Properties

Label 504.2.bk.c.451.10
Level $504$
Weight $2$
Character 504.451
Analytic conductor $4.024$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,2,Mod(19,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.bk (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 451.10
Character \(\chi\) \(=\) 504.451
Dual form 504.2.bk.c.19.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.647418 + 1.25732i) q^{2} +(-1.16170 + 1.62802i) q^{4} +(1.61398 + 2.79550i) q^{5} +(-1.82725 + 1.91341i) q^{7} +(-2.79905 - 0.406616i) q^{8} +(-2.46991 + 3.83914i) q^{10} +(1.10660 - 1.91668i) q^{11} -5.08369 q^{13} +(-3.58876 - 1.05866i) q^{14} +(-1.30091 - 3.78254i) q^{16} +(2.73597 + 1.57961i) q^{17} +(2.93566 - 1.69490i) q^{19} +(-6.42609 - 0.619932i) q^{20} +(3.12631 + 0.150450i) q^{22} +(2.65351 - 1.53200i) q^{23} +(-2.70987 + 4.69363i) q^{25} +(-3.29127 - 6.39182i) q^{26} +(-0.992355 - 5.19762i) q^{28} +9.88340i q^{29} +(1.01402 - 1.75634i) q^{31} +(3.91363 - 4.08454i) q^{32} +(-0.214760 + 4.46266i) q^{34} +(-8.29809 - 2.01987i) q^{35} +(0.798374 - 0.460941i) q^{37} +(4.03163 + 2.59375i) q^{38} +(-3.38092 - 8.48100i) q^{40} +5.96303i q^{41} -6.68790 q^{43} +(1.83487 + 4.02817i) q^{44} +(3.64414 + 2.34446i) q^{46} +(1.06113 + 1.83793i) q^{47} +(-0.322287 - 6.99258i) q^{49} +(-7.65581 - 0.368427i) q^{50} +(5.90572 - 8.27636i) q^{52} +(-3.12560 - 1.80457i) q^{53} +7.14411 q^{55} +(5.89259 - 4.61274i) q^{56} +(-12.4266 + 6.39869i) q^{58} +(10.6351 + 6.14015i) q^{59} +(6.34115 + 10.9832i) q^{61} +(2.86477 + 0.137864i) q^{62} +(7.66933 + 2.27627i) q^{64} +(-8.20498 - 14.2114i) q^{65} +(-4.40720 + 7.63350i) q^{67} +(-5.75002 + 2.61918i) q^{68} +(-2.83271 - 11.7410i) q^{70} -11.7036i q^{71} +(7.82068 + 4.51527i) q^{73} +(1.09643 + 0.705388i) q^{74} +(-0.651014 + 6.74828i) q^{76} +(1.64537 + 5.61964i) q^{77} +(9.60105 - 5.54317i) q^{79} +(8.47445 - 9.74164i) q^{80} +(-7.49743 + 3.86057i) q^{82} +3.57322i q^{83} +10.1979i q^{85} +(-4.32987 - 8.40882i) q^{86} +(-3.87677 + 4.91493i) q^{88} +(6.32253 - 3.65032i) q^{89} +(9.28920 - 9.72719i) q^{91} +(-0.588444 + 6.09969i) q^{92} +(-1.62387 + 2.52409i) q^{94} +(9.47619 + 5.47108i) q^{95} -15.2238i q^{97} +(8.58324 - 4.93234i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{2} - 2 q^{4} - 16 q^{8} - 18 q^{10} - 8 q^{11} + 10 q^{14} + 6 q^{16} - 20 q^{22} - 16 q^{25} + 30 q^{26} - 14 q^{28} + 12 q^{32} + 24 q^{35} + 18 q^{38} - 30 q^{40} - 16 q^{43} - 24 q^{44}+ \cdots - 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.647418 + 1.25732i 0.457794 + 0.889058i
\(3\) 0 0
\(4\) −1.16170 + 1.62802i −0.580850 + 0.814011i
\(5\) 1.61398 + 2.79550i 0.721794 + 1.25018i 0.960280 + 0.279038i \(0.0900156\pi\)
−0.238486 + 0.971146i \(0.576651\pi\)
\(6\) 0 0
\(7\) −1.82725 + 1.91341i −0.690637 + 0.723202i
\(8\) −2.79905 0.406616i −0.989613 0.143760i
\(9\) 0 0
\(10\) −2.46991 + 3.83914i −0.781054 + 1.21404i
\(11\) 1.10660 1.91668i 0.333652 0.577902i −0.649573 0.760299i \(-0.725052\pi\)
0.983225 + 0.182397i \(0.0583857\pi\)
\(12\) 0 0
\(13\) −5.08369 −1.40996 −0.704981 0.709226i \(-0.749045\pi\)
−0.704981 + 0.709226i \(0.749045\pi\)
\(14\) −3.58876 1.05866i −0.959138 0.282940i
\(15\) 0 0
\(16\) −1.30091 3.78254i −0.325227 0.945636i
\(17\) 2.73597 + 1.57961i 0.663571 + 0.383113i 0.793636 0.608393i \(-0.208185\pi\)
−0.130065 + 0.991505i \(0.541519\pi\)
\(18\) 0 0
\(19\) 2.93566 1.69490i 0.673486 0.388838i −0.123910 0.992293i \(-0.539543\pi\)
0.797396 + 0.603456i \(0.206210\pi\)
\(20\) −6.42609 0.619932i −1.43692 0.138621i
\(21\) 0 0
\(22\) 3.12631 + 0.150450i 0.666532 + 0.0320761i
\(23\) 2.65351 1.53200i 0.553294 0.319445i −0.197155 0.980372i \(-0.563170\pi\)
0.750450 + 0.660928i \(0.229837\pi\)
\(24\) 0 0
\(25\) −2.70987 + 4.69363i −0.541974 + 0.938726i
\(26\) −3.29127 6.39182i −0.645472 1.25354i
\(27\) 0 0
\(28\) −0.992355 5.19762i −0.187538 0.982257i
\(29\) 9.88340i 1.83530i 0.397387 + 0.917651i \(0.369917\pi\)
−0.397387 + 0.917651i \(0.630083\pi\)
\(30\) 0 0
\(31\) 1.01402 1.75634i 0.182124 0.315448i −0.760480 0.649362i \(-0.775036\pi\)
0.942604 + 0.333914i \(0.108369\pi\)
\(32\) 3.91363 4.08454i 0.691839 0.722052i
\(33\) 0 0
\(34\) −0.214760 + 4.46266i −0.0368311 + 0.765340i
\(35\) −8.29809 2.01987i −1.40263 0.341421i
\(36\) 0 0
\(37\) 0.798374 0.460941i 0.131252 0.0757783i −0.432936 0.901424i \(-0.642523\pi\)
0.564188 + 0.825646i \(0.309189\pi\)
\(38\) 4.03163 + 2.59375i 0.654017 + 0.420761i
\(39\) 0 0
\(40\) −3.38092 8.48100i −0.534570 1.34096i
\(41\) 5.96303i 0.931269i 0.884977 + 0.465635i \(0.154174\pi\)
−0.884977 + 0.465635i \(0.845826\pi\)
\(42\) 0 0
\(43\) −6.68790 −1.01990 −0.509948 0.860205i \(-0.670335\pi\)
−0.509948 + 0.860205i \(0.670335\pi\)
\(44\) 1.83487 + 4.02817i 0.276617 + 0.607270i
\(45\) 0 0
\(46\) 3.64414 + 2.34446i 0.537300 + 0.345671i
\(47\) 1.06113 + 1.83793i 0.154782 + 0.268090i 0.932980 0.359929i \(-0.117199\pi\)
−0.778198 + 0.628019i \(0.783866\pi\)
\(48\) 0 0
\(49\) −0.322287 6.99258i −0.0460410 0.998940i
\(50\) −7.65581 0.368427i −1.08269 0.0521034i
\(51\) 0 0
\(52\) 5.90572 8.27636i 0.818976 1.14772i
\(53\) −3.12560 1.80457i −0.429334 0.247876i 0.269729 0.962936i \(-0.413066\pi\)
−0.699063 + 0.715060i \(0.746399\pi\)
\(54\) 0 0
\(55\) 7.14411 0.963311
\(56\) 5.89259 4.61274i 0.787431 0.616403i
\(57\) 0 0
\(58\) −12.4266 + 6.39869i −1.63169 + 0.840190i
\(59\) 10.6351 + 6.14015i 1.38457 + 0.799379i 0.992696 0.120642i \(-0.0384952\pi\)
0.391869 + 0.920021i \(0.371828\pi\)
\(60\) 0 0
\(61\) 6.34115 + 10.9832i 0.811901 + 1.40625i 0.911532 + 0.411230i \(0.134901\pi\)
−0.0996301 + 0.995025i \(0.531766\pi\)
\(62\) 2.86477 + 0.137864i 0.363827 + 0.0175087i
\(63\) 0 0
\(64\) 7.66933 + 2.27627i 0.958666 + 0.284534i
\(65\) −8.20498 14.2114i −1.01770 1.76271i
\(66\) 0 0
\(67\) −4.40720 + 7.63350i −0.538425 + 0.932580i 0.460564 + 0.887627i \(0.347647\pi\)
−0.998989 + 0.0449534i \(0.985686\pi\)
\(68\) −5.75002 + 2.61918i −0.697293 + 0.317623i
\(69\) 0 0
\(70\) −2.83271 11.7410i −0.338574 1.40332i
\(71\) 11.7036i 1.38896i −0.719512 0.694480i \(-0.755634\pi\)
0.719512 0.694480i \(-0.244366\pi\)
\(72\) 0 0
\(73\) 7.82068 + 4.51527i 0.915342 + 0.528473i 0.882146 0.470976i \(-0.156098\pi\)
0.0331957 + 0.999449i \(0.489432\pi\)
\(74\) 1.09643 + 0.705388i 0.127458 + 0.0819997i
