Properties

Label 1176.2.p.a.979.30
Level $1176$
Weight $2$
Character 1176.979
Analytic conductor $9.390$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1176,2,Mod(979,1176)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1176, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1176.979"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1176 = 2^{3} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1176.p (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.39040727770\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 979.30
Character \(\chi\) \(=\) 1176.979
Dual form 1176.2.p.a.979.32

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41258 - 0.0679787i) q^{2} -1.00000i q^{3} +(1.99076 - 0.192050i) q^{4} +3.22796 q^{5} +(-0.0679787 - 1.41258i) q^{6} +(2.79905 - 0.406616i) q^{8} -1.00000 q^{9} +(4.55975 - 0.219433i) q^{10} +2.21319 q^{11} +(-0.192050 - 1.99076i) q^{12} -5.08369 q^{13} -3.22796i q^{15} +(3.92623 - 0.764652i) q^{16} -3.15923i q^{17} +(-1.41258 + 0.0679787i) q^{18} -3.38981i q^{19} +(6.42609 - 0.619932i) q^{20} +(3.12631 - 0.150450i) q^{22} +3.06401i q^{23} +(-0.406616 - 2.79905i) q^{24} +5.41974 q^{25} +(-7.18112 + 0.345583i) q^{26} +1.00000i q^{27} +9.88340i q^{29} +(-0.219433 - 4.55975i) q^{30} -2.02805 q^{31} +(5.49413 - 1.34703i) q^{32} -2.21319i q^{33} +(-0.214760 - 4.46266i) q^{34} +(-1.99076 + 0.192050i) q^{36} -0.921883i q^{37} +(-0.230435 - 4.78837i) q^{38} +5.08369i q^{39} +(9.03522 - 1.31254i) q^{40} +5.96303i q^{41} -6.68790 q^{43} +(4.40593 - 0.425045i) q^{44} -3.22796 q^{45} +(0.208287 + 4.32815i) q^{46} +2.12226 q^{47} +(-0.764652 - 3.92623i) q^{48} +(7.65581 - 0.368427i) q^{50} -3.15923 q^{51} +(-10.1204 + 0.976326i) q^{52} +3.60913i q^{53} +(0.0679787 + 1.41258i) q^{54} +7.14411 q^{55} -3.38981 q^{57} +(0.671861 + 13.9611i) q^{58} -12.2803i q^{59} +(-0.619932 - 6.42609i) q^{60} -12.6823 q^{61} +(-2.86477 + 0.137864i) q^{62} +(7.66933 - 2.27627i) q^{64} -16.4100 q^{65} +(-0.150450 - 3.12631i) q^{66} +8.81440 q^{67} +(-0.606731 - 6.28926i) q^{68} +3.06401 q^{69} -11.7036i q^{71} +(-2.79905 + 0.406616i) q^{72} +9.03055i q^{73} +(-0.0626684 - 1.30223i) q^{74} -5.41974i q^{75} +(-0.651014 - 6.74828i) q^{76} +(0.345583 + 7.18112i) q^{78} -11.0863i q^{79} +(12.6737 - 2.46827i) q^{80} +1.00000 q^{81} +(0.405359 + 8.42325i) q^{82} +3.57322i q^{83} -10.1979i q^{85} +(-9.44719 + 0.454635i) q^{86} +9.88340 q^{87} +(6.19484 - 0.899919i) q^{88} +7.30063i q^{89} +(-4.55975 + 0.219433i) q^{90} +(0.588444 + 6.09969i) q^{92} +2.02805i q^{93} +(2.99786 - 0.144268i) q^{94} -10.9422i q^{95} +(-1.34703 - 5.49413i) q^{96} +15.2238i q^{97} -2.21319 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{2} + 4 q^{4} + 16 q^{8} - 32 q^{9} - 16 q^{11} - 12 q^{16} - 4 q^{18} - 20 q^{22} + 32 q^{25} + 16 q^{30} + 24 q^{32} - 4 q^{36} - 16 q^{43} - 48 q^{44} - 16 q^{46} + 76 q^{50} + 16 q^{57} + 12 q^{58}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1176\mathbb{Z}\right)^\times\).

\(n\) \(295\) \(589\) \(785\) \(1081\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41258 0.0679787i 0.998844 0.0480682i
\(3\) 1.00000i 0.577350i
\(4\) 1.99076 0.192050i 0.995379 0.0960252i
\(5\) 3.22796 1.44359 0.721794 0.692108i \(-0.243318\pi\)
0.721794 + 0.692108i \(0.243318\pi\)
\(6\) −0.0679787 1.41258i −0.0277522 0.576683i
\(7\) 0 0
\(8\) 2.79905 0.406616i 0.989613 0.143760i
\(9\) −1.00000 −0.333333
\(10\) 4.55975 0.219433i 1.44192 0.0693907i
\(11\) 2.21319 0.667303 0.333652 0.942696i \(-0.391719\pi\)
0.333652 + 0.942696i \(0.391719\pi\)
\(12\) −0.192050 1.99076i −0.0554402 0.574682i
\(13\) −5.08369 −1.40996 −0.704981 0.709226i \(-0.749045\pi\)
−0.704981 + 0.709226i \(0.749045\pi\)
\(14\) 0 0
\(15\) 3.22796i 0.833456i
\(16\) 3.92623 0.764652i 0.981558 0.191163i
\(17\) 3.15923i 0.766226i −0.923702 0.383113i \(-0.874852\pi\)
0.923702 0.383113i \(-0.125148\pi\)
\(18\) −1.41258 + 0.0679787i −0.332948 + 0.0160227i
\(19\) 3.38981i 0.777675i −0.921306 0.388838i \(-0.872877\pi\)
0.921306 0.388838i \(-0.127123\pi\)
\(20\) 6.42609 0.619932i 1.43692 0.138621i
\(21\) 0 0
\(22\) 3.12631 0.150450i 0.666532 0.0320761i
\(23\) 3.06401i 0.638889i 0.947605 + 0.319445i \(0.103496\pi\)
−0.947605 + 0.319445i \(0.896504\pi\)
\(24\) −0.406616 2.79905i −0.0830000 0.571353i
\(25\) 5.41974 1.08395
\(26\) −7.18112 + 0.345583i −1.40833 + 0.0677743i
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 9.88340i 1.83530i 0.397387 + 0.917651i \(0.369917\pi\)
−0.397387 + 0.917651i \(0.630083\pi\)
\(30\) −0.219433 4.55975i −0.0400627 0.832493i
\(31\) −2.02805 −0.364248 −0.182124 0.983276i \(-0.558297\pi\)
−0.182124 + 0.983276i \(0.558297\pi\)
\(32\) 5.49413 1.34703i 0.971235 0.238124i
\(33\) 2.21319i 0.385268i
\(34\) −0.214760 4.46266i −0.0368311 0.765340i
\(35\) 0 0
\(36\) −1.99076 + 0.192050i −0.331793 + 0.0320084i
\(37\) 0.921883i 0.151557i −0.997125 0.0757783i \(-0.975856\pi\)
0.997125 0.0757783i \(-0.0241441\pi\)
\(38\) −0.230435 4.78837i −0.0373814 0.776776i
\(39\) 5.08369i 0.814042i
\(40\) 9.03522 1.31254i 1.42859 0.207531i
\(41\) 5.96303i 0.931269i 0.884977 + 0.465635i \(0.154174\pi\)
−0.884977 + 0.465635i \(0.845826\pi\)
\(42\) 0 0
\(43\) −6.68790 −1.01990 −0.509948 0.860205i \(-0.670335\pi\)
−0.509948 + 0.860205i \(0.670335\pi\)
\(44\) 4.40593 0.425045i 0.664220 0.0640780i
\(45\) −3.22796 −0.481196
\(46\) 0.208287 + 4.32815i 0.0307102 + 0.638151i
\(47\) 2.12226 0.309564 0.154782 0.987949i \(-0.450533\pi\)
0.154782 + 0.987949i \(0.450533\pi\)
\(48\) −0.764652 3.92623i −0.110368 0.566703i
\(49\) 0 0
\(50\) 7.65581 0.368427i 1.08269 0.0521034i
\(51\) −3.15923 −0.442381
\(52\) −10.1204 + 0.976326i −1.40345 + 0.135392i
\(53\) 3.60913i 0.495753i 0.968792 + 0.247876i \(0.0797326\pi\)
−0.968792 + 0.247876i \(0.920267\pi\)
\(54\) 0.0679787 + 1.41258i 0.00925073 + 0.192228i
\(55\) 7.14411 0.963311
\(56\) 0 0
\(57\) −3.38981 −0.448991
\(58\) 0.671861 + 13.9611i 0.0882196 + 1.83318i
\(59\) 12.2803i 1.59876i −0.600827 0.799379i \(-0.705162\pi\)
0.600827 0.799379i \(-0.294838\pi\)
\(60\) −0.619932 6.42609i −0.0800328 0.829605i
\(61\) −12.6823 −1.62380 −0.811901 0.583795i \(-0.801567\pi\)
−0.811901 + 0.583795i \(0.801567\pi\)
\(62\) −2.86477 + 0.137864i −0.363827 + 0.0175087i
\(63\) 0 0
\(64\) 7.66933 2.27627i 0.958666 0.284534i
\(65\) −16.4100 −2.03541
\(66\) −0.150450 3.12631i −0.0185191 0.384822i
