Properties

Label 650.2.m.c.251.1
Level $650$
Weight $2$
Character 650.251
Analytic conductor $5.190$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(101,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,2,4,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.22581504.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 5x^{6} + 2x^{5} - 11x^{4} + 4x^{3} + 20x^{2} - 32x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 251.1
Root \(1.40994 + 0.109843i\) of defining polynomial
Character \(\chi\) \(=\) 650.251
Dual form 650.2.m.c.101.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(-0.300098 + 0.519785i) q^{3} +(0.500000 + 0.866025i) q^{4} +(0.519785 - 0.300098i) q^{6} +(-1.24653 + 0.719687i) q^{7} -1.00000i q^{8} +(1.31988 + 2.28610i) q^{9} +(-2.40029 - 1.38581i) q^{11} -0.600196 q^{12} +(2.76632 - 2.31246i) q^{13} +1.43937 q^{14} +(-0.500000 + 0.866025i) q^{16} +(2.25184 + 3.90029i) q^{17} -2.63977i q^{18} +(-3.75184 + 2.16612i) q^{19} -0.863906i q^{21} +(1.38581 + 2.40029i) q^{22} +(-2.21969 + 3.84461i) q^{23} +(0.519785 + 0.300098i) q^{24} +(-3.55193 + 0.619491i) q^{26} -3.38496 q^{27} +(-1.24653 - 0.719687i) q^{28} +(-3.93244 + 6.81119i) q^{29} -4.16082i q^{31} +(0.866025 - 0.500000i) q^{32} +(1.44065 - 0.831757i) q^{33} -4.50367i q^{34} +(-1.31988 + 2.28610i) q^{36} +(-0.498370 - 0.287734i) q^{37} +4.33225 q^{38} +(0.371816 + 2.13186i) q^{39} +(3.65906 + 2.11256i) q^{41} +(-0.431953 + 0.748164i) q^{42} +(-1.30752 - 2.26469i) q^{43} -2.77162i q^{44} +(3.84461 - 2.21969i) q^{46} +12.7684i q^{47} +(-0.300098 - 0.519785i) q^{48} +(-2.46410 + 4.26795i) q^{49} -2.70308 q^{51} +(3.38581 + 1.23947i) q^{52} -9.57123 q^{53} +(2.93146 + 1.69248i) q^{54} +(0.719687 + 1.24653i) q^{56} -2.60020i q^{57} +(6.81119 - 3.93244i) q^{58} +(-3.00000 + 1.73205i) q^{59} +(6.25184 + 10.8285i) q^{61} +(-2.08041 + 3.60338i) q^{62} +(-3.29056 - 1.89980i) q^{63} -1.00000 q^{64} -1.66351 q^{66} +(-4.61504 - 2.66449i) q^{67} +(-2.25184 + 3.90029i) q^{68} +(-1.33225 - 2.30752i) q^{69} +(5.19615 - 3.00000i) q^{71} +(2.28610 - 1.31988i) q^{72} +1.66351i q^{73} +(0.287734 + 0.498370i) q^{74} +(-3.75184 - 2.16612i) q^{76} +3.98940 q^{77} +(0.743926 - 2.03215i) q^{78} +12.7288 q^{79} +(-2.94383 + 5.09886i) q^{81} +(-2.11256 - 3.65906i) q^{82} +10.0469i q^{83} +(0.748164 - 0.431953i) q^{84} +2.61504i q^{86} +(-2.36023 - 4.08805i) q^{87} +(-1.38581 + 2.40029i) q^{88} +(-5.15906 - 2.97859i) q^{89} +(-1.78406 + 4.87345i) q^{91} -4.43937 q^{92} +(2.16273 + 1.24865i) q^{93} +(6.38418 - 11.0577i) q^{94} +0.600196i q^{96} +(-1.37380 + 0.793166i) q^{97} +(4.26795 - 2.46410i) q^{98} -7.31643i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{3} + 4 q^{4} - 6 q^{6} - 4 q^{9} - 6 q^{11} + 4 q^{12} + 2 q^{13} - 4 q^{16} - 6 q^{17} - 6 q^{19} - 6 q^{22} - 12 q^{23} - 6 q^{24} - 40 q^{27} + 42 q^{33} + 4 q^{36} + 30 q^{37} + 12 q^{38}+ \cdots + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) −0.300098 + 0.519785i −0.173262 + 0.300098i −0.939558 0.342389i \(-0.888764\pi\)
0.766297 + 0.642487i \(0.222097\pi\)
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0 0
\(6\) 0.519785 0.300098i 0.212201 0.122514i
\(7\) −1.24653 + 0.719687i −0.471146 + 0.272016i −0.716719 0.697362i \(-0.754357\pi\)
0.245574 + 0.969378i \(0.421024\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 1.31988 + 2.28610i 0.439961 + 0.762035i
\(10\) 0 0
\(11\) −2.40029 1.38581i −0.723716 0.417837i 0.0924030 0.995722i \(-0.470545\pi\)
−0.816119 + 0.577884i \(0.803879\pi\)
\(12\) −0.600196 −0.173262
\(13\) 2.76632 2.31246i 0.767239 0.641362i
\(14\) 1.43937 0.384689
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 2.25184 + 3.90029i 0.546150 + 0.945960i 0.998534 + 0.0541365i \(0.0172406\pi\)
−0.452383 + 0.891824i \(0.649426\pi\)
\(18\) 2.63977i 0.622199i
\(19\) −3.75184 + 2.16612i −0.860730 + 0.496943i −0.864257 0.503051i \(-0.832211\pi\)
0.00352661 + 0.999994i \(0.498877\pi\)
\(20\) 0 0
\(21\) 0.863906i 0.188520i
\(22\) 1.38581 + 2.40029i 0.295456 + 0.511744i
\(23\) −2.21969 + 3.84461i −0.462837 + 0.801657i −0.999101 0.0423934i \(-0.986502\pi\)
0.536264 + 0.844050i \(0.319835\pi\)
\(24\) 0.519785 + 0.300098i 0.106101 + 0.0612572i
\(25\) 0 0
\(26\) −3.55193 + 0.619491i −0.696591 + 0.121492i
\(27\) −3.38496 −0.651436
\(28\) −1.24653 0.719687i −0.235573 0.136008i
\(29\) −3.93244 + 6.81119i −0.730236 + 1.26481i 0.226546 + 0.974000i \(0.427257\pi\)
−0.956782 + 0.290806i \(0.906077\pi\)
\(30\) 0 0
\(31\) 4.16082i 0.747306i −0.927569 0.373653i \(-0.878105\pi\)
0.927569 0.373653i \(-0.121895\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 1.44065 0.831757i 0.250784 0.144790i
\(34\) 4.50367i 0.772373i
\(35\) 0 0
\(36\) −1.31988 + 2.28610i −0.219980 + 0.381017i
\(37\) −0.498370 0.287734i −0.0819315 0.0473032i 0.458475 0.888708i \(-0.348396\pi\)
−0.540406 + 0.841404i \(0.681729\pi\)
\(38\) 4.33225 0.702783
\(39\) 0.371816 + 2.13186i 0.0595382 + 0.341370i
\(40\) 0 0
\(41\) 3.65906 + 2.11256i 0.571449 + 0.329926i 0.757728 0.652571i \(-0.226309\pi\)
−0.186279 + 0.982497i \(0.559643\pi\)
\(42\) −0.431953 + 0.748164i −0.0666518 + 0.115444i
\(43\) −1.30752 2.26469i −0.199395 0.345362i 0.748938 0.662641i \(-0.230564\pi\)
−0.948332 + 0.317279i \(0.897231\pi\)
\(44\) 2.77162i 0.417837i
\(45\) 0 0
\(46\) 3.84461 2.21969i 0.566857 0.327275i
\(47\) 12.7684i 1.86246i 0.364436 + 0.931228i \(0.381262\pi\)
−0.364436 + 0.931228i \(0.618738\pi\)
\(48\) −0.300098 0.519785i −0.0433154 0.0750245i
\(49\) −2.46410 + 4.26795i −0.352015 + 0.609707i
\(50\) 0 0
\(51\) −2.70308 −0.378507
\(52\) 3.38581 + 1.23947i 0.469527 + 0.171884i
\(53\) −9.57123 −1.31471 −0.657355 0.753581i \(-0.728325\pi\)
−0.657355 + 0.753581i \(0.728325\pi\)
\(54\) 2.93146 + 1.69248i 0.398922 + 0.230318i
\(55\) 0 0
\(56\) 0.719687 + 1.24653i 0.0961722 + 0.166575i
\(57\) 2.60020i 0.344404i
\(58\) 6.81119 3.93244i 0.894353 0.516355i
\(59\) −3.00000 + 1.73205i −0.390567 + 0.225494i −0.682406 0.730974i \(-0.739066\pi\)
0.291839 + 0.956467i \(0.405733\pi\)
\(60\) 0 0
\(61\) 6.25184 + 10.8285i 0.800466 + 1.38645i 0.919310 + 0.393534i \(0.128748\pi\)
−0.118845 + 0.992913i \(0.537919\pi\)
\(62\) −2.08041 + 3.60338i −0.264212 + 0.457629i
\(63\) −3.29056 1.89980i −0.414571 0.239353i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −1.66351 −0.204764
\(67\) −4.61504 2.66449i −0.563817 0.325520i 0.190859 0.981617i \(-0.438873\pi\)
−0.754676 + 0.656098i \(0.772206\pi\)
\(68\) −2.25184 + 3.90029i −0.273075 + 0.472980i
\(69\) −1.33225 2.30752i −0.160384 0.277793i
\(70\) 0 0
