Properties

Label 672.2.bb.a.271.9
Level $672$
Weight $2$
Character 672.271
Analytic conductor $5.366$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,2,Mod(271,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.271"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 672.bb (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.36594701583\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 271.9
Character \(\chi\) \(=\) 672.271
Dual form 672.2.bb.a.367.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{3} +(-1.61398 + 2.79550i) q^{5} +(1.82725 + 1.91341i) q^{7} +(0.500000 - 0.866025i) q^{9} +(1.10660 + 1.91668i) q^{11} -5.08369 q^{13} +3.22796i q^{15} +(-2.73597 + 1.57961i) q^{17} +(-2.93566 - 1.69490i) q^{19} +(2.53915 + 0.743436i) q^{21} +(2.65351 + 1.53200i) q^{23} +(-2.70987 - 4.69363i) q^{25} -1.00000i q^{27} +9.88340i q^{29} +(-1.01402 - 1.75634i) q^{31} +(1.91668 + 1.10660i) q^{33} +(-8.29809 + 2.01987i) q^{35} +(0.798374 + 0.460941i) q^{37} +(-4.40261 + 2.54185i) q^{39} +5.96303i q^{41} +6.68790 q^{43} +(1.61398 + 2.79550i) q^{45} +(1.06113 - 1.83793i) q^{47} +(-0.322287 + 6.99258i) q^{49} +(-1.57961 + 2.73597i) q^{51} +(3.12560 - 1.80457i) q^{53} -7.14411 q^{55} -3.38981 q^{57} +(10.6351 - 6.14015i) q^{59} +(6.34115 - 10.9832i) q^{61} +(2.57069 - 0.625743i) q^{63} +(8.20498 - 14.2114i) q^{65} +(4.40720 + 7.63350i) q^{67} +3.06401 q^{69} +11.7036i q^{71} +(7.82068 - 4.51527i) q^{73} +(-4.69363 - 2.70987i) q^{75} +(-1.64537 + 5.61964i) q^{77} +(-9.60105 - 5.54317i) q^{79} +(-0.500000 - 0.866025i) q^{81} -3.57322i q^{83} -10.1979i q^{85} +(4.94170 + 8.55928i) q^{87} +(-6.32253 - 3.65032i) q^{89} +(-9.28920 - 9.72719i) q^{91} +(-1.75634 - 1.01402i) q^{93} +(9.47619 - 5.47108i) q^{95} +15.2238i q^{97} +2.21319 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{9} - 8 q^{11} - 16 q^{25} + 24 q^{35} + 16 q^{43} + 8 q^{49} + 16 q^{57} + 96 q^{59} + 32 q^{67} - 24 q^{73} - 16 q^{81} - 56 q^{91} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.866025 0.500000i 0.500000 0.288675i
\(4\) 0 0
\(5\) −1.61398 + 2.79550i −0.721794 + 1.25018i 0.238486 + 0.971146i \(0.423349\pi\)
−0.960280 + 0.279038i \(0.909984\pi\)
\(6\) 0 0
\(7\) 1.82725 + 1.91341i 0.690637 + 0.723202i
\(8\) 0 0
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0 0
\(11\) 1.10660 + 1.91668i 0.333652 + 0.577902i 0.983225 0.182397i \(-0.0583857\pi\)
−0.649573 + 0.760299i \(0.725052\pi\)
\(12\) 0 0
\(13\) −5.08369 −1.40996 −0.704981 0.709226i \(-0.749045\pi\)
−0.704981 + 0.709226i \(0.749045\pi\)
\(14\) 0 0
\(15\) 3.22796i 0.833456i
\(16\) 0 0
\(17\) −2.73597 + 1.57961i −0.663571 + 0.383113i −0.793636 0.608393i \(-0.791815\pi\)
0.130065 + 0.991505i \(0.458481\pi\)
\(18\) 0 0
\(19\) −2.93566 1.69490i −0.673486 0.388838i 0.123910 0.992293i \(-0.460457\pi\)
−0.797396 + 0.603456i \(0.793790\pi\)
\(20\) 0 0
\(21\) 2.53915 + 0.743436i 0.554089 + 0.162231i
\(22\) 0 0
\(23\) 2.65351 + 1.53200i 0.553294 + 0.319445i 0.750450 0.660928i \(-0.229837\pi\)
−0.197155 + 0.980372i \(0.563170\pi\)
\(24\) 0 0
\(25\) −2.70987 4.69363i −0.541974 0.938726i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 9.88340i 1.83530i 0.397387 + 0.917651i \(0.369917\pi\)
−0.397387 + 0.917651i \(0.630083\pi\)
\(30\) 0 0
\(31\) −1.01402 1.75634i −0.182124 0.315448i 0.760480 0.649362i \(-0.224964\pi\)
−0.942604 + 0.333914i \(0.891631\pi\)
\(32\) 0 0
\(33\) 1.91668 + 1.10660i 0.333652 + 0.192634i
\(34\) 0 0
\(35\) −8.29809 + 2.01987i −1.40263 + 0.341421i
\(36\) 0 0
\(37\) 0.798374 + 0.460941i 0.131252 + 0.0757783i 0.564188 0.825646i \(-0.309189\pi\)
−0.432936 + 0.901424i \(0.642523\pi\)
\(38\) 0 0
\(39\) −4.40261 + 2.54185i −0.704981 + 0.407021i
\(40\) 0 0
\(41\) 5.96303i 0.931269i 0.884977 + 0.465635i \(0.154174\pi\)
−0.884977 + 0.465635i \(0.845826\pi\)
\(42\) 0 0
\(43\) 6.68790 1.01990 0.509948 0.860205i \(-0.329665\pi\)
0.509948 + 0.860205i \(0.329665\pi\)
\(44\) 0 0
\(45\) 1.61398 + 2.79550i 0.240598 + 0.416728i
\(46\) 0 0
\(47\) 1.06113 1.83793i 0.154782 0.268090i −0.778198 0.628019i \(-0.783866\pi\)
0.932980 + 0.359929i \(0.117199\pi\)
\(48\) 0 0
\(49\) −0.322287 + 6.99258i −0.0460410 + 0.998940i
\(50\) 0 0
\(51\) −1.57961 + 2.73597i −0.221190 + 0.383113i
\(52\) 0 0
\(53\) 3.12560 1.80457i 0.429334 0.247876i −0.269729 0.962936i \(-0.586934\pi\)
0.699063 + 0.715060i \(0.253601\pi\)
\(54\) 0 0
\(55\) −7.14411 −0.963311
\(56\) 0 0
\(57\) −3.38981 −0.448991
\(58\) 0 0
\(59\) 10.6351 6.14015i 1.38457 0.799379i 0.391869 0.920021i \(-0.371828\pi\)
0.992696 + 0.120642i \(0.0384952\pi\)
\(60\) 0 0
\(61\) 6.34115 10.9832i 0.811901 1.40625i −0.0996301 0.995025i \(-0.531766\pi\)
0.911532 0.411230i \(-0.134901\pi\)
\(62\) 0 0
\(63\) 2.57069 0.625743i 0.323876 0.0788361i
\(64\) 0 0
\(65\) 8.20498 14.2114i 1.01770 1.76271i
\(66\) 0 0
\(67\) 4.40720 + 7.63350i 0.538425 + 0.932580i 0.998989 + 0.0449534i \(0.0143139\pi\)
−0.460564 + 0.887627i \(0.652353\pi\)
\(68\) 0 0
\(69\) 3.06401 0.368863
\(70\) 0 0
\(71\) 11.7036i 1.38896i 0.719512 + 0.694480i \(0.244366\pi\)
−0.719512 + 0.694480i \(0.755634\pi\)
\(72\) 0 0
\(73\) 7.82068 4.51527i 0.915342 0.528473i 0.0331957 0.999449i \(-0.489432\pi\)
0.882146 + 0.470976i \(0.156098\pi\)
\(74\) 0 0
\(75\) −4.69363 2.70987i −0.541974 0.312909i
\(76\) 0 0
\(77\) −1.64537 + 5.61964i −0.187507 + 0.640418i
\(78\) 0 0
