Properties

Label 168.4.i.c.125.19
Level $168$
Weight $4$
Character 168.125
Analytic conductor $9.912$
Analytic rank $0$
Dimension $80$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,4,Mod(125,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.125"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 168.i (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.91232088096\)
Analytic rank: \(0\)
Dimension: \(80\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 125.19
Character \(\chi\) \(=\) 168.125
Dual form 168.4.i.c.125.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.24057 + 1.72622i) q^{2} +(-1.04870 - 5.08923i) q^{3} +(2.04030 - 7.73545i) q^{4} +3.71228i q^{5} +(11.1348 + 9.59247i) q^{6} +(15.6071 + 9.97081i) q^{7} +(8.78168 + 20.8538i) q^{8} +(-24.8005 + 10.6741i) q^{9} +(-6.40823 - 8.31763i) q^{10} -48.1150 q^{11} +(-41.5071 - 2.27139i) q^{12} +69.5724 q^{13} +(-52.1807 + 4.60114i) q^{14} +(18.8927 - 3.89307i) q^{15} +(-55.6743 - 31.5653i) q^{16} +48.9235 q^{17} +(37.1412 - 66.7273i) q^{18} +62.2883 q^{19} +(28.7162 + 7.57418i) q^{20} +(34.3765 - 89.8847i) q^{21} +(107.805 - 83.0572i) q^{22} -63.4952i q^{23} +(96.9205 - 66.5614i) q^{24} +111.219 q^{25} +(-155.882 + 120.098i) q^{26} +(80.3314 + 115.021i) q^{27} +(108.972 - 100.385i) q^{28} +20.2759 q^{29} +(-35.6100 + 41.3356i) q^{30} -77.3838i q^{31} +(179.231 - 25.3821i) q^{32} +(50.4582 + 244.868i) q^{33} +(-109.617 + 84.4529i) q^{34} +(-37.0145 + 57.9382i) q^{35} +(31.9689 + 213.621i) q^{36} +151.811i q^{37} +(-139.561 + 107.524i) q^{38} +(-72.9606 - 354.070i) q^{39} +(-77.4153 + 32.6001i) q^{40} +284.960 q^{41} +(78.1382 + 260.734i) q^{42} -441.143i q^{43} +(-98.1691 + 372.191i) q^{44} +(-39.6255 - 92.0663i) q^{45} +(109.607 + 142.265i) q^{46} +615.429 q^{47} +(-102.257 + 316.442i) q^{48} +(144.166 + 311.232i) q^{49} +(-249.194 + 191.989i) q^{50} +(-51.3061 - 248.983i) q^{51} +(141.949 - 538.174i) q^{52} +129.453 q^{53} +(-378.540 - 119.043i) q^{54} -178.616i q^{55} +(-70.8726 + 413.029i) q^{56} +(-65.3217 - 316.999i) q^{57} +(-45.4295 + 35.0007i) q^{58} -406.934i q^{59} +(8.43206 - 154.086i) q^{60} -576.405 q^{61} +(133.582 + 173.384i) q^{62} +(-493.494 - 80.6876i) q^{63} +(-357.764 + 366.263i) q^{64} +258.272i q^{65} +(-535.752 - 461.542i) q^{66} +665.046i q^{67} +(99.8187 - 378.445i) q^{68} +(-323.142 + 66.5875i) q^{69} +(-17.0807 - 193.710i) q^{70} -129.482i q^{71} +(-440.386 - 423.448i) q^{72} -290.352i q^{73} +(-262.059 - 340.142i) q^{74} +(-116.635 - 566.018i) q^{75} +(127.087 - 481.828i) q^{76} +(-750.938 - 479.745i) q^{77} +(774.677 + 667.371i) q^{78} -130.921 q^{79} +(117.179 - 206.679i) q^{80} +(501.125 - 529.447i) q^{81} +(-638.472 + 491.904i) q^{82} +763.300i q^{83} +(-625.160 - 449.309i) q^{84} +181.618i q^{85} +(761.511 + 988.411i) q^{86} +(-21.2633 - 103.189i) q^{87} +(-422.530 - 1003.38i) q^{88} -269.586 q^{89} +(247.711 + 137.879i) q^{90} +(1085.83 + 693.693i) q^{91} +(-491.164 - 129.549i) q^{92} +(-393.824 + 81.1524i) q^{93} +(-1378.91 + 1062.37i) q^{94} +231.232i q^{95} +(-317.135 - 885.529i) q^{96} +1379.26i q^{97} +(-860.269 - 448.473i) q^{98} +(1193.27 - 513.586i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 28 q^{4} + 64 q^{7} + 104 q^{9} - 8 q^{15} - 892 q^{16} + 692 q^{18} + 128 q^{22} - 976 q^{25} + 612 q^{28} - 332 q^{30} + 1544 q^{36} + 568 q^{39} + 780 q^{42} + 208 q^{46} - 4048 q^{49} - 1448 q^{57}+ \cdots - 2072 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(85\) \(113\) \(127\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.24057 + 1.72622i −0.792161 + 0.610312i
\(3\) −1.04870 5.08923i −0.201822 0.979422i
\(4\) 2.04030 7.73545i 0.255038 0.966931i
\(5\) 3.71228i 0.332037i 0.986123 + 0.166018i \(0.0530911\pi\)
−0.986123 + 0.166018i \(0.946909\pi\)
\(6\) 11.1348 + 9.59247i 0.757629 + 0.652685i
\(7\) 15.6071 + 9.97081i 0.842707 + 0.538373i
\(8\) 8.78168 + 20.8538i 0.388099 + 0.921618i
\(9\) −24.8005 + 10.6741i −0.918535 + 0.395339i
\(10\) −6.40823 8.31763i −0.202646 0.263027i
\(11\) −48.1150 −1.31884 −0.659419 0.751776i \(-0.729198\pi\)
−0.659419 + 0.751776i \(0.729198\pi\)
\(12\) −41.5071 2.27139i −0.998506 0.0546413i
\(13\) 69.5724 1.48430 0.742150 0.670234i \(-0.233806\pi\)
0.742150 + 0.670234i \(0.233806\pi\)
\(14\) −52.1807 + 4.60114i −0.996135 + 0.0878362i
\(15\) 18.8927 3.89307i 0.325204 0.0670125i
\(16\) −55.6743 31.5653i −0.869911 0.493208i
\(17\) 48.9235 0.697982 0.348991 0.937126i \(-0.386524\pi\)
0.348991 + 0.937126i \(0.386524\pi\)
\(18\) 37.1412 66.7273i 0.486348 0.873765i
\(19\) 62.2883 0.752100 0.376050 0.926599i \(-0.377282\pi\)
0.376050 + 0.926599i \(0.377282\pi\)
\(20\) 28.7162 + 7.57418i 0.321057 + 0.0846819i
\(21\) 34.3765 89.8847i 0.357217 0.934021i
\(22\) 107.805 83.0572i 1.04473 0.804903i
\(23\) 63.4952i 0.575638i −0.957685 0.287819i \(-0.907070\pi\)
0.957685 0.287819i \(-0.0929301\pi\)
\(24\) 96.9205 66.5614i 0.824326 0.566116i
\(25\) 111.219 0.889752
\(26\) −155.882 + 120.098i −1.17580 + 0.905887i
\(27\) 80.3314 + 115.021i 0.572585 + 0.819846i
\(28\) 108.972 100.385i 0.735492 0.677534i
\(29\) 20.2759 0.129832 0.0649161 0.997891i \(-0.479322\pi\)
0.0649161 + 0.997891i \(0.479322\pi\)
\(30\) −35.6100 + 41.3356i −0.216715 + 0.251561i
\(31\) 77.3838i 0.448340i −0.974550 0.224170i \(-0.928033\pi\)
0.974550 0.224170i \(-0.0719671\pi\)
\(32\) 179.231 25.3821i 0.990121 0.140218i
\(33\) 50.4582 + 244.868i 0.266171 + 1.29170i
\(34\) −109.617 + 84.4529i −0.552914 + 0.425987i
\(35\) −37.0145 + 57.9382i −0.178760 + 0.279810i
\(36\) 31.9689 + 213.621i 0.148004 + 0.988987i
\(37\) 151.811i 0.674527i 0.941410 + 0.337263i \(0.109501\pi\)
−0.941410 + 0.337263i \(0.890499\pi\)
\(38\) −139.561 + 107.524i −0.595785 + 0.459016i
\(39\) −72.9606 354.070i −0.299565 1.45376i
\(40\) −77.4153 + 32.6001i −0.306011 + 0.128863i
\(41\) 284.960 1.08544 0.542722 0.839912i \(-0.317394\pi\)
0.542722 + 0.839912i \(0.317394\pi\)
\(42\) 78.1382 + 260.734i 0.287071 + 0.957909i
\(43\) 441.143i 1.56450i −0.622963 0.782252i \(-0.714071\pi\)
0.622963 0.782252i \(-0.285929\pi\)
\(44\) −98.1691 + 372.191i −0.336353 + 1.27523i
\(45\) −39.6255 92.0663i −0.131267 0.304988i
\(46\) 109.607 + 142.265i 0.351319 + 0.455998i
\(47\) 615.429 1.90999 0.954996 0.296620i \(-0.0958594\pi\)
0.954996 + 0.296620i \(0.0958594\pi\)
\(48\) −102.257 + 316.442i −0.307491 + 0.951551i
\(49\) 144.166 + 311.232i 0.420309 + 0.907381i
\(50\) −249.194 + 191.989i −0.704826 + 0.543026i
\(51\) −51.3061 248.983i −0.140868 0.683619i
\(52\) 141.949 538.174i 0.378553 1.43522i
\(53\) 129.453 0.335504 0.167752 0.985829i \(-0.446349\pi\)
0.167752 + 0.985829i \(0.446349\pi\)
\(54\) −378.540 119.043i −0.953941 0.299994i
\(55\) 178.616i 0.437903i
\(56\) −70.8726 + 413.029i −0.169121 + 0.985595i
\(57\) −65.3217 316.999i −0.151791 0.736624i
\(58\) −45.4295 + 35.0007i −0.102848 + 0.0792382i
\(59\) 406.934i 0.897938i −0.893547 0.448969i \(-0.851791\pi\)
0.893547 0.448969i \(-0.148209\pi\)
\(60\) 8.43206 154.086i 0.0181429 0.331541i
\(61\) −576.405 −1.20985 −0.604927 0.796281i \(-0.706798\pi\)
−0.604927 + 0.796281i \(0.706798\pi\)
\(62\) 133.582 + 173.384i 0.273627 + 0.355158i
\(63\) −493.494 80.6876i −0.986896 0.161360i
\(64\) −357.764 + 366.263i −0.698758 + 0.715358i
\(65\) 258.272i 0.492842i
\(66\) −535.752 461.542i −0.999190 0.860786i