\(71\) 5.19615 3.00000i 0.616670 0.356034i −0.158901 0.987294i \(-0.550795\pi\)
0.775571 + 0.631260i \(0.217462\pi\)
\(72\) 2.28610 1.31988i 0.269420 0.155550i
\(73\) 1.66351i 0.194700i 0.995250 + 0.0973498i \(0.0310366\pi\)
−0.995250 + 0.0973498i \(0.968963\pi\)
\(74\) 0.287734 + 0.498370i 0.0334484 + 0.0579343i
\(75\) 0 0
\(76\) −3.75184 2.16612i −0.430365 0.248471i
\(77\) 3.98940 0.454634
\(78\) 0.743926 2.03215i 0.0842330 0.230096i
\(79\) 12.7288 1.43210 0.716050 0.698049i \(-0.245948\pi\)
0.716050 + 0.698049i \(0.245948\pi\)
\(80\) 0 0
\(81\) −2.94383 + 5.09886i −0.327092 + 0.566540i
\(82\) −2.11256 3.65906i −0.233293 0.404076i
\(83\) 10.0469i 1.10279i 0.834244 + 0.551396i \(0.185905\pi\)
−0.834244 + 0.551396i \(0.814095\pi\)
\(84\) 0.748164 0.431953i 0.0816314 0.0471299i
\(85\) 0 0
\(86\) 2.61504i 0.281987i
\(87\) −2.36023 4.08805i −0.253044 0.438285i
\(88\) −1.38581 + 2.40029i −0.147728 + 0.255872i
\(89\) −5.15906 2.97859i −0.546859 0.315729i 0.200995 0.979592i \(-0.435583\pi\)
−0.747854 + 0.663863i \(0.768916\pi\)
\(90\) 0 0
\(91\) −1.78406 + 4.87345i −0.187021 + 0.510876i
\(92\) −4.43937 −0.462837
\(93\) 2.16273 + 1.24865i 0.224265 + 0.129479i
\(94\) 6.38418 11.0577i 0.658478 1.14052i
\(95\) 0 0
\(96\) 0.600196i 0.0612572i
\(97\) −1.37380 + 0.793166i −0.139489 + 0.0805338i −0.568120 0.822946i \(-0.692329\pi\)
0.428632 + 0.903479i \(0.358996\pi\)
\(98\) 4.26795 2.46410i 0.431128 0.248912i
\(99\) 7.31643i 0.735329i
\(100\) 0 0
\(101\) 6.87676 11.9109i 0.684263 1.18518i −0.289405 0.957207i \(-0.593457\pi\)
0.973668 0.227972i \(-0.0732093\pi\)
\(102\) 2.34094 + 1.35154i 0.231788 + 0.133823i
\(103\) 5.73205 0.564796 0.282398 0.959297i \(-0.408870\pi\)
0.282398 + 0.959297i \(0.408870\pi\)
\(104\) −2.31246 2.76632i −0.226756 0.271260i
\(105\) 0 0
\(106\) 8.28893 + 4.78561i 0.805092 + 0.464820i
\(107\) 2.33967 4.05242i 0.226184 0.391762i −0.730490 0.682924i \(-0.760708\pi\)
0.956674 + 0.291161i \(0.0940415\pi\)
\(108\) −1.69248 2.93146i −0.162859 0.282080i
\(109\) 2.32164i 0.222373i −0.993800 0.111187i \(-0.964535\pi\)
0.993800 0.111187i \(-0.0354651\pi\)
\(110\) 0 0
\(111\) 0.299119 0.172697i 0.0283912 0.0163916i
\(112\) 1.43937i 0.136008i
\(113\) 3.86814 + 6.69982i 0.363884 + 0.630266i 0.988596 0.150589i \(-0.0481170\pi\)
−0.624712 + 0.780855i \(0.714784\pi\)
\(114\) −1.30010 + 2.25184i −0.121765 + 0.210904i
\(115\) 0 0
\(116\) −7.86488 −0.730236
\(117\) 8.93774 + 3.27191i 0.826295 + 0.302489i
\(118\) 3.46410 0.318896
\(119\) −5.61398 3.24123i −0.514633 0.297123i
\(120\) 0 0
\(121\) −1.65906 2.87358i −0.150824 0.261234i
\(122\) 12.5037i 1.13203i
\(123\) −2.19615 + 1.26795i −0.198020 + 0.114327i
\(124\) 3.60338 2.08041i 0.323593 0.186826i
\(125\) 0 0
\(126\) 1.89980 + 3.29056i 0.169248 + 0.293146i
\(127\) 8.06218 13.9641i 0.715403 1.23911i −0.247401 0.968913i \(-0.579577\pi\)
0.962804 0.270201i \(-0.0870900\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) 1.56953 0.138190
\(130\) 0 0
\(131\) −19.7609 −1.72651 −0.863257 0.504764i \(-0.831579\pi\)
−0.863257 + 0.504764i \(0.831579\pi\)
\(132\) 1.44065 + 0.831757i 0.125392 + 0.0723952i
\(133\) 3.11786 5.40029i 0.270353 0.468265i
\(134\) 2.66449 + 4.61504i 0.230177 + 0.398678i
\(135\) 0 0
\(136\) 3.90029 2.25184i 0.334447 0.193093i
\(137\) 14.9517 8.63234i 1.27741 0.737511i 0.301036 0.953613i \(-0.402668\pi\)
0.976371 + 0.216102i \(0.0693344\pi\)
\(138\) 2.66449i 0.226817i
\(139\) −1.47328 2.55180i −0.124962 0.216441i 0.796756 0.604301i \(-0.206548\pi\)
−0.921718 + 0.387860i \(0.873214\pi\)
\(140\) 0 0
\(141\) −6.63680 3.83176i −0.558919 0.322692i
\(142\) −6.00000 −0.503509
\(143\) −9.84461 + 1.71699i −0.823248 + 0.143582i
\(144\) −2.63977 −0.219980
\(145\) 0 0
\(146\) 0.831757 1.44065i 0.0688367 0.119229i
\(147\) −1.47894 2.56160i −0.121981 0.211278i
\(148\) 0.575468i 0.0473032i
\(149\) −6.11871 + 3.53264i −0.501264 + 0.289405i −0.729235 0.684263i \(-0.760124\pi\)
0.227971 + 0.973668i \(0.426791\pi\)
\(150\) 0 0
\(151\) 15.8327i 1.28844i −0.764839 0.644222i \(-0.777181\pi\)
0.764839 0.644222i \(-0.222819\pi\)
\(152\) 2.16612 + 3.75184i 0.175696 + 0.304314i
\(153\) −5.94432 + 10.2959i −0.480570 + 0.832371i
\(154\) −3.45492 1.99470i −0.278405 0.160737i
\(155\) 0 0
\(156\) −1.66033 + 1.38793i −0.132933 + 0.111123i
\(157\) −12.6280 −1.00783 −0.503913 0.863754i \(-0.668107\pi\)
−0.503913 + 0.863754i \(0.668107\pi\)
\(158\) −11.0235 6.36440i −0.876979 0.506324i
\(159\) 2.87231 4.97498i 0.227789 0.394541i
\(160\) 0 0
\(161\) 6.38992i 0.503596i
\(162\) 5.09886 2.94383i 0.400604 0.231289i
\(163\) 15.9076 9.18428i 1.24598 0.719368i 0.275677 0.961250i \(-0.411098\pi\)
0.970306 + 0.241882i \(0.0777648\pi\)
\(164\) 4.22512i 0.329926i
\(165\) 0 0
\(166\) 5.02346 8.70088i 0.389896 0.675319i
\(167\) −18.7135 10.8043i −1.44810 0.836059i −0.449728 0.893166i \(-0.648479\pi\)
−0.998368 + 0.0571070i \(0.981812\pi\)
\(168\) −0.863906 −0.0666518
\(169\) 2.30504 12.7940i 0.177311 0.984155i
\(170\) 0 0
\(171\) −9.90396 5.71806i −0.757375 0.437271i
\(172\) 1.30752 2.26469i 0.0996974 0.172681i
\(173\) −1.99470 3.45492i −0.151654 0.262673i 0.780182 0.625553i \(-0.215127\pi\)
−0.931836 + 0.362880i \(0.881793\pi\)
\(174\) 4.72047i 0.357858i
\(175\) 0 0
\(176\) 2.40029 1.38581i 0.180929 0.104459i
\(177\) 2.07914i 0.156278i
\(178\) 2.97859 + 5.15906i 0.223254 + 0.386688i
\(179\) 6.23996 10.8079i 0.466397 0.807823i −0.532867 0.846199i \(-0.678885\pi\)
0.999263 + 0.0383766i \(0.0122186\pi\)
\(180\) 0 0
\(181\) 19.4319 1.44436 0.722180 0.691705i \(-0.243140\pi\)
0.722180 + 0.691705i \(0.243140\pi\)
\(182\) 3.98177 3.32850i 0.295148 0.246725i
\(183\) −7.50465 −0.554760
\(184\) 3.84461 + 2.21969i 0.283428 + 0.163637i
\(185\) 0 0
\(186\) −1.24865 2.16273i −0.0915557 0.158579i
\(187\) 12.4825i 0.912808i
\(188\) −11.0577 + 6.38418i −0.806467 + 0.465614i
\(189\) 4.21947 2.43611i 0.306921 0.177201i
\(190\) 0 0
\(191\) 9.16074 + 15.8669i 0.662848 + 1.14809i 0.979864 + 0.199666i \(0.0639858\pi\)
−0.317016 + 0.948420i \(0.602681\pi\)
\(192\) 0.300098 0.519785i 0.0216577 0.0375122i
\(193\) −4.10811 2.37182i −0.295708 0.170727i 0.344805 0.938674i \(-0.387945\pi\)
−0.640513 + 0.767947i \(0.721278\pi\)
\(194\) 1.58633 0.113892
\(195\) 0 0
\(196\) −4.92820 −0.352015
\(197\) 9.35358 + 5.40029i 0.666415 + 0.384755i 0.794717 0.606980i \(-0.207619\pi\)
−0.128302 + 0.991735i \(0.540953\pi\)
\(198\) −3.65821 + 6.33621i −0.259978 + 0.450295i
\(199\) 5.50367 + 9.53264i 0.390145 + 0.675751i 0.992468 0.122501i \(-0.0390916\pi\)
−0.602323 + 0.798252i \(0.705758\pi\)