\(79\) −9.60105 5.54317i −1.08020 0.623655i −0.149252 0.988799i \(-0.547687\pi\)
−0.930951 + 0.365144i \(0.881020\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 3.57322i 0.392212i −0.980583 0.196106i \(-0.937170\pi\)
0.980583 0.196106i \(-0.0628297\pi\)
\(84\) 0 0
\(85\) 10.1979i 1.10611i
\(86\) 0 0
\(87\) 4.94170 + 8.55928i 0.529806 + 0.917651i
\(88\) 0 0
\(89\) −6.32253 3.65032i −0.670187 0.386933i 0.125960 0.992035i \(-0.459799\pi\)
−0.796147 + 0.605103i \(0.793132\pi\)
\(90\) 0 0
\(91\) −9.28920 9.72719i −0.973772 1.01969i
\(92\) 0 0
\(93\) −1.75634 1.01402i −0.182124 0.105149i
\(94\) 0 0
\(95\) 9.47619 5.47108i 0.972237 0.561321i
\(96\) 0 0
\(97\) 15.2238i 1.54574i 0.634566 + 0.772869i \(0.281179\pi\)
−0.634566 + 0.772869i \(0.718821\pi\)
\(98\) 0 0
\(99\) 2.21319 0.222434
\(100\) 0 0
\(101\) −4.92124 8.52383i −0.489681 0.848153i 0.510248 0.860027i \(-0.329554\pi\)
−0.999929 + 0.0118744i \(0.996220\pi\)
\(102\) 0 0
\(103\) 0.992258 1.71864i 0.0977701 0.169343i −0.812991 0.582276i \(-0.802162\pi\)
0.910761 + 0.412933i \(0.135496\pi\)
\(104\) 0 0
\(105\) −6.17642 + 5.89831i −0.602757 + 0.575616i
\(106\) 0 0
\(107\) −1.61805 + 2.80255i −0.156423 + 0.270933i −0.933576 0.358379i \(-0.883330\pi\)
0.777153 + 0.629311i \(0.216663\pi\)
\(108\) 0 0
\(109\) −3.62997 + 2.09576i −0.347688 + 0.200738i −0.663666 0.748029i \(-0.731001\pi\)
0.315979 + 0.948766i \(0.397667\pi\)
\(110\) 0 0
\(111\) 0.921883 0.0875012
\(112\) 0 0
\(113\) −2.84651 −0.267777 −0.133889 0.990996i \(-0.542746\pi\)
−0.133889 + 0.990996i \(0.542746\pi\)
\(114\) 0 0
\(115\) −8.56542 + 4.94525i −0.798729 + 0.461147i
\(116\) 0 0
\(117\) −2.54185 + 4.40261i −0.234994 + 0.407021i
\(118\) 0 0
\(119\) −8.02177 2.34868i −0.735354 0.215304i
\(120\) 0 0
\(121\) 3.05088 5.28429i 0.277353 0.480390i
\(122\) 0 0
\(123\) 2.98152 + 5.16414i 0.268834 + 0.465635i
\(124\) 0 0
\(125\) 1.35490 0.121186
\(126\) 0 0
\(127\) 21.0058i 1.86396i −0.362506 0.931981i \(-0.618079\pi\)
0.362506 0.931981i \(-0.381921\pi\)
\(128\) 0 0
\(129\) 5.79189 3.34395i 0.509948 0.294418i
\(130\) 0 0
\(131\) 0.494446 + 0.285468i 0.0431999 + 0.0249415i 0.521444 0.853285i \(-0.325393\pi\)
−0.478245 + 0.878227i \(0.658727\pi\)
\(132\) 0 0
\(133\) −2.12115 8.71414i −0.183927 0.755612i
\(134\) 0 0
\(135\) 2.79550 + 1.61398i 0.240598 + 0.138909i
\(136\) 0 0
\(137\) 6.57813 + 11.3937i 0.562008 + 0.973426i 0.997321 + 0.0731470i \(0.0233042\pi\)
−0.435313 + 0.900279i \(0.643362\pi\)
\(138\) 0 0
\(139\) 9.54821i 0.809869i 0.914346 + 0.404934i \(0.132706\pi\)
−0.914346 + 0.404934i \(0.867294\pi\)
\(140\) 0 0
\(141\) 2.12226i 0.178727i
\(142\) 0 0
\(143\) −5.62560 9.74383i −0.470436 0.814820i
\(144\) 0 0
\(145\) −27.6290 15.9516i −2.29447 1.32471i
\(146\) 0 0
\(147\) 3.21718 + 6.21689i 0.265349 + 0.512761i
\(148\) 0 0
\(149\) 9.17651 + 5.29806i 0.751769 + 0.434034i 0.826333 0.563182i \(-0.190423\pi\)
−0.0745636 + 0.997216i \(0.523756\pi\)
\(150\) 0 0
\(151\) −1.05318 + 0.608052i −0.0857063 + 0.0494826i −0.542241 0.840223i \(-0.682424\pi\)
0.456534 + 0.889706i \(0.349091\pi\)
\(152\) 0 0
\(153\) 3.15923i 0.255409i
\(154\) 0 0
\(155\) 6.54645 0.525824
\(156\) 0 0
\(157\) −1.81252 3.13938i −0.144655 0.250550i 0.784589 0.620016i \(-0.212874\pi\)
−0.929244 + 0.369466i \(0.879541\pi\)
\(158\) 0 0
\(159\) 1.80457 3.12560i 0.143111 0.247876i
\(160\) 0 0
\(161\) 1.91728 + 7.87661i 0.151103 + 0.620764i
\(162\) 0 0
\(163\) 9.91572 17.1745i 0.776659 1.34521i −0.157198 0.987567i \(-0.550246\pi\)
0.933857 0.357646i \(-0.116420\pi\)
\(164\) 0 0
\(165\) −6.18698 + 3.57205i −0.481656 + 0.278084i
\(166\) 0 0
\(167\) 12.3971 0.959317 0.479659 0.877455i \(-0.340760\pi\)
0.479659 + 0.877455i \(0.340760\pi\)
\(168\) 0 0
\(169\) 12.8439 0.987994
\(170\) 0 0
\(171\) −2.93566 + 1.69490i −0.224495 + 0.129613i
\(172\) 0 0
\(173\) 0.519326 0.899499i 0.0394836 0.0683876i −0.845608 0.533804i \(-0.820762\pi\)
0.885092 + 0.465416i \(0.154095\pi\)
\(174\) 0 0
\(175\) 4.02923 13.7615i 0.304581 1.04028i
\(176\) 0 0
\(177\) 6.14015 10.6351i 0.461522 0.799379i
\(178\) 0 0
\(179\) −1.26304 2.18764i −0.0944038 0.163512i 0.814956 0.579523i \(-0.196761\pi\)
−0.909360 + 0.416011i \(0.863428\pi\)
\(180\) 0 0
\(181\) 8.29867 0.616835 0.308418 0.951251i \(-0.400201\pi\)
0.308418 + 0.951251i \(0.400201\pi\)
\(182\) 0 0
\(183\) 12.6823i 0.937503i
\(184\) 0 0
\(185\) −2.57712 + 1.48790i −0.189474 + 0.109393i
\(186\) 0 0
\(187\) −6.05524 3.49599i −0.442803 0.255652i
\(188\) 0 0
\(189\) 1.91341 1.82725i 0.139180 0.132913i
\(190\) 0 0
\(191\) 5.26146 + 3.03771i 0.380706 + 0.219801i 0.678125 0.734946i \(-0.262793\pi\)
−0.297419 + 0.954747i \(0.596126\pi\)
\(192\) 0 0
\(193\) 4.59340 + 7.95599i 0.330640 + 0.572685i 0.982637 0.185536i \(-0.0594021\pi\)
−0.651998 + 0.758221i \(0.726069\pi\)
\(194\) 0 0
\(195\) 16.4100i 1.17514i
\(196\) 0 0
\(197\) 20.2764i 1.44463i −0.691563 0.722316i \(-0.743078\pi\)
0.691563 0.722316i \(-0.256922\pi\)
\(198\) 0 0
\(199\) −1.64355 2.84672i −0.116508 0.201799i 0.801873 0.597494i \(-0.203837\pi\)
−0.918382 + 0.395696i \(0.870504\pi\)
\(200\) 0 0
\(201\) 7.63350 + 4.40720i 0.538425 + 0.310860i
\(202\) 0 0
\(203\) −18.9110 + 18.0595i −1.32729 + 1.26753i
\(204\) 0 0
\(205\) −16.6696 9.62422i −1.16426 0.672185i
\(206\) 0 0
\(207\) 2.65351 1.53200i 0.184431 0.106482i
\(208\) 0 0
\(209\) 7.50230i 0.518945i
\(210\) 0 0