\(67\) 8.81440 1.07685 0.538425 0.842673i \(-0.319019\pi\)
0.538425 + 0.842673i \(0.319019\pi\)
\(68\) −0.606731 6.28926i −0.0735770 0.762685i
\(69\) 3.06401 0.368863
\(70\) 0 0
\(71\) 11.7036i 1.38896i −0.719512 0.694480i \(-0.755634\pi\)
0.719512 0.694480i \(-0.244366\pi\)
\(72\) −2.79905 + 0.406616i −0.329871 + 0.0479201i
\(73\) 9.03055i 1.05695i 0.848950 + 0.528473i \(0.177235\pi\)
−0.848950 + 0.528473i \(0.822765\pi\)
\(74\) −0.0626684 1.30223i −0.00728505 0.151381i
\(75\) 5.41974i 0.625817i
\(76\) −0.651014 6.74828i −0.0746764 0.774081i
\(77\) 0 0
\(78\) 0.345583 + 7.18112i 0.0391295 + 0.813101i
\(79\) 11.0863i 1.24731i −0.781699 0.623655i \(-0.785647\pi\)
0.781699 0.623655i \(-0.214353\pi\)
\(80\) 12.6737 2.46827i 1.41697 0.275961i
\(81\) 1.00000 0.111111
\(82\) 0.405359 + 8.42325i 0.0447644 + 0.930193i
\(83\) 3.57322i 0.392212i 0.980583 + 0.196106i \(0.0628297\pi\)
−0.980583 + 0.196106i \(0.937170\pi\)
\(84\) 0 0
\(85\) 10.1979i 1.10611i
\(86\) −9.44719 + 0.454635i −1.01872 + 0.0490245i
\(87\) 9.88340 1.05961
\(88\) 6.19484 0.899919i 0.660372 0.0959317i
\(89\) 7.30063i 0.773865i 0.922108 + 0.386933i \(0.126465\pi\)
−0.922108 + 0.386933i \(0.873535\pi\)
\(90\) −4.55975 + 0.219433i −0.480640 + 0.0231302i
\(91\) 0 0
\(92\) 0.588444 + 6.09969i 0.0613495 + 0.635937i
\(93\) 2.02805i 0.210299i
\(94\) 2.99786 0.144268i 0.309206 0.0148802i
\(95\) 10.9422i 1.12264i
\(96\) −1.34703 5.49413i −0.137481 0.560743i
\(97\) 15.2238i 1.54574i 0.634566 + 0.772869i \(0.281179\pi\)
−0.634566 + 0.772869i \(0.718821\pi\)
\(98\) 0 0
\(99\) −2.21319 −0.222434
\(100\) 10.7894 1.04086i 1.07894 0.104086i
\(101\) 9.84247 0.979362 0.489681 0.871902i \(-0.337113\pi\)
0.489681 + 0.871902i \(0.337113\pi\)
\(102\) −4.46266 + 0.214760i −0.441869 + 0.0212644i
\(103\) 1.98452 0.195540 0.0977701 0.995209i \(-0.468829\pi\)
0.0977701 + 0.995209i \(0.468829\pi\)
\(104\) −14.2295 + 2.06711i −1.39532 + 0.202697i
\(105\) 0 0
\(106\) 0.245344 + 5.09818i 0.0238299 + 0.495179i
\(107\) −3.23611 −0.312846 −0.156423 0.987690i \(-0.549996\pi\)
−0.156423 + 0.987690i \(0.549996\pi\)
\(108\) 0.192050 + 1.99076i 0.0184801 + 0.191561i
\(109\) 4.19152i 0.401475i −0.979645 0.200738i \(-0.935666\pi\)
0.979645 0.200738i \(-0.0643339\pi\)
\(110\) 10.0916 0.485647i 0.962198 0.0463046i
\(111\) −0.921883 −0.0875012
\(112\) 0 0
\(113\) −2.84651 −0.267777 −0.133889 0.990996i \(-0.542746\pi\)
−0.133889 + 0.990996i \(0.542746\pi\)
\(114\) −4.78837 + 0.230435i −0.448472 + 0.0215822i
\(115\) 9.89049i 0.922293i
\(116\) 1.89811 + 19.6755i 0.176235 + 1.82682i
\(117\) 5.08369 0.469987
\(118\) −0.834798 17.3469i −0.0768494 1.59691i
\(119\) 0 0
\(120\) −1.31254 9.03522i −0.119818 0.824799i
\(121\) −6.10177 −0.554706
\(122\) −17.9148 + 0.862126i −1.62193 + 0.0780533i
\(123\) 5.96303 0.537668
\(124\) −4.03735 + 0.389487i −0.362565 + 0.0349770i
\(125\) 1.35490 0.121186
\(126\) 0 0
\(127\) 21.0058i 1.86396i 0.362506 + 0.931981i \(0.381921\pi\)
−0.362506 + 0.931981i \(0.618079\pi\)
\(128\) 10.6788 3.73676i 0.943881 0.330286i
\(129\) 6.68790i 0.588837i
\(130\) −23.1804 + 1.11553i −2.03305 + 0.0978382i
\(131\) 0.570937i 0.0498830i 0.999689 + 0.0249415i \(0.00793994\pi\)
−0.999689 + 0.0249415i \(0.992060\pi\)
\(132\) −0.425045 4.40593i −0.0369954 0.383487i
\(133\) 0 0
\(134\) 12.4510 0.599191i 1.07561 0.0517623i
\(135\) 3.22796i 0.277819i
\(136\) −1.28459 8.84283i −0.110153 0.758266i
\(137\) −13.1563 −1.12402 −0.562008 0.827132i \(-0.689971\pi\)
−0.562008 + 0.827132i \(0.689971\pi\)
\(138\) 4.32815 0.208287i 0.368436 0.0177306i
\(139\) 9.54821i 0.809869i −0.914346 0.404934i \(-0.867294\pi\)
0.914346 0.404934i \(-0.132706\pi\)
\(140\) 0 0
\(141\) 2.12226i 0.178727i
\(142\) −0.795594 16.5322i −0.0667648 1.38735i
\(143\) −11.2512 −0.940873
\(144\) −3.92623 + 0.764652i −0.327186 + 0.0637210i
\(145\) 31.9032i 2.64942i
\(146\) 0.613885 + 12.7564i 0.0508055 + 1.05572i
\(147\) 0 0
\(148\) −0.177048 1.83524i −0.0145533 0.150856i
\(149\) 10.5961i 0.868068i −0.900896 0.434034i \(-0.857090\pi\)
0.900896 0.434034i \(-0.142910\pi\)
\(150\) −0.368427 7.65581i −0.0300819 0.625094i
\(151\) 1.21610i 0.0989651i 0.998775 + 0.0494826i \(0.0157572\pi\)
−0.998775 + 0.0494826i \(0.984243\pi\)
\(152\) −1.37835 9.48823i −0.111799 0.769597i
\(153\) 3.15923i 0.255409i
\(154\) 0 0
\(155\) −6.54645 −0.525824
\(156\) 0.976326 + 10.1204i 0.0781686 + 0.810280i
\(157\) 3.62504 0.289310 0.144655 0.989482i \(-0.453793\pi\)
0.144655 + 0.989482i \(0.453793\pi\)
\(158\) −0.753635 15.6603i −0.0599560 1.24587i
\(159\) 3.60913 0.286223
\(160\) 17.7349 4.34817i 1.40206 0.343753i
\(161\) 0 0
\(162\) 1.41258 0.0679787i 0.110983 0.00534091i
\(163\) 19.8314 1.55332 0.776659 0.629921i \(-0.216913\pi\)
0.776659 + 0.629921i \(0.216913\pi\)
\(164\) 1.14520 + 11.8710i 0.0894253 + 0.926966i
\(165\) 7.14411i 0.556168i
\(166\) 0.242903 + 5.04746i 0.0188529 + 0.391759i
\(167\) −12.3971 −0.959317 −0.479659 0.877455i \(-0.659240\pi\)
−0.479659 + 0.877455i \(0.659240\pi\)
\(168\) 0 0
\(169\) 12.8439 0.987994
\(170\) −0.693238 14.4053i −0.0531689 1.10484i
\(171\) 3.38981i 0.259225i
\(172\) −13.3140 + 1.28441i −1.01518 + 0.0979357i
\(173\) −1.03865 −0.0789672 −0.0394836 0.999220i \(-0.512571\pi\)
−0.0394836 + 0.999220i \(0.512571\pi\)
\(174\) 13.9611 0.671861i 1.05839 0.0509336i
\(175\) 0 0
\(176\) 8.68952 1.69232i 0.654997 0.127564i
\(177\) −12.2803 −0.923044
\(178\) 0.496287 + 10.3127i 0.0371983 + 0.772971i
\(179\) −2.52607 −0.188808 −0.0944038 0.995534i \(-0.530094\pi\)
−0.0944038 + 0.995534i \(0.530094\pi\)
\(180\) −6.42609 + 0.619932i −0.478972 + 0.0462070i
\(181\) 8.29867 0.616835 0.308418 0.951251i \(-0.400201\pi\)
0.308418 + 0.951251i \(0.400201\pi\)
\(182\) 0 0
\(183\) 12.6823i 0.937503i
\(184\) 1.24587 + 8.57629i 0.0918469 + 0.632253i
\(185\) 2.97580i 0.218785i
\(186\) 0.137864 + 2.86477i 0.0101087 + 0.210055i
\(187\) 6.99199i 0.511305i
\(188\) 4.22491 0.407581i 0.308133 0.0297259i
\(189\) 0 0
\(190\) −0.743834 15.4567i −0.0539634 1.12134i
\(191\) 6.07541i 0.439601i 0.975545 + 0.219801i \(0.0705407\pi\)
−0.975545 + 0.219801i \(0.929459\pi\)
\(192\) −2.27627 7.66933i −0.164276 0.553486i
\(193\) −9.18679 −0.661280 −0.330640 0.943757i \(-0.607265\pi\)
−0.330640 + 0.943757i \(0.607265\pi\)
\(194\) 1.03489 + 21.5048i 0.0743008 + 1.54395i
\(195\) 16.4100i 1.17514i
\(196\) 0 0
\(197\) 20.2764i 1.44463i −0.691563 0.722316i \(-0.743078\pi\)
0.691563 0.722316i \(-0.256922\pi\)