\(75\) 0 0
\(76\) −0.651014 + 6.74828i −0.0746764 + 0.774081i
\(77\) 1.64537 + 5.61964i 0.187507 + 0.640418i
\(78\) 0 0
\(79\) 9.60105 5.54317i 1.08020 0.623655i 0.149252 0.988799i \(-0.452313\pi\)
0.930951 + 0.365144i \(0.118980\pi\)
\(80\) 8.47445 9.74164i 0.947472 1.08915i
\(81\) 0 0
\(82\) −7.49743 + 3.86057i −0.827953 + 0.426329i
\(83\) 3.57322i 0.392212i 0.980583 + 0.196106i \(0.0628297\pi\)
−0.980583 + 0.196106i \(0.937170\pi\)
\(84\) 0 0
\(85\) 10.1979i 1.10611i
\(86\) −4.32987 8.40882i −0.466902 0.906746i
\(87\) 0 0
\(88\) −3.87677 + 4.91493i −0.413265 + 0.523933i
\(89\) 6.32253 3.65032i 0.670187 0.386933i −0.125960 0.992035i \(-0.540201\pi\)
0.796147 + 0.605103i \(0.206868\pi\)
\(90\) 0 0
\(91\) 9.28920 9.72719i 0.973772 1.01969i
\(92\) −0.588444 + 6.09969i −0.0613495 + 0.635937i
\(93\) 0 0
\(94\) −1.62387 + 2.52409i −0.167489 + 0.260340i
\(95\) 9.47619 + 5.47108i 0.972237 + 0.561321i
\(96\) 0 0
\(97\) 15.2238i 1.54574i −0.634566 0.772869i \(-0.718821\pi\)
0.634566 0.772869i \(-0.281179\pi\)
\(98\) 8.58324 4.93234i 0.867038 0.498241i
\(99\) 0 0
\(100\) −4.49328 9.86431i −0.449328 0.986431i
\(101\) 4.92124 8.52383i 0.489681 0.848153i −0.510248 0.860027i \(-0.670446\pi\)
0.999929 + 0.0118744i \(0.00377982\pi\)
\(102\) 0 0
\(103\) −0.992258 1.71864i −0.0977701 0.169343i 0.812991 0.582276i \(-0.197838\pi\)
−0.910761 + 0.412933i \(0.864504\pi\)
\(104\) 14.2295 + 2.06711i 1.39532 + 0.202697i
\(105\) 0 0
\(106\) 0.245344 5.09818i 0.0238299 0.495179i
\(107\) −1.61805 2.80255i −0.156423 0.270933i 0.777153 0.629311i \(-0.216663\pi\)
−0.933576 + 0.358379i \(0.883330\pi\)
\(108\) 0 0
\(109\) −3.62997 2.09576i −0.347688 0.200738i 0.315979 0.948766i \(-0.397667\pi\)
−0.663666 + 0.748029i \(0.731001\pi\)
\(110\) 4.62523 + 8.98242i 0.440998 + 0.856440i
\(111\) 0 0
\(112\) 9.61465 + 4.42249i 0.908499 + 0.417886i
\(113\) 2.84651 0.267777 0.133889 0.990996i \(-0.457254\pi\)
0.133889 + 0.990996i \(0.457254\pi\)
\(114\) 0 0
\(115\) 8.56542 + 4.94525i 0.798729 + 0.461147i
\(116\) −16.0904 11.4815i −1.49396 1.06603i
\(117\) 0 0
\(118\) −0.834798 + 17.3469i −0.0768494 + 1.59691i
\(119\) −8.02177 + 2.34868i −0.735354 + 0.215304i
\(120\) 0 0
\(121\) 3.05088 + 5.28429i 0.277353 + 0.480390i
\(122\) −9.70400 + 15.0836i −0.878559 + 1.36560i
\(123\) 0 0
\(124\) 1.68137 + 3.69119i 0.150991 + 0.331479i
\(125\) −1.35490 −0.121186
\(126\) 0 0
\(127\) 21.0058i 1.86396i −0.362506 0.931981i \(-0.618079\pi\)
0.362506 0.931981i \(-0.381921\pi\)
\(128\) 2.10326 + 11.1165i 0.185904 + 0.982568i
\(129\) 0 0
\(130\) 12.5563 19.5170i 1.10126 1.71176i
\(131\) 0.494446 0.285468i 0.0431999 0.0249415i −0.478245 0.878227i \(-0.658727\pi\)
0.521444 + 0.853285i \(0.325393\pi\)
\(132\) 0 0
\(133\) −2.12115 + 8.71414i −0.183927 + 0.755612i
\(134\) −12.4510 0.599191i −1.07561 0.0517623i
\(135\) 0 0
\(136\) −7.01582 5.53390i −0.601602 0.474528i
\(137\) −6.57813 + 11.3937i −0.562008 + 0.973426i 0.435313 + 0.900279i \(0.356638\pi\)
−0.997321 + 0.0731470i \(0.976696\pi\)
\(138\) 0 0
\(139\) 9.54821i 0.809869i 0.914346 + 0.404934i \(0.132706\pi\)
−0.914346 + 0.404934i \(0.867294\pi\)
\(140\) 12.9283 11.1630i 1.09264 0.943444i
\(141\) 0 0
\(142\) 14.7151 7.57711i 1.23487 0.635857i
\(143\) −5.62560 + 9.74383i −0.470436 + 0.814820i
\(144\) 0 0
\(145\) −27.6290 + 15.9516i −2.29447 + 1.32471i
\(146\) −0.613885 + 12.7564i −0.0508055 + 1.05572i
\(147\) 0 0
\(148\) −0.177048 + 1.83524i −0.0145533 + 0.150856i
\(149\) −9.17651 + 5.29806i −0.751769 + 0.434034i −0.826333 0.563182i \(-0.809577\pi\)
0.0745636 + 0.997216i \(0.476244\pi\)
\(150\) 0 0
\(151\) 1.05318 + 0.608052i 0.0857063 + 0.0494826i 0.542241 0.840223i \(-0.317576\pi\)
−0.456534 + 0.889706i \(0.650909\pi\)
\(152\) −8.90622 + 3.55043i −0.722390 + 0.287978i
\(153\) 0 0
\(154\) −6.00044 + 5.70701i −0.483529 + 0.459884i
\(155\) 6.54645 0.525824
\(156\) 0 0
\(157\) −1.81252 + 3.13938i −0.144655 + 0.250550i −0.929244 0.369466i \(-0.879541\pi\)
0.784589 + 0.620016i \(0.212874\pi\)
\(158\) 13.1854 + 8.48283i 1.04898 + 0.674858i
\(159\) 0 0
\(160\) 17.7349 + 4.34817i 1.40206 + 0.343753i
\(161\) −1.91728 + 7.87661i −0.151103 + 0.620764i
\(162\) 0 0
\(163\) −9.91572 17.1745i −0.776659 1.34521i −0.933857 0.357646i \(-0.883580\pi\)
0.157198 0.987567i \(-0.449754\pi\)
\(164\) −9.70794 6.92725i −0.758063 0.540927i
\(165\) 0 0
\(166\) −4.49268 + 2.31337i −0.348700 + 0.179552i
\(167\) 12.3971 0.959317 0.479659 0.877455i \(-0.340760\pi\)
0.479659 + 0.877455i \(0.340760\pi\)
\(168\) 0 0
\(169\) 12.8439 0.987994
\(170\) −12.8220 + 6.60229i −0.983400 + 0.506372i
\(171\) 0 0
\(172\) 7.76933 10.8880i 0.592406 0.830206i
\(173\) −0.519326 0.899499i −0.0394836 0.0683876i 0.845608 0.533804i \(-0.179238\pi\)
−0.885092 + 0.465416i \(0.845905\pi\)
\(174\) 0 0
\(175\) −4.02923 13.7615i −0.304581 1.04028i
\(176\) −8.68952 1.69232i −0.654997 0.127564i
\(177\) 0 0
\(178\) 8.68293 + 5.58616i 0.650813 + 0.418700i
\(179\) −1.26304 + 2.18764i −0.0944038 + 0.163512i −0.909360 0.416011i \(-0.863428\pi\)
0.814956 + 0.579523i \(0.196761\pi\)
\(180\) 0 0
\(181\) 8.29867 0.616835 0.308418 0.951251i \(-0.400201\pi\)
0.308418 + 0.951251i \(0.400201\pi\)
\(182\) 18.2442 + 5.38192i 1.35235 + 0.398934i
\(183\) 0 0
\(184\) −8.05022 + 3.20919i −0.593470 + 0.236585i
\(185\) 2.57712 + 1.48790i 0.189474 + 0.109393i
\(186\) 0 0
\(187\) 6.05524 3.49599i 0.442803 0.255652i
\(188\) −4.22491 0.407581i −0.308133 0.0297259i
\(189\) 0 0
\(190\) −0.743834 + 15.4567i −0.0539634 + 1.12134i
\(191\) 5.26146 3.03771i 0.380706 0.219801i −0.297419 0.954747i \(-0.596126\pi\)
0.678125 + 0.734946i \(0.262793\pi\)
\(192\) 0 0
\(193\) 4.59340 7.95599i 0.330640 0.572685i −0.651998 0.758221i \(-0.726069\pi\)
0.982637 + 0.185536i \(0.0594021\pi\)
\(194\) 19.1411 9.85613i 1.37425 0.707629i
\(195\) 0 0
\(196\) 11.7585 + 7.59858i 0.839890 + 0.542756i
\(197\) 20.2764i 1.44463i −0.691563 0.722316i \(-0.743078\pi\)
0.691563 0.722316i \(-0.256922\pi\)
\(198\) 0 0
\(199\) 1.64355 2.84672i 0.116508 0.201799i −0.801873 0.597494i \(-0.796163\pi\)
0.918382 + 0.395696i \(0.129496\pi\)
\(200\) 9.49355 12.0358i 0.671296 0.851061i
\(201\) 0 0
\(202\) 13.9033 + 0.669078i 0.978230 + 0.0470762i
\(203\) −18.9110 18.0595i −1.32729 1.26753i
\(204\) 0 0
\(205\) −16.6696 + 9.62422i −1.16426 + 0.672185i