\(67\) 665.046i 1.21266i 0.795212 + 0.606331i \(0.207359\pi\)
−0.795212 + 0.606331i \(0.792641\pi\)
\(68\) 99.8187 378.445i 0.178012 0.674901i
\(69\) −323.142 + 66.5875i −0.563792 + 0.116177i
\(70\) −17.0807 193.710i −0.0291648 0.330753i
\(71\) 129.482i 0.216432i −0.994127 0.108216i \(-0.965486\pi\)
0.994127 0.108216i \(-0.0345139\pi\)
\(72\) −440.386 423.448i −0.720834 0.693108i
\(73\) 290.352i 0.465523i −0.972534 0.232761i \(-0.925224\pi\)
0.972534 0.232761i \(-0.0747762\pi\)
\(74\) −262.059 340.142i −0.411672 0.534334i
\(75\) −116.635 566.018i −0.179572 0.871442i
\(76\) 127.087 481.828i 0.191814 0.727229i
\(77\) −750.938 479.745i −1.11139 0.710027i
\(78\) 774.677 + 667.371i 1.12455 + 0.968781i
\(79\) −130.921 −0.186452 −0.0932261 0.995645i \(-0.529718\pi\)
−0.0932261 + 0.995645i \(0.529718\pi\)
\(80\) 117.179 206.679i 0.163763 0.288843i
\(81\) 501.125 529.447i 0.687415 0.726265i
\(82\) −638.472 + 491.904i −0.859847 + 0.662460i
\(83\) 763.300i 1.00943i 0.863285 + 0.504717i \(0.168403\pi\)
−0.863285 + 0.504717i \(0.831597\pi\)
\(84\) −625.160 449.309i −0.812030 0.583615i
\(85\) 181.618i 0.231756i
\(86\) 761.511 + 988.411i 0.954836 + 1.23934i
\(87\) −21.2633 103.189i −0.0262031 0.127161i
\(88\) −422.530 1003.38i −0.511840 1.21546i
\(89\) −269.586 −0.321080 −0.160540 0.987029i \(-0.551324\pi\)
−0.160540 + 0.987029i \(0.551324\pi\)
\(90\) 247.711 + 137.879i 0.290122 + 0.161485i
\(91\) 1085.83 + 693.693i 1.25083 + 0.799107i
\(92\) −491.164 129.549i −0.556602 0.146809i
\(93\) −393.824 + 81.1524i −0.439114 + 0.0904851i
\(94\) −1378.91 + 1062.37i −1.51302 + 1.16569i
\(95\) 231.232i 0.249725i
\(96\) −317.135 885.529i −0.337161 0.941447i
\(97\) 1379.26i 1.44374i 0.692030 + 0.721869i \(0.256717\pi\)
−0.692030 + 0.721869i \(0.743283\pi\)
\(98\) −860.269 448.473i −0.886738 0.462272i
\(99\) 1193.27 513.586i 1.21140 0.521388i
\(100\) 226.920 860.328i 0.226920 0.860328i
\(101\) 117.695i 0.115952i 0.998318 + 0.0579759i \(0.0184647\pi\)
−0.998318 + 0.0579759i \(0.981535\pi\)
\(102\) 544.755 + 469.298i 0.528812 + 0.455563i
\(103\) 1590.34i 1.52137i −0.649122 0.760684i \(-0.724863\pi\)
0.649122 0.760684i \(-0.275137\pi\)
\(104\) 610.962 + 1450.85i 0.576056 + 1.36796i
\(105\) 333.677 + 127.615i 0.310129 + 0.118609i
\(106\) −290.048 + 223.465i −0.265773 + 0.204762i
\(107\) −443.102 −0.400339 −0.200169 0.979761i \(-0.564149\pi\)
−0.200169 + 0.979761i \(0.564149\pi\)
\(108\) 1053.64 386.721i 0.938765 0.344558i
\(109\) 1655.46i 1.45472i 0.686256 + 0.727360i \(0.259253\pi\)
−0.686256 + 0.727360i \(0.740747\pi\)
\(110\) 308.332 + 400.203i 0.267257 + 0.346889i
\(111\) 772.598 159.204i 0.660647 0.136135i
\(112\) −554.186 1047.76i −0.467550 0.883966i
\(113\) 73.7875i 0.0614278i 0.999528 + 0.0307139i \(0.00977807\pi\)
−0.999528 + 0.0307139i \(0.990222\pi\)
\(114\) 693.569 + 597.499i 0.569813 + 0.490885i
\(115\) 235.712 0.191133
\(116\) 41.3689 156.843i 0.0331121 0.125539i
\(117\) −1725.43 + 742.626i −1.36338 + 0.586801i
\(118\) 702.460 + 911.765i 0.548023 + 0.711312i
\(119\) 763.556 + 487.807i 0.588194 + 0.375775i
\(120\) 247.095 + 359.796i 0.187971 + 0.273706i
\(121\) 984.052 0.739332
\(122\) 1291.48 995.004i 0.958399 0.738389i
\(123\) −298.837 1450.22i −0.219067 1.06311i
\(124\) −598.599 157.886i −0.433514 0.114344i
\(125\) 876.912i 0.627467i
\(126\) 1244.99 671.095i 0.880260 0.474491i
\(127\) −1960.00 −1.36947 −0.684733 0.728794i \(-0.740081\pi\)
−0.684733 + 0.728794i \(0.740081\pi\)
\(128\) 169.343 1438.22i 0.116937 0.993139i
\(129\) −2245.08 + 462.626i −1.53231 + 0.315752i
\(130\) −445.836 578.677i −0.300788 0.390410i
\(131\) 1179.46i 0.786642i 0.919401 + 0.393321i \(0.128674\pi\)
−0.919401 + 0.393321i \(0.871326\pi\)
\(132\) 1997.11 + 109.288i 1.31687 + 0.0720629i
\(133\) 972.142 + 621.064i 0.633800 + 0.404911i
\(134\) −1148.02 1490.08i −0.740102 0.960623i
\(135\) −426.991 + 298.213i −0.272219 + 0.190119i
\(136\) 429.630 + 1020.24i 0.270886 + 0.643273i
\(137\) 2694.83i 1.68054i 0.542165 + 0.840272i \(0.317605\pi\)
−0.542165 + 0.840272i \(0.682395\pi\)
\(138\) 609.076 707.009i 0.375710 0.436120i
\(139\) 2581.98 1.57554 0.787771 0.615968i \(-0.211235\pi\)
0.787771 + 0.615968i \(0.211235\pi\)
\(140\) 372.657 + 404.535i 0.224966 + 0.244210i
\(141\) −645.401 3132.06i −0.385479 1.87069i
\(142\) 223.515 + 290.114i 0.132091 + 0.171449i
\(143\) −3347.47 −1.95755
\(144\) 1717.68 + 188.558i 0.994029 + 0.109119i
\(145\) 75.2698i 0.0431091i
\(146\) 501.213 + 650.555i 0.284114 + 0.368769i
\(147\) 1432.74 1060.08i 0.803881 0.594790i
\(148\) 1174.32 + 309.739i 0.652221 + 0.172030i
\(149\) 3252.26 1.78816 0.894079 0.447910i \(-0.147832\pi\)
0.894079 + 0.447910i \(0.147832\pi\)
\(150\) 1238.40 + 1066.86i 0.674102 + 0.580728i
\(151\) 74.9590 0.0403978 0.0201989 0.999796i \(-0.493570\pi\)
0.0201989 + 0.999796i \(0.493570\pi\)
\(152\) 546.996 + 1298.95i 0.291889 + 0.693149i
\(153\) −1213.33 + 522.217i −0.641121 + 0.275939i
\(154\) 2510.68 221.384i 1.31374 0.115842i
\(155\) 287.271 0.148865
\(156\) −2887.75 158.026i −1.48208 0.0811041i
\(157\) −706.105 −0.358938 −0.179469 0.983764i \(-0.557438\pi\)
−0.179469 + 0.983764i \(0.557438\pi\)
\(158\) 293.337 225.998i 0.147700 0.113794i
\(159\) −135.757 658.815i −0.0677123 0.328600i
\(160\) 94.2256 + 665.356i 0.0465574 + 0.328756i
\(161\) 633.099 990.979i 0.309908 0.485094i
\(162\) −208.861 + 2051.32i −0.101294 + 0.994856i
\(163\) 1520.38i 0.730586i −0.930893 0.365293i \(-0.880969\pi\)
0.930893 0.365293i \(-0.119031\pi\)
\(164\) 581.404 2204.29i 0.276829 1.04955i
\(165\) −909.020 + 187.315i −0.428891 + 0.0883786i
\(166\) −1317.63 1710.23i −0.616070 0.799634i
\(167\) −1959.42 −0.907933 −0.453966 0.891019i \(-0.649991\pi\)
−0.453966 + 0.891019i \(0.649991\pi\)
\(168\) 2176.32 72.4570i 0.999446 0.0332749i
\(169\) 2643.32 1.20315
\(170\) −313.513 406.928i −0.141443 0.183588i
\(171\) −1544.78 + 664.874i −0.690831 + 0.297334i
\(172\) −3412.44 900.065i −1.51277 0.399007i
\(173\) 3842.54i 1.68869i −0.535800 0.844345i \(-0.679990\pi\)
0.535800 0.844345i \(-0.320010\pi\)
\(174\) 225.768 + 194.496i 0.0983647 + 0.0847396i
\(175\) 1735.81 + 1108.94i 0.749800 + 0.479018i
\(176\) 2678.77 + 1518.76i 1.14727 + 0.650461i
\(177\) −2070.98 + 426.752i −0.879461 + 0.181224i
\(178\) 604.027 465.367i 0.254347 0.195959i
\(179\) −2750.46 −1.14849 −0.574243 0.818685i \(-0.694704\pi\)
−0.574243 + 0.818685i \(0.694704\pi\)
\(180\) −793.022 + 118.678i −0.328380 + 0.0491428i
\(181\) 1299.66 0.533718 0.266859 0.963736i \(-0.414014\pi\)
0.266859 + 0.963736i \(0.414014\pi\)
\(182\) −3630.34 + 320.112i −1.47856 + 0.130375i
\(183\) 604.476 + 2933.45i 0.244176 + 1.18496i
\(184\) 1324.12 557.595i 0.530518 0.223404i
\(185\) −563.564 −0.223968
\(186\) 742.302 861.656i 0.292625 0.339676i
\(187\) −2353.95 −0.920525
\(188\) 1255.66 4760.62i 0.487120 1.84683i
\(189\) 106.890 + 2596.12i 0.0411380 + 0.999153i
\(190\) −399.158 518.091i −0.152410 0.197822i
\(191\) 3914.42i 1.48292i −0.670998 0.741459i \(-0.734134\pi\)
0.670998 0.741459i \(-0.265866\pi\)
\(192\) 2239.18 + 1436.64i 0.841662 + 0.540004i
\(193\) −3648.18 −1.36063 −0.680316 0.732919i \(-0.738157\pi\)
−0.680316 + 0.732919i \(0.738157\pi\)
\(194\) −2380.91 3090.33i −0.881131 1.14367i
\(195\) 1314.41 270.850i 0.482701 0.0994666i
\(196\) 2701.66 480.182i 0.984570 0.174993i
\(197\) 79.0843 0.0286016 0.0143008 0.999898i \(-0.495448\pi\)