\(198\) −3.12631 + 0.150450i −0.222177 + 0.0106920i
\(199\) −3.28711 −0.233017 −0.116508 0.993190i \(-0.537170\pi\)
−0.116508 + 0.993190i \(0.537170\pi\)
\(200\) 15.1701 2.20375i 1.07269 0.155829i
\(201\) 8.81440i 0.621720i
\(202\) 13.9033 0.669078i 0.978230 0.0470762i
\(203\) 0 0
\(204\) −6.28926 + 0.606731i −0.440336 + 0.0424797i
\(205\) 19.2484i 1.34437i
\(206\) 2.80329 0.134905i 0.195314 0.00939926i
\(207\) 3.06401i 0.212963i
\(208\) −19.9598 + 3.88726i −1.38396 + 0.269533i
\(209\) 7.50230i 0.518945i
\(210\) 0 0
\(211\) −21.6901 −1.49320 −0.746602 0.665271i \(-0.768316\pi\)
−0.746602 + 0.665271i \(0.768316\pi\)
\(212\) 0.693136 + 7.18491i 0.0476048 + 0.493462i
\(213\) −11.7036 −0.801916
\(214\) −4.57125 + 0.219986i −0.312485 + 0.0150379i
\(215\) −21.5883 −1.47231
\(216\) 0.406616 + 2.79905i 0.0276667 + 0.190451i
\(217\) 0 0
\(218\) −0.284934 5.92086i −0.0192982 0.401011i
\(219\) 9.03055 0.610228
\(220\) 14.2222 1.37203i 0.958860 0.0925022i
\(221\) 16.0605i 1.08035i
\(222\) −1.30223 + 0.0626684i −0.0874001 + 0.00420603i
\(223\) −19.3266 −1.29420 −0.647102 0.762404i \(-0.724019\pi\)
−0.647102 + 0.762404i \(0.724019\pi\)
\(224\) 0 0
\(225\) −5.41974 −0.361316
\(226\) −4.02092 + 0.193502i −0.267468 + 0.0128716i
\(227\) 0.539061i 0.0357788i −0.999840 0.0178894i \(-0.994305\pi\)
0.999840 0.0178894i \(-0.00569467\pi\)
\(228\) −6.74828 + 0.651014i −0.446916 + 0.0431145i
\(229\) 22.8623 1.51078 0.755392 0.655274i \(-0.227447\pi\)
0.755392 + 0.655274i \(0.227447\pi\)
\(230\) 0.672343 + 13.9711i 0.0443330 + 0.921227i
\(231\) 0 0
\(232\) 4.01875 + 27.6641i 0.263844 + 1.81624i
\(233\) −3.00490 −0.196857 −0.0984287 0.995144i \(-0.531382\pi\)
−0.0984287 + 0.995144i \(0.531382\pi\)
\(234\) 7.18112 0.345583i 0.469444 0.0225914i
\(235\) 6.85058 0.446882
\(236\) −2.35844 24.4471i −0.153521 1.59137i
\(237\) −11.0863 −0.720135
\(238\) 0 0
\(239\) 11.2699i 0.728988i 0.931206 + 0.364494i \(0.118758\pi\)
−0.931206 + 0.364494i \(0.881242\pi\)
\(240\) −2.46827 12.6737i −0.159326 0.818086i
\(241\) 11.2731i 0.726162i 0.931758 + 0.363081i \(0.118275\pi\)
−0.931758 + 0.363081i \(0.881725\pi\)
\(242\) −8.61923 + 0.414790i −0.554065 + 0.0266637i
\(243\) 1.00000i 0.0641500i
\(244\) −25.2474 + 2.43564i −1.61630 + 0.155926i
\(245\) 0 0
\(246\) 8.42325 0.405359i 0.537047 0.0258447i
\(247\) 17.2327i 1.09649i
\(248\) −5.67659 + 0.824635i −0.360464 + 0.0523644i
\(249\) 3.57322 0.226444
\(250\) 1.91390 0.0921040i 0.121045 0.00582517i
\(251\) 3.26625i 0.206164i −0.994673 0.103082i \(-0.967130\pi\)
0.994673 0.103082i \(-0.0328704\pi\)
\(252\) 0 0
\(253\) 6.78124i 0.426333i
\(254\) 1.42795 + 29.6723i 0.0895973 + 1.86181i
\(255\) −10.1979 −0.638615
\(256\) 14.8306 6.00440i 0.926913 0.375275i
\(257\) 12.0704i 0.752933i 0.926430 + 0.376467i \(0.122861\pi\)
−0.926430 + 0.376467i \(0.877139\pi\)
\(258\) 0.454635 + 9.44719i 0.0283043 + 0.588156i
\(259\) 0 0
\(260\) −32.6683 + 3.15154i −2.02600 + 0.195450i
\(261\) 9.88340i 0.611767i
\(262\) 0.0388115 + 0.806493i 0.00239778 + 0.0498253i
\(263\) 16.3807i 1.01008i 0.863097 + 0.505038i \(0.168522\pi\)
−0.863097 + 0.505038i \(0.831478\pi\)
\(264\) −0.899919 6.19484i −0.0553862 0.381266i
\(265\) 11.6501i 0.715663i
\(266\) 0 0
\(267\) 7.30063 0.446791
\(268\) 17.5473 1.69281i 1.07187 0.103405i
\(269\) −7.47144 −0.455542 −0.227771 0.973715i \(-0.573144\pi\)
−0.227771 + 0.973715i \(0.573144\pi\)
\(270\) 0.219433 + 4.55975i 0.0133542 + 0.277498i
\(271\) 8.97234 0.545031 0.272515 0.962151i \(-0.412144\pi\)
0.272515 + 0.962151i \(0.412144\pi\)
\(272\) −2.41571 12.4039i −0.146474 0.752095i
\(273\) 0 0
\(274\) −18.5843 + 0.894345i −1.12272 + 0.0540294i
\(275\) 11.9949 0.723322
\(276\) 6.09969 0.588444i 0.367158 0.0354201i
\(277\) 6.13883i 0.368847i −0.982847 0.184423i \(-0.940958\pi\)
0.982847 0.184423i \(-0.0590417\pi\)
\(278\) −0.649075 13.4876i −0.0389289 0.808933i
\(279\) 2.02805 0.121416
\(280\) 0 0
\(281\) −19.2936 −1.15096 −0.575480 0.817816i \(-0.695185\pi\)
−0.575480 + 0.817816i \(0.695185\pi\)
\(282\) −0.144268 2.99786i −0.00859106 0.178520i
\(283\) 22.3435i 1.32818i 0.747651 + 0.664092i \(0.231182\pi\)
−0.747651 + 0.664092i \(0.768818\pi\)
\(284\) −2.24768 23.2990i −0.133375 1.38254i
\(285\) −10.9422 −0.648158
\(286\) −15.8932 + 0.764842i −0.939785 + 0.0452260i
\(287\) 0 0
\(288\) −5.49413 + 1.34703i −0.323745 + 0.0793746i
\(289\) 7.01927 0.412898
\(290\) 2.16874 + 45.0658i 0.127353 + 2.64636i
\(291\) 15.2238 0.892432
\(292\) 1.73432 + 17.9776i 0.101493 + 1.05206i
\(293\) 14.0707 0.822018 0.411009 0.911631i \(-0.365176\pi\)
0.411009 + 0.911631i \(0.365176\pi\)
\(294\) 0 0
\(295\) 39.6403i 2.30795i
\(296\) −0.374852 2.58039i −0.0217878 0.149982i
\(297\) 2.21319i 0.128423i
\(298\) −0.720311 14.9679i −0.0417265 0.867065i
\(299\) 15.5765i 0.900810i
\(300\) −1.04086 10.7894i −0.0600943 0.622925i
\(301\) 0 0
\(302\) 0.0826691 + 1.71784i 0.00475707 + 0.0988507i
\(303\) 9.84247i 0.565435i
\(304\) −2.59202 13.3092i −0.148663 0.763333i
\(305\) −40.9380 −2.34410
\(306\) 0.214760 + 4.46266i 0.0122770 + 0.255113i
\(307\) 9.61787i 0.548921i −0.961598 0.274460i \(-0.911501\pi\)
0.961598 0.274460i \(-0.0884992\pi\)
\(308\) 0 0
\(309\) 1.98452i 0.112895i
\(310\) −9.24738 + 0.445019i −0.525216 + 0.0252754i
\(311\) 21.6970 1.23032 0.615162 0.788401i \(-0.289091\pi\)
0.615162 + 0.788401i \(0.289091\pi\)
\(312\) 2.06711 + 14.2295i 0.117027 + 0.805586i
\(313\) 10.9294i 0.617766i 0.951100 + 0.308883i \(0.0999552\pi\)
−0.951100 + 0.308883i \(0.900045\pi\)
\(314\) 5.12065 0.246425i 0.288975 0.0139066i
\(315\) 0 0
\(316\) −2.12914 22.0702i −0.119773 1.24155i
\(317\) 7.09278i 0.398370i −0.979962 0.199185i \(-0.936171\pi\)
0.979962 0.199185i \(-0.0638295\pi\)
\(318\) 5.09818 0.245344i 0.285892 0.0137582i
\(319\) 21.8739i 1.22470i
\(320\) 24.7563 7.34772i 1.38392 0.410750i
\(321\) 3.23611i 0.180622i
\(322\) 0 0
\(323\) −10.7092 −0.595874
\(324\) 1.99076 0.192050i 0.110598 0.0106695i
\(325\) −27.5523 −1.52833
\(326\) 28.0135 1.34811i 1.55152 0.0746652i
\(327\) −4.19152 −0.231792
\(328\) 2.42466 + 16.6908i 0.133880 + 0.921595i
\(329\) 0 0
\(330\) −0.485647 10.0916i −0.0267340 0.555525i
\(331\) 11.7240 0.644411 0.322206 0.946670i \(-0.395576\pi\)
0.322206 + 0.946670i \(0.395576\pi\)
\(332\) 0.686239 + 7.11342i 0.0376623 + 0.390400i
\(333\) 0.921883i 0.0505189i
\(334\) −17.5119 + 0.842739i −0.958208 + 0.0461126i