\(211\) 21.6901 1.49320 0.746602 0.665271i \(-0.231684\pi\)
0.746602 + 0.665271i \(0.231684\pi\)
\(212\) 0 0
\(213\) 5.85179 + 10.1356i 0.400958 + 0.694480i
\(214\) 0 0
\(215\) −10.7941 + 18.6960i −0.736154 + 1.27506i
\(216\) 0 0
\(217\) 1.50772 5.14952i 0.102351 0.349572i
\(218\) 0 0
\(219\) 4.51527 7.82068i 0.305114 0.528473i
\(220\) 0 0
\(221\) 13.9088 8.03027i 0.935610 0.540175i
\(222\) 0 0
\(223\) 19.3266 1.29420 0.647102 0.762404i \(-0.275981\pi\)
0.647102 + 0.762404i \(0.275981\pi\)
\(224\) 0 0
\(225\) −5.41974 −0.361316
\(226\) 0 0
\(227\) 0.466841 0.269531i 0.0309853 0.0178894i −0.484427 0.874832i \(-0.660972\pi\)
0.515413 + 0.856942i \(0.327639\pi\)
\(228\) 0 0
\(229\) −11.4311 + 19.7993i −0.755392 + 1.30838i 0.189788 + 0.981825i \(0.439220\pi\)
−0.945179 + 0.326551i \(0.894113\pi\)
\(230\) 0 0
\(231\) 1.38489 + 5.68944i 0.0911191 + 0.374337i
\(232\) 0 0
\(233\) 1.50245 2.60232i 0.0984287 0.170484i −0.812606 0.582814i \(-0.801952\pi\)
0.911034 + 0.412330i \(0.135285\pi\)
\(234\) 0 0
\(235\) 3.42529 + 5.93277i 0.223441 + 0.387011i
\(236\) 0 0
\(237\) −11.0863 −0.720135
\(238\) 0 0
\(239\) 11.2699i 0.728988i −0.931206 0.364494i \(-0.881242\pi\)
0.931206 0.364494i \(-0.118758\pi\)
\(240\) 0 0
\(241\) 9.76276 5.63653i 0.628875 0.363081i −0.151441 0.988466i \(-0.548392\pi\)
0.780316 + 0.625385i \(0.215058\pi\)
\(242\) 0 0
\(243\) −0.866025 0.500000i −0.0555556 0.0320750i
\(244\) 0 0
\(245\) −19.0276 12.1868i −1.21563 0.778588i
\(246\) 0 0
\(247\) 14.9240 + 8.61637i 0.949590 + 0.548246i
\(248\) 0 0
\(249\) −1.78661 3.09450i −0.113222 0.196106i
\(250\) 0 0
\(251\) 3.26625i 0.206164i 0.994673 + 0.103082i \(0.0328704\pi\)
−0.994673 + 0.103082i \(0.967130\pi\)
\(252\) 0 0
\(253\) 6.78124i 0.426333i
\(254\) 0 0
\(255\) −5.09893 8.83161i −0.319308 0.553057i
\(256\) 0 0
\(257\) −10.4533 6.03522i −0.652059 0.376467i 0.137185 0.990545i \(-0.456194\pi\)
−0.789245 + 0.614079i \(0.789528\pi\)
\(258\) 0 0
\(259\) 0.576861 + 2.36987i 0.0358444 + 0.147257i
\(260\) 0 0
\(261\) 8.55928 + 4.94170i 0.529806 + 0.305884i
\(262\) 0 0
\(263\) −14.1861 + 8.19034i −0.874752 + 0.505038i −0.868924 0.494945i \(-0.835188\pi\)
−0.00582745 + 0.999983i \(0.501855\pi\)
\(264\) 0 0
\(265\) 11.6501i 0.715663i
\(266\) 0 0
\(267\) −7.30063 −0.446791
\(268\) 0 0
\(269\) 3.73572 + 6.47046i 0.227771 + 0.394511i 0.957147 0.289602i \(-0.0935229\pi\)
−0.729376 + 0.684113i \(0.760190\pi\)
\(270\) 0 0
\(271\) 4.48617 7.77027i 0.272515 0.472011i −0.696990 0.717081i \(-0.745478\pi\)
0.969505 + 0.245070i \(0.0788111\pi\)
\(272\) 0 0
\(273\) −12.9083 3.77940i −0.781244 0.228740i
\(274\) 0 0
\(275\) 5.99747 10.3879i 0.361661 0.626415i
\(276\) 0 0
\(277\) −5.31638 + 3.06942i −0.319430 + 0.184423i −0.651139 0.758959i \(-0.725708\pi\)
0.331708 + 0.943382i \(0.392375\pi\)
\(278\) 0 0
\(279\) −2.02805 −0.121416
\(280\) 0 0
\(281\) −19.2936 −1.15096 −0.575480 0.817816i \(-0.695185\pi\)
−0.575480 + 0.817816i \(0.695185\pi\)
\(282\) 0 0
\(283\) −19.3500 + 11.1718i −1.15024 + 0.664092i −0.948946 0.315439i \(-0.897848\pi\)
−0.201295 + 0.979531i \(0.564515\pi\)
\(284\) 0 0
\(285\) 5.47108 9.47619i 0.324079 0.561321i
\(286\) 0 0
\(287\) −11.4097 + 10.8960i −0.673495 + 0.643169i
\(288\) 0 0
\(289\) −3.50964 + 6.07887i −0.206449 + 0.357581i
\(290\) 0 0
\(291\) 7.61188 + 13.1842i 0.446216 + 0.772869i
\(292\) 0 0
\(293\) 14.0707 0.822018 0.411009 0.911631i \(-0.365176\pi\)
0.411009 + 0.911631i \(0.365176\pi\)
\(294\) 0 0
\(295\) 39.6403i 2.30795i
\(296\) 0 0
\(297\) 1.91668 1.10660i 0.111217 0.0642113i
\(298\) 0 0
\(299\) −13.4896 7.78823i −0.780124 0.450405i
\(300\) 0 0
\(301\) 12.2205 + 12.7967i 0.704377 + 0.737590i
\(302\) 0 0
\(303\) −8.52383 4.92124i −0.489681 0.282718i
\(304\) 0 0
\(305\) 20.4690 + 35.4533i 1.17205 + 2.03005i
\(306\) 0 0
\(307\) 9.61787i 0.548921i 0.961598 + 0.274460i \(0.0884992\pi\)
−0.961598 + 0.274460i \(0.911501\pi\)
\(308\) 0 0
\(309\) 1.98452i 0.112895i
\(310\) 0 0
\(311\) 10.8485 + 18.7902i 0.615162 + 1.06549i 0.990356 + 0.138546i \(0.0442428\pi\)
−0.375194 + 0.926946i \(0.622424\pi\)
\(312\) 0 0
\(313\) −9.46514 5.46470i −0.535001 0.308883i 0.208049 0.978118i \(-0.433289\pi\)
−0.743051 + 0.669235i \(0.766622\pi\)
\(314\) 0 0
\(315\) −2.39978 + 8.19629i −0.135212 + 0.461809i
\(316\) 0 0
\(317\) 6.14253 + 3.54639i 0.344999 + 0.199185i 0.662480 0.749079i \(-0.269504\pi\)
−0.317482 + 0.948264i \(0.602837\pi\)
\(318\) 0 0
\(319\) −18.9433 + 10.9369i −1.06062 + 0.612352i
\(320\) 0 0
\(321\) 3.23611i 0.180622i
\(322\) 0 0
\(323\) 10.7092 0.595874
\(324\) 0 0
\(325\) 13.7761 + 23.8610i 0.764163 + 1.32357i
\(326\) 0 0
\(327\) −2.09576 + 3.62997i −0.115896 + 0.200738i
\(328\) 0 0
\(329\) 5.45567 1.32799i 0.300781 0.0732144i
\(330\) 0 0
\(331\) 5.86202 10.1533i 0.322206 0.558077i −0.658737 0.752373i \(-0.728909\pi\)
0.980943 + 0.194297i \(0.0622424\pi\)
\(332\) 0 0
\(333\) 0.798374 0.460941i 0.0437506 0.0252594i
\(334\) 0 0
\(335\) −28.4526 −1.55453
\(336\) 0 0
\(337\) 23.5287 1.28169 0.640846 0.767670i \(-0.278584\pi\)
0.640846 + 0.767670i \(0.278584\pi\)
\(338\) 0 0
\(339\) −2.46515 + 1.42326i −0.133889 + 0.0773007i
\(340\) 0 0
\(341\) 2.24423 3.88712i 0.121532 0.210499i
\(342\) 0 0
\(343\) −13.9686 + 12.1605i −0.754232 + 0.656608i
\(344\) 0 0
\(345\) −4.94525 + 8.56542i −0.266243 + 0.461147i
\(346\) 0 0
\(347\) −5.17132 8.95699i −0.277611 0.480837i 0.693179 0.720765i \(-0.256209\pi\)