0.0143008 + 0.999898i \(0.495448\pi\)
\(198\) −1787.05 + 3210.58i −0.641414 + 1.15235i
\(199\) 710.675i 0.253158i −0.991957 0.126579i \(-0.959600\pi\)
0.991957 0.126579i \(-0.0403997\pi\)
\(200\) 976.689 + 2319.34i 0.345312 + 0.820011i
\(201\) 3384.57 697.434i 1.18771 0.244742i
\(202\) −203.169 263.705i −0.0707668 0.0918525i
\(203\) 316.449 + 202.167i 0.109411 + 0.0698982i
\(204\) −2030.67 111.125i −0.696939 0.0381386i
\(205\) 1057.85i 0.360408i
\(206\) 2745.29 + 3563.27i 0.928510 + 1.20517i
\(207\) 677.757 + 1574.71i 0.227572 + 0.528744i
\(208\) −3873.40 2196.07i −1.29121 0.732069i
\(209\) −2997.00 −0.991898
\(210\) −967.920 + 290.071i −0.318061 + 0.0953182i
\(211\) 2273.94i 0.741915i 0.928650 + 0.370958i \(0.120971\pi\)
−0.928650 + 0.370958i \(0.879029\pi\)
\(212\) 264.123 1001.38i 0.0855663 0.324410i
\(213\) −658.964 + 135.788i −0.211979 + 0.0436809i
\(214\) 992.800 764.893i 0.317133 0.244332i
\(215\) 1637.65 0.519473
\(216\) −1693.19 + 2685.30i −0.533365 + 0.845885i
\(217\) 771.579 1207.74i 0.241374 0.377819i
\(218\) −2857.70 3709.18i −0.887833 1.15237i
\(219\) −1477.67 + 304.493i −0.455944 + 0.0939530i
\(220\) −1381.68 364.432i −0.423422 0.111682i
\(221\) 3403.72 1.03602
\(222\) −1456.24 + 1690.38i −0.440254 + 0.511041i
\(223\) 3196.79i 0.959968i −0.877277 0.479984i \(-0.840642\pi\)
0.877277 0.479984i \(-0.159358\pi\)
\(224\) 3050.36 + 1390.94i 0.909871 + 0.414892i
\(225\) −2758.28 + 1187.17i −0.817268 + 0.351753i
\(226\) −127.374 165.326i −0.0374901 0.0486607i
\(227\) 3103.70i 0.907487i 0.891132 + 0.453744i \(0.149912\pi\)
−0.891132 + 0.453744i \(0.850088\pi\)
\(228\) −2585.41 141.481i −0.750977 0.0410957i
\(229\) −693.650 −0.200165 −0.100082 0.994979i \(-0.531911\pi\)
−0.100082 + 0.994979i \(0.531911\pi\)
\(230\) −528.130 + 406.892i −0.151408 + 0.116651i
\(231\) −1654.02 + 4324.80i −0.471112 + 1.23182i
\(232\) 178.056 + 422.830i 0.0503878 + 0.119656i
\(233\) 3188.80i 0.896589i 0.893886 + 0.448294i \(0.147968\pi\)
−0.893886 + 0.448294i \(0.852032\pi\)
\(234\) 2584.00 4642.38i 0.721886 1.29693i
\(235\) 2284.65i 0.634187i
\(236\) −3147.82 830.269i −0.868244 0.229008i
\(237\) 137.297 + 666.285i 0.0376302 + 0.182615i
\(238\) −2552.86 + 225.104i −0.695284 + 0.0613081i
\(239\) 1879.03i 0.508554i −0.967131 0.254277i \(-0.918162\pi\)
0.967131 0.254277i \(-0.0818375\pi\)
\(240\) −1174.72 379.608i −0.315950 0.102098i
\(241\) 3281.84i 0.877187i −0.898685 0.438594i \(-0.855477\pi\)
0.898685 0.438594i \(-0.144523\pi\)
\(242\) −2204.84 + 1698.69i −0.585670 + 0.451224i
\(243\) −3220.01 1995.11i −0.850056 0.526692i
\(244\) −1176.04 + 4458.75i −0.308558 + 1.16985i
\(245\) −1155.38 + 535.185i −0.301284 + 0.139558i
\(246\) 3172.98 + 2733.47i 0.822365 + 0.708454i
\(247\) 4333.54 1.11634
\(248\) 1613.75 679.560i 0.413198 0.174000i
\(249\) 3884.60 800.472i 0.988662 0.203726i
\(250\) −1513.75 1964.78i −0.382951 0.497055i
\(251\) 1680.42i 0.422578i −0.977424 0.211289i \(-0.932234\pi\)
0.977424 0.211289i \(-0.0677661\pi\)
\(252\) −1631.03 + 3652.77i −0.407720 + 0.913107i
\(253\) 3055.07i 0.759173i
\(254\) 4391.53 3383.41i 1.08484 0.835803i
\(255\) 924.295 190.463i 0.226987 0.0467735i
\(256\) 2103.26 + 3514.75i 0.513492 + 0.858094i
\(257\) 6706.25 1.62772 0.813861 0.581059i \(-0.197362\pi\)
0.813861 + 0.581059i \(0.197362\pi\)
\(258\) 4231.65 4912.05i 1.02113 1.18531i
\(259\) −1513.67 + 2369.33i −0.363147 + 0.568428i
\(260\) 1997.85 + 526.954i 0.476545 + 0.125693i
\(261\) −502.851 + 216.428i −0.119256 + 0.0513277i
\(262\) −2036.02 2642.67i −0.480097 0.623147i
\(263\) 4758.38i 1.11564i −0.829961 0.557822i \(-0.811637\pi\)
0.829961 0.557822i \(-0.188363\pi\)
\(264\) −4663.33 + 3202.60i −1.08715 + 0.746615i
\(265\) 480.566i 0.111400i
\(266\) −3250.25 + 286.597i −0.749194 + 0.0660616i
\(267\) 282.715 + 1371.99i 0.0648011 + 0.314473i
\(268\) 5144.43 + 1356.90i 1.17256 + 0.309275i
\(269\) 2644.09i 0.599306i 0.954048 + 0.299653i \(0.0968708\pi\)
−0.954048 + 0.299653i \(0.903129\pi\)
\(270\) 441.921 1405.25i 0.0996091 0.316743i
\(271\) 7621.80i 1.70846i 0.519899 + 0.854228i \(0.325970\pi\)
−0.519899 + 0.854228i \(0.674030\pi\)
\(272\) −2723.78 1544.29i −0.607183 0.344250i
\(273\) 2391.65 6253.49i 0.530218 1.38637i
\(274\) −4651.87 6037.95i −1.02566 1.33126i
\(275\) −5351.30 −1.17344
\(276\) −144.223 + 2635.50i −0.0314536 + 0.574778i
\(277\) 3715.63i 0.805960i −0.915209 0.402980i \(-0.867974\pi\)
0.915209 0.402980i \(-0.132026\pi\)
\(278\) −5785.10 + 4457.07i −1.24808 + 0.961573i
\(279\) 826.006 + 1919.15i 0.177246 + 0.411816i
\(280\) −1533.28 263.099i −0.327254 0.0561542i
\(281\) 7823.45i 1.66088i −0.557106 0.830441i \(-0.688088\pi\)
0.557106 0.830441i \(-0.311912\pi\)
\(282\) 6852.70 + 5903.49i 1.44707 + 1.24662i
\(283\) −4118.81 −0.865151 −0.432575 0.901598i \(-0.642395\pi\)
−0.432575 + 0.901598i \(0.642395\pi\)
\(284\) −1001.60 264.183i −0.209275 0.0551984i
\(285\) 1176.79 242.493i 0.244586 0.0504001i
\(286\) 7500.25 5778.49i 1.55070 1.19472i
\(287\) 4447.41 + 2841.28i 0.914711 + 0.584374i
\(288\) −4174.08 + 2542.63i −0.854027 + 0.520228i
\(289\) −2519.49 −0.512821
\(290\) −129.933 168.647i −0.0263100 0.0341493i
\(291\) 7019.37 1446.43i 1.41403 0.291379i
\(292\) −2246.01 592.407i −0.450129 0.118726i
\(293\) 6032.10i 1.20273i −0.798976 0.601363i \(-0.794624\pi\)
0.798976 0.601363i \(-0.205376\pi\)
\(294\) −1380.22 + 4848.42i −0.273796 + 0.961788i
\(295\) 1510.66 0.298148
\(296\) −3165.83 + 1333.15i −0.621656 + 0.261783i
\(297\) −3865.14 5534.24i −0.755146 1.08124i
\(298\) −7286.91 + 5614.13i −1.41651 + 1.09133i
\(299\) 4417.51i 0.854420i
\(300\) −4616.38 252.622i −0.888422 0.0486172i
\(301\) 4398.55 6884.98i 0.842286 1.31842i
\(302\) −167.951 + 129.396i −0.0320016 + 0.0246553i
\(303\) 598.979 123.427i 0.113566 0.0234017i
\(304\) −3467.86 1966.15i −0.654261 0.370942i
\(305\) 2139.78i 0.401716i
\(306\) 1817.08 3264.53i 0.339462 0.609872i
\(307\) 2031.61 0.377688 0.188844 0.982007i \(-0.439526\pi\)
0.188844 + 0.982007i \(0.439526\pi\)
\(308\) −5243.18 + 4830.01i −0.969994 + 0.893557i
\(309\) −8093.61 + 1667.79i −1.49006 + 0.307046i
\(310\) −643.650 + 495.894i −0.117925 + 0.0908544i
\(311\) −6093.07 −1.11095 −0.555477 0.831532i \(-0.687464\pi\)
−0.555477 + 0.831532i \(0.687464\pi\)
\(312\) 6742.99 4630.83i 1.22355 0.840286i
\(313\) 2761.91i 0.498762i −0.968405 0.249381i \(-0.919773\pi\)
0.968405 0.249381i \(-0.0802271\pi\)
\(314\) 1582.08 1218.89i 0.284337 0.219064i
\(315\) 299.535 1831.99i 0.0535775 0.327686i
\(316\) −267.118 + 1012.73i −0.0475524 + 0.180286i
\(317\) 3870.63 0.685792 0.342896 0.939373i \(-0.388592\pi\)
0.342896 + 0.939373i \(0.388592\pi\)
\(318\) 1441.44 + 1241.77i 0.254188 + 0.218979i
\(319\) −975.573 −0.171228
\(320\) −1359.67 1328.12i −0.237525 0.232013i
\(321\) 464.681 + 2255.05i 0.0807974 + 0.392101i
\(322\) 292.151 + 3313.23i 0.0505618 + 0.573413i
\(323\) 3047.36 0.524953
\(324\) −3073.07 4956.66i −0.526932 0.849908i
\(325\) 7737.77 1.32066
\(326\) 2624.52 + 3406.52i 0.445885 + 0.578741i
\(327\) 8425.02 1736.08i 1.42478 0.293595i
\(328\) 2502.42 + 5942.50i 0.421260 + 1.00036i
\(329\) 9605.09 + 6136.33i 1.60956 + 1.02829i
\(330\) 1713.37 1988.86i 0.285813 0.331768i
\(331\) 4264.16i 0.708095i −0.935227 0.354048i \(-0.884805\pi\)
0.935227 0.354048i \(-0.115195\pi\)