\(335\) 28.4526 1.55453
\(336\) 0 0
\(337\) 23.5287 1.28169 0.640846 0.767670i \(-0.278584\pi\)
0.640846 + 0.767670i \(0.278584\pi\)
\(338\) 18.1431 0.873113i 0.986852 0.0474911i
\(339\) 2.84651i 0.154601i
\(340\) −1.95851 20.3015i −0.106215 1.10100i
\(341\) −4.48846 −0.243064
\(342\) 0.230435 + 4.78837i 0.0124605 + 0.258925i
\(343\) 0 0
\(344\) −18.7197 + 2.71940i −1.00930 + 0.146620i
\(345\) 9.89049 0.532486
\(346\) −1.46718 + 0.0706062i −0.0788759 + 0.00379581i
\(347\) −10.3426 −0.555222 −0.277611 0.960694i \(-0.589543\pi\)
−0.277611 + 0.960694i \(0.589543\pi\)
\(348\) 19.6755 1.89811i 1.05472 0.101749i
\(349\) −0.830301 −0.0444450 −0.0222225 0.999753i \(-0.507074\pi\)
−0.0222225 + 0.999753i \(0.507074\pi\)
\(350\) 0 0
\(351\) 5.08369i 0.271347i
\(352\) 12.1596 2.98124i 0.648108 0.158901i
\(353\) 4.86336i 0.258850i −0.991589 0.129425i \(-0.958687\pi\)
0.991589 0.129425i \(-0.0413132\pi\)
\(354\) −17.3469 + 0.834798i −0.921977 + 0.0443690i
\(355\) 37.7787i 2.00509i
\(356\) 1.40209 + 14.5338i 0.0743106 + 0.770289i
\(357\) 0 0
\(358\) −3.56828 + 0.171719i −0.188589 + 0.00907564i
\(359\) 18.8309i 0.993855i −0.867792 0.496928i \(-0.834461\pi\)
0.867792 0.496928i \(-0.165539\pi\)
\(360\) −9.03522 + 1.31254i −0.476198 + 0.0691769i
\(361\) 7.50921 0.395222
\(362\) 11.7225 0.564133i 0.616122 0.0296502i
\(363\) 6.10177i 0.320260i
\(364\) 0 0
\(365\) 29.1503i 1.52579i
\(366\) 0.862126 + 17.9148i 0.0450641 + 0.936419i
\(367\) 21.4539 1.11989 0.559943 0.828531i \(-0.310823\pi\)
0.559943 + 0.828531i \(0.310823\pi\)
\(368\) 2.34290 + 12.0300i 0.122132 + 0.627107i
\(369\) 5.96303i 0.310423i
\(370\) −0.202291 4.20355i −0.0105166 0.218532i
\(371\) 0 0
\(372\) 0.389487 + 4.03735i 0.0201940 + 0.209327i
\(373\) 16.3420i 0.846154i −0.906094 0.423077i \(-0.860950\pi\)
0.906094 0.423077i \(-0.139050\pi\)
\(374\) −0.475306 9.87673i −0.0245775 0.510714i
\(375\) 1.35490i 0.0699665i
\(376\) 5.94031 0.862944i 0.306348 0.0445030i
\(377\) 50.2442i 2.58771i
\(378\) 0 0
\(379\) −4.31636 −0.221717 −0.110858 0.993836i \(-0.535360\pi\)
−0.110858 + 0.993836i \(0.535360\pi\)
\(380\) −2.10145 21.7832i −0.107802 1.11745i
\(381\) 21.0058 1.07616
\(382\) 0.412998 + 8.58200i 0.0211308 + 0.439093i
\(383\) 20.1897 1.03165 0.515823 0.856695i \(-0.327486\pi\)
0.515823 + 0.856695i \(0.327486\pi\)
\(384\) −3.73676 10.6788i −0.190691 0.544950i
\(385\) 0 0
\(386\) −12.9771 + 0.624506i −0.660515 + 0.0317865i
\(387\) 6.68790 0.339965
\(388\) 2.92373 + 30.3068i 0.148430 + 1.53859i
\(389\) 33.7614i 1.71177i −0.517164 0.855886i \(-0.673012\pi\)
0.517164 0.855886i \(-0.326988\pi\)
\(390\) 1.11553 + 23.1804i 0.0564869 + 1.17378i
\(391\) 9.67989 0.489533
\(392\) 0 0
\(393\) 0.570937 0.0287999
\(394\) −1.37836 28.6420i −0.0694408 1.44296i
\(395\) 35.7863i 1.80060i
\(396\) −4.40593 + 0.425045i −0.221407 + 0.0213593i
\(397\) 0.0882317 0.00442822 0.00221411 0.999998i \(-0.499295\pi\)
0.00221411 + 0.999998i \(0.499295\pi\)
\(398\) −4.64330 + 0.223453i −0.232748 + 0.0112007i
\(399\) 0 0
\(400\) 21.2792 4.14421i 1.06396 0.207211i
\(401\) −25.2075 −1.25880 −0.629400 0.777081i \(-0.716699\pi\)
−0.629400 + 0.777081i \(0.716699\pi\)
\(402\) −0.599191 12.4510i −0.0298850 0.621001i
\(403\) 10.3100 0.513576
\(404\) 19.5940 1.89025i 0.974837 0.0940435i
\(405\) 3.22796 0.160399
\(406\) 0 0
\(407\) 2.04031i 0.101134i
\(408\) −8.84283 + 1.28459i −0.437785 + 0.0635968i
\(409\) 31.0824i 1.53692i −0.639895 0.768462i \(-0.721022\pi\)
0.639895 0.768462i \(-0.278978\pi\)
\(410\) 1.30848 + 27.1899i 0.0646214 + 1.34282i
\(411\) 13.1563i 0.648951i
\(412\) 3.95069 0.381127i 0.194637 0.0187768i
\(413\) 0 0
\(414\) −0.208287 4.32815i −0.0102367 0.212717i
\(415\) 11.5342i 0.566193i
\(416\) −27.9305 + 6.84789i −1.36940 + 0.335746i
\(417\) −9.54821 −0.467578
\(418\) −0.509997 10.5976i −0.0249448 0.518345i
\(419\) 22.7655i 1.11217i −0.831126 0.556085i \(-0.812303\pi\)
0.831126 0.556085i \(-0.187697\pi\)
\(420\) 0 0
\(421\) 24.0207i 1.17070i 0.810781 + 0.585349i \(0.199042\pi\)
−0.810781 + 0.585349i \(0.800958\pi\)
\(422\) −30.6389 + 1.47446i −1.49148 + 0.0717756i
\(423\) −2.12226 −0.103188
\(424\) 1.46753 + 10.1021i 0.0712695 + 0.490603i
\(425\) 17.1222i 0.830548i
\(426\) −16.5322 + 0.795594i −0.800989 + 0.0385467i
\(427\) 0 0
\(428\) −6.44230 + 0.621496i −0.311400 + 0.0300411i
\(429\) 11.2512i 0.543213i
\(430\) −30.4952 + 1.46754i −1.47061 + 0.0707712i
\(431\) 32.6078i 1.57066i −0.619077 0.785330i \(-0.712493\pi\)
0.619077 0.785330i \(-0.287507\pi\)
\(432\) 0.764652 + 3.92623i 0.0367893 + 0.188901i
\(433\) 18.4752i 0.887861i 0.896061 + 0.443931i \(0.146416\pi\)
−0.896061 + 0.443931i \(0.853584\pi\)
\(434\) 0 0
\(435\) 31.9032 1.52964
\(436\) −0.804984 8.34431i −0.0385518 0.399620i
\(437\) 10.3864 0.496848
\(438\) 12.7564 0.613885i 0.609522 0.0293325i
\(439\) −22.4276 −1.07041 −0.535206 0.844722i \(-0.679766\pi\)
−0.535206 + 0.844722i \(0.679766\pi\)
\(440\) 19.9967 2.90491i 0.953305 0.138486i
\(441\) 0 0
\(442\) 1.09177 + 22.6868i 0.0519304 + 1.07910i
\(443\) 9.04336 0.429663 0.214832 0.976651i \(-0.431080\pi\)
0.214832 + 0.976651i \(0.431080\pi\)
\(444\) −1.83524 + 0.177048i −0.0870969 + 0.00840233i
\(445\) 23.5662i 1.11714i
\(446\) −27.3003 + 1.31380i −1.29271 + 0.0622100i
\(447\) −10.5961 −0.501179
\(448\) 0 0
\(449\) 5.65664 0.266954 0.133477 0.991052i \(-0.457386\pi\)
0.133477 + 0.991052i \(0.457386\pi\)
\(450\) −7.65581 + 0.368427i −0.360898 + 0.0173678i
\(451\) 13.1973i 0.621439i
\(452\) −5.66672 + 0.546674i −0.266540 + 0.0257134i
\(453\) 1.21610 0.0571375
\(454\) −0.0366447 0.761467i −0.00171982 0.0357374i
\(455\) 0 0
\(456\) −9.48823 + 1.37835i −0.444327 + 0.0645471i
\(457\) 9.37943 0.438751 0.219376 0.975640i \(-0.429598\pi\)
0.219376 + 0.975640i \(0.429598\pi\)
\(458\) 32.2948 1.55415i 1.50904 0.0726206i
\(459\) 3.15923 0.147460
\(460\) 1.89947 + 19.6896i 0.0885634 + 0.918031i
\(461\) −31.7960 −1.48089 −0.740444 0.672118i \(-0.765385\pi\)
−0.740444 + 0.672118i \(0.765385\pi\)
\(462\) 0 0
\(463\) 8.87505i 0.412458i −0.978504 0.206229i \(-0.933881\pi\)
0.978504 0.206229i \(-0.0661193\pi\)
\(464\) 7.55736 + 38.8045i 0.350842 + 1.80146i
\(465\) 6.54645i 0.303585i
\(466\) −4.24465 + 0.204269i −0.196630 + 0.00946258i
\(467\) 3.12922i 0.144803i −0.997376 0.0724015i \(-0.976934\pi\)
0.997376 0.0724015i \(-0.0230663\pi\)
\(468\) 10.1204 0.976326i 0.467816 0.0451307i
\(469\) 0 0