\(200\) 0 0
\(201\) 2.76993 1.59922i 0.195375 0.112800i
\(202\) −11.9109 + 6.87676i −0.838048 + 0.483847i
\(203\) 11.3205i 0.794544i
\(204\) −1.35154 2.34094i −0.0946269 0.163899i
\(205\) 0 0
\(206\) −4.96410 2.86603i −0.345865 0.199685i
\(207\) −11.7189 −0.814520
\(208\) 0.619491 + 3.55193i 0.0429540 + 0.246282i
\(209\) 12.0073 0.830565
\(210\) 0 0
\(211\) −13.1291 + 22.7402i −0.903843 + 1.56550i −0.0813811 + 0.996683i \(0.525933\pi\)
−0.822462 + 0.568820i \(0.807400\pi\)
\(212\) −4.78561 8.28893i −0.328677 0.569286i
\(213\) 3.60117i 0.246748i
\(214\) −4.05242 + 2.33967i −0.277018 + 0.159936i
\(215\) 0 0
\(216\) 3.38496i 0.230318i
\(217\) 2.99449 + 5.18661i 0.203279 + 0.352090i
\(218\) −1.16082 + 2.01060i −0.0786208 + 0.136175i
\(219\) −0.864669 0.499217i −0.0584289 0.0337340i
\(220\) 0 0
\(221\) 15.2486 + 5.58217i 1.02573 + 0.375498i
\(222\) −0.345393 −0.0231813
\(223\) 19.2294 + 11.1021i 1.28770 + 0.743452i 0.978243 0.207463i \(-0.0665205\pi\)
0.309454 + 0.950915i \(0.399854\pi\)
\(224\) −0.719687 + 1.24653i −0.0480861 + 0.0832876i
\(225\) 0 0
\(226\) 7.73629i 0.514610i
\(227\) −1.80059 + 1.03957i −0.119509 + 0.0689986i −0.558563 0.829462i \(-0.688647\pi\)
0.439054 + 0.898461i \(0.355314\pi\)
\(228\) 2.25184 1.30010i 0.149131 0.0861011i
\(229\) 4.67933i 0.309219i −0.987976 0.154610i \(-0.950588\pi\)
0.987976 0.154610i \(-0.0494120\pi\)
\(230\) 0 0
\(231\) −1.19721 + 2.07363i −0.0787706 + 0.136435i
\(232\) 6.81119 + 3.93244i 0.447177 + 0.258177i
\(233\) −0.611060 −0.0400319 −0.0200160 0.999800i \(-0.506372\pi\)
−0.0200160 + 0.999800i \(0.506372\pi\)
\(234\) −6.10436 7.30243i −0.399054 0.477375i
\(235\) 0 0
\(236\) −3.00000 1.73205i −0.195283 0.112747i
\(237\) −3.81988 + 6.61623i −0.248128 + 0.429770i
\(238\) 3.24123 + 5.61398i 0.210098 + 0.363900i
\(239\) 25.6481i 1.65904i 0.558479 + 0.829518i \(0.311385\pi\)
−0.558479 + 0.829518i \(0.688615\pi\)
\(240\) 0 0
\(241\) 23.4633 13.5466i 1.51141 0.872610i 0.511494 0.859287i \(-0.329092\pi\)
0.999911 0.0133234i \(-0.00424108\pi\)
\(242\) 3.31812i 0.213297i
\(243\) −6.84432 11.8547i −0.439063 0.760480i
\(244\) −6.25184 + 10.8285i −0.400233 + 0.693223i
\(245\) 0 0
\(246\) 2.53590 0.161683
\(247\) −5.36970 + 14.6682i −0.341666 + 0.933313i
\(248\) −4.16082 −0.264212
\(249\) −5.22223 3.01506i −0.330945 0.191071i
\(250\) 0 0
\(251\) 0.751836 + 1.30222i 0.0474554 + 0.0821952i 0.888777 0.458339i \(-0.151555\pi\)
−0.841322 + 0.540534i \(0.818222\pi\)
\(252\) 3.79961i 0.239353i
\(253\) 10.6558 6.15213i 0.669924 0.386781i
\(254\) −13.9641 + 8.06218i −0.876186 + 0.505866i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 10.1724 17.6191i 0.634537 1.09905i −0.352076 0.935971i \(-0.614524\pi\)
0.986613 0.163079i \(-0.0521425\pi\)
\(258\) −1.35926 0.784767i −0.0846236 0.0488575i
\(259\) 0.828313 0.0514689
\(260\) 0 0
\(261\) −20.7614 −1.28510
\(262\) 17.1134 + 9.88043i 1.05727 + 0.610415i
\(263\) −8.56466 + 14.8344i −0.528119 + 0.914729i 0.471343 + 0.881950i \(0.343769\pi\)
−0.999463 + 0.0327796i \(0.989564\pi\)
\(264\) −0.831757 1.44065i −0.0511911 0.0886656i
\(265\) 0 0
\(266\) −5.40029 + 3.11786i −0.331113 + 0.191168i
\(267\) 3.09645 1.78773i 0.189499 0.109408i
\(268\) 5.32899i 0.325520i
\(269\) −9.69121 16.7857i −0.590883 1.02344i −0.994114 0.108342i \(-0.965446\pi\)
0.403230 0.915099i \(-0.367887\pi\)
\(270\) 0 0
\(271\) −15.9098 9.18555i −0.966454 0.557982i −0.0683006 0.997665i \(-0.521758\pi\)
−0.898153 + 0.439682i \(0.855091\pi\)
\(272\) −4.50367 −0.273075
\(273\) −1.99775 2.38984i −0.120909 0.144640i
\(274\) −17.2647 −1.04300
\(275\) 0 0
\(276\) 1.33225 2.30752i 0.0801918 0.138896i
\(277\) 13.6171 + 23.5855i 0.818171 + 1.41711i 0.907028 + 0.421069i \(0.138345\pi\)
−0.0888576 + 0.996044i \(0.528322\pi\)
\(278\) 2.94657i 0.176723i
\(279\) 9.51207 5.49180i 0.569473 0.328785i
\(280\) 0 0
\(281\) 30.0815i 1.79451i 0.441509 + 0.897257i \(0.354443\pi\)
−0.441509 + 0.897257i \(0.645557\pi\)
\(282\) 3.83176 + 6.63680i 0.228178 + 0.395216i
\(283\) 12.7394 22.0653i 0.757278 1.31164i −0.186955 0.982368i \(-0.559862\pi\)
0.944234 0.329276i \(-0.106805\pi\)
\(284\) 5.19615 + 3.00000i 0.308335 + 0.178017i
\(285\) 0 0
\(286\) 9.38418 + 3.43534i 0.554898 + 0.203136i
\(287\) −6.08153 −0.358981
\(288\) 2.28610 + 1.31988i 0.134710 + 0.0777748i
\(289\) −1.64153 + 2.84321i −0.0965604 + 0.167247i
\(290\) 0 0
\(291\) 0.952110i 0.0558137i
\(292\) −1.44065 + 0.831757i −0.0843074 + 0.0486749i
\(293\) 14.3568 8.28893i 0.838736 0.484244i −0.0180985 0.999836i \(-0.505761\pi\)
0.856834 + 0.515592i \(0.172428\pi\)
\(294\) 2.95789i 0.172507i
\(295\) 0 0
\(296\) −0.287734 + 0.498370i −0.0167242 + 0.0289672i
\(297\) 8.12490 + 4.69092i 0.471455 + 0.272195i
\(298\) 7.06528 0.409280
\(299\) 2.75015 + 15.7684i 0.159045 + 0.911908i
\(300\) 0 0
\(301\) 3.25973 + 1.88201i 0.187888 + 0.108477i
\(302\) −7.91633 + 13.7115i −0.455534 + 0.789007i
\(303\) 4.12740 + 7.14887i 0.237113 + 0.410692i
\(304\) 4.33225i 0.248471i
\(305\) 0 0
\(306\) 10.2959 5.94432i 0.588575 0.339814i
\(307\) 16.2722i 0.928703i 0.885651 + 0.464351i \(0.153713\pi\)
−0.885651 + 0.464351i \(0.846287\pi\)
\(308\) 1.99470 + 3.45492i 0.113659 + 0.196862i
\(309\) −1.72018 + 2.97943i −0.0978574 + 0.169494i
\(310\) 0 0
\(311\) −16.1053 −0.913246 −0.456623 0.889660i \(-0.650941\pi\)
−0.456623 + 0.889660i \(0.650941\pi\)
\(312\) 2.13186 0.371816i 0.120693 0.0210499i
\(313\) 10.2162 0.577454 0.288727 0.957411i \(-0.406768\pi\)
0.288727 + 0.957411i \(0.406768\pi\)
\(314\) 10.9362 + 6.31401i 0.617165 + 0.356320i
\(315\) 0 0
\(316\) 6.36440 + 11.0235i 0.358025 + 0.620118i
\(317\) 0.204368i 0.0114785i −0.999984 0.00573923i \(-0.998173\pi\)
0.999984 0.00573923i \(-0.00182686\pi\)
\(318\) −4.97498 + 2.87231i −0.278983 + 0.161071i
\(319\) 18.8780 10.8992i 1.05697 0.610240i
\(320\) 0 0
\(321\) 1.40426 + 2.43225i 0.0783781 + 0.135755i
\(322\) −3.19496 + 5.53383i −0.178048 + 0.308388i
\(323\) −16.8970 9.75551i −0.940176 0.542811i
\(324\) −5.88766 −0.327092
\(325\) 0 0
\(326\) −18.3686 −1.01734
\(327\) 1.20676 + 0.696720i 0.0667337 + 0.0385287i
\(328\) 2.11256 3.65906i 0.116647 0.202038i
\(329\) −9.18922 15.9162i −0.506618 0.877488i
\(330\) 0 0
\(331\) 16.5110 9.53264i 0.907527 0.523961i 0.0278926 0.999611i \(-0.491120\pi\)
0.879635 + 0.475650i \(0.157787\pi\)
\(332\) −8.70088 + 5.02346i −0.477523 + 0.275698i
\(333\) 1.51910i 0.0832462i
\(334\) 10.8043 + 18.7135i 0.591183 + 1.02396i
\(335\) 0 0
\(336\) 0.748164 + 0.431953i 0.0408157 + 0.0235650i
\(337\) −19.8609 −1.08189 −0.540946 0.841057i \(-0.681934\pi\)