\(332\) 5904.47 + 1557.36i 0.976053 + 0.257444i
\(333\) −1620.45 3764.97i −0.266667 0.619577i
\(334\) 4390.22 3382.40i 0.719229 0.554123i
\(335\) −2468.84 −0.402648
\(336\) −4751.13 + 3919.17i −0.771414 + 0.636333i
\(337\) −3256.10 −0.526323 −0.263162 0.964752i \(-0.584765\pi\)
−0.263162 + 0.964752i \(0.584765\pi\)
\(338\) −5922.53 + 4562.95i −0.953087 + 0.734296i
\(339\) 375.521 77.3809i 0.0601637 0.0123975i
\(340\) 1404.90 + 370.556i 0.224092 + 0.0591065i
\(341\) 3723.32i 0.591288i
\(342\) 2313.46 4156.33i 0.365782 0.657159i
\(343\) −853.212 + 6294.89i −0.134312 + 0.990939i
\(344\) 9199.52 3873.97i 1.44187 0.607182i
\(345\) −247.192 1199.59i −0.0385749 0.187200i
\(346\) 6633.09 + 8609.49i 1.03063 + 1.33771i
\(347\) −6076.58 −0.940081 −0.470041 0.882645i \(-0.655761\pi\)
−0.470041 + 0.882645i \(0.655761\pi\)
\(348\) −841.593 46.0545i −0.129638 0.00709420i
\(349\) −6858.46 −1.05193 −0.525967 0.850505i \(-0.676296\pi\)
−0.525967 + 0.850505i \(0.676296\pi\)
\(350\) −5803.49 + 511.734i −0.886313 + 0.0781524i
\(351\) 5588.85 + 8002.30i 0.849887 + 1.21690i
\(352\) −8623.70 + 1221.26i −1.30581 + 0.184924i
\(353\) −6340.22 −0.955965 −0.477983 0.878369i \(-0.658632\pi\)
−0.477983 + 0.878369i \(0.658632\pi\)
\(354\) 3903.51 4531.15i 0.586071 0.680304i
\(355\) 480.674 0.0718635
\(356\) −550.038 + 2085.37i −0.0818875 + 0.310462i
\(357\) 1681.82 4397.47i 0.249331 0.651930i
\(358\) 6162.60 4747.91i 0.909786 0.700935i
\(359\) 79.4813i 0.0116849i 0.999983 + 0.00584243i \(0.00185971\pi\)
−0.999983 + 0.00584243i \(0.998140\pi\)
\(360\) 1571.96 1634.84i 0.230137 0.239343i
\(361\) −2979.17 −0.434345
\(362\) −2911.98 + 2243.50i −0.422791 + 0.325735i
\(363\) −1031.97 5008.06i −0.149214 0.724119i
\(364\) 7581.44 6984.01i 1.09169 1.00566i
\(365\) 1077.87 0.154571
\(366\) −6418.17 5529.15i −0.916621 0.789654i
\(367\) 11025.8i 1.56824i 0.620610 + 0.784120i \(0.286885\pi\)
−0.620610 + 0.784120i \(0.713115\pi\)
\(368\) −2004.25 + 3535.05i −0.283909 + 0.500754i
\(369\) −7067.13 + 3041.70i −0.997019 + 0.429118i
\(370\) 1262.70 972.837i 0.177418 0.136690i
\(371\) 2020.39 + 1290.75i 0.282732 + 0.180626i
\(372\) −175.769 + 3211.98i −0.0244979 + 0.447670i
\(373\) 5947.81i 0.825646i −0.910811 0.412823i \(-0.864543\pi\)
0.910811 0.412823i \(-0.135457\pi\)
\(374\) 5274.20 4063.45i 0.729204 0.561808i
\(375\) 4462.80 919.617i 0.614555 0.126637i
\(376\) 5404.50 + 12834.1i 0.741266 + 1.76028i
\(377\) 1410.64 0.192710
\(378\) −4720.98 5632.27i −0.642384 0.766383i
\(379\) 4855.67i 0.658098i 0.944313 + 0.329049i \(0.106728\pi\)
−0.944313 + 0.329049i \(0.893272\pi\)
\(380\) 1788.68 + 471.783i 0.241467 + 0.0636893i
\(381\) 2055.46 + 9974.91i 0.276389 + 1.34129i
\(382\) 6757.16 + 8770.53i 0.905043 + 1.17471i
\(383\) 4314.03 0.575553 0.287777 0.957698i \(-0.407084\pi\)
0.287777 + 0.957698i \(0.407084\pi\)
\(384\) −7497.01 + 646.434i −0.996303 + 0.0859067i
\(385\) 1780.95 2787.69i 0.235755 0.369023i
\(386\) 8174.00 6297.58i 1.07784 0.830410i
\(387\) 4708.82 + 10940.5i 0.618509 + 1.43705i
\(388\) 10669.2 + 2814.11i 1.39600 + 0.368208i
\(389\) 1492.00 0.194466 0.0972330 0.995262i \(-0.469001\pi\)
0.0972330 + 0.995262i \(0.469001\pi\)
\(390\) −2477.47 + 2875.82i −0.321671 + 0.373392i
\(391\) 3106.41i 0.401785i
\(392\) −5224.35 + 5739.55i −0.673137 + 0.739518i
\(393\) 6002.55 1236.90i 0.770454 0.158762i
\(394\) −177.194 + 136.517i −0.0226571 + 0.0174559i
\(395\) 486.015i 0.0619090i
\(396\) −1538.18 10278.4i −0.195193 1.30431i
\(397\) 2577.45 0.325840 0.162920 0.986639i \(-0.447909\pi\)
0.162920 + 0.986639i \(0.447909\pi\)
\(398\) 1226.78 + 1592.32i 0.154505 + 0.200542i
\(399\) 2141.25 5598.76i 0.268663 0.702478i
\(400\) −6192.04 3510.66i −0.774005 0.438833i
\(401\) 3185.37i 0.396682i 0.980133 + 0.198341i \(0.0635554\pi\)
−0.980133 + 0.198341i \(0.936445\pi\)
\(402\) −6379.44 + 7405.18i −0.791486 + 0.918748i
\(403\) 5383.78i 0.665471i
\(404\) 910.427 + 240.134i 0.112117 + 0.0295721i
\(405\) 1965.46 + 1860.32i 0.241147 + 0.228247i
\(406\) −1058.01 + 93.2922i −0.129330 + 0.0114040i
\(407\) 7304.36i 0.889592i
\(408\) 4741.69 3256.42i 0.575364 0.395139i
\(409\) 9157.04i 1.10706i −0.832830 0.553529i \(-0.813281\pi\)
0.832830 0.553529i \(-0.186719\pi\)
\(410\) −1826.09 2370.19i −0.219961 0.285501i
\(411\) 13714.6 2826.06i 1.64596 0.339172i
\(412\) −12302.0 3244.78i −1.47106 0.388007i
\(413\) 4057.47 6351.09i 0.483426 0.756699i
\(414\) −4236.87 2358.29i −0.502972 0.279960i
\(415\) −2833.58 −0.335169
\(416\) 12469.5 1765.89i 1.46964 0.208125i
\(417\) −2707.72 13140.3i −0.317980 1.54312i
\(418\) 6714.98 5173.49i 0.785743 0.605368i
\(419\) 16278.2i 1.89796i 0.315339 + 0.948979i \(0.397882\pi\)
−0.315339 + 0.948979i \(0.602118\pi\)
\(420\) 1667.96 2320.77i 0.193782 0.269624i
\(421\) 14.4956i 0.00167808i −1.00000 0.000839038i \(-0.999733\pi\)
1.00000 0.000839038i \(-0.000267074\pi\)
\(422\) −3925.32 5094.91i −0.452800 0.587716i
\(423\) −15262.9 + 6569.18i −1.75439 + 0.755093i
\(424\) 1136.81 + 2699.59i 0.130209 + 0.309207i
\(425\) 5441.22 0.621031
\(426\) 1242.05 1441.76i 0.141262 0.163975i
\(427\) −8996.03 5747.22i −1.01955 0.651353i
\(428\) −904.062 + 3427.59i −0.102102 + 0.387100i
\(429\) 3510.50 + 17036.1i 0.395078 + 1.91727i
\(430\) −3669.26 + 2826.95i −0.411506 + 0.317041i
\(431\) 6800.15i 0.759981i 0.924990 + 0.379991i \(0.124073\pi\)
−0.924990 + 0.379991i \(0.875927\pi\)
\(432\) −841.718 8939.41i −0.0937435 0.995596i
\(433\) 11155.5i 1.23811i 0.785349 + 0.619053i \(0.212483\pi\)
−0.785349 + 0.619053i \(0.787517\pi\)
\(434\) 356.054 + 4037.94i 0.0393805 + 0.446607i
\(435\) 383.065 78.9355i 0.0422220 0.00870038i
\(436\) 12805.7 + 3377.64i 1.40661 + 0.371009i
\(437\) 3955.01i 0.432938i
\(438\) 2785.20 3233.02i 0.303840 0.352694i
\(439\) 12426.7i 1.35101i −0.737357 0.675504i \(-0.763926\pi\)
0.737357 0.675504i \(-0.236074\pi\)
\(440\) 3724.84 1568.55i 0.403579 0.169950i
\(441\) −6897.51 6179.84i −0.744792 0.667297i
\(442\) −7626.28 + 5875.59i −0.820691 + 0.632293i
\(443\) −10870.0 −1.16580 −0.582900 0.812544i \(-0.698082\pi\)
−0.582900 + 0.812544i \(0.698082\pi\)
\(444\) 344.822 6301.22i 0.0368570 0.673519i
\(445\) 1000.78i 0.106610i
\(446\) 5518.38 + 7162.63i 0.585880 + 0.760449i
\(447\) −3410.64 16551.5i −0.360890 1.75136i
\(448\) −9235.62 + 2149.12i −0.973978 + 0.226644i
\(449\) 11786.4i 1.23883i 0.785063 + 0.619416i \(0.212631\pi\)
−0.785063 + 0.619416i \(0.787369\pi\)
\(450\) 4130.80 7421.34i 0.432729 0.777434i
\(451\) −13710.8 −1.43153
\(452\) 570.779 + 150.549i 0.0593964 + 0.0156664i
\(453\) −78.6095 381.483i −0.00815319 0.0395665i
\(454\) −5357.67 6954.05i −0.553850 0.718876i
\(455\) −2575.18 + 4030.90i −0.265333 + 0.415321i
\(456\) 6037.01 4145.99i 0.619976 0.425776i
\(457\) −1151.19 −0.117834 −0.0589171 0.998263i \(-0.518765\pi\)
−0.0589171 + 0.998263i \(0.518765\pi\)
\(458\) 1554.17 1197.40i 0.158563 0.122163i
\(459\) 3930.09 + 5627.24i 0.399654 + 0.572238i
\(460\) 480.924 1823.34i 0.0487461 0.184812i
\(461\) 1149.15i 0.116098i 0.998314 + 0.0580491i \(0.0184880\pi\)
−0.998314 + 0.0580491i \(0.981512\pi\)
\(462\) −3759.62 12545.2i −0.378600 1.26333i
\(463\) 511.258 0.0513179 0.0256590 0.999671i \(-0.491832\pi\)
0.0256590 + 0.999671i \(0.491832\pi\)
\(464\) −1128.85 640.014i −0.112943 0.0640343i
\(465\) −301.261 1461.99i −0.0300444 0.145802i
\(466\) −5504.58 7144.73i −0.547199 0.710243i