\(470\) 9.67698 0.465693i 0.446366 0.0214808i
\(471\) 3.62504i 0.167033i
\(472\) −4.99336 34.3731i −0.229838 1.58215i
\(473\) −14.8016 −0.680579
\(474\) −15.6603 + 0.753635i −0.719303 + 0.0346156i
\(475\) 18.3719i 0.842959i
\(476\) 0 0
\(477\) 3.60913i 0.165251i
\(478\) 0.766111 + 15.9196i 0.0350411 + 0.728145i
\(479\) −16.3903 −0.748894 −0.374447 0.927248i \(-0.622167\pi\)
−0.374447 + 0.927248i \(0.622167\pi\)
\(480\) −4.34817 17.7349i −0.198466 0.809482i
\(481\) 4.68657i 0.213689i
\(482\) 0.766328 + 15.9241i 0.0349053 + 0.725323i
\(483\) 0 0
\(484\) −12.1471 + 1.17185i −0.552143 + 0.0532658i
\(485\) 49.1417i 2.23141i
\(486\) −0.0679787 1.41258i −0.00308358 0.0640759i
\(487\) 29.3637i 1.33060i −0.746577 0.665299i \(-0.768304\pi\)
0.746577 0.665299i \(-0.231696\pi\)
\(488\) −35.4984 + 5.15682i −1.60694 + 0.233438i
\(489\) 19.8314i 0.896808i
\(490\) 0 0
\(491\) 33.8967 1.52974 0.764869 0.644186i \(-0.222804\pi\)
0.764869 + 0.644186i \(0.222804\pi\)
\(492\) 11.8710 1.14520i 0.535184 0.0516297i
\(493\) 31.2239 1.40626
\(494\) 1.17146 + 24.3426i 0.0527064 + 1.09523i
\(495\) −7.14411 −0.321104
\(496\) −7.96258 + 1.55075i −0.357530 + 0.0696307i
\(497\) 0 0
\(498\) 5.04746 0.242903i 0.226182 0.0108847i
\(499\) −8.89053 −0.397995 −0.198997 0.980000i \(-0.563769\pi\)
−0.198997 + 0.980000i \(0.563769\pi\)
\(500\) 2.69727 0.260208i 0.120626 0.0116369i
\(501\) 12.3971i 0.553862i
\(502\) −0.222035 4.61384i −0.00990992 0.205926i
\(503\) −1.51626 −0.0676065 −0.0338032 0.999429i \(-0.510762\pi\)
−0.0338032 + 0.999429i \(0.510762\pi\)
\(504\) 0 0
\(505\) 31.7711 1.41380
\(506\) 0.460980 + 9.57904i 0.0204930 + 0.425840i
\(507\) 12.8439i 0.570419i
\(508\) 4.03417 + 41.8174i 0.178987 + 1.85535i
\(509\) −7.43439 −0.329524 −0.164762 0.986333i \(-0.552686\pi\)
−0.164762 + 0.986333i \(0.552686\pi\)
\(510\) −14.4053 + 0.693238i −0.637877 + 0.0306971i
\(511\) 0 0
\(512\) 20.5412 9.48986i 0.907803 0.419397i
\(513\) 3.38981 0.149664
\(514\) 0.820532 + 17.0504i 0.0361921 + 0.752063i
\(515\) 6.40594 0.282280
\(516\) 1.28441 + 13.3140i 0.0565432 + 0.586116i
\(517\) 4.69698 0.206573
\(518\) 0 0
\(519\) 1.03865i 0.0455917i
\(520\) −45.9323 + 6.67255i −2.01426 + 0.292611i
\(521\) 13.5936i 0.595545i −0.954637 0.297772i \(-0.903756\pi\)
0.954637 0.297772i \(-0.0962436\pi\)
\(522\) −0.671861 13.9611i −0.0294065 0.611060i
\(523\) 3.91073i 0.171004i −0.996338 0.0855020i \(-0.972751\pi\)
0.996338 0.0855020i \(-0.0272494\pi\)
\(524\) 0.109649 + 1.13660i 0.00479002 + 0.0496524i
\(525\) 0 0
\(526\) 1.11354 + 23.1390i 0.0485525 + 1.00891i
\(527\) 6.40706i 0.279096i
\(528\) −1.69232 8.68952i −0.0736489 0.378163i
\(529\) 13.6119 0.591821
\(530\) 0.791961 + 16.4567i 0.0344006 + 0.714835i
\(531\) 12.2803i 0.532920i
\(532\) 0 0
\(533\) 30.3142i 1.31305i
\(534\) 10.3127 0.496287i 0.446275 0.0214764i
\(535\) −10.4460 −0.451621
\(536\) 24.6719 3.58407i 1.06566 0.154808i
\(537\) 2.52607i 0.109008i
\(538\) −10.5540 + 0.507899i −0.455015 + 0.0218971i
\(539\) 0 0
\(540\) 0.619932 + 6.42609i 0.0266776 + 0.276535i
\(541\) 33.9327i 1.45888i −0.684045 0.729440i \(-0.739781\pi\)
0.684045 0.729440i \(-0.260219\pi\)
\(542\) 12.6741 0.609928i 0.544401 0.0261986i
\(543\) 8.29867i 0.356130i
\(544\) −4.25558 17.3572i −0.182456 0.744185i
\(545\) 13.5301i 0.579565i
\(546\) 0 0
\(547\) 19.9416 0.852640 0.426320 0.904572i \(-0.359810\pi\)
0.426320 + 0.904572i \(0.359810\pi\)
\(548\) −26.1909 + 2.52667i −1.11882 + 0.107934i
\(549\) 12.6823 0.541268
\(550\) 16.9438 0.815400i 0.722486 0.0347688i
\(551\) 33.5028 1.42727
\(552\) 8.57629 1.24587i 0.365031 0.0530278i
\(553\) 0 0
\(554\) −0.417310 8.67158i −0.0177298 0.368420i
\(555\) −2.97580 −0.126316
\(556\) −1.83374 19.0082i −0.0777678 0.806126i
\(557\) 34.1791i 1.44821i −0.689688 0.724107i \(-0.742252\pi\)
0.689688 0.724107i \(-0.257748\pi\)
\(558\) 2.86477 0.137864i 0.121276 0.00583624i
\(559\) 33.9992 1.43801
\(560\) 0 0
\(561\) −6.99199 −0.295202
\(562\) −27.2537 + 1.31155i −1.14963 + 0.0553245i
\(563\) 2.25839i 0.0951800i 0.998867 + 0.0475900i \(0.0151541\pi\)
−0.998867 + 0.0475900i \(0.984846\pi\)
\(564\) −0.407581 4.22491i −0.0171623 0.177901i
\(565\) −9.18843 −0.386560
\(566\) 1.51888 + 31.5620i 0.0638434 + 1.32665i
\(567\) 0 0
\(568\) −4.75886 32.7589i −0.199677 1.37453i
\(569\) 29.1605 1.22247 0.611236 0.791448i \(-0.290672\pi\)
0.611236 + 0.791448i \(0.290672\pi\)
\(570\) −15.4567 + 0.743834i −0.647409 + 0.0311558i
\(571\) −26.2578 −1.09885 −0.549427 0.835541i \(-0.685154\pi\)
−0.549427 + 0.835541i \(0.685154\pi\)
\(572\) −22.3984 + 2.16080i −0.936525 + 0.0903475i
\(573\) 6.07541 0.253804
\(574\) 0 0
\(575\) 16.6061i 0.692522i
\(576\) −7.66933 + 2.27627i −0.319555 + 0.0948447i
\(577\) 0.0540052i 0.00224826i 0.999999 + 0.00112413i \(0.000357822\pi\)
−0.999999 + 0.00112413i \(0.999642\pi\)
\(578\) 9.91528 0.477161i 0.412421 0.0198473i
\(579\) 9.18679i 0.381790i
\(580\) 6.12703 + 63.5116i 0.254411 + 2.63718i
\(581\) 0 0
\(582\) 21.5048 1.03489i 0.891401 0.0428976i
\(583\) 7.98771i 0.330817i
\(584\) 3.67196 + 25.2769i 0.151947 + 1.04597i
\(585\) 16.4100 0.678468
\(586\) 19.8760 0.956507i 0.821068 0.0395129i
\(587\) 4.75946i 0.196444i −0.995165 0.0982219i \(-0.968685\pi\)
0.995165 0.0982219i \(-0.0313155\pi\)
\(588\) 0 0
\(589\) 6.87468i 0.283266i
\(590\) −2.69470 55.9951i −0.110939 2.30528i
\(591\) −20.2764 −0.834059
\(592\) −0.704919 3.61953i −0.0289720 0.148762i
\(593\) 11.8705i 0.487464i 0.969843 + 0.243732i \(0.0783718\pi\)
−0.969843 + 0.243732i \(0.921628\pi\)
\(594\) 0.150450 + 3.12631i 0.00617304 + 0.128274i
\(595\) 0 0
\(596\) −2.03499 21.0943i −0.0833565 0.864057i
\(597\) 3.28711i 0.134532i
\(598\) −1.05887 22.0030i −0.0433003 0.899769i
\(599\) 29.6273i 1.21054i 0.796021 + 0.605269i \(0.206934\pi\)
−0.796021 + 0.605269i \(0.793066\pi\)
\(600\) −2.20375 15.1701i −0.0899677 0.619317i
\(601\) 26.4608i 1.07936i 0.841870 + 0.539680i \(0.181455\pi\)
−0.841870 + 0.539680i \(0.818545\pi\)
\(602\) 0 0
\(603\) −8.81440 −0.358950
\(604\) 0.233553 + 2.42097i 0.00950315 + 0.0985078i
\(605\) −19.6963 −0.800768
\(606\) −0.669078 13.9033i −0.0271794 0.564782i
\(607\) 15.3842 0.624424 0.312212 0.950012i \(-0.398930\pi\)
0.312212 + 0.950012i \(0.398930\pi\)
\(608\) −4.56618 18.6241i −0.185183 0.755305i
\(609\) 0 0
\(610\) −57.8282 + 2.78291i −2.34139 + 0.112677i
\(611\) −10.7889 −0.436473
\(612\) 0.606731 + 6.28926i 0.0245257 + 0.254228i
