Properties

Label 130.2.m.a
Level $130$
Weight $2$
Character orbit 130.m
Analytic conductor $1.038$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 130.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.03805522628\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.50027374224.1
Defining polynomial: \( x^{8} + 20x^{6} + 132x^{4} + 332x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} - 1) q^{2} - \beta_{2} q^{3} - \beta_{3} q^{4} - \beta_{7} q^{5} + (\beta_{2} - \beta_1) q^{6} + ( - \beta_{6} - \beta_{5} + \beta_{3}) q^{7} + q^{8} + ( - \beta_{7} - \beta_{6} - \beta_{4} + 3 \beta_{3}) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_{3} - 1) q^{2} - \beta_{2} q^{3} - \beta_{3} q^{4} - \beta_{7} q^{5} + (\beta_{2} - \beta_1) q^{6} + ( - \beta_{6} - \beta_{5} + \beta_{3}) q^{7} + q^{8} + ( - \beta_{7} - \beta_{6} - \beta_{4} + 3 \beta_{3}) q^{9} + (\beta_{5} + \beta_{3}) q^{10} + (\beta_{7} + \beta_{4} - \beta_{3} + \beta_{2}) q^{11} + \beta_1 q^{12} + ( - \beta_{7} - \beta_{6} + \beta_{5} - \beta_{4} + \beta_{3} + \beta_{2} - \beta_1 + 1) q^{13} + ( - \beta_{7} + \beta_{6} + \beta_{5} + \beta_{4} - 2) q^{14} + (2 \beta_{6} - 2 \beta_{3} - \beta_{2}) q^{15} + (\beta_{3} - 1) q^{16} + ( - \beta_{6} + \beta_{5} + 2 \beta_{3} + \beta_{2} - \beta_1 - 2) q^{17} + (\beta_{5} + \beta_{4} - 2) q^{18} + (\beta_{7} - \beta_{5} - \beta_{4} - \beta_{3} - \beta_{2} + \beta_1 + 2) q^{19} + (\beta_{7} - \beta_{5} - \beta_{3}) q^{20} + (2 \beta_{7} + 2 \beta_{6} - 2 \beta_{5} + 2 \beta_{4} - 4 \beta_{3} - \beta_1) q^{21} + (\beta_{6} - \beta_{5} - \beta_{3} - \beta_{2} + \beta_1) q^{22} + ( - \beta_{7} + \beta_{6} + \beta_{5} - 1) q^{23} - \beta_{2} q^{24} + ( - \beta_{6} - \beta_{5} - \beta_{4} - 2 \beta_{2} + 2 \beta_1 + 1) q^{25} + (\beta_{7} + \beta_{4} + \beta_1) q^{26} + (2 \beta_{7} + 2 \beta_{6} - 4 \beta_{3} + 2) q^{27} + (\beta_{7} - \beta_{4} - \beta_{3} + 2) q^{28} + ( - \beta_{6} + \beta_{5} - \beta_{4} + 2 \beta_{3}) q^{29} + ( - 2 \beta_{6} - 2 \beta_{4} + 2 \beta_{3} + \beta_{2} - \beta_1 + 2) q^{30} + ( - \beta_{5} + \beta_{4} + \beta_1 - 1) q^{31} - \beta_{3} q^{32} + (\beta_{7} - \beta_{6} - 2 \beta_{5} + \beta_{4} - 4 \beta_{3} + \beta_{2} + \beta_1) q^{33} + (\beta_{7} + \beta_{6} - \beta_{5} + \beta_{4} - 4 \beta_{3} + \beta_1 + 1) q^{34} + ( - \beta_{7} + \beta_{5} - \beta_{4} + \beta_{3} + 2 \beta_1 - 4) q^{35} + (\beta_{7} + \beta_{6} - \beta_{5} - 3 \beta_{3} + 2) q^{36} + ( - 5 \beta_{3} + \beta_{2} - 2 \beta_1 + 5) q^{37} + ( - \beta_{7} - \beta_{6} + 2 \beta_{3} - \beta_1 - 1) q^{38} + (2 \beta_{7} + \beta_{5} - \beta_{4} - 2 \beta_{3} - \beta_1 - 1) q^{39} - \beta_{7} q^{40} + ( - \beta_{7} + 2 \beta_{6} + 2 \beta_{5} + \beta_{4} + 2 \beta_{3} + 2 \beta_{2} + 1) q^{41} + ( - 2 \beta_{7} - 2 \beta_{4} + 2 \beta_{3} + \beta_{2}) q^{42} + (2 \beta_{7} - 2 \beta_{5} - 2 \beta_{4} - 2 \beta_{3} - 2 \beta_{2} + 2 \beta_1 + 4) q^{43} + ( - \beta_{7} - \beta_{6} + \beta_{5} - \beta_{4} + 2 \beta_{3} - \beta_1) q^{44} + ( - 2 \beta_{7} - \beta_{6} + \beta_{5} - \beta_{4} + 