−0.970791 + 0.239928i \(0.922876\pi\)
\(348\) 0 0
\(349\) −0.830301 −0.0444450 −0.0222225 0.999753i \(-0.507074\pi\)
−0.0222225 + 0.999753i \(0.507074\pi\)
\(350\) 0 0
\(351\) 5.08369i 0.271347i
\(352\) 0 0
\(353\) −4.21179 + 2.43168i −0.224171 + 0.129425i −0.607880 0.794029i \(-0.707980\pi\)
0.383709 + 0.923454i \(0.374647\pi\)
\(354\) 0 0
\(355\) −32.7173 18.8894i −1.73646 1.00254i
\(356\) 0 0
\(357\) −8.12140 + 1.97686i −0.429830 + 0.104627i
\(358\) 0 0
\(359\) −16.3080 9.41543i −0.860704 0.496928i 0.00354407 0.999994i \(-0.498872\pi\)
−0.864248 + 0.503066i \(0.832205\pi\)
\(360\) 0 0
\(361\) −3.75460 6.50317i −0.197611 0.342272i
\(362\) 0 0
\(363\) 6.10177i 0.320260i
\(364\) 0 0
\(365\) 29.1503i 1.52579i
\(366\) 0 0
\(367\) 10.7270 + 18.5796i 0.559943 + 0.969850i 0.997501 + 0.0706593i \(0.0225103\pi\)
−0.437557 + 0.899190i \(0.644156\pi\)
\(368\) 0 0
\(369\) 5.16414 + 2.98152i 0.268834 + 0.155212i
\(370\) 0 0
\(371\) 9.16414 + 2.68316i 0.475779 + 0.139303i
\(372\) 0 0
\(373\) 14.1525 + 8.17098i 0.732791 + 0.423077i 0.819442 0.573162i \(-0.194283\pi\)
−0.0866513 + 0.996239i \(0.527617\pi\)
\(374\) 0 0
\(375\) 1.17337 0.677448i 0.0605928 0.0349832i
\(376\) 0 0
\(377\) 50.2442i 2.58771i
\(378\) 0 0
\(379\) 4.31636 0.221717 0.110858 0.993836i \(-0.464640\pi\)
0.110858 + 0.993836i \(0.464640\pi\)
\(380\) 0 0
\(381\) −10.5029 18.1916i −0.538080 0.931981i
\(382\) 0 0
\(383\) 10.0948 17.4848i 0.515823 0.893431i −0.484009 0.875063i \(-0.660820\pi\)
0.999831 0.0183677i \(-0.00584695\pi\)
\(384\) 0 0
\(385\) −13.0541 13.6696i −0.665298 0.696668i
\(386\) 0 0
\(387\) 3.34395 5.79189i 0.169983 0.294418i
\(388\) 0 0
\(389\) −29.2383 + 16.8807i −1.48244 + 0.855886i −0.999801 0.0199339i \(-0.993654\pi\)
−0.482637 + 0.875820i \(0.660321\pi\)
\(390\) 0 0
\(391\) −9.67989 −0.489533
\(392\) 0 0
\(393\) 0.570937 0.0287999
\(394\) 0 0
\(395\) 30.9918 17.8931i 1.55937 0.900302i
\(396\) 0 0
\(397\) −0.0441158 + 0.0764109i −0.00221411 + 0.00383495i −0.867130 0.498081i \(-0.834038\pi\)
0.864916 + 0.501916i \(0.167371\pi\)
\(398\) 0 0
\(399\) −6.19404 6.48610i −0.310090 0.324711i
\(400\) 0 0
\(401\) 12.6037 21.8303i 0.629400 1.09015i −0.358272 0.933617i \(-0.616634\pi\)
0.987672 0.156536i \(-0.0500327\pi\)
\(402\) 0 0
\(403\) 5.15498 + 8.92869i 0.256788 + 0.444770i
\(404\) 0 0
\(405\) 3.22796 0.160399
\(406\) 0 0
\(407\) 2.04031i 0.101134i
\(408\) 0 0
\(409\) −26.9181 + 15.5412i −1.33102 + 0.768462i −0.985455 0.169935i \(-0.945644\pi\)
−0.345560 + 0.938397i \(0.612311\pi\)
\(410\) 0 0
\(411\) 11.3937 + 6.57813i 0.562008 + 0.324475i
\(412\) 0 0
\(413\) 31.1816 + 9.12962i 1.53434 + 0.449239i
\(414\) 0 0
\(415\) 9.98894 + 5.76712i 0.490338 + 0.283097i
\(416\) 0 0
\(417\) 4.77411 + 8.26899i 0.233789 + 0.404934i
\(418\) 0 0
\(419\) 22.7655i 1.11217i 0.831126 + 0.556085i \(0.187697\pi\)
−0.831126 + 0.556085i \(0.812303\pi\)
\(420\) 0 0
\(421\) 24.0207i 1.17070i 0.810781 + 0.585349i \(0.199042\pi\)
−0.810781 + 0.585349i \(0.800958\pi\)
\(422\) 0 0
\(423\) −1.06113 1.83793i −0.0515939 0.0893633i
\(424\) 0 0
\(425\) 14.8283 + 8.56109i 0.719276 + 0.415274i
\(426\) 0 0
\(427\) 32.6023 7.93586i 1.57773 0.384043i
\(428\) 0 0
\(429\) −9.74383 5.62560i −0.470436 0.271607i
\(430\) 0 0
\(431\) 28.2391 16.3039i 1.36023 0.785330i 0.370577 0.928802i \(-0.379160\pi\)
0.989654 + 0.143471i \(0.0458265\pi\)
\(432\) 0 0
\(433\) 18.4752i 0.887861i 0.896061 + 0.443931i \(0.146416\pi\)
−0.896061 + 0.443931i \(0.853584\pi\)
\(434\) 0 0
\(435\) −31.9032 −1.52964
\(436\) 0 0
\(437\) −5.19319 8.99487i −0.248424 0.430283i
\(438\) 0 0
\(439\) −11.2138 + 19.4229i −0.535206 + 0.927004i 0.463947 + 0.885863i \(0.346433\pi\)
−0.999153 + 0.0411413i \(0.986901\pi\)
\(440\) 0 0
\(441\) 5.89461 + 3.77540i 0.280696 + 0.179781i
\(442\) 0 0
\(443\) 4.52168 7.83178i 0.214832 0.372099i −0.738389 0.674375i \(-0.764413\pi\)
0.953220 + 0.302276i \(0.0977464\pi\)
\(444\) 0 0
\(445\) 20.4089 11.7831i 0.967474 0.558571i
\(446\) 0 0
\(447\) 10.5961 0.501179
\(448\) 0 0
\(449\) 5.65664 0.266954 0.133477 0.991052i \(-0.457386\pi\)
0.133477 + 0.991052i \(0.457386\pi\)
\(450\) 0 0
\(451\) −11.4292 + 6.59867i −0.538182 + 0.310719i
\(452\) 0 0
\(453\) −0.608052 + 1.05318i −0.0285688 + 0.0494826i
\(454\) 0 0
\(455\) 42.1849 10.2684i 1.97766 0.481391i
\(456\) 0 0
\(457\) −4.68971 + 8.12282i −0.219376 + 0.379970i −0.954617 0.297835i \(-0.903735\pi\)
0.735242 + 0.677805i \(0.237069\pi\)
\(458\) 0 0
\(459\) 1.57961 + 2.73597i 0.0737301 + 0.127704i
\(460\) 0 0
\(461\) −31.7960 −1.48089 −0.740444 0.672118i \(-0.765385\pi\)
−0.740444 + 0.672118i \(0.765385\pi\)
\(462\) 0 0
\(463\) 8.87505i 0.412458i 0.978504 + 0.206229i \(0.0661193\pi\)
−0.978504 + 0.206229i \(0.933881\pi\)
\(464\) 0 0
\(465\) 5.66939 3.27323i 0.262912 0.151792i
\(466\) 0 0
\(467\) −2.70998 1.56461i −0.125403 0.0724015i 0.435986 0.899953i \(-0.356400\pi\)
−0.561389 + 0.827552i \(0.689733\pi\)
\(468\) 0 0
\(469\) −6.55294 + 22.3811i −0.302587 + 1.03346i
\(470\) 0 0
\(471\) −3.13938 1.81252i −0.144655 0.0835165i
\(472\) 0 0
\(473\) 7.40081 + 12.8186i 0.340290 + 0.589399i
\(474\) 0 0
\(475\) 18.3719i 0.842959i
\(476\) 0 0
\(477\) 3.60913i 0.165251i
\(478\) 0 0
\(479\) −8.19517 14.1945i −0.374447 0.648561i 0.615797 0.787905i \(-0.288834\pi\)
−0.990244 + 0.139344i \(0.955501\pi\)
\(480\) 0 0