\(613\) 19.4338i 0.784925i 0.919768 + 0.392463i \(0.128377\pi\)
−0.919768 + 0.392463i \(0.871623\pi\)
\(614\) −0.653810 13.5860i −0.0263856 0.548286i
\(615\) 19.2484 0.776172
\(616\) 0 0
\(617\) −0.173969 −0.00700371 −0.00350186 0.999994i \(-0.501115\pi\)
−0.00350186 + 0.999994i \(0.501115\pi\)
\(618\) −0.134905 2.80329i −0.00542667 0.112765i
\(619\) 37.9663i 1.52600i −0.646401 0.762998i \(-0.723727\pi\)
0.646401 0.762998i \(-0.276273\pi\)
\(620\) −13.0324 + 1.25725i −0.523394 + 0.0504924i
\(621\) −3.06401 −0.122954
\(622\) 30.6487 1.47493i 1.22890 0.0591394i
\(623\) 0 0
\(624\) 3.88726 + 19.9598i 0.155615 + 0.799030i
\(625\) −22.7251 −0.909005
\(626\) 0.742966 + 15.4386i 0.0296949 + 0.617052i
\(627\) −7.50230 −0.299613
\(628\) 7.21658 0.696191i 0.287973 0.0277810i
\(629\) −2.91244 −0.116127
\(630\) 0 0
\(631\) 26.0140i 1.03560i 0.855501 + 0.517801i \(0.173249\pi\)
−0.855501 + 0.517801i \(0.826751\pi\)
\(632\) −4.50788 31.0312i −0.179314 1.23435i
\(633\) 21.6901i 0.862102i
\(634\) −0.482158 10.0191i −0.0191489 0.397910i
\(635\) 67.8059i 2.69080i
\(636\) 7.18491 0.693136i 0.284900 0.0274846i
\(637\) 0 0
\(638\) 1.48696 + 30.8986i 0.0588693 + 1.22329i
\(639\) 11.7036i 0.462987i
\(640\) 34.4707 12.0621i 1.36258 0.476798i
\(641\) 24.9147 0.984070 0.492035 0.870575i \(-0.336253\pi\)
0.492035 + 0.870575i \(0.336253\pi\)
\(642\) 0.219986 + 4.57125i 0.00868216 + 0.180413i
\(643\) 4.80941i 0.189665i −0.995493 0.0948323i \(-0.969769\pi\)
0.995493 0.0948323i \(-0.0302315\pi\)
\(644\) 0 0
\(645\) 21.5883i 0.850038i
\(646\) −15.1276 + 0.727996i −0.595186 + 0.0286426i
\(647\) −8.54067 −0.335769 −0.167884 0.985807i \(-0.553693\pi\)
−0.167884 + 0.985807i \(0.553693\pi\)
\(648\) 2.79905 0.406616i 0.109957 0.0159734i
\(649\) 27.1787i 1.06686i
\(650\) −38.9198 + 1.87297i −1.52656 + 0.0734638i
\(651\) 0 0
\(652\) 39.4796 3.80864i 1.54614 0.149158i
\(653\) 27.9386i 1.09332i −0.837354 0.546661i \(-0.815899\pi\)
0.837354 0.546661i \(-0.184101\pi\)
\(654\) −5.92086 + 0.284934i −0.231524 + 0.0111418i
\(655\) 1.84296i 0.0720105i
\(656\) 4.55964 + 23.4123i 0.178024 + 0.914095i
\(657\) 9.03055i 0.352315i
\(658\) 0 0
\(659\) 28.0553 1.09288 0.546439 0.837499i \(-0.315983\pi\)
0.546439 + 0.837499i \(0.315983\pi\)
\(660\) −1.37203 14.2222i −0.0534062 0.553598i
\(661\) −8.94254 −0.347825 −0.173912 0.984761i \(-0.555641\pi\)
−0.173912 + 0.984761i \(0.555641\pi\)
\(662\) 16.5611 0.796984i 0.643666 0.0309757i
\(663\) 16.0605 0.623740
\(664\) 1.45293 + 10.0016i 0.0563846 + 0.388138i
\(665\) 0 0
\(666\) 0.0626684 + 1.30223i 0.00242835 + 0.0504605i
\(667\) −30.2828 −1.17255
\(668\) −24.6796 + 2.38087i −0.954884 + 0.0921187i
\(669\) 19.3266i 0.747209i
\(670\) 40.1915 1.93417i 1.55273 0.0747234i
\(671\) −28.0684 −1.08357
\(672\) 0 0
\(673\) 45.4881 1.75344 0.876720 0.481002i \(-0.159727\pi\)
0.876720 + 0.481002i \(0.159727\pi\)
\(674\) 33.2362 1.59945i 1.28021 0.0616086i
\(675\) 5.41974i 0.208606i
\(676\) 25.5691 2.46668i 0.983429 0.0948724i
\(677\) −10.9689 −0.421571 −0.210785 0.977532i \(-0.567602\pi\)
−0.210785 + 0.977532i \(0.567602\pi\)
\(678\) 0.193502 + 4.02092i 0.00743141 + 0.154423i
\(679\) 0 0
\(680\) −4.14661 28.5443i −0.159015 1.09462i
\(681\) −0.539061 −0.0206569
\(682\) −6.34030 + 0.305120i −0.242783 + 0.0116836i
\(683\) −28.2074 −1.07933 −0.539663 0.841881i \(-0.681448\pi\)
−0.539663 + 0.841881i \(0.681448\pi\)
\(684\) 0.651014 + 6.74828i 0.0248921 + 0.258027i
\(685\) −42.4679 −1.62262
\(686\) 0 0
\(687\) 22.8623i 0.872251i
\(688\) −26.2583 + 5.11392i −1.00109 + 0.194966i
\(689\) 18.3477i 0.698992i
\(690\) 13.9711 0.672343i 0.531871 0.0255956i
\(691\) 9.49222i 0.361101i −0.983566 0.180550i \(-0.942212\pi\)
0.983566 0.180550i \(-0.0577879\pi\)
\(692\) −2.06770 + 0.199474i −0.0786023 + 0.00758285i
\(693\) 0 0
\(694\) −14.6098 + 0.703079i −0.554581 + 0.0266885i
\(695\) 30.8213i 1.16912i
\(696\) 27.6641 4.01875i 1.04861 0.152330i
\(697\) 18.8386 0.713562
\(698\) −1.17287 + 0.0564427i −0.0443936 + 0.00213639i
\(699\) 3.00490i 0.113656i
\(700\) 0 0
\(701\) 14.3589i 0.542328i −0.962533 0.271164i \(-0.912591\pi\)
0.962533 0.271164i \(-0.0874085\pi\)
\(702\) −0.345583 7.18112i −0.0130432 0.271034i
\(703\) −3.12500 −0.117862
\(704\) 16.9737 5.03783i 0.639721 0.189870i
\(705\) 6.85058i 0.258008i
\(706\) −0.330605 6.86988i −0.0124425 0.258551i
\(707\) 0 0
\(708\) −24.4471 + 2.35844i −0.918778 + 0.0886355i
\(709\) 10.2787i 0.386024i 0.981196 + 0.193012i \(0.0618257\pi\)
−0.981196 + 0.193012i \(0.938174\pi\)
\(710\) −2.56815 53.3654i −0.0963809 2.00277i
\(711\) 11.0863i 0.415770i
\(712\) 2.96855 + 20.4348i 0.111251 + 0.765827i
\(713\) 6.21394i 0.232714i
\(714\) 0 0
\(715\) −36.3184 −1.35823
\(716\) −5.02880 + 0.485134i −0.187935 + 0.0181303i
\(717\) 11.2699 0.420881
\(718\) −1.28010 26.6001i −0.0477728 0.992706i
\(719\) −14.7893 −0.551549 −0.275775 0.961222i \(-0.588934\pi\)
−0.275775 + 0.961222i \(0.588934\pi\)
\(720\) −12.6737 + 2.46827i −0.472322 + 0.0919869i
\(721\) 0 0
\(722\) 10.6074 0.510466i 0.394765 0.0189976i
\(723\) 11.2731 0.419250
\(724\) 16.5206 1.59376i 0.613985 0.0592318i
\(725\) 53.5654i 1.98937i
\(726\) 0.414790 + 8.61923i 0.0153943 + 0.319890i
\(727\) −43.5679 −1.61585 −0.807923 0.589289i \(-0.799408\pi\)
−0.807923 + 0.589289i \(0.799408\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 1.98160 + 41.1770i 0.0733422 + 1.52403i
\(731\) 21.1286i 0.781470i
\(732\) 2.43564 + 25.2474i 0.0900240 + 0.933171i
\(733\) −22.6824 −0.837792 −0.418896 0.908034i \(-0.637583\pi\)
−0.418896 + 0.908034i \(0.637583\pi\)
\(734\) 30.3054 1.45841i 1.11859 0.0538309i
\(735\) 0 0
\(736\) 4.12731 + 16.8341i 0.152135 + 0.620511i
\(737\) 19.5080 0.718586
\(738\) −0.405359 8.42325i −0.0149215 0.310064i
\(739\) 4.65190 0.171123 0.0855615 0.996333i \(-0.472732\pi\)
0.0855615 + 0.996333i \(0.472732\pi\)
\(740\) −0.571504 5.92410i −0.0210089 0.217774i
\(741\) 17.2327 0.633060
\(742\) 0 0
\(743\) 28.3209i 1.03899i 0.854473 + 0.519496i \(0.173880\pi\)
−0.854473 + 0.519496i \(0.826120\pi\)
\(744\) 0.824635 + 5.67659i 0.0302326 + 0.208114i
\(745\) 34.2039i 1.25313i
\(746\) −1.11090 23.0843i −0.0406731 0.845176i
\(747\) 3.57322i 0.130737i
\(748\) −1.34281 13.9194i −0.0490982 0.508942i
\(749\) 0 0
\(750\) −0.0921040 1.91390i −0.00336316 0.0698856i
\(751\) 33.0040i 1.20433i −0.798371 0.602166i \(-0.794304\pi\)
0.798371 0.602166i \(-0.205696\pi\)