\(467\) 7738.29i 0.766779i 0.923587 + 0.383389i \(0.125243\pi\)
−0.923587 + 0.383389i \(0.874757\pi\)
\(468\) 2224.15 + 14862.1i 0.219682 + 1.46795i
\(469\) −6631.05 + 10379.5i −0.652864 + 1.02192i
\(470\) −3943.81 5118.91i −0.387052 0.502378i
\(471\) 740.492 + 3593.53i 0.0724418 + 0.351552i
\(472\) 8486.14 3573.57i 0.827556 0.348489i
\(473\) 21225.6i 2.06333i
\(474\) −1457.78 1255.85i −0.141262 0.121695i
\(475\) 6927.64 0.669183
\(476\) 5331.29 4911.18i 0.513360 0.472906i
\(477\) −3210.49 + 1381.80i −0.308173 + 0.132638i
\(478\) 3243.63 + 4210.10i 0.310377 + 0.402857i
\(479\) −15169.4 −1.44699 −0.723493 0.690332i \(-0.757465\pi\)
−0.723493 + 0.690332i \(0.757465\pi\)
\(480\) 3287.33 1177.29i 0.312595 0.111950i
\(481\) 10561.8i 1.00120i
\(482\) 5665.20 + 7353.20i 0.535358 + 0.694874i
\(483\) −5707.25 2182.74i −0.537658 0.205628i
\(484\) 2007.76 7612.08i 0.188558 0.714884i
\(485\) −5120.20 −0.479374
\(486\) 10658.7 1088.27i 0.994828 0.101574i
\(487\) −7078.96 −0.658683 −0.329341 0.944211i \(-0.606827\pi\)
−0.329341 + 0.944211i \(0.606827\pi\)
\(488\) −5061.80 12020.2i −0.469543 1.11502i
\(489\) −7737.57 + 1594.42i −0.715552 + 0.147449i
\(490\) 1664.86 3193.56i 0.153491 0.294430i
\(491\) −8864.05 −0.814723 −0.407361 0.913267i \(-0.633551\pi\)
−0.407361 + 0.913267i \(0.633551\pi\)
\(492\) −11827.9 647.256i −1.08382 0.0593101i
\(493\) 991.967 0.0906206
\(494\) −9709.60 + 7480.67i −0.884323 + 0.681318i
\(495\) 1906.58 + 4429.77i 0.173120 + 0.402229i
\(496\) −2442.64 + 4308.29i −0.221125 + 0.390016i
\(497\) 1291.04 2020.85i 0.116521 0.182389i
\(498\) −7321.93 + 8499.21i −0.658843 + 0.764777i
\(499\) 9294.42i 0.833818i −0.908948 0.416909i \(-0.863113\pi\)
0.908948 0.416909i \(-0.136887\pi\)
\(500\) 6783.31 + 1789.17i 0.606717 + 0.160028i
\(501\) 2054.85 + 9971.95i 0.183241 + 0.889249i
\(502\) 2900.78 + 3765.09i 0.257904 + 0.334749i
\(503\) 3930.02 0.348372 0.174186 0.984713i \(-0.444271\pi\)
0.174186 + 0.984713i \(0.444271\pi\)
\(504\) −2651.06 10999.8i −0.234301 0.972164i
\(505\) −436.919 −0.0385003
\(506\) −5273.74 6845.10i −0.463333 0.601387i
\(507\) −2772.05 13452.4i −0.242822 1.17839i
\(508\) −3999.00 + 15161.5i −0.349266 + 1.32418i
\(509\) 4139.73i 0.360491i −0.983622 0.180246i \(-0.942311\pi\)
0.983622 0.180246i \(-0.0576893\pi\)
\(510\) −1742.17 + 2022.29i −0.151264 + 0.175585i
\(511\) 2895.05 4531.57i 0.250625 0.392299i
\(512\) −10779.8 4244.35i −0.930474 0.366358i
\(513\) 5003.70 + 7164.47i 0.430641 + 0.616606i
\(514\) −15025.8 + 11576.5i −1.28942 + 0.993419i
\(515\) 5903.80 0.505150
\(516\) −1002.01 + 18310.6i −0.0854864 + 1.56217i
\(517\) −29611.4 −2.51897
\(518\) −698.502 7921.59i −0.0592479 0.671920i
\(519\) −19555.6 + 4029.68i −1.65394 + 0.340815i
\(520\) −5385.97 + 2268.07i −0.454212 + 0.191272i
\(521\) −15730.9 −1.32281 −0.661406 0.750028i \(-0.730040\pi\)
−0.661406 + 0.750028i \(0.730040\pi\)
\(522\) 753.070 1352.95i 0.0631436 0.113443i
\(523\) 12687.5 1.06078 0.530388 0.847755i \(-0.322046\pi\)
0.530388 + 0.847755i \(0.322046\pi\)
\(524\) 9123.67 + 2406.46i 0.760628 + 0.200623i
\(525\) 3823.32 9996.88i 0.317835 0.831047i
\(526\) 8214.03 + 10661.5i 0.680891 + 0.883769i
\(527\) 3785.89i 0.312933i
\(528\) 4920.11 15225.6i 0.405531 1.25494i
\(529\) 8135.36 0.668641
\(530\) −829.565 1076.74i −0.0679887 0.0882465i
\(531\) 4343.68 + 10092.2i 0.354990 + 0.824788i
\(532\) 6787.68 6252.80i 0.553164 0.509574i
\(533\) 19825.3 1.61113
\(534\) −3001.80 2586.00i −0.243260 0.209564i
\(535\) 1644.92i 0.132927i
\(536\) −13868.8 + 5840.22i −1.11761 + 0.470633i
\(537\) 2884.41 + 13997.7i 0.231790 + 1.12485i
\(538\) −4564.30 5924.27i −0.365764 0.474746i
\(539\) −6936.54 14974.9i −0.554319 1.19669i
\(540\) 1435.62 + 3911.41i 0.114406 + 0.311704i
\(541\) 16674.9i 1.32516i −0.748991 0.662580i \(-0.769462\pi\)
0.748991 0.662580i \(-0.230538\pi\)
\(542\) −13156.9 17077.2i −1.04269 1.35337i
\(543\) −1362.95 6614.26i −0.107716 0.522735i
\(544\) 8768.61 1241.78i 0.691086 0.0978694i
\(545\) −6145.54 −0.483020
\(546\) 5436.26 + 18139.9i 0.426100 + 1.42183i
\(547\) 3533.79i 0.276223i 0.990417 + 0.138111i \(0.0441032\pi\)
−0.990417 + 0.138111i \(0.955897\pi\)
\(548\) 20845.7 + 5498.26i 1.62497 + 0.428602i
\(549\) 14295.1 6152.63i 1.11129 0.478302i
\(550\) 11990.0 9237.54i 0.929552 0.716164i
\(551\) 1262.95 0.0976469
\(552\) −4226.33 6153.99i −0.325878 0.474513i
\(553\) −2043.30 1305.39i −0.157125 0.100381i
\(554\) 6414.02 + 8325.14i 0.491887 + 0.638450i
\(555\) 591.009 + 2868.10i 0.0452017 + 0.219359i
\(556\) 5268.01 19972.8i 0.401823 1.52344i
\(557\) −8507.84 −0.647197 −0.323599 0.946194i \(-0.604893\pi\)
−0.323599 + 0.946194i \(0.604893\pi\)
\(558\) −5163.61 2874.13i −0.391744 0.218049i
\(559\) 30691.4i 2.32219i
\(560\) 3889.59 2057.30i 0.293509 0.155244i
\(561\) 2468.59 + 11979.8i 0.185783 + 0.901582i
\(562\) 13505.0 + 17529.0i 1.01366 + 1.31569i
\(563\) 12127.1i 0.907808i 0.891051 + 0.453904i \(0.149969\pi\)
−0.891051 + 0.453904i \(0.850031\pi\)
\(564\) −25544.7 1397.88i −1.90714 0.104364i
\(565\) −273.920 −0.0203963
\(566\) 9228.47 7109.98i 0.685338 0.528012i
\(567\) 13100.2 3266.54i 0.970290 0.241943i
\(568\) 2700.20 1137.07i 0.199468 0.0839972i
\(569\) 16103.5i 1.18646i −0.805034 0.593228i \(-0.797853\pi\)
0.805034 0.593228i \(-0.202147\pi\)
\(570\) −2218.08 + 2574.73i −0.162992 + 0.189199i
\(571\) 16824.4i 1.23307i −0.787329 0.616533i \(-0.788537\pi\)
0.787329 0.616533i \(-0.211463\pi\)
\(572\) −6829.86 + 25894.2i −0.499250 + 1.89282i
\(573\) −19921.4 + 4105.05i −1.45240 + 0.299286i
\(574\) −14869.4 + 1311.14i −1.08125 + 0.0953413i
\(575\) 7061.87i 0.512175i
\(576\) 4963.17 12902.3i 0.359026 0.933328i
\(577\) 12917.3i 0.931986i −0.884788 0.465993i \(-0.845697\pi\)
0.884788 0.465993i \(-0.154303\pi\)
\(578\) 5645.09 4349.20i 0.406237 0.312981i
\(579\) 3825.85 + 18566.4i 0.274606 + 1.33263i
\(580\) 582.246 + 153.573i 0.0416835 + 0.0109944i
\(581\) −7610.71 + 11912.9i −0.543452 + 0.850657i
\(582\) −13230.5 + 15357.8i −0.942307 + 1.09382i
\(583\) −6228.63 −0.442476
\(584\) 6054.96 2549.78i 0.429034 0.180669i
\(585\) −2756.84 6405.27i −0.194840 0.452693i
\(586\) 10412.8 + 13515.3i 0.734039 + 0.952753i
\(587\) 15149.6i 1.06523i −0.846357 0.532617i \(-0.821209\pi\)
0.846357 0.532617i \(-0.178791\pi\)
\(588\) −5276.98 13245.8i −0.370101 0.928992i
\(589\) 4820.10i 0.337197i
\(590\) −3384.73 + 2607.73i −0.236182 + 0.181964i
\(591\) −82.9357 402.478i −0.00577245 0.0280131i
\(592\) 4791.95 8451.95i 0.332682 0.586779i
\(593\) 5091.10 0.352558 0.176279 0.984340i \(-0.443594\pi\)
0.176279 + 0.984340i \(0.443594\pi\)
\(594\) 18213.5 + 5727.75i 1.25809 + 0.395644i
\(595\) −1810.88 + 2834.54i −0.124771 + 0.195302i
\(596\) 6635.59 25157.7i 0.456048 1.72902i
\(597\) −3616.78 + 745.285i −0.247948 + 0.0510929i
\(598\) 7625.62 + 9897.75i 0.521463 + 0.676838i
\(599\) 18901.6i 1.28931i 0.764472 + 0.644657i \(0.223000\pi\)
−0.764472 + 0.644657i \(0.777000\pi\)
\(600\) 10779.4 7402.88i 0.733445 0.503702i
\(601\) 28238.3i 1.91658i 0.285803 + 0.958288i \(0.407740\pi\)
−0.285803 + 0.958288i \(0.592260\pi\)
\(602\) 2029.76 + 23019.2i 0.137420 + 1.55846i
\(603\) −7098.80 16493.5i −0.479412 1.11387i
\(604\) 152.939 579.841i 0.0103030 0.0390619i
\(605\) 3653.08i 0.245486i
\(606\) −1128.99 + 1310.52i −0.0756801 + 0.0878485i