\(481\) −4.05869 2.34328i −0.185060 0.106845i
\(482\) 0 0
\(483\) 5.59872 + 5.86270i 0.254750 + 0.266762i
\(484\) 0 0
\(485\) −42.5580 24.5708i −1.93246 1.11570i
\(486\) 0 0
\(487\) 25.4297 14.6819i 1.15233 0.665299i 0.202877 0.979204i \(-0.434971\pi\)
0.949454 + 0.313905i \(0.101637\pi\)
\(488\) 0 0
\(489\) 19.8314i 0.896808i
\(490\) 0 0
\(491\) −33.8967 −1.52974 −0.764869 0.644186i \(-0.777196\pi\)
−0.764869 + 0.644186i \(0.777196\pi\)
\(492\) 0 0
\(493\) −15.6120 27.0407i −0.703128 1.21785i
\(494\) 0 0
\(495\) −3.57205 + 6.18698i −0.160552 + 0.278084i
\(496\) 0 0
\(497\) −22.3938 + 21.3854i −1.00450 + 0.959267i
\(498\) 0 0
\(499\) −4.44527 + 7.69943i −0.198997 + 0.344674i −0.948204 0.317663i \(-0.897102\pi\)
0.749206 + 0.662337i \(0.230435\pi\)
\(500\) 0 0
\(501\) 10.7362 6.19856i 0.479659 0.276931i
\(502\) 0 0
\(503\) 1.51626 0.0676065 0.0338032 0.999429i \(-0.489238\pi\)
0.0338032 + 0.999429i \(0.489238\pi\)
\(504\) 0 0
\(505\) 31.7711 1.41380
\(506\) 0 0
\(507\) 11.1232 6.42196i 0.493997 0.285209i
\(508\) 0 0
\(509\) 3.71720 6.43837i 0.164762 0.285376i −0.771809 0.635855i \(-0.780648\pi\)
0.936571 + 0.350479i \(0.113981\pi\)
\(510\) 0 0
\(511\) 22.9299 + 6.71363i 1.01436 + 0.296994i
\(512\) 0 0
\(513\) −1.69490 + 2.93566i −0.0748318 + 0.129613i
\(514\) 0 0
\(515\) 3.20297 + 5.54771i 0.141140 + 0.244461i
\(516\) 0 0
\(517\) 4.69698 0.206573
\(518\) 0 0
\(519\) 1.03865i 0.0455917i
\(520\) 0 0
\(521\) −11.7724 + 6.79678i −0.515757 + 0.297772i −0.735197 0.677854i \(-0.762910\pi\)
0.219440 + 0.975626i \(0.429577\pi\)
\(522\) 0 0
\(523\) −3.38679 1.95536i −0.148094 0.0855020i 0.424122 0.905605i \(-0.360583\pi\)
−0.572216 + 0.820103i \(0.693916\pi\)
\(524\) 0 0
\(525\) −3.39136 13.9325i −0.148011 0.608063i
\(526\) 0 0
\(527\) 5.54868 + 3.20353i 0.241704 + 0.139548i
\(528\) 0 0
\(529\) −6.80594 11.7882i −0.295910 0.512532i
\(530\) 0 0
\(531\) 12.2803i 0.532920i
\(532\) 0 0
\(533\) 30.3142i 1.31305i
\(534\) 0 0
\(535\) −5.22301 9.04652i −0.225811 0.391115i
\(536\) 0 0
\(537\) −2.18764 1.26304i −0.0944038 0.0545041i
\(538\) 0 0
\(539\) −13.7592 + 7.12025i −0.592650 + 0.306691i
\(540\) 0 0
\(541\) 29.3866 + 16.9663i 1.26343 + 0.729440i 0.973736 0.227680i \(-0.0731140\pi\)
0.289691 + 0.957120i \(0.406447\pi\)
\(542\) 0 0
\(543\) 7.18686 4.14933i 0.308418 0.178065i
\(544\) 0 0
\(545\) 13.5301i 0.579565i
\(546\) 0 0
\(547\) −19.9416 −0.852640 −0.426320 0.904572i \(-0.640190\pi\)
−0.426320 + 0.904572i \(0.640190\pi\)
\(548\) 0 0
\(549\) −6.34115 10.9832i −0.270634 0.468752i
\(550\) 0 0
\(551\) 16.7514 29.0143i 0.713634 1.23605i
\(552\) 0 0
\(553\) −6.93720 28.4995i −0.295000 1.21192i
\(554\) 0 0
\(555\) −1.48790 + 2.57712i −0.0631579 + 0.109393i
\(556\) 0 0
\(557\) −29.5999 + 17.0895i −1.25419 + 0.724107i −0.971939 0.235234i \(-0.924414\pi\)
−0.282251 + 0.959341i \(0.591081\pi\)
\(558\) 0 0
\(559\) −33.9992 −1.43801
\(560\) 0 0
\(561\) −6.99199 −0.295202
\(562\) 0 0
\(563\) −1.95583 + 1.12920i −0.0824283 + 0.0475900i −0.540648 0.841249i \(-0.681821\pi\)
0.458219 + 0.888839i \(0.348487\pi\)
\(564\) 0 0
\(565\) 4.59422 7.95742i 0.193280 0.334771i
\(566\) 0 0
\(567\) 0.743436 2.53915i 0.0312214 0.106634i
\(568\) 0 0
\(569\) −14.5803 + 25.2538i −0.611236 + 1.05869i 0.379796 + 0.925070i \(0.375994\pi\)
−0.991032 + 0.133622i \(0.957339\pi\)
\(570\) 0 0
\(571\) −13.1289 22.7399i −0.549427 0.951636i −0.998314 0.0580474i \(-0.981513\pi\)
0.448886 0.893589i \(-0.351821\pi\)
\(572\) 0 0
\(573\) 6.07541 0.253804
\(574\) 0 0
\(575\) 16.6061i 0.692522i
\(576\) 0 0
\(577\) 0.0467698 0.0270026i 0.00194705 0.00112413i −0.499026 0.866587i \(-0.666309\pi\)
0.500973 + 0.865463i \(0.332976\pi\)
\(578\) 0 0
\(579\) 7.95599 + 4.59340i 0.330640 + 0.190895i
\(580\) 0 0
\(581\) 6.83705 6.52919i 0.283649 0.270876i
\(582\) 0 0
\(583\) 6.91756 + 3.99386i 0.286496 + 0.165409i
\(584\) 0 0
\(585\) −8.20498 14.2114i −0.339234 0.587571i
\(586\) 0 0
\(587\) 4.75946i 0.196444i 0.995165 + 0.0982219i \(0.0313155\pi\)
−0.995165 + 0.0982219i \(0.968685\pi\)
\(588\) 0 0
\(589\) 6.87468i 0.283266i
\(590\) 0 0
\(591\) −10.1382 17.5599i −0.417029 0.722316i
\(592\) 0 0
\(593\) −10.2802 5.93527i −0.422157 0.243732i 0.273843 0.961774i \(-0.411705\pi\)
−0.696000 + 0.718042i \(0.745038\pi\)
\(594\) 0 0
\(595\) 19.5127 18.6341i 0.799944 0.763923i
\(596\) 0 0
\(597\) −2.84672 1.64355i −0.116508 0.0672662i
\(598\) 0 0
\(599\) −25.6580 + 14.8136i −1.04836 + 0.605269i −0.922189 0.386740i \(-0.873601\pi\)
−0.126167 + 0.992009i \(0.540268\pi\)
\(600\) 0 0
\(601\) 26.4608i 1.07936i 0.841870 + 0.539680i \(0.181455\pi\)
−0.841870 + 0.539680i \(0.818545\pi\)
\(602\) 0 0
\(603\) 8.81440 0.358950
\(604\) 0 0
\(605\) 9.84814 + 17.0575i 0.400384 + 0.693485i
\(606\) 0 0
\(607\) 7.69208 13.3231i 0.312212 0.540767i −0.666629 0.745390i \(-0.732263\pi\)
0.978841 + 0.204623i \(0.0655967\pi\)
\(608\) 0 0
\(609\) −7.34768 + 25.0955i −0.297743 + 1.01692i
\(610\) 0 0
\(611\) −5.39446 + 9.34348i −0.218237 + 0.377997i
\(612\) 0 0
\(613\) 16.8302 9.71692i 0.679765 0.392463i −0.120001 0.992774i \(-0.538290\pi\)
0.799767 + 0.600311i \(0.204957\pi\)
\(614\) 0 0
\(615\) −19.2484 −0.776172
\(616\) 0 0
\(617\) −0.173969 −0.00700371 −0.00350186 0.999994i \(-0.501115\pi\)
−0.00350186 + 0.999994i \(0.501115\pi\)
\(618\) 0 0
\(619\) 32.8798 18.9832i 1.32155 0.762998i 0.337575 0.941299i \(-0.390393\pi\)
