850\) −12191.4 9392.77i −0.491956 0.379023i
\(851\) −9639.25 −0.388283
\(852\) −2394.86 4820.33i −0.0962990 0.193828i
\(853\) 15110.8 0.606545 0.303273 0.952904i \(-0.401921\pi\)
0.303273 + 0.952904i \(0.401921\pi\)
\(854\) −30077.2 2652.12i −1.20518 0.106269i
\(855\) −2468.20 5734.65i −0.0987260 0.229381i
\(856\) −3891.18 + 9240.37i −0.155371 + 0.368959i
\(857\) −36848.3 −1.46875 −0.734373 0.678747i \(-0.762523\pi\)
−0.734373 + 0.678747i \(0.762523\pi\)
\(858\) 21542.5 44230.4i 0.857168 1.75991i
\(859\) −35305.1 −1.40232 −0.701162 0.713002i \(-0.747335\pi\)
−0.701162 + 0.713002i \(0.747335\pi\)
\(860\) −3341.30 12667.9i −0.132485 0.502294i
\(861\) 19123.9 + 19654.2i 0.756958 + 0.777949i
\(862\) −11738.6 + 15236.2i −0.463826 + 0.602027i
\(863\) 48135.9i 1.89868i 0.314244 + 0.949342i \(0.398249\pi\)
−0.314244 + 0.949342i \(0.601751\pi\)
\(864\) −11478.4 22654.3i −0.451971 0.892033i
\(865\) 14264.6 0.560707
\(866\) 19256.9 24994.7i 0.755631 0.980779i
\(867\) 2642.19 + 12822.3i 0.103499 + 0.502268i
\(868\) −7768.16 + 8432.67i −0.303766 + 0.329750i
\(869\) −6299.25 −0.245900
\(870\) −994.544 484.396i −0.0387566 0.0188765i
\(871\) 46268.9i 1.79995i
\(872\) 34522.7 + 14537.7i 1.34070 + 0.564575i
\(873\) 14722.4 + 34206.3i 0.570766 + 1.32612i
\(874\) 6827.23 8861.47i 0.264227 0.342956i
\(875\) 8743.52 + 13686.1i 0.337811 + 0.528771i
\(876\) 5370.28 + 10809.2i 0.207129 + 0.416904i
\(877\) 22331.1i 0.859825i 0.902871 + 0.429912i \(0.141456\pi\)
−0.902871 + 0.429912i \(0.858544\pi\)
\(878\) −21451.2 + 27842.8i −0.824537 + 1.07022i
\(879\) −30698.7 + 6325.86i −1.17798 + 0.242737i
\(880\) −5638.08 9944.35i −0.215977 0.380936i
\(881\) −9542.16 −0.364908 −0.182454 0.983214i \(-0.558404\pi\)
−0.182454 + 0.983214i \(0.558404\pi\)
\(882\) −16548.0 + 20305.0i −0.631746 + 0.775175i
\(883\) 31638.4i 1.20579i −0.797819 0.602897i \(-0.794013\pi\)
0.797819 0.602897i \(-0.205987\pi\)
\(884\) −6944.63 26329.3i −0.264223 1.00176i
\(885\) −1584.23 7688.07i −0.0601731 0.292013i
\(886\) 24355.0 + 18764.0i 0.923501 + 0.711502i
\(887\) 368.960 0.0139667 0.00698335 0.999976i \(-0.497777\pi\)
0.00698335 + 0.999976i \(0.497777\pi\)
\(888\) 3464.70 17509.7i 0.130932 0.661697i
\(889\) −30590.1 + 19542.8i −1.15406 + 0.737284i
\(890\) −1727.57 + 2242.32i −0.0650656 + 0.0844525i
\(891\) 24111.6 25474.3i 0.906588 0.957826i
\(892\) −24728.6 + 6522.42i −0.928223 + 0.244828i
\(893\) −38334.0 −1.43651
\(894\) −20929.8 + 42972.3i −0.782994 + 1.60762i
\(895\) 10210.5i 0.381340i
\(896\) −16983.2 20758.0i −0.633223 0.773969i
\(897\) −22481.7 + 4632.65i −0.836837 + 0.172441i
\(898\) −20346.0 + 26408.3i −0.756074 + 0.981354i
\(899\) 1569.02i 0.0582090i
\(900\) −14811.0 18914.4i −0.548555 0.700532i
\(901\) 6333.29 0.234176
\(902\) −30720.1 23668.0i −1.13400 0.873677i
\(903\) 30426.5 29605.5i 1.12129 1.09104i
\(904\) −1538.75 647.978i −0.0566129 0.0238401i
\(905\) 4824.71i 0.177214i
\(906\) 482.395 990.437i 0.0176893 0.0363191i
\(907\) 13767.1i 0.504003i −0.967727 0.252001i \(-0.918911\pi\)
0.967727 0.252001i \(-0.0810888\pi\)