\(607\) 11435.7i 0.764683i 0.924021 + 0.382342i \(0.124882\pi\)
−0.924021 + 0.382342i \(0.875118\pi\)
\(608\) 11164.0 1581.01i 0.744670 0.105458i
\(609\) 697.013 1822.49i 0.0463783 0.121266i
\(610\) 3693.74 + 4794.32i 0.245172 + 0.318224i
\(611\) 42816.9 2.83500
\(612\) 1564.03 + 10451.1i 0.103304 + 0.690295i
\(613\) 577.455i 0.0380476i 0.999819 + 0.0190238i \(0.00605583\pi\)
−0.999819 + 0.0190238i \(0.993944\pi\)
\(614\) −4551.97 + 3507.02i −0.299190 + 0.230508i
\(615\) 5383.65 1109.37i 0.352991 0.0727383i
\(616\) 3410.03 19872.9i 0.223042 1.29984i
\(617\) 22282.8i 1.45393i −0.686677 0.726963i \(-0.740931\pi\)
0.686677 0.726963i \(-0.259069\pi\)
\(618\) 15255.3 17708.2i 0.992975 1.15263i
\(619\) 16401.1 1.06497 0.532484 0.846440i \(-0.321259\pi\)
0.532484 + 0.846440i \(0.321259\pi\)
\(620\) 586.119 2222.17i 0.0379663 0.143943i
\(621\) 7303.30 5100.66i 0.471934 0.329601i
\(622\) 13652.0 10518.0i 0.880054 0.678028i
\(623\) −4207.48 2688.00i −0.270576 0.172861i
\(624\) −7114.28 + 22015.6i −0.456409 + 1.41239i
\(625\) 10647.0 0.681409
\(626\) 4767.68 + 6188.26i 0.304401 + 0.395100i
\(627\) 3142.95 + 15252.4i 0.200187 + 0.971487i
\(628\) −1440.67 + 5462.04i −0.0915428 + 0.347068i
\(629\) 7427.10i 0.470808i
\(630\) 2491.30 + 4621.77i 0.157549 + 0.292279i
\(631\) 6542.50 0.412762 0.206381 0.978472i \(-0.433831\pi\)
0.206381 + 0.978472i \(0.433831\pi\)
\(632\) −1149.70 2730.20i −0.0723619 0.171838i
\(633\) 11572.6 2384.68i 0.726648 0.149735i
\(634\) −8672.40 + 6681.57i −0.543257 + 0.418547i
\(635\) 7276.09i 0.454713i
\(636\) −5373.22 294.039i −0.335003 0.0183324i
\(637\) 10030.0 + 21653.1i 0.623865 + 1.34683i
\(638\) 2185.84 1684.06i 0.135640 0.104502i
\(639\) 1382.11 + 3211.21i 0.0855641 + 0.198801i
\(640\) 5339.08 + 628.651i 0.329759 + 0.0388275i
\(641\) 634.500i 0.0390971i −0.999809 0.0195486i \(-0.993777\pi\)
0.999809 0.0195486i \(-0.00622290\pi\)
\(642\) −4933.86 4250.44i −0.303309 0.261295i
\(643\) 4543.63 0.278668 0.139334 0.990245i \(-0.455504\pi\)
0.139334 + 0.990245i \(0.455504\pi\)
\(644\) −6373.96 6919.20i −0.390014 0.423377i
\(645\) −1717.40 8334.36i −0.104841 0.508783i
\(646\) −6827.82 + 5260.43i −0.415847 + 0.320385i
\(647\) 18802.6 1.14252 0.571258 0.820771i \(-0.306456\pi\)
0.571258 + 0.820771i \(0.306456\pi\)
\(648\) 15441.7 + 5800.94i 0.936124 + 0.351671i
\(649\) 19579.6i 1.18423i
\(650\) −17337.0 + 13357.1i −1.04617 + 0.806014i
\(651\) −6955.62 2660.18i −0.418759 0.160155i
\(652\) −11760.8 3102.04i −0.706426 0.186327i
\(653\) −20232.4 −1.21249 −0.606243 0.795279i \(-0.707324\pi\)
−0.606243 + 0.795279i \(0.707324\pi\)
\(654\) −15880.0 + 18433.3i −0.949474 + 1.10214i
\(655\) −4378.50 −0.261194
\(656\) −15864.9 8994.84i −0.944241 0.535350i
\(657\) 3099.26 + 7200.87i 0.184039 + 0.427599i
\(658\) −32113.6 + 2831.68i −1.90261 + 0.167766i
\(659\) 13420.3 0.793295 0.396648 0.917971i \(-0.370173\pi\)
0.396648 + 0.917971i \(0.370173\pi\)
\(660\) −405.708 + 7413.85i −0.0239275 + 0.437248i
\(661\) 8321.89 0.489689 0.244844 0.969562i \(-0.421263\pi\)
0.244844 + 0.969562i \(0.421263\pi\)
\(662\) 7360.90 + 9554.15i 0.432159 + 0.560925i
\(663\) −3569.49 17322.3i −0.209091 1.01470i
\(664\) −15917.7 + 6703.05i −0.930312 + 0.391760i
\(665\) −2305.57 + 3608.87i −0.134445 + 0.210445i
\(666\) 10129.9 + 5638.42i 0.589378 + 0.328055i
\(667\) 1287.42i 0.0747364i
\(668\) −3997.82 + 15157.0i −0.231557 + 0.877908i
\(669\) −16269.2 + 3352.47i −0.940214 + 0.193743i
\(670\) 5531.61 4261.77i 0.318962 0.245741i
\(671\) 27733.7 1.59560
\(672\) 3879.87 16982.7i 0.222722 0.974882i
\(673\) 2322.47 0.133023 0.0665117 0.997786i \(-0.478813\pi\)
0.0665117 + 0.997786i \(0.478813\pi\)
\(674\) 7295.51 5620.75i 0.416933 0.321221i
\(675\) 8934.37 + 12792.5i 0.509458 + 0.729459i
\(676\) 5393.16 20447.2i 0.306848 1.16336i
\(677\) 1313.39i 0.0745606i −0.999305 0.0372803i \(-0.988131\pi\)
0.999305 0.0372803i \(-0.0118694\pi\)
\(678\) −707.804 + 821.611i −0.0400930 + 0.0465395i
\(679\) −13752.3 + 21526.3i −0.777270 + 1.21665i
\(680\) −3787.43 + 1594.91i −0.213590 + 0.0899441i
\(681\) 15795.4 3254.85i 0.888813 0.183151i
\(682\) −6427.29 8342.36i −0.360870 0.468395i
\(683\) −20367.6 −1.14106 −0.570532 0.821276i \(-0.693263\pi\)
−0.570532 + 0.821276i \(0.693263\pi\)
\(684\) 1991.29 + 13306.1i 0.111314 + 0.743817i
\(685\) −10004.0 −0.558002
\(686\) −8954.71 15577.0i −0.498385 0.866956i
\(687\) 727.431 + 3530.14i 0.0403977 + 0.196046i
\(688\) −13924.8 + 24560.3i −0.771625 + 1.36098i
\(689\) 9006.35 0.497989
\(690\) 2624.62 + 2261.06i 0.144808 + 0.124750i
\(691\) 19327.1 1.06402 0.532010 0.846738i \(-0.321437\pi\)
0.532010 + 0.846738i \(0.321437\pi\)
\(692\) −29723.8 7839.95i −1.63285 0.430680i
\(693\) 23744.5 + 3882.28i 1.30155 + 0.212808i
\(694\) 13615.0 10489.5i 0.744696 0.573743i
\(695\) 9585.03i 0.523138i
\(696\) 1965.15 1349.59i 0.107024 0.0735001i
\(697\) 13941.2 0.757621
\(698\) 15366.9 11839.2i 0.833301 0.642008i
\(699\) 16228.5 3344.09i 0.878139 0.180952i
\(700\) 12119.7 11164.7i 0.654405 0.602837i
\(701\) −7068.43 −0.380843 −0.190422 0.981702i \(-0.560985\pi\)
−0.190422 + 0.981702i \(0.560985\pi\)
\(702\) −26336.0 8282.10i −1.41594 0.445282i
\(703\) 9456.02i 0.507312i
\(704\) 17213.8 17622.7i 0.921549 0.943441i
\(705\) 11627.1 2395.91i 0.621137 0.127993i
\(706\) 14205.7 10944.6i 0.757278 0.583437i
\(707\) −1173.52 + 1836.89i −0.0624253 + 0.0977134i
\(708\) −924.309 + 16890.7i −0.0490645 + 0.896597i
\(709\) 5102.93i 0.270303i −0.990825 0.135151i \(-0.956848\pi\)
0.990825 0.135151i \(-0.0431520\pi\)
\(710\) −1076.98 + 829.751i −0.0569274 + 0.0438592i
\(711\) 3246.89 1397.47i 0.171263 0.0737118i
\(712\) −2367.42 5621.91i −0.124611 0.295913i
\(713\) −4913.50 −0.258082
\(714\) 3822.79 + 12756.0i 0.200370 + 0.668603i
\(715\) 12426.8i 0.649979i
\(716\) −5611.77 + 21276.0i −0.292907 + 1.11051i
\(717\) −9562.82 + 1970.54i −0.498089 + 0.102638i
\(718\) −137.202 178.083i −0.00713141 0.00925628i
\(719\) −2163.33 −0.112209 −0.0561046 0.998425i \(-0.517868\pi\)
−0.0561046 + 0.998425i \(0.517868\pi\)
\(720\) −699.981 + 6376.52i −0.0362316 + 0.330054i
\(721\) 15857.0 24820.7i 0.819064 1.28207i
\(722\) 6675.04 5142.72i 0.344071 0.265086i
\(723\) −16702.0 + 3441.67i −0.859137 + 0.177036i
\(724\) 2651.70 10053.5i 0.136118 0.516068i
\(725\) 2255.06 0.115518
\(726\) 10957.2 + 9439.49i 0.560140 + 0.482551i
\(727\) 24985.1i 1.27462i −0.770609 0.637309i \(-0.780048\pi\)
0.770609 0.637309i \(-0.219952\pi\)
\(728\) −4930.77 + 28735.4i −0.251026 + 1.46292i
\(729\) −6776.74 + 18479.6i −0.344294 + 0.938862i
\(730\) −2415.04 + 1860.65i −0.122445 + 0.0943364i
\(731\) 21582.3i 1.09200i
\(732\) 23924.9 + 1309.24i 1.20805 + 0.0661079i
\(733\) 2600.09 0.131018 0.0655092 0.997852i \(-0.479133\pi\)
0.0655092 + 0.997852i \(0.479133\pi\)
\(734\) −19033.1 24704.1i −0.957116 1.24230i
\(735\) 3935.33 + 5318.74i 0.197492 + 0.266918i
\(736\) −1611.64 11380.3i −0.0807146 0.569951i
\(737\) 31998.7i 1.59930i
\(738\) 10583.7 19014.6i 0.527904 0.948424i
\(739\) 17370.8i 0.864675i 0.901712 + 0.432338i \(0.142311\pi\)
−0.901712 + 0.432338i \(0.857689\pi\)
\(740\) −1149.84 + 4359.42i −0.0571202 + 0.216561i
\(741\) −4544.59 22054.4i −0.225303 1.09337i
\(742\) −6754.95 + 595.631i −0.334208 + 0.0294694i
\(743\) 28215.9i 1.39319i −0.717463 0.696597i \(-0.754697\pi\)
0.717463 0.696597i \(-0.245303\pi\)
