Defining parameters
Level: | \( N \) | \(=\) | \( 650 = 2 \cdot 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 650.m (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(210\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(650, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 236 | 44 | 192 |
Cusp forms | 188 | 44 | 144 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(650, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
650.2.m.a | $4$ | $5.190$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(-2\) | \(0\) | \(0\) | \(q+\zeta_{12}q^{2}+(-1+\zeta_{12}+\zeta_{12}^{2}-2\zeta_{12}^{3})q^{3}+\cdots\) |
650.2.m.b | $8$ | $5.190$ | 8.0.22581504.2 | None | \(0\) | \(-2\) | \(0\) | \(-6\) | \(q-\beta _{7}q^{2}+(1-\beta _{1}-\beta _{3}-\beta _{4}+\beta _{5}+\cdots)q^{3}+\cdots\) |
650.2.m.c | $8$ | $5.190$ | 8.0.22581504.2 | None | \(0\) | \(2\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+(-\beta _{2}+\beta _{4}+\beta _{7})q^{3}+(1+\cdots)q^{4}+\cdots\) |
650.2.m.d | $8$ | $5.190$ | 8.0.22581504.2 | None | \(0\) | \(2\) | \(0\) | \(6\) | \(q+\beta _{7}q^{2}+(2-\beta _{1}-\beta _{3}-\beta _{4}+\beta _{5}+\cdots)q^{3}+\cdots\) |
650.2.m.e | $16$ | $5.190$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\beta _{1}+\beta _{6})q^{2}-\beta _{5}q^{3}-\beta _{8}q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(650, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(650, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(130, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(325, [\chi])\)\(^{\oplus 2}\)