0.983976 + 0.178300i \(0.0570599\pi\)
\(620\) 0 0
\(621\) 1.53200 2.65351i 0.0614771 0.106482i
\(622\) 0 0
\(623\) −4.56831 18.7677i −0.183026 0.751910i
\(624\) 0 0
\(625\) 11.3626 19.6805i 0.454503 0.787222i
\(626\) 0 0
\(627\) −3.75115 6.49718i −0.149807 0.259473i
\(628\) 0 0
\(629\) −2.91244 −0.116127
\(630\) 0 0
\(631\) 26.0140i 1.03560i −0.855501 0.517801i \(-0.826751\pi\)
0.855501 0.517801i \(-0.173249\pi\)
\(632\) 0 0
\(633\) 18.7841 10.8450i 0.746602 0.431051i
\(634\) 0 0
\(635\) 58.7216 + 33.9030i 2.33030 + 1.34540i
\(636\) 0 0
\(637\) 1.63841 35.5481i 0.0649161 1.40847i
\(638\) 0 0
\(639\) 10.1356 + 5.85179i 0.400958 + 0.231493i
\(640\) 0 0
\(641\) −12.4573 21.5767i −0.492035 0.852230i 0.507923 0.861403i \(-0.330413\pi\)
−0.999958 + 0.00917289i \(0.997080\pi\)
\(642\) 0 0
\(643\) 4.80941i 0.189665i 0.995493 + 0.0948323i \(0.0302315\pi\)
−0.995493 + 0.0948323i \(0.969769\pi\)
\(644\) 0 0
\(645\) 21.5883i 0.850038i
\(646\) 0 0
\(647\) −4.27034 7.39644i −0.167884 0.290784i 0.769792 0.638295i \(-0.220360\pi\)
−0.937676 + 0.347511i \(0.887027\pi\)
\(648\) 0 0
\(649\) 23.5374 + 13.5893i 0.923925 + 0.533428i
\(650\) 0 0
\(651\) −1.26903 5.21348i −0.0497374 0.204332i
\(652\) 0 0
\(653\) 24.1955 + 13.9693i 0.946845 + 0.546661i 0.892099 0.451839i \(-0.149232\pi\)
0.0547454 + 0.998500i \(0.482565\pi\)
\(654\) 0 0
\(655\) −1.59605 + 0.921481i −0.0623629 + 0.0360052i
\(656\) 0 0
\(657\) 9.03055i 0.352315i
\(658\) 0 0
\(659\) −28.0553 −1.09288 −0.546439 0.837499i \(-0.684017\pi\)
−0.546439 + 0.837499i \(0.684017\pi\)
\(660\) 0 0
\(661\) 4.47127 + 7.74447i 0.173912 + 0.301225i 0.939784 0.341768i \(-0.111026\pi\)
−0.765872 + 0.642993i \(0.777692\pi\)
\(662\) 0 0
\(663\) 8.03027 13.9088i 0.311870 0.540175i
\(664\) 0 0
\(665\) 27.7838 + 8.13480i 1.07741 + 0.315454i
\(666\) 0 0
\(667\) −15.1414 + 26.2257i −0.586277 + 1.01546i
\(668\) 0 0
\(669\) 16.7373 9.66329i 0.647102 0.373604i
\(670\) 0 0
\(671\) 28.0684 1.08357
\(672\) 0 0
\(673\) 45.4881 1.75344 0.876720 0.481002i \(-0.159727\pi\)
0.876720 + 0.481002i \(0.159727\pi\)
\(674\) 0 0
\(675\) −4.69363 + 2.70987i −0.180658 + 0.104303i
\(676\) 0 0
\(677\) 5.48447 9.49939i 0.210785 0.365091i −0.741175 0.671312i \(-0.765731\pi\)
0.951961 + 0.306221i \(0.0990645\pi\)
\(678\) 0 0
\(679\) −29.1293 + 27.8177i −1.11788 + 1.06754i
\(680\) 0 0
\(681\) 0.269531 0.466841i 0.0103284 0.0178894i
\(682\) 0 0
\(683\) −14.1037 24.4283i −0.539663 0.934723i −0.998922 0.0464211i \(-0.985218\pi\)
0.459259 0.888302i \(-0.348115\pi\)
\(684\) 0 0
\(685\) −42.4679 −1.62262
\(686\) 0 0
\(687\) 22.8623i 0.872251i
\(688\) 0 0
\(689\) −15.8896 + 9.17386i −0.605345 + 0.349496i
\(690\) 0 0
\(691\) −8.22050 4.74611i −0.312723 0.180550i 0.335422 0.942068i \(-0.391121\pi\)
−0.648144 + 0.761518i \(0.724455\pi\)
\(692\) 0 0
\(693\) 4.04407 + 4.23475i 0.153621 + 0.160865i
\(694\) 0 0
\(695\) −26.6920 15.4106i −1.01249 0.584559i
\(696\) 0 0
\(697\) −9.41929 16.3147i −0.356781 0.617963i
\(698\) 0 0
\(699\) 3.00490i 0.113656i
\(700\) 0 0
\(701\) 14.3589i 0.542328i −0.962533 0.271164i \(-0.912591\pi\)
0.962533 0.271164i \(-0.0874085\pi\)
\(702\) 0 0
\(703\) −1.56250 2.70633i −0.0589309 0.102071i
\(704\) 0 0
\(705\) 5.93277 + 3.42529i 0.223441 + 0.129004i
\(706\) 0 0
\(707\) 7.31725 24.9915i 0.275193 0.939904i
\(708\) 0 0
\(709\) −8.90161 5.13935i −0.334307 0.193012i 0.323445 0.946247i \(-0.395159\pi\)
−0.657752 + 0.753235i \(0.728492\pi\)
\(710\) 0 0
\(711\) −9.60105 + 5.54317i −0.360068 + 0.207885i
\(712\) 0 0
\(713\) 6.21394i 0.232714i
\(714\) 0 0
\(715\) 36.3184 1.35823
\(716\) 0 0
\(717\) −5.63494 9.76000i −0.210441 0.364494i
\(718\) 0 0
\(719\) −7.39467 + 12.8079i −0.275775 + 0.477656i −0.970330 0.241783i \(-0.922268\pi\)
0.694556 + 0.719439i \(0.255601\pi\)
\(720\) 0 0
\(721\) 5.10158 1.24180i 0.189993 0.0462469i
\(722\) 0 0
\(723\) 5.63653 9.76276i 0.209625 0.363081i
\(724\) 0 0
\(725\) 46.3890 26.7827i 1.72285 0.994685i
\(726\) 0 0
\(727\) 43.5679 1.61585 0.807923 0.589289i \(-0.200592\pi\)
0.807923 + 0.589289i \(0.200592\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −18.2979 + 10.5643i −0.676773 + 0.390735i
\(732\) 0 0
\(733\) 11.3412 19.6435i 0.418896 0.725549i −0.576933 0.816792i \(-0.695750\pi\)
0.995829 + 0.0912424i \(0.0290838\pi\)
\(734\) 0 0
\(735\) −22.5718 1.04033i −0.832572 0.0383731i
\(736\) 0 0
\(737\) −9.75399 + 16.8944i −0.359293 + 0.622314i
\(738\) 0 0
\(739\) 2.32595 + 4.02866i 0.0855615 + 0.148197i 0.905630 0.424068i \(-0.139398\pi\)
−0.820069 + 0.572265i \(0.806065\pi\)
\(740\) 0 0
\(741\) 17.2327 0.633060
\(742\) 0 0
\(743\) 28.3209i 1.03899i −0.854473 0.519496i \(-0.826120\pi\)
0.854473 0.519496i \(-0.173880\pi\)
\(744\) 0 0
\(745\) −29.6214 + 17.1019i −1.08525 + 0.626567i
\(746\) 0 0
\(747\) −3.09450 1.78661i −0.113222 0.0653687i
\(748\) 0 0
\(749\) −8.31902 + 2.02497i −0.303971 + 0.0739908i
\(750\) 0 0
\(751\) −28.5823 16.5020i −1.04298 0.602166i −0.122306 0.992492i \(-0.539029\pi\)
−0.920677 + 0.390326i \(0.872362\pi\)
\(752\) 0 0
\(753\) 1.63312 + 2.82866i 0.0595144 + 0.103082i
\(754\) 0 0
\(755\) 3.92554i 0.142865i
\(756\) 0 0
\(757\) 19.0350i 0.691838i −0.938264 0.345919i \(-0.887567\pi\)
0.938264 0.345919i \(-0.112433\pi\)
\(758\) 0 0
\(759\) 3.39062 + 5.87273i 0.123072 + 0.213166i
\(760\) 0 0
\(761\) 43.2756 + 24.9852i 1.56874 + 0.905712i 0.996316 + 0.0857544i \(0.0273301\pi\)