−0.540946 + 0.841057i \(0.681934\pi\)
\(338\) −8.39323 + 9.92742i −0.456532 + 0.539980i
\(339\) −4.64329 −0.252189
\(340\) 0 0
\(341\) −5.76611 + 9.98719i −0.312252 + 0.540837i
\(342\) 5.71806 + 9.90396i 0.309197 + 0.535545i
\(343\) 17.1691i 0.927047i
\(344\) −2.26469 + 1.30752i −0.122104 + 0.0704967i
\(345\) 0 0
\(346\) 3.98940i 0.214471i
\(347\) 8.52522 + 14.7661i 0.457658 + 0.792686i 0.998837 0.0482211i \(-0.0153552\pi\)
−0.541179 + 0.840907i \(0.682022\pi\)
\(348\) 2.36023 4.08805i 0.126522 0.219142i
\(349\) 18.3917 + 10.6185i 0.984488 + 0.568394i 0.903622 0.428331i \(-0.140898\pi\)
0.0808657 + 0.996725i \(0.474232\pi\)
\(350\) 0 0
\(351\) −9.36389 + 7.82760i −0.499807 + 0.417806i
\(352\) −2.77162 −0.147728
\(353\) −13.8710 8.00840i −0.738276 0.426244i 0.0831659 0.996536i \(-0.473497\pi\)
−0.821442 + 0.570292i \(0.806830\pi\)
\(354\) −1.03957 + 1.80059i −0.0552525 + 0.0957001i
\(355\) 0 0
\(356\) 5.95717i 0.315729i
\(357\) 3.36949 1.94537i 0.178332 0.102960i
\(358\) −10.8079 + 6.23996i −0.571217 + 0.329792i
\(359\) 24.2487i 1.27980i 0.768459 + 0.639899i \(0.221024\pi\)
−0.768459 + 0.639899i \(0.778976\pi\)
\(360\) 0 0
\(361\) −0.115820 + 0.200606i −0.00609580 + 0.0105582i
\(362\) −16.8285 9.71594i −0.884486 0.510658i
\(363\) 1.99152 0.104528
\(364\) −5.11256 + 0.891679i −0.267971 + 0.0467367i
\(365\) 0 0
\(366\) 6.49922 + 3.75232i 0.339720 + 0.196137i
\(367\) −14.8854 + 25.7822i −0.777010 + 1.34582i 0.156648 + 0.987655i \(0.449931\pi\)
−0.933658 + 0.358167i \(0.883402\pi\)
\(368\) −2.21969 3.84461i −0.115709 0.200414i
\(369\) 11.1533i 0.580619i
\(370\) 0 0
\(371\) 11.9309 6.88829i 0.619420 0.357622i
\(372\) 2.49731i 0.129479i
\(373\) 14.1929 + 24.5828i 0.734880 + 1.27285i 0.954776 + 0.297326i \(0.0960949\pi\)
−0.219896 + 0.975523i \(0.570572\pi\)
\(374\) −6.24123 + 10.8101i −0.322726 + 0.558979i
\(375\) 0 0
\(376\) 12.7684 0.658478
\(377\) 4.87223 + 27.9355i 0.250932 + 1.43875i
\(378\) −4.87223 −0.250600
\(379\) −24.6070 14.2069i −1.26398 0.729759i −0.290137 0.956985i \(-0.593701\pi\)
−0.973842 + 0.227226i \(0.927034\pi\)
\(380\) 0 0
\(381\) 4.83888 + 8.38119i 0.247904 + 0.429382i
\(382\) 18.3215i 0.937409i
\(383\) 8.13827 4.69863i 0.415846 0.240089i −0.277452 0.960739i \(-0.589490\pi\)
0.693298 + 0.720651i \(0.256157\pi\)
\(384\) −0.519785 + 0.300098i −0.0265252 + 0.0153143i
\(385\) 0 0
\(386\) 2.37182 + 4.10811i 0.120722 + 0.209097i
\(387\) 3.45154 5.97825i 0.175452 0.303891i
\(388\) −1.37380 0.793166i −0.0697443 0.0402669i
\(389\) 11.6461 0.590482 0.295241 0.955423i \(-0.404600\pi\)
0.295241 + 0.955423i \(0.404600\pi\)
\(390\) 0 0
\(391\) −19.9935 −1.01111
\(392\) 4.26795 + 2.46410i 0.215564 + 0.124456i
\(393\) 5.93019 10.2714i 0.299139 0.518123i
\(394\) −5.40029 9.35358i −0.272063 0.471227i
\(395\) 0 0
\(396\) 6.33621 3.65821i 0.318407 0.183832i
\(397\) 0.346241 0.199902i 0.0173773 0.0100328i −0.491286 0.870998i \(-0.663473\pi\)
0.508663 + 0.860965i \(0.330140\pi\)
\(398\) 11.0073i 0.551748i
\(399\) 1.87133 + 3.24123i 0.0936835 + 0.162265i
\(400\) 0 0
\(401\) 7.36793 + 4.25388i 0.367937 + 0.212428i 0.672557 0.740046i \(-0.265196\pi\)
−0.304620 + 0.952474i \(0.598529\pi\)
\(402\) −3.19843 −0.159523
\(403\) −9.62174 11.5102i −0.479293 0.573362i
\(404\) 13.7535 0.684263
\(405\) 0 0
\(406\) −5.66025 + 9.80385i −0.280914 + 0.486557i
\(407\) 0.797489 + 1.38129i 0.0395301 + 0.0684681i
\(408\) 2.70308i 0.133823i
\(409\) −12.1357 + 7.00657i −0.600074 + 0.346453i −0.769071 0.639164i \(-0.779281\pi\)
0.168997 + 0.985617i \(0.445947\pi\)
\(410\) 0 0
\(411\) 10.3622i 0.511129i
\(412\) 2.86603 + 4.96410i 0.141199 + 0.244564i
\(413\) 2.49307 4.31812i 0.122676 0.212481i
\(414\) 10.1489 + 5.85945i 0.498790 + 0.287976i
\(415\) 0 0
\(416\) 1.23947 3.38581i 0.0607701 0.166003i
\(417\) 1.76852 0.0866047
\(418\) −10.3987 6.00367i −0.508615 0.293649i
\(419\) 12.0977 20.9539i 0.591012 1.02366i −0.403084 0.915163i \(-0.632062\pi\)
0.994096 0.108500i \(-0.0346048\pi\)
\(420\) 0 0
\(421\) 35.6392i 1.73695i −0.495735 0.868474i \(-0.665101\pi\)
0.495735 0.868474i \(-0.334899\pi\)
\(422\) 22.7402 13.1291i 1.10698 0.639114i
\(423\) −29.1898 + 16.8527i −1.41926 + 0.819408i
\(424\) 9.57123i 0.464820i
\(425\) 0 0
\(426\) 1.80059 3.11871i 0.0872387 0.151102i
\(427\) −15.5863 8.99873i −0.754272 0.435479i
\(428\) 4.67933 0.226184
\(429\) 2.06188 5.63234i 0.0995485 0.271932i
\(430\) 0 0
\(431\) 4.29586 + 2.48022i 0.206924 + 0.119468i 0.599881 0.800089i \(-0.295215\pi\)
−0.392957 + 0.919557i \(0.628548\pi\)
\(432\) 1.69248 2.93146i 0.0814295 0.141040i
\(433\) −2.10811 3.65135i −0.101309 0.175472i 0.810915 0.585164i \(-0.198970\pi\)
−0.912224 + 0.409691i \(0.865636\pi\)
\(434\) 5.98898i 0.287480i
\(435\) 0 0
\(436\) 2.01060 1.16082i 0.0962904 0.0555933i
\(437\) 19.2325i 0.920013i
\(438\) 0.499217 + 0.864669i 0.0238535 + 0.0413155i
\(439\) −7.37500 + 12.7739i −0.351989 + 0.609664i −0.986598 0.163170i \(-0.947828\pi\)
0.634608 + 0.772834i \(0.281161\pi\)
\(440\) 0 0
\(441\) −13.0093 −0.619490
\(442\) −10.4146 12.4586i −0.495370 0.592595i
\(443\) 12.2374 0.581417 0.290709 0.956812i \(-0.406109\pi\)
0.290709 + 0.956812i \(0.406109\pi\)
\(444\) 0.299119 + 0.172697i 0.0141956 + 0.00819582i
\(445\) 0 0
\(446\) −11.1021 19.2294i −0.525700 0.910539i
\(447\) 4.24055i 0.200571i
\(448\) 1.24653 0.719687i 0.0588932 0.0340020i
\(449\) −16.5163 + 9.53569i −0.779452 + 0.450017i −0.836236 0.548370i \(-0.815249\pi\)
0.0567839 + 0.998386i \(0.481915\pi\)
\(450\) 0 0
\(451\) −5.85521 10.1415i −0.275711 0.477546i
\(452\) −3.86814 + 6.69982i −0.181942 + 0.315133i
\(453\) 8.22957 + 4.75135i 0.386659 + 0.223238i
\(454\) 2.07914 0.0975788
\(455\) 0 0
\(456\) −2.60020 −0.121765
\(457\) −13.9549 8.05688i −0.652784 0.376885i 0.136738 0.990607i \(-0.456338\pi\)
−0.789522 + 0.613722i \(0.789671\pi\)
\(458\) −2.33967 + 4.05242i −0.109325 + 0.189357i
\(459\) −7.62238 13.2023i −0.355782 0.616233i
\(460\) 0 0
\(461\) 4.19560 2.42233i 0.195408 0.112819i −0.399104 0.916906i \(-0.630679\pi\)
0.594512 + 0.804087i \(0.297345\pi\)
\(462\) 2.07363 1.19721i 0.0964739 0.0556992i
\(463\) 8.23164i 0.382557i 0.981536 + 0.191278i \(0.0612633\pi\)
−0.981536 + 0.191278i \(0.938737\pi\)
\(464\) −3.93244 6.81119i −0.182559 0.316202i
\(465\) 0 0
\(466\) 0.529194 + 0.305530i 0.0245144 + 0.0141534i
\(467\) 33.4873 1.54961 0.774803 0.632203i \(-0.217849\pi\)
0.774803 + 0.632203i \(0.217849\pi\)
\(468\) 1.63531 + 9.37627i 0.0755923 + 0.433418i
\(469\) 7.67040 0.354186
\(470\) 0 0
\(471\) 3.78964 6.56386i 0.174618 0.302446i
\(472\) 1.73205 + 3.00000i 0.0797241 + 0.138086i