\(206\) 1.51847 2.36026i 0.105797 0.164447i
\(207\) 0 0
\(208\) 6.61342 + 19.2293i 0.458558 + 1.33331i
\(209\) 7.50230i 0.518945i
\(210\) 0 0
\(211\) −21.6901 −1.49320 −0.746602 0.665271i \(-0.768316\pi\)
−0.746602 + 0.665271i \(0.768316\pi\)
\(212\) 6.56888 2.99218i 0.451153 0.205504i
\(213\) 0 0
\(214\) 2.47614 3.84883i 0.169265 0.263101i
\(215\) −10.7941 18.6960i −0.736154 1.27506i
\(216\) 0 0
\(217\) 1.50772 + 5.14952i 0.102351 + 0.349572i
\(218\) 0.284934 5.92086i 0.0192982 0.401011i
\(219\) 0 0
\(220\) −8.29931 + 11.6308i −0.559539 + 0.784146i
\(221\) −13.9088 8.03027i −0.935610 0.540175i
\(222\) 0 0
\(223\) −19.3266 −1.29420 −0.647102 0.762404i \(-0.724019\pi\)
−0.647102 + 0.762404i \(0.724019\pi\)
\(224\) 0.664217 + 14.9519i 0.0443799 + 0.999015i
\(225\) 0 0
\(226\) 1.84288 + 3.57897i 0.122587 + 0.238070i
\(227\) 0.466841 + 0.269531i 0.0309853 + 0.0178894i 0.515413 0.856942i \(-0.327639\pi\)
−0.484427 + 0.874832i \(0.660972\pi\)
\(228\) 0 0
\(229\) −11.4311 19.7993i −0.755392 1.30838i −0.945179 0.326551i \(-0.894113\pi\)
0.189788 0.981825i \(-0.439220\pi\)
\(230\) −0.672343 + 13.9711i −0.0443330 + 0.921227i
\(231\) 0 0
\(232\) 4.01875 27.6641i 0.263844 1.81624i
\(233\) −1.50245 2.60232i −0.0984287 0.170484i 0.812606 0.582814i \(-0.198048\pi\)
−0.911034 + 0.412330i \(0.864715\pi\)
\(234\) 0 0
\(235\) −3.42529 + 5.93277i −0.223441 + 0.387011i
\(236\) −22.3510 + 10.1811i −1.45493 + 0.662732i
\(237\) 0 0
\(238\) −8.14648 8.56534i −0.528058 0.555208i
\(239\) 11.2699i 0.728988i 0.931206 + 0.364494i \(0.118758\pi\)
−0.931206 + 0.364494i \(0.881242\pi\)
\(240\) 0 0
\(241\) 9.76276 + 5.63653i 0.628875 + 0.363081i 0.780316 0.625385i \(-0.215058\pi\)
−0.151441 + 0.988466i \(0.548392\pi\)
\(242\) −4.66883 + 7.25708i −0.300124 + 0.466503i
\(243\) 0 0
\(244\) −25.2474 2.43564i −1.61630 0.155926i
\(245\) 19.0276 12.1868i 1.21563 0.778588i
\(246\) 0 0
\(247\) −14.9240 + 8.61637i −0.949590 + 0.548246i
\(248\) −3.55245 + 4.50376i −0.225581 + 0.285989i
\(249\) 0 0
\(250\) −0.877184 1.70353i −0.0554780 0.107741i
\(251\) 3.26625i 0.206164i −0.994673 0.103082i \(-0.967130\pi\)
0.994673 0.103082i \(-0.0328704\pi\)
\(252\) 0 0
\(253\) 6.78124i 0.426333i
\(254\) 26.4110 13.5995i 1.65717 0.853311i
\(255\) 0 0
\(256\) −12.6153 + 9.84149i −0.788455 + 0.615093i
\(257\) 10.4533 6.03522i 0.652059 0.376467i −0.137185 0.990545i \(-0.543806\pi\)
0.789245 + 0.614079i \(0.210472\pi\)
\(258\) 0 0
\(259\) −0.576861 + 2.36987i −0.0358444 + 0.147257i
\(260\) 32.6683 + 3.15154i 2.02600 + 0.195450i
\(261\) 0 0
\(262\) 0.679038 + 0.436858i 0.0419511 + 0.0269892i
\(263\) −14.1861 8.19034i −0.874752 0.505038i −0.00582745 0.999983i \(-0.501855\pi\)
−0.868924 + 0.494945i \(0.835188\pi\)
\(264\) 0 0
\(265\) 11.6501i 0.715663i
\(266\) −12.3297 + 2.97474i −0.755984 + 0.182393i
\(267\) 0 0
\(268\) −7.30765 16.0428i −0.446386 0.979973i
\(269\) −3.73572 + 6.47046i −0.227771 + 0.394511i −0.957147 0.289602i \(-0.906477\pi\)
0.729376 + 0.684113i \(0.239810\pi\)
\(270\) 0 0
\(271\) −4.48617 7.77027i −0.272515 0.472011i 0.696990 0.717081i \(-0.254522\pi\)
−0.969505 + 0.245070i \(0.921189\pi\)
\(272\) 2.41571 12.4039i 0.146474 0.752095i
\(273\) 0 0
\(274\) −18.5843 0.894345i −1.12272 0.0540294i
\(275\) 5.99747 + 10.3879i 0.361661 + 0.626415i
\(276\) 0 0
\(277\) −5.31638 3.06942i −0.319430 0.184423i 0.331708 0.943382i \(-0.392375\pi\)
−0.651139 + 0.758959i \(0.725708\pi\)
\(278\) −12.0051 + 6.18169i −0.720021 + 0.370753i
\(279\) 0 0
\(280\) 22.4054 + 9.02785i 1.33898 + 0.539517i
\(281\) 19.2936 1.15096 0.575480 0.817816i \(-0.304815\pi\)
0.575480 + 0.817816i \(0.304815\pi\)
\(282\) 0 0
\(283\) 19.3500 + 11.1718i 1.15024 + 0.664092i 0.948946 0.315439i \(-0.102152\pi\)
0.201295 + 0.979531i \(0.435485\pi\)
\(284\) 19.0537 + 13.5960i 1.13063 + 0.806777i
\(285\) 0 0
\(286\) −15.8932 0.764842i −0.939785 0.0452260i
\(287\) −11.4097 10.8960i −0.673495 0.643169i
\(288\) 0 0
\(289\) −3.50964 6.07887i −0.206449 0.357581i
\(290\) −37.9438 24.4111i −2.22814 1.43347i
\(291\) 0 0
\(292\) −16.4362 + 7.48685i −0.961859 + 0.438135i
\(293\) −14.0707 −0.822018 −0.411009 0.911631i \(-0.634824\pi\)
−0.411009 + 0.911631i \(0.634824\pi\)
\(294\) 0 0
\(295\) 39.6403i 2.30795i
\(296\) −2.42211 + 0.965565i −0.140782 + 0.0561223i
\(297\) 0 0
\(298\) −12.6024 8.10774i −0.730037 0.469669i
\(299\) −13.4896 + 7.78823i −0.780124 + 0.450405i
\(300\) 0 0
\(301\) 12.2205 12.7967i 0.704377 0.737590i
\(302\) −0.0826691 + 1.71784i −0.00475707 + 0.0988507i
\(303\) 0 0
\(304\) −10.2301 8.89934i −0.586735 0.510412i
\(305\) −20.4690 + 35.4533i −1.17205 + 2.03005i
\(306\) 0 0
\(307\) 9.61787i 0.548921i 0.961598 + 0.274460i \(0.0884992\pi\)
−0.961598 + 0.274460i \(0.911501\pi\)
\(308\) −11.0603 3.84964i −0.630220 0.219354i
\(309\) 0 0
\(310\) 4.23829 + 8.23098i 0.240719 + 0.467488i
\(311\) 10.8485 18.7902i 0.615162 1.06549i −0.375194 0.926946i \(-0.622424\pi\)
0.990356 0.138546i \(-0.0442428\pi\)
\(312\) 0 0
\(313\) −9.46514 + 5.46470i −0.535001 + 0.308883i −0.743051 0.669235i \(-0.766622\pi\)
0.208049 + 0.978118i \(0.433289\pi\)
\(314\) −5.12065 0.246425i −0.288975 0.0139066i
\(315\) 0 0
\(316\) −2.12914 + 22.0702i −0.119773 + 1.24155i
\(317\) −6.14253 + 3.54639i −0.344999 + 0.199185i −0.662480 0.749079i \(-0.730496\pi\)
0.317482 + 0.948264i \(0.397163\pi\)
\(318\) 0 0
\(319\) 18.9433 + 10.9369i 1.06062 + 0.612352i
\(320\) 6.01484 + 25.1134i 0.336240 + 1.40388i
\(321\) 0 0
\(322\) −11.1447 + 2.68883i −0.621069 + 0.149843i
\(323\) 10.7092 0.595874
\(324\) 0 0
\(325\) 13.7761 23.8610i 0.764163 1.32357i
\(326\) 15.1742 23.5863i 0.840423 1.30633i
\(327\) 0 0
\(328\) 2.42466 16.6908i 0.133880 0.921595i
\(329\) −5.45567 1.32799i −0.300781 0.0732144i
\(330\) 0 0
\(331\) −5.86202 10.1533i −0.322206 0.558077i 0.658737 0.752373i \(-0.271091\pi\)
−0.980943 + 0.194297i \(0.937758\pi\)
\(332\) −5.81729 4.15101i −0.319265 0.227816i
\(333\) 0 0
\(334\) 8.02611 + 15.5871i 0.439169 + 0.852889i
\(335\) −28.4526 −1.55453
\(336\) 0 0
\(337\) 23.5287 1.28169 0.640846 0.767670i \(-0.278584\pi\)
0.640846 + 0.767670i \(0.278584\pi\)
\(338\) 8.31539 + 16.1489i 0.452298 + 0.878385i
\(339\) 0 0
\(340\) −16.6024 11.8469i −0.900389 0.642486i
\(341\) −2.24423 3.88712i −0.121532 0.210499i
\(342\) 0 0