\(908\) −24008.5 + 6332.48i −0.877477 + 0.231443i
\(909\) −1256.30 2918.90i −0.0458403 0.106506i
\(910\) −1188.35 + 13476.8i −0.0432894 + 0.490937i
\(911\) 12013.8i 0.436921i 0.975846 + 0.218461i \(0.0701035\pi\)
−0.975846 + 0.218461i \(0.929896\pi\)
\(912\) 13642.9 + 15586.8i 0.495353 + 0.565933i
\(913\) 36726.1i 1.33128i
\(914\) −2579.31 1987.21i −0.0933436 0.0719157i
\(915\) −10889.8 + 2243.99i −0.393449 + 0.0810753i
\(916\) −1415.26 5365.70i −0.0510495 0.193545i
\(917\) 11760.2 + 18408.0i 0.423507 + 0.662908i
\(918\) 908.228 19392.4i 0.0326536 0.697218i
\(919\) 42760.2 1.53485 0.767425 0.641138i \(-0.221537\pi\)
0.767425 + 0.641138i \(0.221537\pi\)
\(920\) −2069.95 + 4915.50i −0.0741785 + 0.176152i
\(921\) −2130.55 10339.3i −0.0762259 0.369916i
\(922\) −1983.69 + 2574.75i −0.0708561 + 0.0919684i
\(923\) 9008.37i 0.321251i
\(924\) 19082.5 31749.0i 0.679403 1.13037i
\(925\) 16884.2i 0.600161i
\(926\) 1145.51 + 882.546i 0.0406520 + 0.0313200i
\(927\) −16975.5 39441.2i −0.601456 1.39743i
\(928\) 3634.07 + 514.644i 0.128550 + 0.0182048i
\(929\) 46059.3 1.62665 0.813324 0.581811i \(-0.197656\pi\)
0.813324 + 0.581811i \(0.197656\pi\)
\(930\) −1848.72 + 3795.72i −0.0651848 + 0.133835i
\(931\) 8979.85 19386.1i 0.316115 0.682442i
\(932\) −24666.8 + 6506.11i −0.866940 + 0.228664i
\(933\) −6389.81 31009.0i −0.224215 1.08809i
\(934\) −13358.0 + 17338.2i −0.467974 + 0.607412i
\(935\) 8738.54i 0.305648i
\(936\) −334.447 42503.3i −0.0116792 1.48425i
\(937\) 5647.59i 0.196904i −0.995142 0.0984519i \(-0.968611\pi\)
0.995142 0.0984519i \(-0.0313891\pi\)
\(938\) 3059.97 34702.6i 0.106516 1.20797i
\(939\) 14056.0 2896.42i 0.488499 0.100661i
\(940\) 17672.8 4661.37i 0.613215 0.161742i
\(941\) 41421.7i 1.43497i 0.696572 + 0.717486i \(0.254707\pi\)
−0.696572 + 0.717486i \(0.745293\pi\)
\(942\) −4544.11 + 9329.80i −0.157171 + 0.322698i
\(943\) 18093.6i 0.624823i
\(944\) 12845.0 + 22655.8i 0.442870 + 0.781127i
\(945\) −3690.69 + 8911.70i −0.127046 + 0.306770i
\(946\) −36640.1 + 47557.4i −1.25927 + 1.63449i
\(947\) −21290.6 −0.730571 −0.365285 0.930896i \(-0.619029\pi\)
−0.365285 + 0.930896i \(0.619029\pi\)
\(948\) −4873.89 + 2421.47i −0.166979 + 0.0829597i
\(949\) 20200.5i 0.690976i
\(950\) 15521.8 + 11958.7i 0.530100 + 0.408410i
\(951\) 4059.13 + 19698.5i 0.138408 + 0.671680i
\(952\) −3467.34 20206.8i −0.118043 0.687928i
\(953\) 15236.1i 0.517888i 0.965892 + 0.258944i \(0.0833745\pi\)
−0.965892 + 0.258944i \(0.916626\pi\)
\(954\) 9578.63 + 2446.01i 0.325073 + 0.0830110i
\(955\) 14531.4 0.492383
\(956\) 14535.2 3833.79i 0.491737 0.129701i
\(957\) 1023.08 + 4964.91i 0.0345576 + 0.167704i
\(958\) 33988.0 + 26185.7i 1.14625 + 0.883113i
\(959\) 26869.6 + 42058.6i 0.904760 + 1.41621i
\(960\) −8185.01 5526.88i −0.275177 0.185812i
\(961\) 23802.7 0.798991
\(962\) 18232.1 23664.5i 0.611045 0.793112i
\(963\) −10989.1 + 4729.73i −0.367726 + 0.158269i
\(964\) −25386.5 + 6695.95i −0.848180 + 0.223716i
\(965\) 13543.1i 0.451780i
\(966\) −17168.1 + 1987.76i −0.571818 + 0.0662062i
