Properties

Label 672.2
Level 672
Weight 2
Dimension 4868
Nonzero newspaces 24
Newforms 69
Sturm bound 49152
Trace bound 14

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 24 \)
Newforms: \( 69 \)
Sturm bound: \(49152\)
Trace bound: \(14\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(672))\).

Total New Old
Modular forms 13056 5068 7988
Cusp forms 11521 4868 6653
Eisenstein series 1535 200 1335

Trace form

\( 4868q - 14q^{3} - 32q^{4} - 8q^{5} - 16q^{6} - 32q^{7} - 32q^{9} + O(q^{10}) \) \( 4868q - 14q^{3} - 32q^{4} - 8q^{5} - 16q^{6} - 32q^{7} - 32q^{9} + 16q^{12} - 8q^{13} + 32q^{14} - 12q^{15} + 48q^{16} + 32q^{17} - 12q^{19} + 64q^{20} - 4q^{21} - 32q^{22} + 48q^{23} - 40q^{24} - 12q^{25} - 80q^{26} + 64q^{27} - 80q^{28} - 8q^{29} - 112q^{30} + 68q^{31} - 80q^{32} - 44q^{33} - 80q^{34} + 48q^{35} - 144q^{36} - 72q^{37} - 80q^{38} + 40q^{39} - 112q^{40} - 16q^{41} - 80q^{42} - 40q^{43} - 16q^{44} - 40q^{45} - 32q^{46} + 24q^{47} - 120q^{48} + 20q^{49} - 48q^{50} + 10q^{51} - 128q^{52} + 120q^{53} - 120q^{54} - 64q^{55} - 56q^{56} - 8q^{57} - 176q^{58} - 32q^{59} - 136q^{60} + 184q^{61} - 96q^{62} + 30q^{63} - 224q^{64} + 80q^{65} - 64q^{66} - 52q^{67} + 16q^{68} + 160q^{69} - 64q^{70} - 56q^{71} + 104q^{72} + 32q^{73} + 64q^{74} - 64q^{75} - 32q^{76} + 64q^{77} + 88q^{78} - 28q^{79} + 112q^{80} + 64q^{81} + 128q^{82} + 112q^{84} + 48q^{85} + 128q^{86} - 128q^{87} + 144q^{88} + 248q^{90} - 112q^{91} + 112q^{92} - 88q^{93} - 144q^{94} - 104q^{95} + 24q^{96} - 256q^{97} - 256q^{98} - 212q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(672))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
672.2.a \(\chi_{672}(1, \cdot)\) 672.2.a.a 1 1
672.2.a.b 1
672.2.a.c 1
672.2.a.d 1
672.2.a.e 1
672.2.a.f 1
672.2.a.g 1
672.2.a.h 1
672.2.a.i 2
672.2.a.j 2
672.2.b \(\chi_{672}(223, \cdot)\) 672.2.b.a 8 1
672.2.b.b 8
672.2.c \(\chi_{672}(337, \cdot)\) 672.2.c.a 4 1
672.2.c.b 8
672.2.h \(\chi_{672}(575, \cdot)\) 672.2.h.a 4 1
672.2.h.b 4
672.2.h.c 4
672.2.h.d 4
672.2.h.e 8
672.2.i \(\chi_{672}(209, \cdot)\) 672.2.i.a 4 1
672.2.i.b 4
672.2.i.c 4
672.2.i.d 8
672.2.i.e 8
672.2.j \(\chi_{672}(239, \cdot)\) 672.2.j.a 4 1
672.2.j.b 4
672.2.j.c 4
672.2.j.d 12
672.2.k \(\chi_{672}(545, \cdot)\) 672.2.k.a 8 1
672.2.k.b 8
672.2.k.c 8
672.2.k.d 8
672.2.p \(\chi_{672}(559, \cdot)\) 672.2.p.a 16 1
672.2.q \(\chi_{672}(193, \cdot)\) 672.2.q.a 2 2
672.2.q.b 2
672.2.q.c 2
672.2.q.d 2
672.2.q.e 2
672.2.q.f 2
672.2.q.g 2
672.2.q.h 2
672.2.q.i 2
672.2.q.j 2
672.2.q.k 6
672.2.q.l 6
672.2.s \(\chi_{672}(71, \cdot)\) None 0 2
672.2.u \(\chi_{672}(55, \cdot)\) None 0 2
672.2.w \(\chi_{672}(169, \cdot)\) None 0 2
672.2.y \(\chi_{672}(41, \cdot)\) None 0 2
672.2.bb \(\chi_{672}(271, \cdot)\) 672.2.bb.a 32 2
672.2.bc \(\chi_{672}(257, \cdot)\) 672.2.bc.a 4 2
672.2.bc.b 4
672.2.bc.c 8
672.2.bc.d 16
672.2.bc.e 32
672.2.bd \(\chi_{672}(431, \cdot)\) 672.2.bd.a 56 2
672.2.bi \(\chi_{672}(17, \cdot)\) 672.2.bi.a 4 2
672.2.bi.b 4
672.2.bi.c 48
672.2.bj \(\chi_{672}(95, \cdot)\) 672.2.bj.a 64 2
672.2.bk \(\chi_{672}(529, \cdot)\) 672.2.bk.a 32 2
672.2.bl \(\chi_{672}(31, \cdot)\) 672.2.bl.a 16 2
672.2.bl.b 16
672.2.bo \(\chi_{672}(125, \cdot)\) 672.2.bo.a 496 4
672.2.bq \(\chi_{672}(85, \cdot)\) 672.2.bq.a 88 4
672.2.bq.b 104
672.2.bs \(\chi_{672}(155, \cdot)\) 672.2.bs.a 192 4
672.2.bs.b 192
672.2.bu \(\chi_{672}(139, \cdot)\) 672.2.bu.a 256 4
672.2.bw \(\chi_{672}(89, \cdot)\) None 0 4
672.2.by \(\chi_{672}(25, \cdot)\) None 0 4
672.2.ca \(\chi_{672}(103, \cdot)\) None 0 4
672.2.cc \(\chi_{672}(23, \cdot)\) None 0 4
672.2.cf \(\chi_{672}(19, \cdot)\) 672.2.cf.a 512 8
672.2.ch \(\chi_{672}(11, \cdot)\) 672.2.ch.a 992 8
672.2.cj \(\chi_{672}(37, \cdot)\) 672.2.cj.a 512 8
672.2.cl \(\chi_{672}(5, \cdot)\) 672.2.cl.a 992 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(672))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(672)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(84))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(112))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(168))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(224))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(336))\)\(^{\oplus 2}\)