\(343\) 13.9686 + 12.1605i 0.754232 + 0.656608i
\(344\) 18.7197 + 2.71940i 1.00930 + 0.146620i
\(345\) 0 0
\(346\) 0.794735 1.23531i 0.0427252 0.0664107i
\(347\) −5.17132 + 8.95699i −0.277611 + 0.480837i −0.970791 0.239928i \(-0.922876\pi\)
0.693179 + 0.720765i \(0.256209\pi\)
\(348\) 0 0
\(349\) −0.830301 −0.0444450 −0.0222225 0.999753i \(-0.507074\pi\)
−0.0222225 + 0.999753i \(0.507074\pi\)
\(350\) 14.6941 13.9755i 0.785430 0.747022i
\(351\) 0 0
\(352\) −3.49796 12.0211i −0.186442 0.640729i
\(353\) 4.21179 + 2.43168i 0.224171 + 0.129425i 0.607880 0.794029i \(-0.292020\pi\)
−0.383709 + 0.923454i \(0.625353\pi\)
\(354\) 0 0
\(355\) 32.7173 18.8894i 1.73646 1.00254i
\(356\) −1.40209 + 14.5338i −0.0743106 + 0.770289i
\(357\) 0 0
\(358\) −3.56828 0.171719i −0.188589 0.00907564i
\(359\) −16.3080 + 9.41543i −0.860704 + 0.496928i −0.864248 0.503066i \(-0.832205\pi\)
0.00354407 + 0.999994i \(0.498872\pi\)
\(360\) 0 0
\(361\) −3.75460 + 6.50317i −0.197611 + 0.342272i
\(362\) 5.37271 + 10.4341i 0.282383 + 0.548403i
\(363\) 0 0
\(364\) 5.04483 + 26.4231i 0.264421 + 1.38495i
\(365\) 29.1503i 1.52579i
\(366\) 0 0
\(367\) −10.7270 + 18.5796i −0.559943 + 0.969850i 0.437557 + 0.899190i \(0.355844\pi\)
−0.997501 + 0.0706593i \(0.977490\pi\)
\(368\) −9.24684 8.04401i −0.482025 0.419323i
\(369\) 0 0
\(370\) −0.202291 + 4.20355i −0.0105166 + 0.218532i
\(371\) 9.16414 2.68316i 0.475779 0.139303i
\(372\) 0 0
\(373\) 14.1525 8.17098i 0.732791 0.423077i −0.0866513 0.996239i \(-0.527617\pi\)
0.819442 + 0.573162i \(0.194283\pi\)
\(374\) 8.31585 + 5.34999i 0.430002 + 0.276642i
\(375\) 0 0
\(376\) −2.22282 5.57593i −0.114633 0.287557i
\(377\) 50.2442i 2.58771i
\(378\) 0 0
\(379\) −4.31636 −0.221717 −0.110858 0.993836i \(-0.535360\pi\)
−0.110858 + 0.993836i \(0.535360\pi\)
\(380\) −19.9155 + 9.07169i −1.02165 + 0.465368i
\(381\) 0 0
\(382\) 7.22573 + 4.64867i 0.369700 + 0.237846i
\(383\) 10.0948 + 17.4848i 0.515823 + 0.893431i 0.999831 + 0.0183677i \(0.00584695\pi\)
−0.484009 + 0.875063i \(0.660820\pi\)
\(384\) 0 0
\(385\) −13.0541 + 13.6696i −0.665298 + 0.696668i
\(386\) 12.9771 + 0.624506i 0.660515 + 0.0317865i
\(387\) 0 0
\(388\) 24.7846 + 17.6854i 1.25825 + 0.897842i
\(389\) 29.2383 + 16.8807i 1.48244 + 0.855886i 0.999801 0.0199339i \(-0.00634559\pi\)
0.482637 + 0.875820i \(0.339679\pi\)
\(390\) 0 0
\(391\) 9.67989 0.489533
\(392\) −1.94119 + 19.7036i −0.0980451 + 0.995182i
\(393\) 0 0
\(394\) 25.4939 13.1273i 1.28436 0.661343i
\(395\) 30.9918 + 17.8931i 1.55937 + 0.900302i
\(396\) 0 0
\(397\) −0.0441158 0.0764109i −0.00221411 0.00383495i 0.864916 0.501916i \(-0.167371\pi\)
−0.867130 + 0.498081i \(0.834038\pi\)
\(398\) 4.64330 + 0.223453i 0.232748 + 0.0112007i
\(399\) 0 0
\(400\) 21.2792 + 4.14421i 1.06396 + 0.207211i
\(401\) −12.6037 21.8303i −0.629400 1.09015i −0.987672 0.156536i \(-0.949967\pi\)
0.358272 0.933617i \(-0.383366\pi\)
\(402\) 0 0
\(403\) −5.15498 + 8.92869i −0.256788 + 0.444770i
\(404\) 8.15998 + 17.9140i 0.405974 + 0.891255i
\(405\) 0 0
\(406\) 10.4632 35.4692i 0.519279 1.76031i
\(407\) 2.04031i 0.101134i
\(408\) 0 0
\(409\) −26.9181 15.5412i −1.33102 0.768462i −0.345560 0.938397i \(-0.612311\pi\)
−0.985455 + 0.169935i \(0.945644\pi\)
\(410\) −22.8929 14.7281i −1.13060 0.727371i
\(411\) 0 0
\(412\) 3.95069 + 0.381127i 0.194637 + 0.0187768i
\(413\) −31.1816 + 9.12962i −1.53434 + 0.449239i
\(414\) 0 0
\(415\) −9.98894 + 5.76712i −0.490338 + 0.283097i
\(416\) −19.8957 + 20.7646i −0.975467 + 1.01807i
\(417\) 0 0
\(418\) 9.43278 4.85713i 0.461373 0.237570i
\(419\) 22.7655i 1.11217i −0.831126 0.556085i \(-0.812303\pi\)
0.831126 0.556085i \(-0.187697\pi\)
\(420\) 0 0
\(421\) 24.0207i 1.17070i −0.810781 0.585349i \(-0.800958\pi\)
0.810781 0.585349i \(-0.199042\pi\)
\(422\) −14.0425 27.2713i −0.683580 1.32755i
\(423\) 0 0
\(424\) 8.01494 + 6.32198i 0.389240 + 0.307023i
\(425\) −14.8283 + 8.56109i −0.719276 + 0.415274i
\(426\) 0 0
\(427\) −32.6023 7.93586i −1.57773 0.384043i
\(428\) 6.44230 + 0.621496i 0.311400 + 0.0300411i
\(429\) 0 0
\(430\) 16.5185 25.6758i 0.796593 1.23820i
\(431\) 28.2391 + 16.3039i 1.36023 + 0.785330i 0.989654 0.143471i \(-0.0458265\pi\)
0.370577 + 0.928802i \(0.379160\pi\)
\(432\) 0 0
\(433\) 18.4752i 0.887861i −0.896061 0.443931i \(-0.853584\pi\)
0.896061 0.443931i \(-0.146416\pi\)
\(434\) −5.49846 + 5.22958i −0.263935 + 0.251028i
\(435\) 0 0
\(436\) 7.62888 3.47502i 0.365357 0.166423i
\(437\) 5.19319 8.99487i 0.248424 0.430283i
\(438\) 0 0
\(439\) 11.2138 + 19.4229i 0.535206 + 0.927004i 0.999153 + 0.0411413i \(0.0130994\pi\)
−0.463947 + 0.885863i \(0.653567\pi\)
\(440\) −19.9967 2.90491i −0.953305 0.138486i
\(441\) 0 0
\(442\) 1.09177 22.6868i 0.0519304 1.07910i
\(443\) 4.52168 + 7.83178i 0.214832 + 0.372099i 0.953220 0.302276i \(-0.0977464\pi\)
−0.738389 + 0.674375i \(0.764413\pi\)
\(444\) 0 0
\(445\) 20.4089 + 11.7831i 0.967474 + 0.558571i
\(446\) −12.5124 24.2997i −0.592478 1.15062i
\(447\) 0 0
\(448\) −18.3693 + 10.5153i −0.867866 + 0.496799i
\(449\) −5.65664 −0.266954 −0.133477 0.991052i \(-0.542614\pi\)
−0.133477 + 0.991052i \(0.542614\pi\)
\(450\) 0 0
\(451\) 11.4292 + 6.59867i 0.538182 + 0.310719i
\(452\) −3.30679 + 4.63418i −0.155538 + 0.217974i
\(453\) 0 0
\(454\) −0.0366447 + 0.761467i −0.00171982 + 0.0357374i
\(455\) 42.1849 + 10.2684i 1.97766 + 0.481391i
\(456\) 0 0
\(457\) −4.68971 8.12282i −0.219376 0.379970i 0.735242 0.677805i \(-0.237069\pi\)
−0.954617 + 0.297835i \(0.903735\pi\)
\(458\) 17.4933 27.1910i 0.817410 1.27055i
\(459\) 0 0
\(460\) −18.0014 + 8.19979i −0.839320 + 0.382317i
\(461\) 31.7960 1.48089 0.740444 0.672118i \(-0.234615\pi\)
0.740444 + 0.672118i \(0.234615\pi\)
\(462\) 0 0
\(463\) 8.87505i 0.412458i 0.978504 + 0.206229i \(0.0661193\pi\)
−0.978504 + 0.206229i \(0.933881\pi\)
\(464\) 37.3844 12.8574i 1.73553 0.596890i
\(465\) 0 0
\(466\) 2.29923 3.57384i 0.106510 0.165555i
\(467\) −2.70998 + 1.56461i −0.125403 + 0.0724015i −0.561389 0.827552i \(-0.689733\pi\)
0.435986 + 0.899953i \(0.356400\pi\)
\(468\) 0 0
\(469\) −6.55294 22.3811i −0.302587 1.03346i
\(470\) −9.67698 0.465693i −0.446366 0.0214808i
\(471\) 0 0
\(472\) −27.2713 21.5109i −1.25526 0.990121i
\(473\) −7.40081 + 12.8186i −0.340290 + 0.589399i
\(474\) 0 0
\(475\) 18.3719i 0.842959i
\(476\) 5.49518 15.7881i 0.251871 0.723645i