\(967\) −29677.9 −0.986945 −0.493472 0.869761i \(-0.664273\pi\)
−0.493472 + 0.869761i \(0.664273\pi\)
\(968\) −8641.62 + 20521.2i −0.286934 + 0.681382i
\(969\) 3195.77 + 15508.7i 0.105947 + 0.514150i
\(970\) 11472.2 + 8838.62i 0.379741 + 0.292568i
\(971\) 39536.5i 1.30668i −0.757065 0.653340i \(-0.773367\pi\)
0.757065 0.653340i \(-0.226633\pi\)
\(972\) 8863.27 28978.8i 0.292479 0.956272i
\(973\) 40297.3 25744.4i 1.32772 0.848230i
\(974\) −15860.9 12219.9i −0.521783 0.402002i
\(975\) −8114.60 39379.2i −0.266539 1.29348i
\(976\) 32091.0 18194.4i 1.05247 0.596709i
\(977\) 29672.8i 0.971665i 0.874052 + 0.485832i \(0.161483\pi\)
−0.874052 + 0.485832i \(0.838517\pi\)
\(978\) 20088.9 + 9784.35i 0.656822 + 0.319907i
\(979\) 12971.1 0.423452
\(980\) −1782.57 + 10029.3i −0.0581042 + 0.326913i
\(981\) 17670.6 + 41056.2i 0.575107 + 1.33621i
\(982\) 19860.5 + 15301.3i 0.645391 + 0.497235i
\(983\) −4423.26 −0.143520 −0.0717599 0.997422i \(-0.522862\pi\)
−0.0717599 + 0.997422i \(0.522862\pi\)
\(984\) −32867.0 6503.50i −1.06480 0.210695i
\(985\) 293.583i 0.00949679i
\(986\) 2222.57 + 1712.36i 0.0717861 + 0.0553069i
\(987\) 41302.0 + 42447.3i 1.33197 + 1.36891i
\(988\) 8841.74 + 33521.9i 0.284710 + 1.07943i
\(989\) 28010.5 0.900587
\(990\) 3374.95 13216.4i 0.108347 0.424287i
\(991\) 38967.8 1.24910 0.624548 0.780986i \(-0.285283\pi\)
0.624548 + 0.780986i \(0.285283\pi\)
\(992\) 1964.16 13869.6i 0.0628652 0.443911i
\(993\) 21701.3 4471.83i 0.693524 0.142909i
\(994\) 595.765 6756.47i 0.0190106 0.215596i
\(995\) −2638.23 −0.0840577
\(996\) 14117.8 + 28416.0i 0.449136 + 0.904010i
\(997\) 43802.8 1.39142 0.695712 0.718321i \(-0.255089\pi\)
0.695712 + 0.718321i \(0.255089\pi\)
\(998\) −16044.3 + 20824.8i −0.508890 + 0.660518i
\(999\) 17461.4 12195.2i 0.553008 0.386224i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 168.4.i.c.125.63 yes 80
3.2 odd 2 inner 168.4.i.c.125.17 80
4.3 odd 2 672.4.i.c.209.43 80
7.6 odd 2 inner 168.4.i.c.125.64 yes 80
8.3 odd 2 672.4.i.c.209.38 80
8.5 even 2 inner 168.4.i.c.125.20 yes 80
12.11 even 2 672.4.i.c.209.42 80
21.20 even 2 inner 168.4.i.c.125.18 yes 80
24.5 odd 2 inner 168.4.i.c.125.62 yes 80
24.11 even 2 672.4.i.c.209.39 80
28.27 even 2 672.4.i.c.209.37 80
56.13 odd 2 inner 168.4.i.c.125.19 yes 80
56.27 even 2 672.4.i.c.209.44 80
84.83 odd 2 672.4.i.c.209.40 80
168.83 odd 2 672.4.i.c.209.41 80
168.125 even 2 inner 168.4.i.c.125.61 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.i.c.125.17 80 3.2 odd 2 inner
168.4.i.c.125.18 yes 80 21.20 even 2 inner
168.4.i.c.125.19 yes 80 56.13 odd 2 inner
168.4.i.c.125.20 yes 80 8.5 even 2 inner
168.4.i.c.125.61 yes 80 168.125 even 2 inner
168.4.i.c.125.62 yes 80 24.5 odd 2 inner
168.4.i.c.125.63 yes 80 1.1 even 1 trivial
168.4.i.c.125.64 yes 80 7.6 odd 2 inner
672.4.i.c.209.37 80 28.27 even 2
672.4.i.c.209.38 80 8.3 odd 2
672.4.i.c.209.39 80 24.11 even 2
672.4.i.c.209.40 80 84.83 odd 2
672.4.i.c.209.41 80 168.83 odd 2
672.4.i.c.209.42 80 12.11 even 2
672.4.i.c.209.43 80 4.3 odd 2
672.4.i.c.209.44 80 56.27 even 2