\(473\) 7.24789i 0.333258i
\(474\) 6.61623 3.81988i 0.303894 0.175453i
\(475\) 0 0
\(476\) 6.48247i 0.297123i
\(477\) −12.6329 21.8808i −0.578421 1.00185i
\(478\) 12.8240 22.2119i 0.586558 1.01595i
\(479\) 6.97448 + 4.02672i 0.318672 + 0.183985i 0.650800 0.759249i \(-0.274433\pi\)
−0.332128 + 0.943234i \(0.607767\pi\)
\(480\) 0 0
\(481\) −2.04402 + 0.356497i −0.0931994 + 0.0162549i
\(482\) −27.0931 −1.23406
\(483\) 3.32138 + 1.91760i 0.151128 + 0.0872538i
\(484\) 1.65906 2.87358i 0.0754118 0.130617i
\(485\) 0 0
\(486\) 13.6886i 0.620929i
\(487\) 1.40601 0.811758i 0.0637122 0.0367842i −0.467806 0.883831i \(-0.654955\pi\)
0.531518 + 0.847047i \(0.321622\pi\)
\(488\) 10.8285 6.25184i 0.490183 0.283007i
\(489\) 11.0247i 0.498555i
\(490\) 0 0
\(491\) 5.16033 8.93796i 0.232883 0.403364i −0.725773 0.687935i \(-0.758518\pi\)
0.958655 + 0.284570i \(0.0918509\pi\)
\(492\) −2.19615 1.26795i −0.0990102 0.0571636i
\(493\) −35.4209 −1.59527
\(494\) 11.9844 10.0182i 0.539203 0.450738i
\(495\) 0 0
\(496\) 3.60338 + 2.08041i 0.161796 + 0.0934132i
\(497\) −4.31812 + 7.47921i −0.193694 + 0.335488i
\(498\) 3.01506 + 5.22223i 0.135108 + 0.234014i
\(499\) 13.9807i 0.625860i 0.949776 + 0.312930i \(0.101311\pi\)
−0.949776 + 0.312930i \(0.898689\pi\)
\(500\) 0 0
\(501\) 11.2318 6.48467i 0.501799 0.289714i
\(502\) 1.50367i 0.0671121i
\(503\) 11.8924 + 20.5983i 0.530258 + 0.918434i 0.999377 + 0.0352988i \(0.0112383\pi\)
−0.469119 + 0.883135i \(0.655428\pi\)
\(504\) −1.89980 + 3.29056i −0.0846240 + 0.146573i
\(505\) 0 0
\(506\) −12.3043 −0.546991
\(507\) 5.95839 + 5.03758i 0.264622 + 0.223727i
\(508\) 16.1244 0.715403
\(509\) −22.2023 12.8185i −0.984102 0.568171i −0.0805958 0.996747i \(-0.525682\pi\)
−0.903506 + 0.428575i \(0.859016\pi\)
\(510\) 0 0
\(511\) −1.19721 2.07363i −0.0529614 0.0917319i
\(512\) 1.00000i 0.0441942i
\(513\) 12.6998 7.33225i 0.560711 0.323727i
\(514\) −17.6191 + 10.1724i −0.777146 + 0.448685i
\(515\) 0 0
\(516\) 0.784767 + 1.35926i 0.0345474 + 0.0598379i
\(517\) 17.6945 30.6478i 0.778204 1.34789i
\(518\) −0.717340 0.414157i −0.0315181 0.0181970i
\(519\) 2.39442 0.105103
\(520\) 0 0
\(521\) −8.53476 −0.373915 −0.186957 0.982368i \(-0.559863\pi\)
−0.186957 + 0.982368i \(0.559863\pi\)
\(522\) 17.9799 + 10.3807i 0.786961 + 0.454352i
\(523\) −6.34383 + 10.9878i −0.277396 + 0.480464i −0.970737 0.240146i \(-0.922805\pi\)
0.693341 + 0.720610i \(0.256138\pi\)
\(524\) −9.88043 17.1134i −0.431629 0.747603i
\(525\) 0 0
\(526\) 14.8344 8.56466i 0.646811 0.373437i
\(527\) 16.2284 9.36949i 0.706921 0.408141i
\(528\) 1.66351i 0.0723952i
\(529\) 1.64598 + 2.85092i 0.0715644 + 0.123953i
\(530\) 0 0
\(531\) −7.91930 4.57221i −0.343668 0.198417i
\(532\) 6.23572 0.270353
\(533\) 15.0073 2.61742i 0.650040 0.113373i
\(534\) −3.57547 −0.154726
\(535\) 0 0
\(536\) −2.66449 + 4.61504i −0.115089 + 0.199339i
\(537\) 3.74520 + 6.48687i 0.161617 + 0.279929i
\(538\) 19.3824i 0.835635i
\(539\) 11.8291 6.82955i 0.509517 0.294170i
\(540\) 0 0
\(541\) 42.0507i 1.80790i 0.427636 + 0.903951i \(0.359347\pi\)
−0.427636 + 0.903951i \(0.640653\pi\)
\(542\) 9.18555 + 15.9098i 0.394553 + 0.683386i
\(543\) −5.83146 + 10.1004i −0.250252 + 0.433449i
\(544\) 3.90029 + 2.25184i 0.167224 + 0.0965467i
\(545\) 0 0
\(546\) 0.535182 + 3.06854i 0.0229037 + 0.131321i
\(547\) −24.6297 −1.05309 −0.526545 0.850147i \(-0.676513\pi\)
−0.526545 + 0.850147i \(0.676513\pi\)
\(548\) 14.9517 + 8.63234i 0.638703 + 0.368755i
\(549\) −16.5034 + 28.5847i −0.704347 + 1.21996i
\(550\) 0 0
\(551\) 34.0726i 1.45154i
\(552\) −2.30752 + 1.33225i −0.0982145 + 0.0567042i
\(553\) −15.8669 + 9.16074i −0.674728 + 0.389554i
\(554\) 27.2342i 1.15707i
\(555\) 0 0
\(556\) 1.47328 2.55180i 0.0624811 0.108221i
\(557\) −6.84583 3.95244i −0.290067 0.167470i 0.347905 0.937530i \(-0.386893\pi\)
−0.637972 + 0.770059i \(0.720227\pi\)
\(558\) −10.9836 −0.464973
\(559\) −8.85402 3.24126i −0.374485 0.137091i
\(560\) 0 0
\(561\) 6.48819 + 3.74596i 0.273932 + 0.158155i
\(562\) 15.0408 26.0514i 0.634456 1.09891i
\(563\) −6.63553 11.4931i −0.279654 0.484375i 0.691645 0.722238i \(-0.256886\pi\)
−0.971299 + 0.237863i \(0.923553\pi\)
\(564\) 7.66351i 0.322692i
\(565\) 0 0
\(566\) −22.0653 + 12.7394i −0.927473 + 0.535477i
\(567\) 8.47454i 0.355897i
\(568\) −3.00000 5.19615i −0.125877 0.218026i
\(569\) 21.1323 36.6022i 0.885911 1.53444i 0.0412443 0.999149i \(-0.486868\pi\)
0.844666 0.535293i \(-0.179799\pi\)
\(570\) 0 0
\(571\) 1.64965 0.0690358 0.0345179 0.999404i \(-0.489010\pi\)
0.0345179 + 0.999404i \(0.489010\pi\)
\(572\) −6.40927 7.66719i −0.267985 0.320581i
\(573\) −10.9965 −0.459384
\(574\) 5.26676 + 3.04076i 0.219830 + 0.126919i
\(575\) 0 0
\(576\) −1.31988 2.28610i −0.0549951 0.0952543i
\(577\) 28.4651i 1.18502i −0.805564 0.592508i \(-0.798138\pi\)
0.805564 0.592508i \(-0.201862\pi\)
\(578\) 2.84321 1.64153i 0.118262 0.0682785i
\(579\) 2.46567 1.42355i 0.102470 0.0591609i
\(580\) 0 0
\(581\) −7.23063 12.5238i −0.299977 0.519576i
\(582\) −0.476055 + 0.824551i −0.0197331 + 0.0341788i
\(583\) 22.9738 + 13.2639i 0.951476 + 0.549335i
\(584\) 1.66351 0.0688367
\(585\) 0 0
\(586\) −16.5779 −0.684825
\(587\) −19.1994 11.0848i −0.792445 0.457518i 0.0483779 0.998829i \(-0.484595\pi\)
−0.840822 + 0.541311i \(0.817928\pi\)
\(588\) 1.47894 2.56160i 0.0609906 0.105639i
\(589\) 9.01285 + 15.6107i 0.371368 + 0.643228i
\(590\) 0 0
\(591\) −5.61398 + 3.24123i −0.230928 + 0.133327i
\(592\) 0.498370 0.287734i 0.0204829 0.0118258i
\(593\) 9.68683i 0.397791i −0.980021 0.198895i \(-0.936265\pi\)
0.980021 0.198895i \(-0.0637354\pi\)
\(594\) −4.69092 8.12490i −0.192471 0.333369i
\(595\) 0 0
\(596\) −6.11871 3.53264i −0.250632 0.144702i
\(597\) −6.60656 −0.270388
\(598\) 5.50248 15.0309i 0.225013 0.614658i
\(599\) 8.33012 0.340360 0.170180 0.985413i \(-0.445565\pi\)
0.170180 + 0.985413i \(0.445565\pi\)
\(600\) 0 0
\(601\) 6.10117 10.5675i 0.248872 0.431059i −0.714341 0.699798i \(-0.753273\pi\)
0.963213 + 0.268739i \(0.0866068\pi\)
\(602\) −1.88201 3.25973i −0.0767049 0.132857i
\(603\) 14.0673i 0.572864i
\(604\) 13.7115 7.91633i 0.557912 0.322111i
\(605\) 0 0
\(606\) 8.25480i 0.335328i
\(607\) −4.91946 8.52075i −0.199675 0.345847i 0.748748 0.662854i \(-0.230655\pi\)
−0.948423 + 0.317008i \(0.897322\pi\)
\(608\) −2.16612 + 3.75184i −0.0878479 + 0.152157i
\(609\) 5.88423 + 3.39726i 0.238441 + 0.137664i
\(610\) 0 0
\(611\) 29.5263 + 35.3214i 1.19451 + 1.42895i
\(612\) −11.8886 −0.480570
\(613\) −13.1737 7.60586i −0.532082 0.307198i 0.209782 0.977748i \(-0.432725\pi\)