\(477\) 0 0
\(478\) −14.1698 + 7.29632i −0.648113 + 0.333726i
\(479\) −8.19517 + 14.1945i −0.374447 + 0.648561i −0.990244 0.139344i \(-0.955501\pi\)
0.615797 + 0.787905i \(0.288834\pi\)
\(480\) 0 0
\(481\) −4.05869 + 2.34328i −0.185060 + 0.106845i
\(482\) −0.766328 + 15.9241i −0.0349053 + 0.725323i
\(483\) 0 0
\(484\) −12.1471 1.17185i −0.552143 0.0532658i
\(485\) 42.5580 24.5708i 1.93246 1.11570i
\(486\) 0 0
\(487\) −25.4297 14.6819i −1.15233 0.665299i −0.202877 0.979204i \(-0.565029\pi\)
−0.949454 + 0.313905i \(0.898363\pi\)
\(488\) −13.2832 33.3209i −0.601304 1.50837i
\(489\) 0 0
\(490\) 27.6415 + 16.0337i 1.24872 + 0.724330i
\(491\) −33.8967 −1.52974 −0.764869 0.644186i \(-0.777196\pi\)
−0.764869 + 0.644186i \(0.777196\pi\)
\(492\) 0 0
\(493\) −15.6120 + 27.0407i −0.703128 + 1.21785i
\(494\) −20.4956 13.1858i −0.922140 0.593258i
\(495\) 0 0
\(496\) −7.96258 1.55075i −0.357530 0.0696307i
\(497\) 22.3938 + 21.3854i 1.00450 + 0.959267i
\(498\) 0 0
\(499\) 4.44527 + 7.69943i 0.198997 + 0.344674i 0.948204 0.317663i \(-0.102898\pi\)
−0.749206 + 0.662337i \(0.769565\pi\)
\(500\) 1.57398 2.20580i 0.0703906 0.0986463i
\(501\) 0 0
\(502\) 4.10672 2.11463i 0.183292 0.0943805i
\(503\) 1.51626 0.0676065 0.0338032 0.999429i \(-0.489238\pi\)
0.0338032 + 0.999429i \(0.489238\pi\)
\(504\) 0 0
\(505\) 31.7711 1.41380
\(506\) 8.52618 4.39030i 0.379035 0.195173i
\(507\) 0 0
\(508\) 34.1979 + 24.4024i 1.51729 + 1.08268i
\(509\) −3.71720 6.43837i −0.164762 0.285376i 0.771809 0.635855i \(-0.219352\pi\)
−0.936571 + 0.350479i \(0.886019\pi\)
\(510\) 0 0
\(511\) −22.9299 + 6.71363i −1.01436 + 0.296994i
\(512\) −20.5412 9.48986i −0.907803 0.419397i
\(513\) 0 0
\(514\) 14.3559 + 9.23582i 0.633210 + 0.407375i
\(515\) 3.20297 5.54771i 0.141140 0.244461i
\(516\) 0 0
\(517\) 4.69698 0.206573
\(518\) −3.35316 + 0.809001i −0.147329 + 0.0355455i
\(519\) 0 0
\(520\) 17.1875 + 43.1148i 0.753723 + 1.89071i
\(521\) 11.7724 + 6.79678i 0.515757 + 0.297772i 0.735197 0.677854i \(-0.237090\pi\)
−0.219440 + 0.975626i \(0.570423\pi\)
\(522\) 0 0
\(523\) 3.38679 1.95536i 0.148094 0.0855020i −0.424122 0.905605i \(-0.639417\pi\)
0.572216 + 0.820103i \(0.306084\pi\)
\(524\) −0.109649 + 1.13660i −0.00479002 + 0.0496524i
\(525\) 0 0
\(526\) 1.11354 23.1390i 0.0485525 1.00891i
\(527\) 5.54868 3.20353i 0.241704 0.139548i
\(528\) 0 0
\(529\) −6.80594 + 11.7882i −0.295910 + 0.512532i
\(530\) 14.6479 7.54251i 0.636266 0.327626i
\(531\) 0 0
\(532\) −11.7227 13.5765i −0.508243 0.588615i
\(533\) 30.3142i 1.31305i
\(534\) 0 0
\(535\) 5.22301 9.04652i 0.225811 0.391115i
\(536\) 15.4399 19.5745i 0.666900 0.845489i
\(537\) 0 0
\(538\) −10.5540 0.507899i −0.455015 0.0218971i
\(539\) −13.7592 7.12025i −0.592650 0.306691i
\(540\) 0 0
\(541\) 29.3866 16.9663i 1.26343 0.729440i 0.289691 0.957120i \(-0.406447\pi\)
0.973736 + 0.227680i \(0.0731140\pi\)
\(542\) 6.86528 10.6712i 0.294889 0.458366i
\(543\) 0 0
\(544\) 17.1596 4.99317i 0.735711 0.214080i
\(545\) 13.5301i 0.579565i
\(546\) 0 0
\(547\) 19.9416 0.852640 0.426320 0.904572i \(-0.359810\pi\)
0.426320 + 0.904572i \(0.359810\pi\)
\(548\) −10.9073 23.9453i −0.465937 1.02289i
\(549\) 0 0
\(550\) −9.17805 + 14.2661i −0.391353 + 0.608307i
\(551\) 16.7514 + 29.0143i 0.713634 + 1.23605i
\(552\) 0 0
\(553\) −6.93720 + 28.4995i −0.295000 + 1.21192i
\(554\) 0.417310 8.67158i 0.0177298 0.368420i
\(555\) 0 0
\(556\) −15.5447 11.0922i −0.659242 0.470412i
\(557\) 29.5999 + 17.0895i 1.25419 + 0.724107i 0.971939 0.235234i \(-0.0755857\pi\)
0.282251 + 0.959341i \(0.408919\pi\)
\(558\) 0 0
\(559\) 33.9992 1.43801
\(560\) 3.15480 + 34.0156i 0.133314 + 1.43742i
\(561\) 0 0
\(562\) 12.4910 + 24.2582i 0.526902 + 1.02327i
\(563\) −1.95583 1.12920i −0.0824283 0.0475900i 0.458219 0.888839i \(-0.348487\pi\)
−0.540648 + 0.841249i \(0.681821\pi\)
\(564\) 0 0
\(565\) 4.59422 + 7.95742i 0.193280 + 0.334771i
\(566\) −1.51888 + 31.5620i −0.0638434 + 1.32665i
\(567\) 0 0
\(568\) −4.75886 + 32.7589i −0.199677 + 1.37453i
\(569\) 14.5803 + 25.2538i 0.611236 + 1.05869i 0.991032 + 0.133622i \(0.0426609\pi\)
−0.379796 + 0.925070i \(0.624006\pi\)
\(570\) 0 0
\(571\) 13.1289 22.7399i 0.549427 0.951636i −0.448886 0.893589i \(-0.648179\pi\)
0.998314 0.0580474i \(-0.0184874\pi\)
\(572\) −9.32790 20.4780i −0.390019 0.856228i
\(573\) 0 0
\(574\) 6.31284 21.3999i 0.263493 0.893215i
\(575\) 16.6061i 0.692522i
\(576\) 0 0
\(577\) 0.0467698 + 0.0270026i 0.00194705 + 0.00112413i 0.500973 0.865463i \(-0.332976\pi\)
−0.499026 + 0.866587i \(0.666309\pi\)
\(578\) 5.37087 8.34830i 0.223399 0.347244i
\(579\) 0 0
\(580\) 6.12703 63.5116i 0.254411 2.63718i
\(581\) −6.83705 6.52919i −0.283649 0.270876i
\(582\) 0 0
\(583\) −6.91756 + 3.99386i −0.286496 + 0.165409i
\(584\) −20.0545 15.8185i −0.829860 0.654573i
\(585\) 0 0
\(586\) −9.10962 17.6913i −0.376315 0.730822i
\(587\) 4.75946i 0.196444i −0.995165 0.0982219i \(-0.968685\pi\)
0.995165 0.0982219i \(-0.0313155\pi\)
\(588\) 0 0
\(589\) 6.87468i 0.283266i
\(590\) −49.8405 + 25.6639i −2.05190 + 1.05656i
\(591\) 0 0
\(592\) −2.78214 2.42024i −0.114345 0.0994713i
\(593\) 10.2802 5.93527i 0.422157 0.243732i −0.273843 0.961774i \(-0.588295\pi\)
0.696000 + 0.718042i \(0.254962\pi\)
\(594\) 0 0
\(595\) −19.5127 18.6341i −0.799944 0.763923i
\(596\) 2.03499 21.0943i 0.0833565 0.864057i
\(597\) 0 0
\(598\) −18.5257 11.9185i −0.757572 0.487383i
\(599\) −25.6580 14.8136i −1.04836 0.605269i −0.126167 0.992009i \(-0.540268\pi\)
−0.922189 + 0.386740i \(0.873601\pi\)
\(600\) 0 0
\(601\) 26.4608i 1.07936i −0.841870 0.539680i \(-0.818545\pi\)
0.841870 0.539680i \(-0.181455\pi\)
\(602\) 24.0013 + 7.08023i 0.978220 + 0.288569i
\(603\) 0 0
\(604\) −2.21340 + 1.00822i −0.0900618 + 0.0410239i
\(605\) −9.84814 + 17.0575i −0.400384 + 0.693485i
\(606\) 0 0
\(607\) −7.69208 13.3231i −0.312212 0.540767i 0.666629 0.745390i \(-0.267737\pi\)
−0.978841 + 0.204623i \(0.934403\pi\)
\(608\) 4.56618 18.6241i 0.185183 0.755305i
\(609\) 0 0
\(610\) −57.8282 2.78291i −2.34139 0.112677i
\(611\) −5.39446 9.34348i −0.218237 0.377997i
\(612\) 0 0
\(613\) 16.8302 + 9.71692i 0.679765 + 0.392463i 0.799767 0.600311i \(-0.204957\pi\)
−0.120001 + 0.992774i \(0.538290\pi\)
\(614\) −12.0927 + 6.22678i −0.488023 + 0.251292i
\(615\) 0 0
\(616\) −2.32043 16.3987i −0.0934928 0.660721i
