Properties

Label 672.2
Level 672
Weight 2
Dimension 4868
Nonzero newspaces 24
Newform subspaces 69
Sturm bound 49152
Trace bound 14

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 24 \)
Newform subspaces: \( 69 \)
Sturm bound: \(49152\)
Trace bound: \(14\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(672))\).

Total New Old
Modular forms 13056 5068 7988
Cusp forms 11521 4868 6653
Eisenstein series 1535 200 1335

Trace form

\( 4868 q - 14 q^{3} - 32 q^{4} - 8 q^{5} - 16 q^{6} - 32 q^{7} - 32 q^{9} + 16 q^{12} - 8 q^{13} + 32 q^{14} - 12 q^{15} + 48 q^{16} + 32 q^{17} - 12 q^{19} + 64 q^{20} - 4 q^{21} - 32 q^{22} + 48 q^{23}+ \cdots - 212 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(672))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
672.2.a \(\chi_{672}(1, \cdot)\) 672.2.a.a 1 1
672.2.a.b 1
672.2.a.c 1
672.2.a.d 1
672.2.a.e 1
672.2.a.f 1
672.2.a.g 1
672.2.a.h 1
672.2.a.i 2
672.2.a.j 2
672.2.b \(\chi_{672}(223, \cdot)\) 672.2.b.a 8 1
672.2.b.b 8
672.2.c \(\chi_{672}(337, \cdot)\) 672.2.c.a 4 1
672.2.c.b 8
672.2.h \(\chi_{672}(575, \cdot)\) 672.2.h.a 4 1
672.2.h.b 4
672.2.h.c 4
672.2.h.d 4
672.2.h.e 8
672.2.i \(\chi_{672}(209, \cdot)\) 672.2.i.a 4 1
672.2.i.b 4
672.2.i.c 4
672.2.i.d 8
672.2.i.e 8
672.2.j \(\chi_{672}(239, \cdot)\) 672.2.j.a 4 1
672.2.j.b 4
672.2.j.c 4
672.2.j.d 12
672.2.k \(\chi_{672}(545, \cdot)\) 672.2.k.a 8 1
672.2.k.b 8
672.2.k.c 8
672.2.k.d 8
672.2.p \(\chi_{672}(559, \cdot)\) 672.2.p.a 16 1
672.2.q \(\chi_{672}(193, \cdot)\) 672.2.q.a 2 2
672.2.q.b 2
672.2.q.c 2
672.2.q.d 2
672.2.q.e 2
672.2.q.f 2
672.2.q.g 2
672.2.q.h 2
672.2.q.i 2
672.2.q.j 2
672.2.q.k 6
672.2.q.l 6
672.2.s \(\chi_{672}(71, \cdot)\) None 0 2
672.2.u \(\chi_{672}(55, \cdot)\) None 0 2
672.2.w \(\chi_{672}(169, \cdot)\) None 0 2
672.2.y \(\chi_{672}(41, \cdot)\) None 0 2
672.2.bb \(\chi_{672}(271, \cdot)\) 672.2.bb.a 32 2
672.2.bc \(\chi_{672}(257, \cdot)\) 672.2.bc.a 4 2
672.2.bc.b 4
672.2.bc.c 8
672.2.bc.d 16
672.2.bc.e 32
672.2.bd \(\chi_{672}(431, \cdot)\) 672.2.bd.a 56 2
672.2.bi \(\chi_{672}(17, \cdot)\) 672.2.bi.a 4 2
672.2.bi.b 4
672.2.bi.c 48
672.2.bj \(\chi_{672}(95, \cdot)\) 672.2.bj.a 64 2
672.2.bk \(\chi_{672}(529, \cdot)\) 672.2.bk.a 32 2
672.2.bl \(\chi_{672}(31, \cdot)\) 672.2.bl.a 16 2
672.2.bl.b 16
672.2.bo \(\chi_{672}(125, \cdot)\) 672.2.bo.a 496 4
672.2.bq \(\chi_{672}(85, \cdot)\) 672.2.bq.a 88 4
672.2.bq.b 104
672.2.bs \(\chi_{672}(155, \cdot)\) 672.2.bs.a 192 4
672.2.bs.b 192
672.2.bu \(\chi_{672}(139, \cdot)\) 672.2.bu.a 256 4
672.2.bw \(\chi_{672}(89, \cdot)\) None 0 4
672.2.by \(\chi_{672}(25, \cdot)\) None 0 4
672.2.ca \(\chi_{672}(103, \cdot)\) None 0 4
672.2.cc \(\chi_{672}(23, \cdot)\) None 0 4
672.2.cf \(\chi_{672}(19, \cdot)\) 672.2.cf.a 512 8
672.2.ch \(\chi_{672}(11, \cdot)\) 672.2.ch.a 992 8
672.2.cj \(\chi_{672}(37, \cdot)\) 672.2.cj.a 512 8
672.2.cl \(\chi_{672}(5, \cdot)\) 672.2.cl.a 992 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(672))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(672)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(84))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(112))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(168))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(224))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(336))\)\(^{\oplus 2}\)