−0.741864 + 0.670551i \(0.766058\pi\)
\(614\) 8.13609 14.0921i 0.328346 0.568712i
\(615\) 0 0
\(616\) 3.98940i 0.160737i
\(617\) 21.1929 12.2357i 0.853194 0.492592i −0.00853345 0.999964i \(-0.502716\pi\)
0.861727 + 0.507372i \(0.169383\pi\)
\(618\) 2.97943 1.72018i 0.119850 0.0691956i
\(619\) 42.4157i 1.70483i −0.522864 0.852416i \(-0.675136\pi\)
0.522864 0.852416i \(-0.324864\pi\)
\(620\) 0 0
\(621\) 7.51356 13.0139i 0.301509 0.522228i
\(622\) 13.9476 + 8.05264i 0.559247 + 0.322881i
\(623\) 8.57459 0.343534
\(624\) −2.03215 0.743926i −0.0813511 0.0297809i
\(625\) 0 0
\(626\) −8.84750 5.10811i −0.353617 0.204161i
\(627\) −3.60338 + 6.24123i −0.143905 + 0.249251i
\(628\) −6.31401 10.9362i −0.251957 0.436402i
\(629\) 2.59172i 0.103339i
\(630\) 0 0
\(631\) −0.0244657 + 0.0141253i −0.000973964 + 0.000562318i −0.500487 0.865744i \(-0.666846\pi\)
0.499513 + 0.866306i \(0.333512\pi\)
\(632\) 12.7288i 0.506324i
\(633\) −7.88002 13.6486i −0.313203 0.542483i
\(634\) −0.102184 + 0.176988i −0.00405825 + 0.00702909i
\(635\) 0 0
\(636\) 5.74461 0.227789
\(637\) 3.05298 + 17.5046i 0.120963 + 0.693559i
\(638\) −21.7985 −0.863010
\(639\) 13.7166 + 7.91930i 0.542621 + 0.313282i
\(640\) 0 0
\(641\) 8.10465 + 14.0377i 0.320114 + 0.554454i 0.980511 0.196462i \(-0.0629453\pi\)
−0.660397 + 0.750917i \(0.729612\pi\)
\(642\) 2.80852i 0.110843i
\(643\) −15.7718 + 9.10586i −0.621979 + 0.359100i −0.777639 0.628711i \(-0.783583\pi\)
0.155660 + 0.987811i \(0.450250\pi\)
\(644\) 5.53383 3.19496i 0.218064 0.125899i
\(645\) 0 0
\(646\) 9.75551 + 16.8970i 0.383825 + 0.664805i
\(647\) 3.56139 6.16852i 0.140013 0.242509i −0.787488 0.616330i \(-0.788619\pi\)
0.927501 + 0.373820i \(0.121952\pi\)
\(648\) 5.09886 + 2.94383i 0.200302 + 0.115644i
\(649\) 9.60117 0.376879
\(650\) 0 0
\(651\) −3.59456 −0.140882
\(652\) 15.9076 + 9.18428i 0.622991 + 0.359684i
\(653\) −8.03546 + 13.9178i −0.314452 + 0.544647i −0.979321 0.202313i \(-0.935154\pi\)
0.664869 + 0.746960i \(0.268487\pi\)
\(654\) −0.696720 1.20676i −0.0272439 0.0471879i
\(655\) 0 0
\(656\) −3.65906 + 2.11256i −0.142862 + 0.0824816i
\(657\) −3.80297 + 2.19564i −0.148368 + 0.0856602i
\(658\) 18.3784i 0.716466i
\(659\) −22.5988 39.1423i −0.880326 1.52477i −0.850979 0.525200i \(-0.823990\pi\)
−0.0293473 0.999569i \(-0.509343\pi\)
\(660\) 0 0
\(661\) −7.63354 4.40723i −0.296910 0.171421i 0.344144 0.938917i \(-0.388169\pi\)
−0.641054 + 0.767496i \(0.721503\pi\)
\(662\) −19.0653 −0.740993
\(663\) −7.47759 + 6.25078i −0.290406 + 0.242760i
\(664\) 10.0469 0.389896
\(665\) 0 0
\(666\) −0.759550 + 1.31558i −0.0294320 + 0.0509777i
\(667\) −17.4576 30.2374i −0.675960 1.17080i
\(668\) 21.6085i 0.836059i
\(669\) −11.5414 + 6.66344i −0.446217 + 0.257623i
\(670\) 0 0
\(671\) 34.6554i 1.33786i
\(672\) −0.431953 0.748164i −0.0166629 0.0288611i
\(673\) −20.7199 + 35.8879i −0.798693 + 1.38338i 0.121775 + 0.992558i \(0.461141\pi\)
−0.920468 + 0.390819i \(0.872192\pi\)
\(674\) 17.2001 + 9.93045i 0.662521 + 0.382507i
\(675\) 0 0
\(676\) 12.2325 4.40078i 0.470479 0.169261i
\(677\) 18.8510 0.724504 0.362252 0.932080i \(-0.382008\pi\)
0.362252 + 0.932080i \(0.382008\pi\)
\(678\) 4.02121 + 2.32164i 0.154433 + 0.0891622i
\(679\) 1.14166 1.97742i 0.0438130 0.0758863i
\(680\) 0 0
\(681\) 1.24789i 0.0478193i
\(682\) 9.98719 5.76611i 0.382429 0.220796i
\(683\) −19.6297 + 11.3332i −0.751110 + 0.433654i −0.826095 0.563531i \(-0.809443\pi\)
0.0749846 + 0.997185i \(0.476109\pi\)
\(684\) 11.4361i 0.437271i
\(685\) 0 0
\(686\) −8.58457 + 14.8689i −0.327760 + 0.567698i
\(687\) 2.43225 + 1.40426i 0.0927960 + 0.0535758i
\(688\) 2.61504 0.0996974
\(689\) −26.4771 + 22.1331i −1.00870 + 0.843204i
\(690\) 0 0
\(691\) 27.5736 + 15.9196i 1.04895 + 0.605612i 0.922355 0.386343i \(-0.126262\pi\)
0.126595 + 0.991954i \(0.459595\pi\)
\(692\) 1.99470 3.45492i 0.0758271 0.131336i
\(693\) 5.26554 + 9.12018i 0.200021 + 0.346447i
\(694\) 17.0504i 0.647226i
\(695\) 0 0
\(696\) −4.08805 + 2.36023i −0.154957 + 0.0894645i
\(697\) 19.0285i 0.720758i
\(698\) −10.6185 18.3917i −0.401915 0.696138i
\(699\) 0.183378 0.317620i 0.00693599 0.0120135i
\(700\) 0 0
\(701\) 0.611060 0.0230794 0.0115397 0.999933i \(-0.496327\pi\)
0.0115397 + 0.999933i \(0.496327\pi\)
\(702\) 12.0232 2.09695i 0.453785 0.0791444i
\(703\) 2.49307 0.0940279
\(704\) 2.40029 + 1.38581i 0.0904645 + 0.0522297i
\(705\) 0 0
\(706\) 8.00840 + 13.8710i 0.301400 + 0.522040i
\(707\) 19.7965i 0.744522i
\(708\) 1.80059 1.03957i 0.0676702 0.0390694i
\(709\) 11.2274 6.48212i 0.421653 0.243441i −0.274131 0.961692i \(-0.588390\pi\)
0.695784 + 0.718251i \(0.255057\pi\)
\(710\) 0 0
\(711\) 16.8005 + 29.0993i 0.630068 + 1.09131i
\(712\) −2.97859 + 5.15906i −0.111627 + 0.193344i
\(713\) 15.9967 + 9.23572i 0.599083 + 0.345881i
\(714\) −3.89075 −0.145608
\(715\) 0 0
\(716\) 12.4799 0.466397
\(717\) −13.3315 7.69694i −0.497873 0.287447i
\(718\) 12.1244 21.0000i 0.452477 0.783713i
\(719\) 17.8616 + 30.9372i 0.666126 + 1.15376i 0.978979 + 0.203963i \(0.0653821\pi\)
−0.312853 + 0.949802i \(0.601285\pi\)
\(720\) 0 0
\(721\) −7.14520 + 4.12528i −0.266101 + 0.153634i
\(722\) 0.200606 0.115820i 0.00746580 0.00431038i
\(723\) 16.2612i 0.604759i
\(724\) 9.71594 + 16.8285i 0.361090 + 0.625426i
\(725\) 0 0
\(726\) −1.72471 0.995761i −0.0640099 0.0369562i
\(727\) 51.7313 1.91861 0.959304 0.282375i \(-0.0911224\pi\)
0.959304 + 0.282375i \(0.0911224\pi\)
\(728\) 4.87345 + 1.78406i 0.180622 + 0.0661218i
\(729\) −9.44711 −0.349893
\(730\) 0 0
\(731\) 5.88863 10.1994i 0.217799 0.377239i
\(732\) −3.75232 6.49922i −0.138690 0.240218i
\(733\) 26.4319i 0.976284i −0.872764 0.488142i \(-0.837675\pi\)
0.872764 0.488142i \(-0.162325\pi\)
\(734\) 25.7822 14.8854i 0.951639 0.549429i
\(735\) 0 0
\(736\) 4.43937i 0.163637i
\(737\) 7.38496 + 12.7911i 0.272029 + 0.471167i
\(738\) 5.57666 9.65906i 0.205280 0.355555i
\(739\) −23.7380 13.7051i −0.873215 0.504151i −0.00480000 0.999988i \(-0.501528\pi\)
−0.868415 + 0.495837i \(0.834861\pi\)
\(740\) 0 0
\(741\) −6.01285 7.19297i −0.220888 0.264240i
\(742\) −13.7766 −0.505754
\(743\) 36.5306 + 21.0909i 1.34018 + 0.773751i 0.986833 0.161742i \(-0.0517113\pi\)
0.353344 + 0.935494i \(0.385045\pi\)
\(744\) 1.24865 2.16273i 0.0457779 0.0792896i
\(745\) 0 0
\(746\) 28.3858i 1.03928i
\(747\) −22.9683 + 13.2607i −0.840365 + 0.485185i
\(748\) 10.8101 6.24123i 0.395258 0.228202i
\(749\) 6.73531i 0.246103i
\(750\) 0 0
\(751\) 9.66351 16.7377i 0.352627 0.610767i −0.634082 0.773266i \(-0.718622\pi\)
0.986709 + 0.162498i \(0.0519552\pi\)
\(752\) −11.0577 6.38418i −0.403234 0.232807i