\(617\) 0.173969 0.00700371 0.00350186 0.999994i \(-0.498885\pi\)
0.00350186 + 0.999994i \(0.498885\pi\)
\(618\) 0 0
\(619\) −32.8798 18.9832i −1.32155 0.762998i −0.337575 0.941299i \(-0.609607\pi\)
−0.983976 + 0.178300i \(0.942940\pi\)
\(620\) −7.60501 + 10.6578i −0.305425 + 0.428026i
\(621\) 0 0
\(622\) 30.6487 + 1.47493i 1.22890 + 0.0591394i
\(623\) −4.56831 + 18.7677i −0.183026 + 0.751910i
\(624\) 0 0
\(625\) 11.3626 + 19.6805i 0.454503 + 0.787222i
\(626\) −12.9988 8.36275i −0.519535 0.334243i
\(627\) 0 0
\(628\) −3.00537 6.59783i −0.119927 0.263282i
\(629\) 2.91244 0.116127
\(630\) 0 0
\(631\) 26.0140i 1.03560i −0.855501 0.517801i \(-0.826751\pi\)
0.855501 0.517801i \(-0.173249\pi\)
\(632\) −29.1277 + 11.6117i −1.15864 + 0.461887i
\(633\) 0 0
\(634\) −8.43572 5.42711i −0.335025 0.215538i
\(635\) 58.7216 33.9030i 2.33030 1.34540i
\(636\) 0 0
\(637\) 1.63841 + 35.5481i 0.0649161 + 1.40847i
\(638\) −1.48696 + 30.8986i −0.0588693 + 1.22329i
\(639\) 0 0
\(640\) −27.6815 + 23.8215i −1.09421 + 0.941626i
\(641\) 12.4573 21.5767i 0.492035 0.852230i −0.507923 0.861403i \(-0.669587\pi\)
0.999958 + 0.00917289i \(0.00291986\pi\)
\(642\) 0 0
\(643\) 4.80941i 0.189665i 0.995493 + 0.0948323i \(0.0302315\pi\)
−0.995493 + 0.0948323i \(0.969769\pi\)
\(644\) −10.5960 12.2716i −0.417540 0.483570i
\(645\) 0 0
\(646\) 6.93331 + 13.4648i 0.272788 + 0.529767i
\(647\) −4.27034 + 7.39644i −0.167884 + 0.290784i −0.937676 0.347511i \(-0.887027\pi\)
0.769792 + 0.638295i \(0.220360\pi\)
\(648\) 0 0
\(649\) 23.5374 13.5893i 0.923925 0.533428i
\(650\) 38.9198 + 1.87297i 1.52656 + 0.0734638i
\(651\) 0 0
\(652\) 39.4796 + 3.80864i 1.54614 + 0.149158i
\(653\) −24.1955 + 13.9693i −0.946845 + 0.546661i −0.892099 0.451839i \(-0.850768\pi\)
−0.0547454 + 0.998500i \(0.517435\pi\)
\(654\) 0 0
\(655\) 1.59605 + 0.921481i 0.0623629 + 0.0360052i
\(656\) 22.5554 7.75736i 0.880641 0.302874i
\(657\) 0 0
\(658\) −1.86240 7.71928i −0.0726038 0.300929i
\(659\) −28.0553 −1.09288 −0.546439 0.837499i \(-0.684017\pi\)
−0.546439 + 0.837499i \(0.684017\pi\)
\(660\) 0 0
\(661\) 4.47127 7.74447i 0.173912 0.301225i −0.765872 0.642993i \(-0.777692\pi\)
0.939784 + 0.341768i \(0.111026\pi\)
\(662\) 8.97077 13.9439i 0.348659 0.541944i
\(663\) 0 0
\(664\) 1.45293 10.0016i 0.0563846 0.388138i
\(665\) −27.7838 + 8.13480i −1.07741 + 0.315454i
\(666\) 0 0
\(667\) 15.1414 + 26.2257i 0.586277 + 1.01546i
\(668\) −14.4017 + 20.1828i −0.557219 + 0.780895i
\(669\) 0 0
\(670\) −18.4207 35.7739i −0.711654 1.38207i
\(671\) 28.0684 1.08357
\(672\) 0 0
\(673\) 45.4881 1.75344 0.876720 0.481002i \(-0.159727\pi\)
0.876720 + 0.481002i \(0.159727\pi\)
\(674\) 15.2329 + 29.5831i 0.586750 + 1.13950i
\(675\) 0 0
\(676\) −14.9208 + 20.9102i −0.573876 + 0.804238i
\(677\) −5.48447 9.49939i −0.210785 0.365091i 0.741175 0.671312i \(-0.234269\pi\)
−0.951961 + 0.306221i \(0.900935\pi\)
\(678\) 0 0
\(679\) 29.1293 + 27.8177i 1.11788 + 1.06754i
\(680\) 4.14661 28.5443i 0.159015 1.09462i
\(681\) 0 0
\(682\) 3.43439 5.33830i 0.131510 0.204414i
\(683\) −14.1037 + 24.4283i −0.539663 + 0.934723i 0.459259 + 0.888302i \(0.348115\pi\)
−0.998922 + 0.0464211i \(0.985218\pi\)
\(684\) 0 0
\(685\) −42.4679 −1.62262
\(686\) −6.24617 + 25.4359i −0.238480 + 0.971147i
\(687\) 0 0
\(688\) 8.70035 + 25.2973i 0.331698 + 0.964450i
\(689\) 15.8896 + 9.17386i 0.605345 + 0.349496i
\(690\) 0 0
\(691\) 8.22050 4.74611i 0.312723 0.180550i −0.335422 0.942068i \(-0.608879\pi\)
0.648144 + 0.761518i \(0.275545\pi\)
\(692\) 2.06770 + 0.199474i 0.0786023 + 0.00758285i
\(693\) 0 0
\(694\) −14.6098 0.703079i −0.554581 0.0266885i
\(695\) −26.6920 + 15.4106i −1.01249 + 0.584559i
\(696\) 0 0
\(697\) −9.41929 + 16.3147i −0.356781 + 0.617963i
\(698\) −0.537552 1.04395i −0.0203466 0.0395142i
\(699\) 0 0
\(700\) 27.0848 + 9.42711i 1.02371 + 0.356311i
\(701\) 14.3589i 0.542328i −0.962533 0.271164i \(-0.912591\pi\)
0.962533 0.271164i \(-0.0874085\pi\)
\(702\) 0 0
\(703\) 1.56250 2.70633i 0.0589309 0.102071i
\(704\) 12.8497 12.1808i 0.484293 0.459079i
\(705\) 0 0
\(706\) −0.330605 + 6.86988i −0.0124425 + 0.258551i
\(707\) 7.31725 + 24.9915i 0.275193 + 0.939904i
\(708\) 0 0
\(709\) −8.90161 + 5.13935i −0.334307 + 0.193012i −0.657752 0.753235i \(-0.728492\pi\)
0.323445 + 0.946247i \(0.395159\pi\)
\(710\) 44.9317 + 28.9068i 1.68626 + 1.08485i
\(711\) 0 0
\(712\) −19.1813 + 7.64656i −0.718851 + 0.286567i
\(713\) 6.21394i 0.232714i
\(714\) 0 0
\(715\) −36.3184 −1.35823
\(716\) −2.09426 4.59764i −0.0782662 0.171822i
\(717\) 0 0
\(718\) −22.3963 14.4086i −0.835823 0.537726i
\(719\) −7.39467 12.8079i −0.275775 0.477656i 0.694556 0.719439i \(-0.255601\pi\)
−0.970330 + 0.241783i \(0.922268\pi\)
\(720\) 0 0
\(721\) 5.10158 + 1.24180i 0.189993 + 0.0462469i
\(722\) −10.6074 0.510466i −0.394765 0.0189976i
\(723\) 0 0
\(724\) −9.64056 + 13.5104i −0.358289 + 0.502111i
\(725\) −46.3890 26.7827i −1.72285 0.994685i
\(726\) 0 0
\(727\) −43.5679 −1.61585 −0.807923 0.589289i \(-0.799408\pi\)
−0.807923 + 0.589289i \(0.799408\pi\)
\(728\) −29.9561 + 23.4497i −1.11025 + 0.869105i
\(729\) 0 0
\(730\) −36.6512 + 18.8724i −1.35652 + 0.698499i
\(731\) −18.2979 10.5643i −0.676773 0.390735i
\(732\) 0 0
\(733\) 11.3412 + 19.6435i 0.418896 + 0.725549i 0.995829 0.0912424i \(-0.0290838\pi\)
−0.576933 + 0.816792i \(0.695750\pi\)
\(734\) −30.3054 1.45841i −1.11859 0.0538309i
\(735\) 0 0
\(736\) 4.12731 16.8341i 0.152135 0.620511i
\(737\) 9.75399 + 16.8944i 0.359293 + 0.622314i
\(738\) 0 0
\(739\) −2.32595 + 4.02866i −0.0855615 + 0.148197i −0.905630 0.424068i \(-0.860602\pi\)
0.820069 + 0.572265i \(0.193935\pi\)
\(740\) −5.41617 + 2.46711i −0.199103 + 0.0906929i
\(741\) 0 0
\(742\) 9.30662 + 9.78512i 0.341657 + 0.359223i
\(743\) 28.3209i 1.03899i 0.854473 + 0.519496i \(0.173880\pi\)
−0.854473 + 0.519496i \(0.826120\pi\)
\(744\) 0 0
\(745\) −29.6214 17.1019i −1.08525 0.626567i
\(746\) 19.4361 + 12.5042i 0.711607 + 0.457812i
\(747\) 0 0
\(748\) −1.34281 + 13.9194i −0.0490982 + 0.508942i
\(749\) 8.31902 + 2.02497i 0.303971 + 0.0739908i
\(750\) 0 0
\(751\) 28.5823 16.5020i 1.04298 0.602166i 0.122306 0.992492i \(-0.460971\pi\)
0.920677 + 0.390326i \(0.127638\pi\)
\(752\) 5.57162 6.40475i 0.203176 0.233557i
\(753\) 0 0
\(754\) 63.1729 32.5290i 2.30062 1.18464i