\(744\) −5150.77 7500.08i −0.253812 0.369578i
\(745\) 12073.3i 0.593734i
\(746\) 10267.3 + 13326.5i 0.503902 + 0.654045i
\(747\) −8147.57 18930.2i −0.399068 0.927201i
\(748\) −4802.78 + 18208.9i −0.234769 + 0.890084i
\(749\) −6915.55 4418.08i −0.337368 0.215532i
\(750\) −8411.75 + 9764.26i −0.409538 + 0.475387i
\(751\) −33427.0 −1.62419 −0.812097 0.583522i \(-0.801674\pi\)
−0.812097 + 0.583522i \(0.801674\pi\)
\(752\) −34263.6 19426.2i −1.66152 0.942023i
\(753\) −8552.02 + 1762.25i −0.413882 + 0.0852856i
\(754\) −3160.64 + 2435.08i −0.152657 + 0.117613i
\(755\) 278.269i 0.0134136i
\(756\) 20300.2 + 4470.03i 0.976604 + 0.215044i
\(757\) 24841.4i 1.19270i 0.802723 + 0.596352i \(0.203384\pi\)
−0.802723 + 0.596352i \(0.796616\pi\)
\(758\) −8381.97 10879.5i −0.401645 0.521319i
\(759\) 15548.0 3203.85i 0.743551 0.153218i
\(760\) −4822.07 + 2030.60i −0.230151 + 0.0969180i
\(761\) −20004.6 −0.952912 −0.476456 0.879198i \(-0.658079\pi\)
−0.476456 + 0.879198i \(0.658079\pi\)
\(762\) −21824.3 18801.3i −1.03755 0.893831i
\(763\) −16506.3 + 25837.0i −0.783182 + 1.22590i
\(764\) −30279.8 7986.60i −1.43388 0.378200i
\(765\) −1938.62 4504.21i −0.0916220 0.212876i
\(766\) −9665.89 + 7446.99i −0.455931 + 0.351267i
\(767\) 28311.4i 1.33281i
\(768\) 15681.7 14389.9i 0.736802 0.676108i
\(769\) 9604.90i 0.450405i 0.974312 + 0.225203i \(0.0723044\pi\)
−0.974312 + 0.225203i \(0.927696\pi\)
\(770\) 821.840 + 9320.34i 0.0384637 + 0.436210i
\(771\) −7032.85 34129.6i −0.328511 1.59423i
\(772\) −7443.39 + 28220.3i −0.347012 + 1.31564i
\(773\) 4885.24i 0.227309i −0.993520 0.113655i \(-0.963744\pi\)
0.993520 0.113655i \(-0.0362557\pi\)
\(774\) −29436.3 16384.6i −1.36701 0.760893i
\(775\) 8606.55i 0.398911i
\(776\) −28762.8 + 12112.2i −1.33057 + 0.560313i
\(777\) 13645.4 + 5218.71i 0.630023 + 0.240953i
\(778\) −3342.92 + 2575.52i −0.154048 + 0.118685i
\(779\) 17749.6 0.816363
\(780\) 586.639 10720.1i 0.0269295 0.492106i
\(781\) 6230.03i 0.285439i
\(782\) 5362.36 + 6960.13i 0.245214 + 0.318278i
\(783\) 1628.79 + 2332.16i 0.0743400 + 0.106442i
\(784\) 1797.78 21878.3i 0.0818959 0.996641i
\(785\) 2621.26i 0.119181i
\(786\) −11314.0 + 13133.1i −0.513429 + 0.595983i
\(787\) −34277.8 −1.55257 −0.776284 0.630384i \(-0.782897\pi\)
−0.776284 + 0.630384i \(0.782897\pi\)
\(788\) 161.356 611.752i 0.00729450 0.0276558i
\(789\) −24216.5 + 4990.11i −1.09269 + 0.225162i
\(790\) 838.970 + 1088.95i 0.0377838 + 0.0490419i
\(791\) −735.721 + 1151.61i −0.0330711 + 0.0517656i
\(792\) 21189.2 + 20374.2i 0.950663 + 0.914097i
\(793\) −40101.9 −1.79579
\(794\) −5774.95 + 4449.25i −0.258117 + 0.198864i
\(795\) 2445.71 503.970i 0.109107 0.0224830i
\(796\) −5497.39 1449.99i −0.244786 0.0645648i
\(797\) 20736.8i 0.921624i −0.887498 0.460812i \(-0.847558\pi\)
0.887498 0.460812i \(-0.152442\pi\)
\(798\) 4867.09 + 16240.7i 0.215906 + 0.720444i
\(799\) 30109.0 1.33314
\(800\) 19933.9 2822.97i 0.880961 0.124759i
\(801\) 6685.87 2877.61i 0.294923 0.126935i
\(802\) −5498.66 7137.03i −0.242100 0.314236i
\(803\) 13970.3i 0.613949i
\(804\) 1510.58 27604.2i 0.0662614 1.21085i
\(805\) 3678.80 + 2350.24i 0.161069 + 0.102901i
\(806\) 9293.60 + 12062.7i 0.406145 + 0.527160i
\(807\) 13456.4 2772.86i 0.586973 0.120953i
\(808\) −2454.40 + 1033.56i −0.106863 + 0.0450008i
\(809\) 15223.1i 0.661576i −0.943705 0.330788i \(-0.892686\pi\)
0.943705 0.330788i \(-0.107314\pi\)
\(810\) −7615.07 775.352i −0.330329 0.0336335i
\(811\) 34460.7 1.49208 0.746042 0.665899i \(-0.231952\pi\)
0.746042 + 0.665899i \(0.231952\pi\)
\(812\) 2209.50 2035.39i 0.0954906 0.0879658i
\(813\) 38789.1 7992.98i 1.67330 0.344805i
\(814\) 12609.0 + 16365.9i 0.542929 + 0.704700i
\(815\) 5644.09 0.242581
\(816\) −5002.79 + 15481.4i −0.214623 + 0.664165i
\(817\) 27478.0i 1.17666i
\(818\) 15807.1 + 20517.0i 0.675651 + 0.876968i
\(819\) −34333.6 5613.63i −1.46485 0.239507i
\(820\) 8182.95 + 2158.34i 0.348489 + 0.0919175i
\(821\) −8486.07 −0.360738 −0.180369 0.983599i \(-0.557729\pi\)
−0.180369 + 0.983599i \(0.557729\pi\)
\(822\) −25850.1 + 30006.4i −1.09687 + 1.27323i
\(823\) 21594.4 0.914622 0.457311 0.889307i \(-0.348813\pi\)
0.457311 + 0.889307i \(0.348813\pi\)
\(824\) 33164.7 13965.9i 1.40212 0.590442i
\(825\) 5611.91 + 27234.0i 0.236826 + 1.14929i
\(826\) 1872.36 + 21234.1i 0.0788715 + 0.894468i
\(827\) −11423.5 −0.480330 −0.240165 0.970732i \(-0.577202\pi\)
−0.240165 + 0.970732i \(0.577202\pi\)
\(828\) 13563.9 2029.87i 0.569298 0.0851967i
\(829\) 6869.52 0.287802 0.143901 0.989592i \(-0.454035\pi\)
0.143901 + 0.989592i \(0.454035\pi\)
\(830\) 6348.84 4891.40i 0.265508 0.204558i
\(831\) −18909.7 + 3896.59i −0.789375 + 0.162661i
\(832\) −24890.5 + 25481.8i −1.03717 + 1.06181i
\(833\) 7053.11 + 15226.5i 0.293368 + 0.633336i
\(834\) 28749.9 + 24767.6i 1.19368 + 1.02833i
\(835\) 7273.94i 0.301467i
\(836\) −6114.78 + 23183.1i −0.252972 + 0.959097i
\(837\) 8900.78 6216.35i 0.367570 0.256713i
\(838\) −28099.9 36472.5i −1.15835 1.50349i
\(839\) −29613.1 −1.21854 −0.609272 0.792961i \(-0.708538\pi\)
−0.609272 + 0.792961i \(0.708538\pi\)
\(840\) 268.981 + 8079.13i 0.0110485 + 0.331853i
\(841\) −23977.9 −0.983144
\(842\) 25.0226 + 32.4783i 0.00102415 + 0.00132931i
\(843\) −39815.3 + 8204.45i −1.62670 + 0.335203i
\(844\) 17589.9 + 4639.51i 0.717381 + 0.189216i
\(845\) 9812.74i 0.399489i
\(846\) 22857.8 41065.9i 0.928920 1.66888i
\(847\) 15358.2 + 9811.79i 0.623040 + 0.398037i
\(848\) −7207.21 4086.22i −0.291859 0.165473i
\(849\) 4319.39 + 20961.5i 0.174607 + 0.847348i
\(850\) −12191.4 + 9392.77i −0.491956 + 0.379023i
\(851\) 9639.25 0.388283
\(852\) −294.105 + 5374.43i −0.0118261 + 0.216109i
\(853\) 15110.8 0.606545 0.303273 0.952904i \(-0.401921\pi\)
0.303273 + 0.952904i \(0.401921\pi\)
\(854\) 30077.2 2652.12i 1.20518 0.106269i
\(855\) −2468.20 5734.65i −0.0987260 0.229381i
\(856\) −3891.18 9240.37i −0.155371 0.368959i
\(857\) 36848.3 1.46875 0.734373 0.678747i \(-0.237477\pi\)
0.734373 + 0.678747i \(0.237477\pi\)
\(858\) −37273.6 32110.6i −1.48310 1.27766i
\(859\) −35305.1 −1.40232 −0.701162 0.713002i \(-0.747335\pi\)
−0.701162 + 0.713002i \(0.747335\pi\)
\(860\) 3341.30 12667.9i 0.132485 0.502294i
\(861\) 9795.91 25613.5i 0.387740 1.01383i
\(862\) −11738.6 15236.2i −0.463826 0.602027i
\(863\) 48135.9i 1.89868i 0.314244 + 0.949342i \(0.398249\pi\)
−0.314244 + 0.949342i \(0.601751\pi\)
\(864\) 17317.4 + 18576.4i 0.681885 + 0.731460i
\(865\) 14264.6 0.560707
\(866\) −19256.9 24994.7i −0.755631 0.980779i
\(867\) 2642.19 + 12822.3i 0.103499 + 0.502268i
\(868\) −7768.16 8432.67i −0.303766 0.329750i
\(869\) 6299.25 0.245900
\(870\) −722.024 + 838.117i −0.0281367 + 0.0326607i
\(871\) 46268.9i 1.79995i
\(872\) −34522.7 + 14537.7i −1.34070 + 0.564575i
\(873\) −14722.4 34206.3i −0.570766 1.32612i
\(874\) 6827.23 + 8861.47i 0.264227 + 0.342956i
\(875\) −8743.52 + 13686.1i −0.337811 + 0.528771i
\(876\) −659.505 + 12051.7i −0.0254368 + 0.464828i
\(877\) 22331.1i 0.859825i −0.902871 0.429912i \(-0.858544\pi\)
0.902871 0.429912i \(-0.141456\pi\)
\(878\) 21451.2 + 27842.8i 0.824537 + 1.07022i
\(879\) −30698.7 + 6325.86i −1.17798 + 0.242737i
\(880\) −5638.08 + 9944.35i −0.215977 + 0.380936i
\(881\) 9542.16 0.364908 0.182454 0.983214i \(-0.441596\pi\)
0.182454 + 0.983214i \(0.441596\pi\)
\(882\) 26122.1 + 1939.70i 0.997254 + 0.0740513i