\(752\) 8.33249 1.62279i 0.303855 0.0591771i
\(753\) −3.26625 −0.119029
\(754\) −3.41553 70.9739i −0.124386 2.58472i
\(755\) 3.92554i 0.142865i
\(756\) 0 0
\(757\) 19.0350i 0.691838i −0.938264 0.345919i \(-0.887567\pi\)
0.938264 0.345919i \(-0.112433\pi\)
\(758\) −6.09720 + 0.293420i −0.221460 + 0.0106575i
\(759\) 6.78124 0.246143
\(760\) −4.44926 30.6276i −0.161391 1.11098i
\(761\) 49.9704i 1.81142i −0.423893 0.905712i \(-0.639337\pi\)
0.423893 0.905712i \(-0.360663\pi\)
\(762\) 29.6723 1.42795i 1.07492 0.0517290i
\(763\) 0 0
\(764\) 1.16679 + 12.0947i 0.0422128 + 0.437570i
\(765\) 10.1979i 0.368705i
\(766\) 28.5195 1.37247i 1.03045 0.0495893i
\(767\) 62.4293i 2.25419i
\(768\) −6.00440 14.8306i −0.216665 0.535154i
\(769\) 24.2908i 0.875949i −0.898987 0.437974i \(-0.855696\pi\)
0.898987 0.437974i \(-0.144304\pi\)
\(770\) 0 0
\(771\) 12.0704 0.434706
\(772\) −18.2887 + 1.76433i −0.658224 + 0.0634995i
\(773\) −16.0322 −0.576640 −0.288320 0.957534i \(-0.593097\pi\)
−0.288320 + 0.957534i \(0.593097\pi\)
\(774\) 9.44719 0.454635i 0.339572 0.0163415i
\(775\) −10.9915 −0.394825
\(776\) 6.19021 + 42.6120i 0.222216 + 1.52968i
\(777\) 0 0
\(778\) −2.29506 47.6907i −0.0822818 1.70979i
\(779\) 20.2135 0.724225
\(780\) 3.15154 + 32.6683i 0.112843 + 1.16971i
\(781\) 25.9023i 0.926858i
\(782\) 13.6736 0.658026i 0.488967 0.0235310i
\(783\) −9.88340 −0.353204
\(784\) 0 0
\(785\) 11.7015 0.417644
\(786\) 0.806493 0.0388115i 0.0287666 0.00138436i
\(787\) 10.0646i 0.358764i −0.983780 0.179382i \(-0.942590\pi\)
0.983780 0.179382i \(-0.0574097\pi\)
\(788\) −3.89409 40.3653i −0.138721 1.43796i
\(789\) 16.3807 0.583168
\(790\) −2.43270 50.5510i −0.0865517 1.79852i
\(791\) 0 0
\(792\) −6.19484 + 0.899919i −0.220124 + 0.0319772i
\(793\) 64.4729 2.28950
\(794\) 0.124634 0.00599787i 0.00442310 0.000212857i
\(795\) 11.6501 0.413188
\(796\) −6.54384 + 0.631291i −0.231940 + 0.0223755i
\(797\) 53.0872 1.88045 0.940223 0.340560i \(-0.110617\pi\)
0.940223 + 0.340560i \(0.110617\pi\)
\(798\) 0 0
\(799\) 6.70471i 0.237196i
\(800\) 29.7768 7.30056i 1.05277 0.258114i
\(801\) 7.30063i 0.257955i
\(802\) −35.6075 + 1.71357i −1.25735 + 0.0605082i
\(803\) 19.9864i 0.705303i
\(804\) −1.69281 17.5473i −0.0597008 0.618847i
\(805\) 0 0
\(806\) 14.5636 0.700857i 0.512982 0.0246866i
\(807\) 7.47144i 0.263007i
\(808\) 27.5495 4.00210i 0.969189 0.140793i
\(809\) 53.9058 1.89523 0.947614 0.319418i \(-0.103487\pi\)
0.947614 + 0.319418i \(0.103487\pi\)
\(810\) 4.55975 0.219433i 0.160213 0.00771007i
\(811\) 48.2050i 1.69271i −0.532621 0.846354i \(-0.678793\pi\)
0.532621 0.846354i \(-0.321207\pi\)
\(812\) 0 0
\(813\) 8.97234i 0.314674i
\(814\) −0.138697 2.88209i −0.00486134 0.101017i
\(815\) 64.0151 2.24235
\(816\) −12.4039 + 2.41571i −0.434222 + 0.0845668i
\(817\) 22.6707i 0.793147i
\(818\) −2.11294 43.9063i −0.0738771 1.53515i
\(819\) 0 0
\(820\) 3.69667 + 38.3190i 0.129093 + 1.33816i
\(821\) 25.8966i 0.903798i 0.892069 + 0.451899i \(0.149253\pi\)
−0.892069 + 0.451899i \(0.850747\pi\)
\(822\) 0.894345 + 18.5843i 0.0311939 + 0.648201i
\(823\) 55.5526i 1.93644i −0.250095 0.968221i \(-0.580462\pi\)
0.250095 0.968221i \(-0.419538\pi\)
\(824\) 5.55476 0.806935i 0.193509 0.0281109i
\(825\) 11.9949i 0.417610i
\(826\) 0 0
\(827\) 23.2870 0.809770 0.404885 0.914368i \(-0.367312\pi\)
0.404885 + 0.914368i \(0.367312\pi\)
\(828\) −0.588444 6.09969i −0.0204498 0.211979i
\(829\) 5.17675 0.179796 0.0898980 0.995951i \(-0.471346\pi\)
0.0898980 + 0.995951i \(0.471346\pi\)
\(830\) 0.784082 + 16.2930i 0.0272159 + 0.565539i
\(831\) −6.13883 −0.212954
\(832\) −38.9885 + 11.5719i −1.35168 + 0.401182i
\(833\) 0 0
\(834\) −13.4876 + 0.649075i −0.467037 + 0.0224756i
\(835\) −40.0174 −1.38486
\(836\) −1.44082 14.9353i −0.0498318 0.516547i
\(837\) 2.02805i 0.0700995i
\(838\) −1.54757 32.1581i −0.0534600 1.11088i
\(839\) 12.7298 0.439480 0.219740 0.975558i \(-0.429479\pi\)
0.219740 + 0.975558i \(0.429479\pi\)
\(840\) 0 0
\(841\) −68.6816 −2.36833
\(842\) 1.63290 + 33.9312i 0.0562733 + 1.16934i
\(843\) 19.2936i 0.664507i
\(844\) −43.1796 + 4.16558i −1.48630 + 0.143385i
\(845\) 41.4597 1.42626
\(846\) −2.99786 + 0.144268i −0.103069 + 0.00496005i
\(847\) 0 0
\(848\) 2.75973 + 14.1703i 0.0947695 + 0.486610i
\(849\) 22.3435 0.766827
\(850\) −1.16394 24.1864i −0.0399229 0.829588i
\(851\) 2.82465 0.0968279
\(852\) −23.2990 + 2.24768i −0.798211 + 0.0770042i
\(853\) 47.2928 1.61927 0.809637 0.586930i \(-0.199664\pi\)
0.809637 + 0.586930i \(0.199664\pi\)
\(854\) 0 0
\(855\) 10.9422i 0.374214i
\(856\) −9.05801 + 1.31585i −0.309596 + 0.0449749i
\(857\) 52.2530i 1.78493i 0.451120 + 0.892463i \(0.351025\pi\)
−0.451120 + 0.892463i \(0.648975\pi\)
\(858\) 0.764842 + 15.8932i 0.0261113 + 0.542585i
\(859\) 50.4680i 1.72195i −0.508651 0.860973i \(-0.669855\pi\)
0.508651 0.860973i \(-0.330145\pi\)
\(860\) −42.9770 + 4.14604i −1.46551 + 0.141379i
\(861\) 0 0
\(862\) −2.21663 46.0610i −0.0754988 1.56884i
\(863\) 26.7795i 0.911586i 0.890086 + 0.455793i \(0.150644\pi\)
−0.890086 + 0.455793i \(0.849356\pi\)
\(864\) 1.34703 + 5.49413i 0.0458269 + 0.186914i
\(865\) −3.35273 −0.113996
\(866\) 1.25592 + 26.0977i 0.0426779 + 0.886835i
\(867\) 7.01927i 0.238387i
\(868\) 0 0
\(869\) 24.5362i 0.832335i
\(870\) 45.0658 2.16874i 1.52788 0.0735272i
\(871\) −44.8097 −1.51832
\(872\) −1.70434 11.7323i −0.0577162 0.397305i
\(873\) 15.2238i 0.515246i
\(874\) 14.6716 0.706053i 0.496274 0.0238826i
\(875\) 0 0
\(876\) 17.9776 1.73432i 0.607408 0.0585973i
\(877\) 25.9128i 0.875013i 0.899215 + 0.437506i \(0.144138\pi\)
−0.899215 + 0.437506i \(0.855862\pi\)
\(878\) −31.6808 + 1.52460i −1.06917 + 0.0514528i
\(879\) 14.0707i 0.474593i
\(880\) 28.0494 5.46276i 0.945546 0.184149i
\(881\) 10.0120i 0.337313i 0.985675 + 0.168657i \(0.0539429\pi\)
−0.985675 + 0.168657i \(0.946057\pi\)
\(882\) 0 0
\(883\) −23.6231 −0.794981 −0.397491 0.917606i \(-0.630119\pi\)
−0.397491 + 0.917606i \(0.630119\pi\)
\(884\) 3.08444 + 31.9727i 0.103741 + 1.07536i
\(885\) −39.6403 −1.33250
\(886\) 12.7745 0.614756i 0.429166 0.0206531i
\(887\) −18.1625 −0.609835 −0.304918 0.952379i \(-0.598629\pi\)
−0.304918 + 0.952379i \(0.598629\pi\)
\(888\) −2.58039 + 0.374852i −0.0865923 + 0.0125792i
\(889\) 0 0
\(890\) 1.60200 + 33.2891i 0.0536990 + 1.11585i
\(891\) 2.21319 0.0741448
\(892\) −38.4745 + 3.71168i −1.28822 + 0.124276i
\(893\) 7.19405i 0.240740i
\(894\) −14.9679 + 0.720311i −0.500600 + 0.0240908i