\(755\) 3.92554i 0.142865i
\(756\) 0 0
\(757\) 19.0350i 0.691838i 0.938264 + 0.345919i \(0.112433\pi\)
−0.938264 + 0.345919i \(0.887567\pi\)
\(758\) −2.79449 5.42704i −0.101500 0.197119i
\(759\) 0 0
\(760\) −24.2997 19.1670i −0.881442 0.695260i
\(761\) −43.2756 + 24.9852i −1.56874 + 0.905712i −0.572424 + 0.819958i \(0.693997\pi\)
−0.996316 + 0.0857544i \(0.972670\pi\)
\(762\) 0 0
\(763\) 10.6429 3.11613i 0.385300 0.112811i
\(764\) −1.16679 + 12.0947i −0.0422128 + 0.437570i
\(765\) 0 0
\(766\) −15.4484 + 24.0124i −0.558172 + 0.867603i
\(767\) −54.0653 31.2146i −1.95219 1.12709i
\(768\) 0 0
\(769\) 24.2908i 0.875949i 0.898987 + 0.437974i \(0.144304\pi\)
−0.898987 + 0.437974i \(0.855696\pi\)
\(770\) −25.6385 7.56320i −0.923948 0.272559i
\(771\) 0 0
\(772\) 7.61639 + 16.7206i 0.274120 + 0.601788i
\(773\) −8.01612 + 13.8843i −0.288320 + 0.499385i −0.973409 0.229075i \(-0.926430\pi\)
0.685089 + 0.728459i \(0.259763\pi\)
\(774\) 0 0
\(775\) 5.49574 + 9.51890i 0.197413 + 0.341929i
\(776\) −6.19021 + 42.6120i −0.222216 + 1.52968i
\(777\) 0 0
\(778\) −2.29506 + 47.6907i −0.0822818 + 1.70979i
\(779\) 10.1068 + 17.5054i 0.362112 + 0.627197i
\(780\) 0 0
\(781\) −22.4321 12.9512i −0.802682 0.463429i
\(782\) 6.26694 + 12.1707i 0.224105 + 0.435224i
\(783\) 0 0
\(784\) −26.0305 + 10.3158i −0.929659 + 0.368420i
\(785\) −11.7015 −0.417644
\(786\) 0 0
\(787\) −8.71618 5.03229i −0.310698 0.179382i 0.336541 0.941669i \(-0.390743\pi\)
−0.647239 + 0.762287i \(0.724076\pi\)
\(788\) 33.0104 + 23.5551i 1.17595 + 0.839114i
\(789\) 0 0
\(790\) −2.43270 + 50.5510i −0.0865517 + 1.79852i
\(791\) −5.20130 + 5.44655i −0.184937 + 0.193657i
\(792\) 0 0
\(793\) −32.2365 55.8352i −1.14475 1.98277i
\(794\) 0.0675114 0.104937i 0.00239589 0.00372409i
\(795\) 0 0
\(796\) 2.72520 + 5.98277i 0.0965923 + 0.212054i
\(797\) −53.0872 −1.88045 −0.940223 0.340560i \(-0.889383\pi\)
−0.940223 + 0.340560i \(0.889383\pi\)
\(798\) 0 0
\(799\) 6.70471i 0.237196i
\(800\) 8.56591 + 29.4377i 0.302851 + 1.04078i
\(801\) 0 0
\(802\) 19.2878 29.9802i 0.681074 1.05864i
\(803\) 17.3087 9.99318i 0.610811 0.352652i
\(804\) 0 0
\(805\) −25.1135 + 7.35295i −0.885134 + 0.259157i
\(806\) −14.5636 0.700857i −0.512982 0.0246866i
\(807\) 0 0
\(808\) −17.2407 + 21.8575i −0.606525 + 0.768946i
\(809\) 26.9529 46.6838i 0.947614 1.64132i 0.197183 0.980367i \(-0.436821\pi\)
0.750431 0.660949i \(-0.229846\pi\)
\(810\) 0 0
\(811\) 48.2050i 1.69271i 0.532621 + 0.846354i \(0.321207\pi\)
−0.532621 + 0.846354i \(0.678793\pi\)
\(812\) 51.3702 9.80785i 1.80274 0.344188i
\(813\) 0 0
\(814\) 2.56531 1.32093i 0.0899142 0.0462986i
\(815\) 32.0076 55.4387i 1.12118 1.94193i
\(816\) 0 0
\(817\) −19.6334 + 11.3353i −0.686885 + 0.396574i
\(818\) 2.11294 43.9063i 0.0738771 1.53515i
\(819\) 0 0
\(820\) 3.69667 38.3190i 0.129093 1.33816i
\(821\) 22.4271 12.9483i 0.782712 0.451899i −0.0546787 0.998504i \(-0.517413\pi\)
0.837390 + 0.546605i \(0.184080\pi\)
\(822\) 0 0
\(823\) −48.1100 27.7763i −1.67701 0.968221i −0.963552 0.267522i \(-0.913795\pi\)
−0.713457 0.700699i \(-0.752871\pi\)
\(824\) 2.07855 + 5.21403i 0.0724098 + 0.181639i
\(825\) 0 0
\(826\) −31.6663 33.2945i −1.10181 1.15846i
\(827\) −23.2870 −0.809770 −0.404885 0.914368i \(-0.632688\pi\)
−0.404885 + 0.914368i \(0.632688\pi\)
\(828\) 0 0
\(829\) −2.58838 + 4.48320i −0.0898980 + 0.155708i −0.907468 0.420122i \(-0.861987\pi\)
0.817570 + 0.575829i \(0.195321\pi\)
\(830\) −13.7181 8.82554i −0.476163 0.306339i
\(831\) 0 0
\(832\) −38.9885 11.5719i −1.35168 0.401182i
\(833\) 10.1638 19.6406i 0.352155 0.680506i
\(834\) 0 0
\(835\) 20.0087 + 34.6561i 0.692430 + 1.19932i
\(836\) 12.2139 + 8.71542i 0.422427 + 0.301429i
\(837\) 0 0
\(838\) 28.6235 14.7388i 0.988783 0.509144i
\(839\) −12.7298 −0.439480 −0.219740 0.975558i \(-0.570521\pi\)
−0.219740 + 0.975558i \(0.570521\pi\)
\(840\) 0 0
\(841\) −68.6816 −2.36833
\(842\) 30.2017 15.5514i 1.04082 0.535938i
\(843\) 0 0
\(844\) 25.1973 35.3119i 0.867328 1.21548i
\(845\) 20.7298 + 35.9052i 0.713128 + 1.23517i
\(846\) 0 0
\(847\) −15.6858 3.81814i −0.538969 0.131193i
\(848\) −2.75973 + 14.1703i −0.0947695 + 0.486610i
\(849\) 0 0
\(850\) −20.3641 13.1012i −0.698483 0.449368i
\(851\) 1.41233 2.44622i 0.0484139 0.0838554i
\(852\) 0 0
\(853\) 47.2928 1.61927 0.809637 0.586930i \(-0.199664\pi\)
0.809637 + 0.586930i \(0.199664\pi\)
\(854\) −11.1294 46.1293i −0.380840 1.57851i
\(855\) 0 0
\(856\) 3.38945 + 8.50239i 0.115849 + 0.290606i
\(857\) −45.2524 26.1265i −1.54579 0.892463i −0.998456 0.0555505i \(-0.982309\pi\)
−0.547336 0.836913i \(-0.684358\pi\)
\(858\) 0 0
\(859\) 43.7066 25.2340i 1.49125 0.860973i 0.491299 0.870991i \(-0.336522\pi\)
0.999950 + 0.0100178i \(0.00318880\pi\)
\(860\) 42.9770 + 4.14604i 1.46551 + 0.141379i
\(861\) 0 0
\(862\) −2.21663 + 46.0610i −0.0754988 + 1.56884i
\(863\) 23.1918 13.3898i 0.789457 0.455793i −0.0503147 0.998733i \(-0.516022\pi\)
0.839771 + 0.542940i \(0.182689\pi\)
\(864\) 0 0
\(865\) 1.67636 2.90355i 0.0569981 0.0987236i
\(866\) 23.2292 11.9612i 0.789360 0.406457i
\(867\) 0 0
\(868\) −10.1350 3.52759i −0.344006 0.119734i
\(869\) 24.5362i 0.832335i
\(870\) 0 0
\(871\) 22.4049 38.8063i 0.759160 1.31490i
\(872\) 9.30828 + 7.34214i 0.315218 + 0.248636i
\(873\) 0 0
\(874\) 14.6716 + 0.706053i 0.496274 + 0.0238826i
\(875\) 2.47574 2.59247i 0.0836952 0.0876416i
\(876\) 0 0
\(877\) −22.4411 + 12.9564i −0.757783 + 0.437506i −0.828499 0.559990i \(-0.810805\pi\)
0.0707159 + 0.997496i \(0.477472\pi\)
\(878\) −17.1607 + 26.6741i −0.579147 + 0.900206i
\(879\) 0 0
\(880\) −9.29383 27.0229i −0.313295 0.910942i
\(881\) 10.0120i 0.337313i 0.985675 + 0.168657i \(0.0539429\pi\)
−0.985675 + 0.168657i \(0.946057\pi\)
\(882\) 0 0
\(883\) −23.6231 −0.794981 −0.397491 0.917606i \(-0.630119\pi\)
−0.397491 + 0.917606i \(0.630119\pi\)
\(884\) 29.2314 13.3151i 0.983157 0.447836i
\(885\) 0 0
\(886\) −6.91962 + 10.7556i −0.232469 + 0.361342i
\(887\) −9.08123 15.7291i −0.304918 0.528133i 0.672325 0.740256i \(-0.265296\pi\)
−0.977243 + 0.212123i \(0.931962\pi\)
\(888\) 0 0
\(889\) 40.1927 + 38.3829i 1.34802 + 1.28732i
\(890\) −1.60200 + 33.2891i −0.0536990 + 1.11585i
\(891\) 0 0
\(892\) 22.4517 31.4641i 0.751738 1.05350i
\(893\) 6.23023 + 3.59703i 0.208487 + 0.120370i
\(894\) 0 0
\(895\) −8.15407 −0.272560