\(753\) −0.902497 −0.0328888
\(754\) 9.74830 26.6290i 0.355012 0.969771i
\(755\) 0 0
\(756\) 4.21947 + 2.43611i 0.153461 + 0.0886006i
\(757\) −10.1513 + 17.5825i −0.368955 + 0.639048i −0.989402 0.145200i \(-0.953618\pi\)
0.620448 + 0.784248i \(0.286951\pi\)
\(758\) 14.2069 + 24.6070i 0.516017 + 0.893768i
\(759\) 7.38496i 0.268057i
\(760\) 0 0
\(761\) −38.3386 + 22.1348i −1.38977 + 0.802386i −0.993289 0.115656i \(-0.963103\pi\)
−0.396484 + 0.918042i \(0.629770\pi\)
\(762\) 9.67777i 0.350589i
\(763\) 1.67086 + 2.89401i 0.0604891 + 0.104770i
\(764\) −9.16074 + 15.8669i −0.331424 + 0.574043i
\(765\) 0 0
\(766\) −9.39726 −0.339537
\(767\) −4.29366 + 11.7288i −0.155035 + 0.423502i
\(768\) 0.600196 0.0216577
\(769\) 3.23903 + 1.87005i 0.116802 + 0.0674359i 0.557263 0.830336i \(-0.311852\pi\)
−0.440461 + 0.897772i \(0.645185\pi\)
\(770\) 0 0
\(771\) 6.10543 + 10.5749i 0.219882 + 0.380846i
\(772\) 4.74363i 0.170727i
\(773\) −3.88057 + 2.24045i −0.139575 + 0.0805834i −0.568161 0.822917i \(-0.692345\pi\)
0.428587 + 0.903501i \(0.359012\pi\)
\(774\) −5.97825 + 3.45154i −0.214884 + 0.124063i
\(775\) 0 0
\(776\) 0.793166 + 1.37380i 0.0284730 + 0.0493167i
\(777\) −0.248575 + 0.430545i −0.00891758 + 0.0154457i
\(778\) −10.0858 5.82306i −0.361595 0.208767i
\(779\) −18.3043 −0.655818
\(780\) 0 0
\(781\) −16.6297 −0.595058
\(782\) 17.3149 + 9.99674i 0.619178 + 0.357483i
\(783\) 13.3112 23.0556i 0.475702 0.823941i
\(784\) −2.46410 4.26795i −0.0880036 0.152427i
\(785\) 0 0
\(786\) −10.2714 + 5.93019i −0.366368 + 0.211523i
\(787\) 27.7963 16.0482i 0.990830 0.572056i 0.0853077 0.996355i \(-0.472813\pi\)
0.905522 + 0.424299i \(0.139479\pi\)
\(788\) 10.8006i 0.384755i
\(789\) −5.14047 8.90355i −0.183006 0.316975i
\(790\) 0 0
\(791\) −9.64355 5.56771i −0.342885 0.197965i
\(792\) −7.31643 −0.259978
\(793\) 42.3351 + 15.4979i 1.50336 + 0.550348i
\(794\) −0.399804 −0.0141885
\(795\) 0 0
\(796\) −5.50367 + 9.53264i −0.195072 + 0.337875i
\(797\) −11.1083 19.2402i −0.393477 0.681522i 0.599429 0.800428i \(-0.295395\pi\)
−0.992905 + 0.118906i \(0.962061\pi\)
\(798\) 3.74265i 0.132488i
\(799\) −49.8004 + 28.7522i −1.76181 + 1.01718i
\(800\) 0 0
\(801\) 15.7255i 0.555634i
\(802\) −4.25388 7.36793i −0.150210 0.260171i
\(803\) 2.30532 3.99292i 0.0813528 0.140907i
\(804\) 2.76993 + 1.59922i 0.0976877 + 0.0564000i
\(805\) 0 0
\(806\) 2.57759 + 14.7790i 0.0907918 + 0.520567i
\(807\) 11.6332 0.409510
\(808\) −11.9109 6.87676i −0.419024 0.241924i
\(809\) 5.27410 9.13501i 0.185427 0.321170i −0.758293 0.651914i \(-0.773966\pi\)
0.943720 + 0.330744i \(0.107300\pi\)
\(810\) 0 0
\(811\) 41.6434i 1.46230i 0.682218 + 0.731149i \(0.261016\pi\)
−0.682218 + 0.731149i \(0.738984\pi\)
\(812\) 9.80385 5.66025i 0.344048 0.198636i
\(813\) 9.54902 5.51313i 0.334899 0.193354i
\(814\) 1.59498i 0.0559040i
\(815\) 0 0
\(816\) 1.35154 2.34094i 0.0473134 0.0819493i
\(817\) 9.81119 + 5.66449i 0.343250 + 0.198176i
\(818\) 14.0131 0.489958
\(819\) −13.4960 + 2.35382i −0.471587 + 0.0822493i
\(820\) 0 0
\(821\) 20.1160 + 11.6140i 0.702053 + 0.405331i 0.808112 0.589029i \(-0.200490\pi\)
−0.106058 + 0.994360i \(0.533823\pi\)
\(822\) 5.18110 8.97392i 0.180711 0.313001i
\(823\) 0.499427 + 0.865033i 0.0174089 + 0.0301531i 0.874599 0.484848i \(-0.161125\pi\)
−0.857190 + 0.515001i \(0.827792\pi\)
\(824\) 5.73205i 0.199685i
\(825\) 0 0
\(826\) −4.31812 + 2.49307i −0.150247 + 0.0867449i
\(827\) 29.8030i 1.03635i 0.855274 + 0.518175i \(0.173389\pi\)
−0.855274 + 0.518175i \(0.826611\pi\)
\(828\) −5.85945 10.1489i −0.203630 0.352698i
\(829\) 11.8508 20.5261i 0.411594 0.712902i −0.583470 0.812134i \(-0.698306\pi\)
0.995064 + 0.0992329i \(0.0316389\pi\)
\(830\) 0 0
\(831\) −16.3458 −0.567030
\(832\) −2.76632 + 2.31246i −0.0959049 + 0.0801702i
\(833\) −22.1950 −0.769011
\(834\) −1.53158 0.884259i −0.0530343 0.0306194i
\(835\) 0 0
\(836\) 6.00367 + 10.3987i 0.207641 + 0.359645i
\(837\) 14.0842i 0.486822i
\(838\) −20.9539 + 12.0977i −0.723839 + 0.417909i
\(839\) −21.2991 + 12.2971i −0.735327 + 0.424541i −0.820368 0.571836i \(-0.806231\pi\)
0.0850406 + 0.996377i \(0.472898\pi\)
\(840\) 0 0
\(841\) −16.4282 28.4545i −0.566490 0.981189i
\(842\) −17.8196 + 30.8644i −0.614104 + 1.06366i
\(843\) −15.6359 9.02740i −0.538530 0.310920i
\(844\) −26.2582 −0.903843
\(845\) 0 0
\(846\) 33.7055 1.15882
\(847\) 4.13615 + 2.38801i 0.142120 + 0.0820529i
\(848\) 4.78561 8.28893i 0.164339 0.284643i
\(849\) 7.64613 + 13.2435i 0.262414 + 0.454515i
\(850\) 0 0
\(851\) 2.21245 1.27736i 0.0758418 0.0437873i
\(852\) −3.11871 + 1.80059i −0.106845 + 0.0616871i
\(853\) 41.7449i 1.42932i 0.699473 + 0.714659i \(0.253418\pi\)
−0.699473 + 0.714659i \(0.746582\pi\)
\(854\) 8.99873 + 15.5863i 0.307930 + 0.533351i
\(855\) 0 0
\(856\) −4.05242 2.33967i −0.138509 0.0799682i
\(857\) −18.7543 −0.640636 −0.320318 0.947310i \(-0.603790\pi\)
−0.320318 + 0.947310i \(0.603790\pi\)
\(858\) −4.60181 + 3.84681i −0.157103 + 0.131328i
\(859\) 13.8357 0.472066 0.236033 0.971745i \(-0.424153\pi\)
0.236033 + 0.971745i \(0.424153\pi\)
\(860\) 0 0
\(861\) 1.82505 3.16108i 0.0621976 0.107729i
\(862\) −2.48022 4.29586i −0.0844765 0.146318i
\(863\) 8.00891i 0.272626i 0.990666 + 0.136313i \(0.0435253\pi\)
−0.990666 + 0.136313i \(0.956475\pi\)
\(864\) −2.93146 + 1.69248i −0.0997304 + 0.0575794i
\(865\) 0 0
\(866\) 4.21621i 0.143273i
\(867\) −0.985237 1.70648i −0.0334604 0.0579551i
\(868\) −2.99449 + 5.18661i −0.101640 + 0.176045i
\(869\) −30.5528 17.6397i −1.03643 0.598385i
\(870\) 0 0
\(871\) −18.9282 + 3.30126i −0.641358 + 0.111859i
\(872\) −2.32164 −0.0786208
\(873\) −3.62652 2.09377i −0.122739 0.0708635i
\(874\) −9.61623 + 16.6558i −0.325274 + 0.563391i
\(875\) 0 0
\(876\) 0.998434i 0.0337340i
\(877\) −32.5033 + 18.7658i −1.09756 + 0.633677i −0.935579 0.353117i \(-0.885122\pi\)
−0.161981 + 0.986794i \(0.551788\pi\)
\(878\) 12.7739 7.37500i 0.431097 0.248894i
\(879\) 9.94996i 0.335604i
\(880\) 0 0
\(881\) 6.05808 10.4929i 0.204102 0.353515i −0.745744 0.666232i \(-0.767906\pi\)
0.949846 + 0.312717i \(0.101239\pi\)
\(882\) 11.2664 + 6.50465i 0.379359 + 0.219023i
\(883\) −44.4026 −1.49427 −0.747133 0.664675i \(-0.768570\pi\)
−0.747133 + 0.664675i \(0.768570\pi\)
\(884\) 2.78998 + 15.9967i 0.0938373 + 0.538029i
\(885\) 0 0
\(886\) −10.5979 6.11871i −0.356044 0.205562i
\(887\) −3.25714 + 5.64153i −0.109364 + 0.189424i −0.915513 0.402289i \(-0.868215\pi\)
0.806149 + 0.591713i \(0.201548\pi\)
\(888\) −0.172697 0.299119i −0.00579532 0.0100378i
\(889\) 23.2090i 0.778404i
\(890\) 0 0