0.572424 + 0.819958i \(0.306003\pi\)
\(762\) 0 0
\(763\) −10.6429 3.11613i −0.385300 0.112811i
\(764\) 0 0
\(765\) −8.83161 5.09893i −0.319308 0.184352i
\(766\) 0 0
\(767\) −54.0653 + 31.2146i −1.95219 + 1.12709i
\(768\) 0 0
\(769\) 24.2908i 0.875949i −0.898987 0.437974i \(-0.855696\pi\)
0.898987 0.437974i \(-0.144304\pi\)
\(770\) 0 0
\(771\) −12.0704 −0.434706
\(772\) 0 0
\(773\) 8.01612 + 13.8843i 0.288320 + 0.499385i 0.973409 0.229075i \(-0.0735700\pi\)
−0.685089 + 0.728459i \(0.740237\pi\)
\(774\) 0 0
\(775\) −5.49574 + 9.51890i −0.197413 + 0.341929i
\(776\) 0 0
\(777\) 1.68451 + 1.76394i 0.0604316 + 0.0632810i
\(778\) 0 0
\(779\) 10.1068 17.5054i 0.362112 0.627197i
\(780\) 0 0
\(781\) −22.4321 + 12.9512i −0.802682 + 0.463429i
\(782\) 0 0
\(783\) 9.88340 0.353204
\(784\) 0 0
\(785\) 11.7015 0.417644
\(786\) 0 0
\(787\) 8.71618 5.03229i 0.310698 0.179382i −0.336541 0.941669i \(-0.609257\pi\)
0.647239 + 0.762287i \(0.275924\pi\)
\(788\) 0 0
\(789\) −8.19034 + 14.1861i −0.291584 + 0.505038i
\(790\) 0 0
\(791\) −5.20130 5.44655i −0.184937 0.193657i
\(792\) 0 0
\(793\) −32.2365 + 55.8352i −1.14475 + 1.98277i
\(794\) 0 0
\(795\) 5.82507 + 10.0893i 0.206594 + 0.357831i
\(796\) 0 0
\(797\) 53.0872 1.88045 0.940223 0.340560i \(-0.110617\pi\)
0.940223 + 0.340560i \(0.110617\pi\)
\(798\) 0 0
\(799\) 6.70471i 0.237196i
\(800\) 0 0
\(801\) −6.32253 + 3.65032i −0.223396 + 0.128978i
\(802\) 0 0
\(803\) 17.3087 + 9.99318i 0.610811 + 0.352652i
\(804\) 0 0
\(805\) −25.1135 7.35295i −0.885134 0.259157i
\(806\) 0 0
\(807\) 6.47046 + 3.73572i 0.227771 + 0.131504i
\(808\) 0 0
\(809\) −26.9529 46.6838i −0.947614 1.64132i −0.750431 0.660949i \(-0.770154\pi\)
−0.197183 0.980367i \(-0.563179\pi\)
\(810\) 0 0
\(811\) 48.2050i 1.69271i 0.532621 + 0.846354i \(0.321207\pi\)
−0.532621 + 0.846354i \(0.678793\pi\)
\(812\) 0 0
\(813\) 8.97234i 0.314674i
\(814\) 0 0
\(815\) 32.0076 + 55.4387i 1.12118 + 1.94193i
\(816\) 0 0
\(817\) −19.6334 11.3353i −0.686885 0.396574i
\(818\) 0 0
\(819\) −13.0686 + 3.18108i −0.456654 + 0.111156i
\(820\) 0 0
\(821\) −22.4271 12.9483i −0.782712 0.451899i 0.0546787 0.998504i \(-0.482587\pi\)
−0.837390 + 0.546605i \(0.815920\pi\)
\(822\) 0 0
\(823\) 48.1100 27.7763i 1.67701 0.968221i 0.713457 0.700699i \(-0.247129\pi\)
0.963552 0.267522i \(-0.0862048\pi\)
\(824\) 0 0
\(825\) 11.9949i 0.417610i
\(826\) 0 0
\(827\) −23.2870 −0.809770 −0.404885 0.914368i \(-0.632688\pi\)
−0.404885 + 0.914368i \(0.632688\pi\)
\(828\) 0 0
\(829\) −2.58838 4.48320i −0.0898980 0.155708i 0.817570 0.575829i \(-0.195321\pi\)
−0.907468 + 0.420122i \(0.861987\pi\)
\(830\) 0 0
\(831\) −3.06942 + 5.31638i −0.106477 + 0.184423i
\(832\) 0 0
\(833\) −10.1638 19.6406i −0.352155 0.680506i
\(834\) 0 0
\(835\) −20.0087 + 34.6561i −0.692430 + 1.19932i
\(836\) 0 0
\(837\) −1.75634 + 1.01402i −0.0607080 + 0.0350498i
\(838\) 0 0
\(839\) −12.7298 −0.439480 −0.219740 0.975558i \(-0.570521\pi\)
−0.219740 + 0.975558i \(0.570521\pi\)
\(840\) 0 0
\(841\) −68.6816 −2.36833
\(842\) 0 0
\(843\) −16.7087 + 9.64680i −0.575480 + 0.332253i
\(844\) 0 0
\(845\) −20.7298 + 35.9052i −0.713128 + 1.23517i
\(846\) 0 0
\(847\) 15.6858 3.81814i 0.538969 0.131193i
\(848\) 0 0
\(849\) −11.1718 + 19.3500i −0.383414 + 0.664092i
\(850\) 0 0
\(851\) 1.41233 + 2.44622i 0.0484139 + 0.0838554i
\(852\) 0 0
\(853\) 47.2928 1.61927 0.809637 0.586930i \(-0.199664\pi\)
0.809637 + 0.586930i \(0.199664\pi\)
\(854\) 0 0
\(855\) 10.9422i 0.374214i
\(856\) 0 0
\(857\) 45.2524 26.1265i 1.54579 0.892463i 0.547336 0.836913i \(-0.315642\pi\)
0.998456 0.0555505i \(-0.0176914\pi\)
\(858\) 0 0
\(859\) −43.7066 25.2340i −1.49125 0.860973i −0.491299 0.870991i \(-0.663478\pi\)
−0.999950 + 0.0100178i \(0.996811\pi\)
\(860\) 0 0
\(861\) −4.43313 + 15.1411i −0.151081 + 0.516006i
\(862\) 0 0
\(863\) 23.1918 + 13.3898i 0.789457 + 0.455793i 0.839771 0.542940i \(-0.182689\pi\)
−0.0503147 + 0.998733i \(0.516022\pi\)
\(864\) 0 0
\(865\) 1.67636 + 2.90355i 0.0569981 + 0.0987236i
\(866\) 0 0
\(867\) 7.01927i 0.238387i
\(868\) 0 0
\(869\) 24.5362i 0.832335i
\(870\) 0 0
\(871\) −22.4049 38.8063i −0.759160 1.31490i
\(872\) 0 0
\(873\) 13.1842 + 7.61188i 0.446216 + 0.257623i
\(874\) 0 0
\(875\) 2.47574 + 2.59247i 0.0836952 + 0.0876416i
\(876\) 0 0
\(877\) −22.4411 12.9564i −0.757783 0.437506i 0.0707159 0.997496i \(-0.477472\pi\)
−0.828499 + 0.559990i \(0.810805\pi\)
\(878\) 0 0
\(879\) 12.1856 7.03534i 0.411009 0.237296i
\(880\) 0 0
\(881\) 10.0120i 0.337313i 0.985675 + 0.168657i \(0.0539429\pi\)
−0.985675 + 0.168657i \(0.946057\pi\)
\(882\) 0 0
\(883\) 23.6231 0.794981 0.397491 0.917606i \(-0.369881\pi\)
0.397491 + 0.917606i \(0.369881\pi\)
\(884\) 0 0
\(885\) 19.8202 + 34.3295i 0.666248 + 1.15397i
\(886\) 0 0
\(887\) −9.08123 + 15.7291i −0.304918 + 0.528133i −0.977243 0.212123i \(-0.931962\pi\)
0.672325 + 0.740256i \(0.265296\pi\)
\(888\) 0 0
\(889\) 40.1927 38.3829i 1.34802 1.28732i
\(890\) 0 0
\(891\) 1.10660 1.91668i 0.0370724 0.0642113i
\(892\) 0 0
\(893\) −6.23023 + 3.59703i −0.208487 + 0.120370i
\(894\) 0 0
\(895\) 8.15407 0.272560
\(896\) 0 0
\(897\) −15.5765 −0.520083
\(898\) 0 0
\(899\) 17.3586 10.0220i 0.578942 0.334252i
\(900\) 0 0
\(901\) −5.70104 + 9.87449i −0.189929 + 0.328967i
\(902\) 0 0
\(903\) 16.9816 + 4.97203i 0.565113 + 0.165459i
\(904\) 0 0