\(896\) −25.1136 16.2882i −0.838987 0.544152i
\(897\) 0 0
\(898\) −3.66221 7.11220i −0.122210 0.237337i
\(899\) 17.3586 + 10.0220i 0.578942 + 0.334252i
\(900\) 0 0
\(901\) −5.70104 9.87449i −0.189929 0.328967i
\(902\) −0.897138 + 18.6423i −0.0298714 + 0.620721i
\(903\) 0 0
\(904\) −7.96752 1.15744i −0.264996 0.0384958i
\(905\) 13.3939 + 23.1989i 0.445228 + 0.771158i
\(906\) 0 0
\(907\) 27.7185 48.0098i 0.920377 1.59414i 0.121546 0.992586i \(-0.461215\pi\)
0.798832 0.601554i \(-0.205452\pi\)
\(908\) −0.981131 + 0.446913i −0.0325600 + 0.0148313i
\(909\) 0 0
\(910\) 14.4006 + 59.6878i 0.477376 + 1.97863i
\(911\) 18.4722i 0.612012i −0.952030 0.306006i \(-0.901007\pi\)
0.952030 0.306006i \(-0.0989928\pi\)
\(912\) 0 0
\(913\) 6.84874 + 3.95412i 0.226660 + 0.130862i
\(914\) 7.17677 11.1553i 0.237386 0.368985i
\(915\) 0 0
\(916\) 45.5133 + 4.39071i 1.50380 + 0.145073i
\(917\) −0.357259 + 1.46770i −0.0117977 + 0.0484678i
\(918\) 0 0
\(919\) −0.144308 + 0.0833164i −0.00476029 + 0.00274835i −0.502378 0.864648i \(-0.667541\pi\)
0.497618 + 0.867396i \(0.334208\pi\)
\(920\) −21.9642 17.3248i −0.724138 0.571182i
\(921\) 0 0
\(922\) 20.5853 + 39.9777i 0.677941 + 1.31660i
\(923\) 59.4974i 1.95838i
\(924\) 0 0
\(925\) 4.99636i 0.164279i
\(926\) −11.1588 + 5.74587i −0.366700 + 0.188821i
\(927\) 0 0
\(928\) 40.3692 + 38.6800i 1.32518 + 1.26973i
\(929\) −14.0194 + 8.09409i −0.459961 + 0.265559i −0.712028 0.702151i \(-0.752223\pi\)
0.252067 + 0.967710i \(0.418890\pi\)
\(930\) 0 0
\(931\) −12.7979 19.9816i −0.419433 0.654870i
\(932\) 5.98202 + 0.577092i 0.195948 + 0.0189033i
\(933\) 0 0
\(934\) −3.72170 2.39435i −0.121778 0.0783457i
\(935\) 19.5461 + 11.2849i 0.639225 + 0.369057i
\(936\) 0 0
\(937\) 19.5153i 0.637538i −0.947832 0.318769i \(-0.896730\pi\)
0.947832 0.318769i \(-0.103270\pi\)
\(938\) 23.8977 22.7291i 0.780288 0.742131i
\(939\) 0 0
\(940\) −5.67953 12.4685i −0.185246 0.406679i
\(941\) −12.3201 + 21.3390i −0.401624 + 0.695633i −0.993922 0.110086i \(-0.964887\pi\)
0.592298 + 0.805719i \(0.298221\pi\)
\(942\) 0 0
\(943\) 9.13538 + 15.8229i 0.297489 + 0.515266i
\(944\) 9.39015 48.2153i 0.305623 1.56927i
\(945\) 0 0
\(946\) −20.9085 1.00619i −0.679793 0.0327142i
\(947\) −4.30769 7.46115i −0.139981 0.242455i 0.787508 0.616304i \(-0.211371\pi\)
−0.927489 + 0.373850i \(0.878038\pi\)
\(948\) 0 0
\(949\) −39.7579 22.9543i −1.29060 0.745127i
\(950\) −23.0993 + 11.8943i −0.749440 + 0.385901i
\(951\) 0 0
\(952\) 23.4083 3.31230i 0.758668 0.107352i
\(953\) 27.4982 0.890755 0.445378 0.895343i \(-0.353069\pi\)
0.445378 + 0.895343i \(0.353069\pi\)
\(954\) 0 0
\(955\) 16.9838 + 9.80560i 0.549583 + 0.317302i
\(956\) −18.3476 13.0922i −0.593404 0.423432i
\(957\) 0 0
\(958\) −23.1526 1.11419i −0.748028 0.0359980i
\(959\) −9.78084 33.4058i −0.315840 1.07873i
\(960\) 0 0
\(961\) 13.4435 + 23.2849i 0.433662 + 0.751124i
\(962\) −5.57392 3.58598i −0.179710 0.115617i
\(963\) 0 0
\(964\) −20.5178 + 9.34603i −0.660834 + 0.301015i
\(965\) 29.6546 0.954616
\(966\) 0 0
\(967\) 21.2591i 0.683647i −0.939764 0.341823i \(-0.888956\pi\)
0.939764 0.341823i \(-0.111044\pi\)
\(968\) −6.39090 16.0315i −0.205411 0.515272i
\(969\) 0 0
\(970\) 58.4462 + 37.6013i 1.87659 + 1.20730i
\(971\) 27.3347 15.7817i 0.877213 0.506459i 0.00747434 0.999972i \(-0.497621\pi\)
0.869738 + 0.493513i \(0.164287\pi\)
\(972\) 0 0
\(973\) −18.2697 17.4470i −0.585698 0.559325i
\(974\) 1.99611 41.4786i 0.0639594 1.32906i
\(975\) 0 0
\(976\) 33.2952 38.2738i 1.06575 1.22512i
\(977\) −9.75712 + 16.8998i −0.312158 + 0.540673i −0.978829 0.204678i \(-0.934385\pi\)
0.666671 + 0.745352i \(0.267718\pi\)
\(978\) 0 0
\(979\) 16.1577i 0.516403i
\(980\) −2.26388 + 45.1347i −0.0723168 + 1.44178i
\(981\) 0 0
\(982\) −21.9454 42.6190i −0.700305 1.36003i
\(983\) 11.2401 19.4684i 0.358503 0.620946i −0.629208 0.777237i \(-0.716620\pi\)
0.987711 + 0.156291i \(0.0499538\pi\)
\(984\) 0 0
\(985\) 56.6825 32.7257i 1.80606 1.04273i
\(986\) −44.1063 2.12256i −1.40463 0.0675961i
\(987\) 0 0
\(988\) 3.30955 34.3062i 0.105291 1.09143i
\(989\) −17.7464 + 10.2459i −0.564302 + 0.325800i
\(990\) 0 0
\(991\) 38.9073 + 22.4631i 1.23593 + 0.713565i 0.968260 0.249945i \(-0.0804125\pi\)
0.267671 + 0.963510i \(0.413746\pi\)
\(992\) −3.20533 11.0155i −0.101769 0.349742i
\(993\) 0 0
\(994\) −12.3901 + 42.0014i −0.392992 + 1.33220i
\(995\) 10.6107 0.336381
\(996\) 0 0
\(997\) −14.5890 + 25.2688i −0.462037 + 0.800272i −0.999062 0.0432942i \(-0.986215\pi\)
0.537025 + 0.843566i \(0.319548\pi\)
\(998\) −6.80268 + 10.5739i −0.215335 + 0.334710i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.2.bk.c.451.10 32
3.2 odd 2 168.2.t.a.115.7 yes 32
4.3 odd 2 2016.2.bs.c.1711.15 32
7.5 odd 6 inner 504.2.bk.c.19.12 32
8.3 odd 2 inner 504.2.bk.c.451.12 32
8.5 even 2 2016.2.bs.c.1711.2 32
12.11 even 2 672.2.bb.a.367.9 32
21.5 even 6 168.2.t.a.19.5 32
21.11 odd 6 1176.2.p.a.979.32 32
21.17 even 6 1176.2.p.a.979.31 32
24.5 odd 2 672.2.bb.a.367.16 32
24.11 even 2 168.2.t.a.115.5 yes 32
28.19 even 6 2016.2.bs.c.271.2 32
56.5 odd 6 2016.2.bs.c.271.15 32
56.19 even 6 inner 504.2.bk.c.19.10 32
84.11 even 6 4704.2.p.a.3919.9 32
84.47 odd 6 672.2.bb.a.271.16 32
84.59 odd 6 4704.2.p.a.3919.20 32
168.5 even 6 672.2.bb.a.271.9 32
168.11 even 6 1176.2.p.a.979.29 32
168.53 odd 6 4704.2.p.a.3919.19 32
168.59 odd 6 1176.2.p.a.979.30 32
168.101 even 6 4704.2.p.a.3919.10 32
168.131 odd 6 168.2.t.a.19.7 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.t.a.19.5 32 21.5 even 6
168.2.t.a.19.7 yes 32 168.131 odd 6
168.2.t.a.115.5 yes 32 24.11 even 2
168.2.t.a.115.7 yes 32 3.2 odd 2
504.2.bk.c.19.10 32 56.19 even 6 inner
504.2.bk.c.19.12 32 7.5 odd 6 inner
504.2.bk.c.451.10 32 1.1 even 1 trivial
504.2.bk.c.451.12 32 8.3 odd 2 inner
672.2.bb.a.271.9 32 168.5 even 6
672.2.bb.a.271.16 32 84.47 odd 6
672.2.bb.a.367.9 32 12.11 even 2
672.2.bb.a.367.16 32 24.5 odd 2
1176.2.p.a.979.29 32 168.11 even 6
1176.2.p.a.979.30 32 168.59 odd 6
1176.2.p.a.979.31 32 21.17 even 6
1176.2.p.a.979.32 32 21.11 odd 6
2016.2.bs.c.271.2 32 28.19 even 6
2016.2.bs.c.271.15 32 56.5 odd 6
2016.2.bs.c.1711.2 32 8.5 even 2
2016.2.bs.c.1711.15 32 4.3 odd 2
4704.2.p.a.3919.9 32 84.11 even 6
4704.2.p.a.3919.10 32 168.101 even 6
4704.2.p.a.3919.19 32 168.53 odd 6
4704.2.p.a.3919.20 32 84.59 odd 6