\(895\) −8.15407 −0.272560
\(896\) 0 0
\(897\) −15.5765 −0.520083
\(898\) 7.99045 0.384531i 0.266645 0.0128320i
\(899\) 20.0440i 0.668505i
\(900\) −10.7894 + 1.04086i −0.359646 + 0.0346954i
\(901\) 11.4021 0.379858
\(902\) 0.897138 + 18.6423i 0.0298714 + 0.620721i
\(903\) 0 0
\(904\) −7.96752 + 1.15744i −0.264996 + 0.0384958i
\(905\) 26.7878 0.890456
\(906\) 1.71784 0.0826691i 0.0570715 0.00274650i
\(907\) −55.4370 −1.84075 −0.920377 0.391031i \(-0.872118\pi\)
−0.920377 + 0.391031i \(0.872118\pi\)
\(908\) −0.103527 1.07314i −0.00343566 0.0356134i
\(909\) −9.84247 −0.326454
\(910\) 0 0
\(911\) 18.4722i 0.612012i −0.952030 0.306006i \(-0.901007\pi\)
0.952030 0.306006i \(-0.0989928\pi\)
\(912\) −13.3092 + 2.59202i −0.440711 + 0.0858304i
\(913\) 7.90824i 0.261725i
\(914\) 13.2492 0.637601i 0.438244 0.0210900i
\(915\) 40.9380i 1.35337i
\(916\) 45.5133 4.39071i 1.50380 0.145073i
\(917\) 0 0
\(918\) 4.46266 0.214760i 0.147290 0.00708814i
\(919\) 0.166633i 0.00549671i 0.999996 + 0.00274835i \(0.000874829\pi\)
−0.999996 + 0.00274835i \(0.999125\pi\)
\(920\) 4.02163 + 27.6839i 0.132589 + 0.912713i
\(921\) −9.61787 −0.316920
\(922\) −44.9144 + 2.16145i −1.47918 + 0.0711836i
\(923\) 59.4974i 1.95838i
\(924\) 0 0
\(925\) 4.99636i 0.164279i
\(926\) −0.603314 12.5367i −0.0198261 0.411982i
\(927\) −1.98452 −0.0651801
\(928\) 13.3133 + 54.3007i 0.437029 + 1.78251i
\(929\) 16.1882i 0.531117i −0.964095 0.265559i \(-0.914444\pi\)
0.964095 0.265559i \(-0.0855564\pi\)
\(930\) 0.445019 + 9.24738i 0.0145928 + 0.303234i
\(931\) 0 0
\(932\) −5.98202 + 0.577092i −0.195948 + 0.0189033i
\(933\) 21.6970i 0.710328i
\(934\) −0.212720 4.42027i −0.00696041 0.144636i
\(935\) 22.5699i 0.738114i
\(936\) 14.2295 2.06711i 0.465106 0.0675655i
\(937\) 19.5153i 0.637538i 0.947832 + 0.318769i \(0.103270\pi\)
−0.947832 + 0.318769i \(0.896730\pi\)
\(938\) 0 0
\(939\) 10.9294 0.356668
\(940\) 13.6378 1.31566i 0.444817 0.0429120i
\(941\) −24.6402 −0.803248 −0.401624 0.915805i \(-0.631554\pi\)
−0.401624 + 0.915805i \(0.631554\pi\)
\(942\) −0.246425 5.12065i −0.00802897 0.166840i
\(943\) −18.2708 −0.594978
\(944\) −9.39015 48.2153i −0.305623 1.56927i
\(945\) 0 0
\(946\) −20.9085 + 1.00619i −0.679793 + 0.0327142i
\(947\) −8.61539 −0.279963 −0.139981 0.990154i \(-0.544704\pi\)
−0.139981 + 0.990154i \(0.544704\pi\)
\(948\) −22.0702 + 2.12914i −0.716808 + 0.0691512i
\(949\) 45.9085i 1.49025i
\(950\) −1.24889 25.9517i −0.0405195 0.841984i
\(951\) −7.09278 −0.229999
\(952\) 0 0
\(953\) −27.4982 −0.890755 −0.445378 0.895343i \(-0.646931\pi\)
−0.445378 + 0.895343i \(0.646931\pi\)
\(954\) −0.245344 5.09818i −0.00794331 0.165060i
\(955\) 19.6112i 0.634603i
\(956\) 2.16439 + 22.4356i 0.0700012 + 0.725619i
\(957\) 21.8739 0.707083
\(958\) −23.1526 + 1.11419i −0.748028 + 0.0359980i
\(959\) 0 0
\(960\) −7.34772 24.7563i −0.237147 0.799006i
\(961\) −26.8870 −0.867324
\(962\) 0.318587 + 6.62015i 0.0102716 + 0.213442i
\(963\) 3.23611 0.104282
\(964\) 2.16500 + 22.4419i 0.0697299 + 0.722806i
\(965\) −29.6546 −0.954616
\(966\) 0 0
\(967\) 21.2591i 0.683647i 0.939764 + 0.341823i \(0.111044\pi\)
−0.939764 + 0.341823i \(0.888956\pi\)
\(968\) −17.0791 + 2.48107i −0.548944 + 0.0797447i
\(969\) 10.7092i 0.344028i
\(970\) 3.34059 + 69.4165i 0.107260 + 2.22883i
\(971\) 31.5634i 1.01292i 0.862264 + 0.506459i \(0.169046\pi\)
−0.862264 + 0.506459i \(0.830954\pi\)
\(972\) −0.192050 1.99076i −0.00616002 0.0638536i
\(973\) 0 0
\(974\) −1.99611 41.4786i −0.0639594 1.32906i
\(975\) 27.5523i 0.882379i
\(976\) −49.7937 + 9.69755i −1.59386 + 0.310411i
\(977\) −19.5142 −0.624316 −0.312158 0.950030i \(-0.601052\pi\)
−0.312158 + 0.950030i \(0.601052\pi\)
\(978\) −1.34811 28.0135i −0.0431080 0.895772i
\(979\) 16.1577i 0.516403i
\(980\) 0 0
\(981\) 4.19152i 0.133825i
\(982\) 47.8818 2.30426i 1.52797 0.0735318i
\(983\) 22.4802 0.717007 0.358503 0.933528i \(-0.383287\pi\)
0.358503 + 0.933528i \(0.383287\pi\)
\(984\) 16.6908 2.42466i 0.532083 0.0772954i
\(985\) 65.4514i 2.08545i
\(986\) 44.1063 2.12256i 1.40463 0.0675961i
\(987\) 0 0
\(988\) 3.30955 + 34.3062i 0.105291 + 1.09143i
\(989\) 20.4918i 0.651600i
\(990\) −10.0916 + 0.485647i −0.320733 + 0.0154349i
\(991\) 44.9263i 1.42713i 0.700589 + 0.713565i \(0.252921\pi\)
−0.700589 + 0.713565i \(0.747079\pi\)
\(992\) −11.1424 + 2.73184i −0.353770 + 0.0867360i
\(993\) 11.7240i 0.372051i
\(994\) 0 0
\(995\) −10.6107 −0.336381
\(996\) 7.11342 0.686239i 0.225397 0.0217443i
\(997\) 29.1779 0.924075 0.462037 0.886861i \(-0.347119\pi\)
0.462037 + 0.886861i \(0.347119\pi\)
\(998\) −12.5586 + 0.604367i −0.397535 + 0.0191309i
\(999\) 0.921883 0.0291671
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1176.2.p.a.979.30 32
4.3 odd 2 4704.2.p.a.3919.10 32
7.4 even 3 168.2.t.a.19.7 yes 32
7.5 odd 6 168.2.t.a.115.5 yes 32
7.6 odd 2 inner 1176.2.p.a.979.29 32
8.3 odd 2 inner 1176.2.p.a.979.31 32
8.5 even 2 4704.2.p.a.3919.20 32
21.5 even 6 504.2.bk.c.451.12 32
21.11 odd 6 504.2.bk.c.19.10 32
28.11 odd 6 672.2.bb.a.271.9 32
28.19 even 6 672.2.bb.a.367.16 32
28.27 even 2 4704.2.p.a.3919.19 32
56.5 odd 6 672.2.bb.a.367.9 32
56.11 odd 6 168.2.t.a.19.5 32
56.13 odd 2 4704.2.p.a.3919.9 32
56.19 even 6 168.2.t.a.115.7 yes 32
56.27 even 2 inner 1176.2.p.a.979.32 32
56.53 even 6 672.2.bb.a.271.16 32
84.11 even 6 2016.2.bs.c.271.15 32
84.47 odd 6 2016.2.bs.c.1711.2 32
168.5 even 6 2016.2.bs.c.1711.15 32
168.11 even 6 504.2.bk.c.19.12 32
168.53 odd 6 2016.2.bs.c.271.2 32
168.131 odd 6 504.2.bk.c.451.10 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.t.a.19.5 32 56.11 odd 6
168.2.t.a.19.7 yes 32 7.4 even 3
168.2.t.a.115.5 yes 32 7.5 odd 6
168.2.t.a.115.7 yes 32 56.19 even 6
504.2.bk.c.19.10 32 21.11 odd 6
504.2.bk.c.19.12 32 168.11 even 6
504.2.bk.c.451.10 32 168.131 odd 6
504.2.bk.c.451.12 32 21.5 even 6
672.2.bb.a.271.9 32 28.11 odd 6
672.2.bb.a.271.16 32 56.53 even 6
672.2.bb.a.367.9 32 56.5 odd 6
672.2.bb.a.367.16 32 28.19 even 6
1176.2.p.a.979.29 32 7.6 odd 2 inner
1176.2.p.a.979.30 32 1.1 even 1 trivial
1176.2.p.a.979.31 32 8.3 odd 2 inner
1176.2.p.a.979.32 32 56.27 even 2 inner
2016.2.bs.c.271.2 32 168.53 odd 6
2016.2.bs.c.271.15 32 84.11 even 6
2016.2.bs.c.1711.2 32 84.47 odd 6
2016.2.bs.c.1711.15 32 168.5 even 6
4704.2.p.a.3919.9 32 56.13 odd 2
4704.2.p.a.3919.10 32 4.3 odd 2
4704.2.p.a.3919.19 32 28.27 even 2
4704.2.p.a.3919.20 32 8.5 even 2