\(905\) −13.3939 + 23.1989i −0.445228 + 0.771158i
\(906\) 0 0
\(907\) −27.7185 48.0098i −0.920377 1.59414i −0.798832 0.601554i \(-0.794548\pi\)
−0.121546 0.992586i \(-0.538785\pi\)
\(908\) 0 0
\(909\) −9.84247 −0.326454
\(910\) 0 0
\(911\) 18.4722i 0.612012i 0.952030 + 0.306006i \(0.0989928\pi\)
−0.952030 + 0.306006i \(0.901007\pi\)
\(912\) 0 0
\(913\) 6.84874 3.95412i 0.226660 0.130862i
\(914\) 0 0
\(915\) 35.4533 + 20.4690i 1.17205 + 0.676684i
\(916\) 0 0
\(917\) 0.357259 + 1.46770i 0.0117977 + 0.0484678i
\(918\) 0 0
\(919\) 0.144308 + 0.0833164i 0.00476029 + 0.00274835i 0.502378 0.864648i \(-0.332459\pi\)
−0.497618 + 0.867396i \(0.665792\pi\)
\(920\) 0 0
\(921\) 4.80893 + 8.32932i 0.158460 + 0.274460i
\(922\) 0 0
\(923\) 59.4974i 1.95838i
\(924\) 0 0
\(925\) 4.99636i 0.164279i
\(926\) 0 0
\(927\) −0.992258 1.71864i −0.0325900 0.0564476i
\(928\) 0 0
\(929\) 14.0194 + 8.09409i 0.459961 + 0.265559i 0.712028 0.702151i \(-0.247777\pi\)
−0.252067 + 0.967710i \(0.581110\pi\)
\(930\) 0 0
\(931\) 12.7979 19.9816i 0.419433 0.654870i
\(932\) 0 0
\(933\) 18.7902 + 10.8485i 0.615162 + 0.355164i
\(934\) 0 0
\(935\) 19.5461 11.2849i 0.639225 0.369057i
\(936\) 0 0
\(937\) 19.5153i 0.637538i 0.947832 + 0.318769i \(0.103270\pi\)
−0.947832 + 0.318769i \(0.896730\pi\)
\(938\) 0 0
\(939\) −10.9294 −0.356668
\(940\) 0 0
\(941\) 12.3201 + 21.3390i 0.401624 + 0.695633i 0.993922 0.110086i \(-0.0351126\pi\)
−0.592298 + 0.805719i \(0.701779\pi\)
\(942\) 0 0
\(943\) −9.13538 + 15.8229i −0.297489 + 0.515266i
\(944\) 0 0
\(945\) 2.01987 + 8.29809i 0.0657065 + 0.269937i
\(946\) 0 0
\(947\) −4.30769 + 7.46115i −0.139981 + 0.242455i −0.927489 0.373850i \(-0.878038\pi\)
0.787508 + 0.616304i \(0.211371\pi\)
\(948\) 0 0
\(949\) −39.7579 + 22.9543i −1.29060 + 0.745127i
\(950\) 0 0
\(951\) 7.09278 0.229999
\(952\) 0 0
\(953\) −27.4982 −0.890755 −0.445378 0.895343i \(-0.646931\pi\)
−0.445378 + 0.895343i \(0.646931\pi\)
\(954\) 0 0
\(955\) −16.9838 + 9.80560i −0.549583 + 0.317302i
\(956\) 0 0
\(957\) −10.9369 + 18.9433i −0.353541 + 0.612352i
\(958\) 0 0
\(959\) −9.78084 + 33.4058i −0.315840 + 1.07873i
\(960\) 0 0
\(961\) 13.4435 23.2849i 0.433662 0.751124i
\(962\) 0 0
\(963\) 1.61805 + 2.80255i 0.0521410 + 0.0903109i
\(964\) 0 0
\(965\) −29.6546 −0.954616
\(966\) 0 0
\(967\) 21.2591i 0.683647i −0.939764 0.341823i \(-0.888956\pi\)
0.939764 0.341823i \(-0.111044\pi\)
\(968\) 0 0
\(969\) 9.27442 5.35459i 0.297937 0.172014i
\(970\) 0 0
\(971\) 27.3347 + 15.7817i 0.877213 + 0.506459i 0.869738 0.493513i \(-0.164287\pi\)
0.00747434 + 0.999972i \(0.497621\pi\)
\(972\) 0 0
\(973\) −18.2697 + 17.4470i −0.585698 + 0.559325i
\(974\) 0 0
\(975\) 23.8610 + 13.7761i 0.764163 + 0.441189i
\(976\) 0 0
\(977\) 9.75712 + 16.8998i 0.312158 + 0.540673i 0.978829 0.204678i \(-0.0656149\pi\)
−0.666671 + 0.745352i \(0.732282\pi\)
\(978\) 0 0
\(979\) 16.1577i 0.516403i
\(980\) 0 0
\(981\) 4.19152i 0.133825i
\(982\) 0 0
\(983\) 11.2401 + 19.4684i 0.358503 + 0.620946i 0.987711 0.156291i \(-0.0499538\pi\)
−0.629208 + 0.777237i \(0.716620\pi\)
\(984\) 0 0
\(985\) 56.6825 + 32.7257i 1.80606 + 1.04273i
\(986\) 0 0
\(987\) 4.06076 3.87791i 0.129255 0.123435i
\(988\) 0 0
\(989\) 17.7464 + 10.2459i 0.564302 + 0.325800i
\(990\) 0 0
\(991\) −38.9073 + 22.4631i −1.23593 + 0.713565i −0.968260 0.249945i \(-0.919588\pi\)
−0.267671 + 0.963510i \(0.586254\pi\)
\(992\) 0 0
\(993\) 11.7240i 0.372051i
\(994\) 0 0
\(995\) 10.6107 0.336381
\(996\) 0 0
\(997\) −14.5890 25.2688i −0.462037 0.800272i 0.537025 0.843566i \(-0.319548\pi\)
−0.999062 + 0.0432942i \(0.986215\pi\)
\(998\) 0 0
\(999\) 0.460941 0.798374i 0.0145835 0.0252594i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.2.bb.a.271.9 32
3.2 odd 2 2016.2.bs.c.271.15 32
4.3 odd 2 168.2.t.a.19.7 yes 32
7.2 even 3 4704.2.p.a.3919.10 32
7.3 odd 6 inner 672.2.bb.a.367.16 32
7.5 odd 6 4704.2.p.a.3919.19 32
8.3 odd 2 inner 672.2.bb.a.271.16 32
8.5 even 2 168.2.t.a.19.5 32
12.11 even 2 504.2.bk.c.19.10 32
21.17 even 6 2016.2.bs.c.1711.2 32
24.5 odd 2 504.2.bk.c.19.12 32
24.11 even 2 2016.2.bs.c.271.2 32
28.3 even 6 168.2.t.a.115.5 yes 32
28.19 even 6 1176.2.p.a.979.29 32
28.23 odd 6 1176.2.p.a.979.30 32
56.3 even 6 inner 672.2.bb.a.367.9 32
56.5 odd 6 1176.2.p.a.979.32 32
56.19 even 6 4704.2.p.a.3919.9 32
56.37 even 6 1176.2.p.a.979.31 32
56.45 odd 6 168.2.t.a.115.7 yes 32
56.51 odd 6 4704.2.p.a.3919.20 32
84.59 odd 6 504.2.bk.c.451.12 32
168.59 odd 6 2016.2.bs.c.1711.15 32
168.101 even 6 504.2.bk.c.451.10 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.t.a.19.5 32 8.5 even 2
168.2.t.a.19.7 yes 32 4.3 odd 2
168.2.t.a.115.5 yes 32 28.3 even 6
168.2.t.a.115.7 yes 32 56.45 odd 6
504.2.bk.c.19.10 32 12.11 even 2
504.2.bk.c.19.12 32 24.5 odd 2
504.2.bk.c.451.10 32 168.101 even 6
504.2.bk.c.451.12 32 84.59 odd 6
672.2.bb.a.271.9 32 1.1 even 1 trivial
672.2.bb.a.271.16 32 8.3 odd 2 inner
672.2.bb.a.367.9 32 56.3 even 6 inner
672.2.bb.a.367.16 32 7.3 odd 6 inner
1176.2.p.a.979.29 32 28.19 even 6
1176.2.p.a.979.30 32 28.23 odd 6
1176.2.p.a.979.31 32 56.37 even 6
1176.2.p.a.979.32 32 56.5 odd 6
2016.2.bs.c.271.2 32 24.11 even 2
2016.2.bs.c.271.15 32 3.2 odd 2
2016.2.bs.c.1711.2 32 21.17 even 6
2016.2.bs.c.1711.15 32 168.59 odd 6
4704.2.p.a.3919.9 32 56.19 even 6
4704.2.p.a.3919.10 32 7.2 even 3
4704.2.p.a.3919.19 32 7.5 odd 6
4704.2.p.a.3919.20 32 56.51 odd 6