\(891\) 14.1321 8.15917i 0.473443 0.273343i
\(892\) 22.2042i 0.743452i
\(893\) −27.6578 47.9048i −0.925534 1.60307i
\(894\) −2.12027 + 3.67242i −0.0709126 + 0.122824i
\(895\) 0 0
\(896\) −1.43937 −0.0480861
\(897\) −9.02147 3.30256i −0.301218 0.110269i
\(898\) 19.0714 0.636420
\(899\) 28.3401 + 16.3622i 0.945197 + 0.545710i
\(900\) 0 0
\(901\) −21.5528 37.3306i −0.718029 1.24366i
\(902\) 11.7104i 0.389915i
\(903\) −1.95648 + 1.12957i −0.0651075 + 0.0375898i
\(904\) 6.69982 3.86814i 0.222833 0.128653i
\(905\) 0 0
\(906\) −4.75135 8.22957i −0.157853 0.273409i
\(907\) 2.96883 5.14216i 0.0985784 0.170743i −0.812518 0.582936i \(-0.801904\pi\)
0.911096 + 0.412193i \(0.135237\pi\)
\(908\) −1.80059 1.03957i −0.0597546 0.0344993i
\(909\) 36.3061 1.20420
\(910\) 0 0
\(911\) 48.7860 1.61635 0.808177 0.588940i \(-0.200455\pi\)
0.808177 + 0.588940i \(0.200455\pi\)
\(912\) 2.25184 + 1.30010i 0.0745657 + 0.0430505i
\(913\) 13.9231 24.1155i 0.460788 0.798108i
\(914\) 8.05688 + 13.9549i 0.266498 + 0.461588i
\(915\) 0 0
\(916\) 4.05242 2.33967i 0.133896 0.0773048i
\(917\) 24.6326 14.2216i 0.813440 0.469640i
\(918\) 15.2448i 0.503152i
\(919\) 14.8564 + 25.7321i 0.490068 + 0.848822i 0.999935 0.0114312i \(-0.00363874\pi\)
−0.509867 + 0.860253i \(0.670305\pi\)
\(920\) 0 0
\(921\) −8.45803 4.88325i −0.278702 0.160909i
\(922\) −4.84466 −0.159550
\(923\) 7.43683 20.3149i 0.244786 0.668672i
\(924\) −2.39442 −0.0787706
\(925\) 0 0
\(926\) 4.11582 7.12881i 0.135254 0.234267i
\(927\) 7.56563 + 13.1041i 0.248488 + 0.430394i
\(928\) 7.86488i 0.258177i
\(929\) 15.6012 9.00734i 0.511858 0.295521i −0.221739 0.975106i \(-0.571173\pi\)
0.733597 + 0.679585i \(0.237840\pi\)
\(930\) 0 0
\(931\) 21.3502i 0.699724i
\(932\) −0.305530 0.529194i −0.0100080 0.0173343i
\(933\) 4.83316 8.37128i 0.158231 0.274063i
\(934\) −29.0008 16.7436i −0.948936 0.547868i
\(935\) 0 0
\(936\) 3.27191 8.93774i 0.106946 0.292139i
\(937\) −28.9796 −0.946723 −0.473361 0.880868i \(-0.656960\pi\)
−0.473361 + 0.880868i \(0.656960\pi\)
\(938\) −6.64276 3.83520i −0.216894 0.125224i
\(939\) −3.06586 + 5.31023i −0.100051 + 0.173293i
\(940\) 0 0
\(941\) 4.61504i 0.150446i 0.997167 + 0.0752230i \(0.0239669\pi\)
−0.997167 + 0.0752230i \(0.976033\pi\)
\(942\) −6.56386 + 3.78964i −0.213862 + 0.123473i
\(943\) −16.2439 + 9.37844i −0.528975 + 0.305404i
\(944\) 3.46410i 0.112747i
\(945\) 0 0
\(946\) 3.62395 6.27686i 0.117825 0.204078i
\(947\) −9.18041 5.30031i −0.298323 0.172237i 0.343366 0.939202i \(-0.388433\pi\)
−0.641689 + 0.766965i \(0.721766\pi\)
\(948\) −7.63977 −0.248128
\(949\) 3.84681 + 4.60181i 0.124873 + 0.149381i
\(950\) 0 0
\(951\) 0.106227 + 0.0613304i 0.00344466 + 0.00198878i
\(952\) −3.24123 + 5.61398i −0.105049 + 0.181950i
\(953\) −14.3705 24.8905i −0.465508 0.806283i 0.533717 0.845663i \(-0.320795\pi\)
−0.999224 + 0.0393806i \(0.987462\pi\)
\(954\) 25.2658i 0.818010i
\(955\) 0 0
\(956\) −22.2119 + 12.8240i −0.718384 + 0.414759i
\(957\) 13.0833i 0.422925i
\(958\) −4.02672 6.97448i −0.130097 0.225335i
\(959\) −12.4252 + 21.5210i −0.401230 + 0.694950i
\(960\) 0 0
\(961\) 13.6876 0.441534
\(962\) 1.94842 + 0.713276i 0.0628197 + 0.0229969i
\(963\) 12.3523 0.398049
\(964\) 23.4633 + 13.5466i 0.755703 + 0.436305i
\(965\) 0 0
\(966\) −1.91760 3.32138i −0.0616978 0.106864i
\(967\) 8.08648i 0.260044i 0.991511 + 0.130022i \(0.0415047\pi\)
−0.991511 + 0.130022i \(0.958495\pi\)
\(968\) −2.87358 + 1.65906i −0.0923603 + 0.0533242i
\(969\) 10.1415 5.85521i 0.325793 0.188097i
\(970\) 0 0
\(971\) −0.302790 0.524448i −0.00971701 0.0168304i 0.861126 0.508392i \(-0.169760\pi\)
−0.870843 + 0.491561i \(0.836426\pi\)
\(972\) 6.84432 11.8547i 0.219532 0.380240i
\(973\) 3.67300 + 2.12061i 0.117751 + 0.0679835i
\(974\) −1.62352 −0.0520208
\(975\) 0 0
\(976\) −12.5037 −0.400233
\(977\) −42.4727 24.5216i −1.35882 0.784516i −0.369356 0.929288i \(-0.620422\pi\)
−0.989465 + 0.144772i \(0.953755\pi\)
\(978\) 5.51236 9.54769i 0.176266 0.305302i
\(979\) 8.25551 + 14.2990i 0.263847 + 0.456997i
\(980\) 0 0
\(981\) 5.30752 3.06430i 0.169456 0.0978355i
\(982\) −8.93796 + 5.16033i −0.285222 + 0.164673i
\(983\) 30.7684i 0.981358i −0.871340 0.490679i \(-0.836749\pi\)
0.871340 0.490679i \(-0.163251\pi\)
\(984\) 1.26795 + 2.19615i 0.0404207 + 0.0700108i
\(985\) 0 0
\(986\) 30.6754 + 17.7104i 0.976902 + 0.564015i
\(987\) 11.0307 0.351110
\(988\) −15.3879 + 2.68379i −0.489553 + 0.0853827i
\(989\) 11.6091 0.369149
\(990\) 0 0
\(991\) −7.74435 + 13.4136i −0.246007 + 0.426097i −0.962414 0.271585i \(-0.912452\pi\)
0.716407 + 0.697683i \(0.245785\pi\)
\(992\) −2.08041 3.60338i −0.0660531 0.114407i
\(993\) 11.4429i 0.363129i
\(994\) 7.47921 4.31812i 0.237226 0.136962i
\(995\) 0 0
\(996\) 6.03011i 0.191071i
\(997\) −3.91111 6.77423i −0.123866 0.214542i 0.797423 0.603421i \(-0.206196\pi\)
−0.921289 + 0.388878i \(0.872863\pi\)
\(998\) 6.99033 12.1076i 0.221275 0.383260i
\(999\) 1.68696 + 0.973969i 0.0533731 + 0.0308150i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.m.c.251.1 8
5.2 odd 4 650.2.n.e.199.3 8
5.3 odd 4 650.2.n.d.199.2 8
5.4 even 2 130.2.l.b.121.4 yes 8
13.6 odd 12 8450.2.a.cm.1.3 4
13.7 odd 12 8450.2.a.ci.1.3 4
13.10 even 6 inner 650.2.m.c.101.1 8
15.14 odd 2 1170.2.bs.g.901.2 8
20.19 odd 2 1040.2.da.d.641.2 8
65.4 even 6 1690.2.d.k.1351.6 8
65.9 even 6 1690.2.d.k.1351.2 8
65.19 odd 12 1690.2.a.t.1.2 4
65.23 odd 12 650.2.n.e.49.3 8
65.24 odd 12 1690.2.e.s.991.3 8
65.29 even 6 1690.2.l.j.361.2 8
65.34 odd 4 1690.2.e.s.191.3 8
65.44 odd 4 1690.2.e.t.191.3 8
65.49 even 6 130.2.l.b.101.4 8
65.54 odd 12 1690.2.e.t.991.3 8
65.59 odd 12 1690.2.a.u.1.2 4
65.62 odd 12 650.2.n.d.49.2 8
65.64 even 2 1690.2.l.j.1161.2 8
195.179 odd 6 1170.2.bs.g.361.2 8
260.179 odd 6 1040.2.da.d.881.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.l.b.101.4 8 65.49 even 6
130.2.l.b.121.4 yes 8 5.4 even 2
650.2.m.c.101.1 8 13.10 even 6 inner
650.2.m.c.251.1 8 1.1 even 1 trivial
650.2.n.d.49.2 8 65.62 odd 12
650.2.n.d.199.2 8 5.3 odd 4
650.2.n.e.49.3 8 65.23 odd 12
650.2.n.e.199.3 8 5.2 odd 4
1040.2.da.d.641.2 8 20.19 odd 2
1040.2.da.d.881.2 8 260.179 odd 6
1170.2.bs.g.361.2 8 195.179 odd 6
1170.2.bs.g.901.2 8 15.14 odd 2
1690.2.a.t.1.2 4 65.19 odd 12
1690.2.a.u.1.2 4 65.59 odd 12
1690.2.d.k.1351.2 8 65.9 even 6
1690.2.d.k.1351.6 8 65.4 even 6
1690.2.e.s.191.3 8 65.34 odd 4
1690.2.e.s.991.3 8 65.24 odd 12
1690.2.e.t.191.3 8 65.44 odd 4
1690.2.e.t.991.3 8 65.54 odd 12
1690.2.l.j.361.2 8 65.29 even 6
1690.2.l.j.1161.2 8 65.64 even 2
8450.2.a.ci.1.3 4 13.7 odd 12
8450.2.a.cm.1.3 4 13.6 odd 12