\(883\) 31638.4i 1.20579i 0.797819 + 0.602897i \(0.205987\pi\)
−0.797819 + 0.602897i \(0.794013\pi\)
\(884\) 6944.63 26329.3i 0.264223 1.00176i
\(885\) −1584.23 7688.07i −0.0601731 0.292013i
\(886\) 24355.0 18764.0i 0.923501 0.711502i
\(887\) −368.960 −0.0139667 −0.00698335 0.999976i \(-0.502223\pi\)
−0.00698335 + 0.999976i \(0.502223\pi\)
\(888\) 10104.7 + 14713.6i 0.381860 + 0.556030i
\(889\) −30590.1 19542.8i −1.15406 0.737284i
\(890\) 1727.57 + 2242.32i 0.0650656 + 0.0844525i
\(891\) −24111.6 + 25474.3i −0.906588 + 0.957826i
\(892\) −24728.6 6522.42i −0.928223 0.244828i
\(893\) 38334.0 1.43651
\(894\) 36213.4 + 31197.2i 1.35476 + 1.16710i
\(895\) 10210.5i 0.381340i
\(896\) 16983.2 20758.0i 0.633223 0.773969i
\(897\) −22481.7 + 4632.65i −0.836837 + 0.172441i
\(898\) −20346.0 26408.3i −0.756074 0.981354i
\(899\) 1569.02i 0.0582090i
\(900\) 3555.54 + 23758.7i 0.131687 + 0.879953i
\(901\) 6333.29 0.234176
\(902\) 30720.1 23668.0i 1.13400 0.873677i
\(903\) −39652.0 15164.9i −1.46128 0.558868i
\(904\) −1538.75 + 647.978i −0.0566129 + 0.0238401i
\(905\) 4824.71i 0.177214i
\(906\) 834.655 + 719.042i 0.0306066 + 0.0263671i
\(907\) 13767.1i 0.504003i 0.967727 + 0.252001i \(0.0810888\pi\)
−0.967727 + 0.252001i \(0.918911\pi\)
\(908\) 24008.5 + 6332.48i 0.877477 + 0.231443i
\(909\) −1256.30 2918.90i −0.0458403 0.106506i
\(910\) −1188.35 13476.8i −0.0432894 0.490937i
\(911\) 12013.8i 0.436921i 0.975846 + 0.218461i \(0.0701035\pi\)
−0.975846 + 0.218461i \(0.929896\pi\)
\(912\) −6369.43 + 19710.6i −0.231264 + 0.715662i
\(913\) 36726.1i 1.33128i
\(914\) 2579.31 1987.21i 0.0933436 0.0719157i
\(915\) −10889.8 + 2243.99i −0.393449 + 0.0810753i
\(916\) −1415.26 + 5365.70i −0.0510495 + 0.193545i
\(917\) −11760.2 + 18408.0i −0.423507 + 0.662908i
\(918\) −18519.5 5824.00i −0.665834 0.209391i
\(919\) 42760.2 1.53485 0.767425 0.641138i \(-0.221537\pi\)
0.767425 + 0.641138i \(0.221537\pi\)
\(920\) 2069.95 + 4915.50i 0.0741785 + 0.176152i
\(921\) −2130.55 10339.3i −0.0762259 0.369916i
\(922\) −1983.69 2574.75i −0.0708561 0.0919684i
\(923\) 9008.37i 0.321251i
\(924\) 30079.6 + 21618.5i 1.07094 + 0.769694i
\(925\) 16884.2i 0.600161i
\(926\) −1145.51 + 882.546i −0.0406520 + 0.0313200i
\(927\) 16975.5 + 39441.2i 0.601456 + 1.39743i
\(928\) 3634.07 514.644i 0.128550 0.0182048i
\(929\) −46059.3 −1.62665 −0.813324 0.581811i \(-0.802344\pi\)
−0.813324 + 0.581811i \(0.802344\pi\)
\(930\) 3198.71 + 2755.64i 0.112785 + 0.0971622i
\(931\) 8979.85 + 19386.1i 0.316115 + 0.682442i
\(932\) 24666.8 + 6506.11i 0.866940 + 0.228664i
\(933\) 6389.81 + 31009.0i 0.224215 + 1.08809i
\(934\) −13358.0 17338.2i −0.467974 0.607412i
\(935\) 8738.54i 0.305648i
\(936\) −30638.7 29460.3i −1.06993 1.02878i
\(937\) 5647.59i 0.196904i 0.995142 + 0.0984519i \(0.0313891\pi\)
−0.995142 + 0.0984519i \(0.968611\pi\)
\(938\) −3059.97 34702.6i −0.106516 1.20797i
\(939\) −14056.0 + 2896.42i −0.488499 + 0.100661i
\(940\) 17672.8 + 4661.37i 0.613215 + 0.161742i
\(941\) 41421.7i 1.43497i 0.696572 + 0.717486i \(0.254707\pi\)
−0.696572 + 0.717486i \(0.745293\pi\)
\(942\) −7862.36 6773.29i −0.271942 0.234274i
\(943\) 18093.6i 0.624823i
\(944\) −12845.0 + 22655.8i −0.442870 + 0.781127i
\(945\) −9637.54 + 396.805i −0.331756 + 0.0136593i
\(946\) −36640.1 47557.4i −1.25927 1.63449i
\(947\) 21290.6 0.730571 0.365285 0.930896i \(-0.380971\pi\)
0.365285 + 0.930896i \(0.380971\pi\)
\(948\) 5434.14 + 297.373i 0.186174 + 0.0101880i
\(949\) 20200.5i 0.690976i
\(950\) −15521.8 + 11958.7i −0.530100 + 0.408410i
\(951\) −4059.13 19698.5i −0.138408 0.671680i
\(952\) −3467.34 + 20206.8i −0.118043 + 0.687928i
\(953\) 15236.1i 0.517888i 0.965892 + 0.258944i \(0.0833745\pi\)
−0.965892 + 0.258944i \(0.916626\pi\)
\(954\) 4808.04 8638.05i 0.163172 0.293152i
\(955\) 14531.4 0.492383
\(956\) −14535.2 3833.79i −0.491737 0.129701i
\(957\) 1023.08 + 4964.91i 0.0345576 + 0.167704i
\(958\) 33988.0 26185.7i 1.14625 0.883113i
\(959\) −26869.6 + 42058.6i −0.904760 + 1.41621i
\(960\) −5333.23 + 8312.49i −0.179301 + 0.279463i
\(961\) 23802.7 0.798991
\(962\) −18232.1 23664.5i −0.611045 0.793112i
\(963\) 10989.1 4729.73i 0.367726 0.158269i
\(964\) −25386.5 6695.95i −0.848180 0.223716i
\(965\) 13543.1i 0.451780i
\(966\) 16555.4 4961.40i 0.551409 0.165249i
\(967\) −29677.9 −0.986945 −0.493472 0.869761i \(-0.664273\pi\)
−0.493472 + 0.869761i \(0.664273\pi\)
\(968\) 8641.62 + 20521.2i 0.286934 + 0.681382i
\(969\) −3195.77 15508.7i −0.105947 0.514150i
\(970\) 11472.2 8838.62i 0.379741 0.292568i
\(971\) 39536.5i 1.30668i −0.757065 0.653340i \(-0.773367\pi\)
0.757065 0.653340i \(-0.226633\pi\)
\(972\) −22002.8 + 20837.6i −0.726072 + 0.687619i
\(973\) 40297.3 + 25744.4i 1.32772 + 0.848230i
\(974\) 15860.9 12219.9i 0.521783 0.402002i
\(975\) −8114.60 39379.2i −0.266539 1.29348i
\(976\) 32091.0 + 18194.4i 1.05247 + 0.596709i
\(977\) 29672.8i 0.971665i 0.874052 + 0.485832i \(0.161483\pi\)
−0.874052 + 0.485832i \(0.838517\pi\)
\(978\) 14584.2 16929.2i 0.476842 0.553513i
\(979\) 12971.1 0.423452
\(980\) 1782.57 + 10029.3i 0.0581042 + 0.326913i
\(981\) −17670.6 41056.2i −0.575107 1.33621i
\(982\) 19860.5 15301.3i 0.645391 0.497235i
\(983\) 4423.26 0.143520 0.0717599 0.997422i \(-0.477138\pi\)
0.0717599 + 0.997422i \(0.477138\pi\)
\(984\) 27618.4 18967.3i 0.894760 0.614487i
\(985\) 293.583i 0.00949679i
\(986\) −2222.57 + 1712.36i −0.0717861 + 0.0553069i
\(987\) 21156.3 55317.7i 0.682282 1.78397i
\(988\) 8841.74 33521.9i 0.284710 1.07943i
\(989\) −28010.5 −0.900587
\(990\) −11918.6 6634.03i −0.382624 0.212973i
\(991\) 38967.8 1.24910 0.624548 0.780986i \(-0.285283\pi\)
0.624548 + 0.780986i \(0.285283\pi\)
\(992\) −1964.16 13869.6i −0.0628652 0.443911i
\(993\) −21701.3 + 4471.83i −0.693524 + 0.142909i
\(994\) 595.765 + 6756.47i 0.0190106 + 0.215596i
\(995\) 2638.23 0.0840577
\(996\) 1733.75 31682.4i 0.0551567 1.00793i
\(997\) 43802.8 1.39142 0.695712 0.718321i \(-0.255089\pi\)
0.695712 + 0.718321i \(0.255089\pi\)
\(998\) 16044.3 + 20824.8i 0.508890 + 0.660518i
\(999\) −17461.4 + 12195.2i −0.553008 + 0.386224i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 168.4.i.c.125.19 yes 80
3.2 odd 2 inner 168.4.i.c.125.61 yes 80
4.3 odd 2 672.4.i.c.209.44 80
7.6 odd 2 inner 168.4.i.c.125.20 yes 80
8.3 odd 2 672.4.i.c.209.37 80
8.5 even 2 inner 168.4.i.c.125.64 yes 80
12.11 even 2 672.4.i.c.209.41 80
21.20 even 2 inner 168.4.i.c.125.62 yes 80
24.5 odd 2 inner 168.4.i.c.125.18 yes 80
24.11 even 2 672.4.i.c.209.40 80
28.27 even 2 672.4.i.c.209.38 80
56.13 odd 2 inner 168.4.i.c.125.63 yes 80
56.27 even 2 672.4.i.c.209.43 80
84.83 odd 2 672.4.i.c.209.39 80
168.83 odd 2 672.4.i.c.209.42 80
168.125 even 2 inner 168.4.i.c.125.17 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.i.c.125.17 80 168.125 even 2 inner
168.4.i.c.125.18 yes 80 24.5 odd 2 inner
168.4.i.c.125.19 yes 80 1.1 even 1 trivial
168.4.i.c.125.20 yes 80 7.6 odd 2 inner
168.4.i.c.125.61 yes 80 3.2 odd 2 inner
168.4.i.c.125.62 yes 80 21.20 even 2 inner
168.4.i.c.125.63 yes 80 56.13 odd 2 inner
168.4.i.c.125.64 yes 80 8.5 even 2 inner
672.4.i.c.209.37 80 8.3 odd 2
672.4.i.c.209.38 80 28.27 even 2
672.4.i.c.209.39 80 84.83 odd 2
672.4.i.c.209.40 80 24.11 even 2
672.4.i.c.209.41 80 12.11 even 2
672.4.i.c.209.42 80 168.83 odd 2
672.4.i.c.209.43 80 56.27 even 2
672.4.i.c.209.44 80 4.3 odd 2