7 \beta_{3} - 2 \beta_{2} + 2 \beta_1 - 4) q^{45} + (\beta_{7} - \beta_{6} - \beta_{4} + 2) q^{46} + ( - \beta_{7} + \beta_{6} + 3 \beta_{5} + 3 \beta_{4}) q^{47} + (\beta_{2} - \beta_1) q^{48} + ( - 2 \beta_{7} + \beta_{6} - \beta_{5} + 3 \beta_{4} + 2 \beta_{3} - 6) q^{49} + ( - \beta_{7} + \beta_{5} + \beta_{4} + \beta_{3} - 2 \beta_1 - 1) q^{50} + (2 \beta_{7} - 2 \beta_{6} - \beta_{5} - \beta_{4} + 4 \beta_{2} - 2 \beta_1 - 1) q^{51} + (\beta_{6} - \beta_{5} - \beta_{3} - \beta_{2} - 1) q^{52} + (2 \beta_{7} + 2 \beta_{6} - \beta_{5} + \beta_{4} + 6 \beta_{3} - \beta_1 - 4) q^{53} + ( - 2 \beta_{6} - 2 \beta_{5} - 2 \beta_{4} + 2 \beta_{3} + 2) q^{54} + ( - \beta_{6} + \beta_{5} + \beta_{4} - 3 \beta_{3} + 3 \beta_{2} - 2 \beta_1 - 1) q^{55} + ( - \beta_{6} - \beta_{5} + \beta_{3}) q^{56} + (\beta_{5} + \beta_{4} - 2 \beta_{2} + \beta_1 + 3) q^{57} + (\beta_{7} - \beta_{5} + \beta_{4} - 2 \beta_{3}) q^{58} + ( - 2 \beta_{7} + 2 \beta_{5} + 2 \beta_{4} - 2 \beta_{3} + 4) q^{59} + (2 \beta_{4} + \beta_1 - 2) q^{60} + ( - \beta_{7} + \beta_{5} - \beta_{4} - 3 \beta_{2} - 3 \beta_1) q^{61} + ( - \beta_{7} + \beta_{6} + \beta_{5} - \beta_{2} - 1) q^{62} + ( - 2 \beta_{7} - \beta_{6} + \beta_{5} + \beta_{4} + 7 \beta_{3} - 2 \beta_{2} + 4 \beta_1 - 7) q^{63} + q^{64} + ( - \beta_{7} - 3 \beta_{6} - \beta_{5} - 2 \beta_{4} + 7 \beta_{3} - \beta_{2} - \beta_1 - 3) q^{65} + ( - 2 \beta_{7} + 2 \beta_{6} + \beta_{5} + \beta_{4} - 2 \beta_{2} + \beta_1 + 1) q^{66} + (4 \beta_{3} - 4) q^{67} + ( - \beta_{7} - \beta_{4} + 2 \beta_{3} - \beta_{2} + 1) q^{68} + ( - 2 \beta_{7} + 2 \beta_{5} - 2 \beta_{4} + 2 \beta_{3}) q^{69} + (\beta_{7} - \beta_{6} - 4 \beta_{3} - 2 \beta_{2} + 5) q^{70} + (4 \beta_{2} - 4 \beta_1) q^{71} + ( - \beta_{7} - \beta_{6} - \beta_{4} + 3 \beta_{3}) q^{72} + ( - 3 \beta_{7} + 3 \beta_{6} + 3 \beta_{5} + 3 \beta_{4} + 2 \beta_{2} - \beta_1 + 1) q^{73} + (5 \beta_{3} + \beta_{2} + \beta_1) q^{74} + (2 \beta_{7} + 2 \beta_{6} - 2 \beta_{5} - 4 \beta_{3} - \beta_{2} + 10) q^{75} + (\beta_{6} + \beta_{5} + \beta_{4} - \beta_{3} + \beta_{2} - 1) q^{76} + ( - \beta_{7} - \beta_{6} + 2 \beta_{3} - 3 \beta_1 - 1) q^{77} + (\beta_{7} - \beta_{6} - 3 \beta_{5} - 4 \beta_{3} + \beta_{2} + 5) q^{78} + ( - 2 \beta_{7} + 2 \beta_{6} - \beta_{5} - \beta_{4} + 2 \beta_{2} - \beta_1 - 1) q^{79} + (\beta_{5} + \beta_{3}) q^{80} + ( - \beta_{7} - \beta_{6} + \beta_{5} - \beta_{3} - 2 \beta_{2} + 4 \beta_1 + 2) q^{81} + (2 \beta_{7} - \beta_{6} - \beta_{5} - 2 \beta_{4} + 2 \beta_{3} - 2 \beta_{2} + 2 \beta_1 - 2) q^{82} + ( - 2 \beta_{5} - 2 \beta_{4} + 2 \beta_{2} - \beta_1 - 6) q^{83} + ( - 2 \beta_{6} + 2 \beta_{5} + 2 \beta_{3} - \beta_{2} + \beta_1) q^{84} + ( - 2 \beta_{6} + 2 \beta_{5} - \beta_{4} + 4 \beta_{3} + \beta_{2} - 3 \beta_1 - 4) q^{85} + ( - 2 \beta_{7} - 2 \beta_{6} + 4 \beta_{3} - 2 \beta_1 - 2) q^{86} + (2 \beta_{7} - 2 \beta_{6} - 2 \beta_{4} + 2 \beta_{2} - 2 \beta_1 + 4) q^{87} + (\beta_{7} + \beta_{4} - \beta_{3} + \beta_{2}) q^{88} + (3 \beta_{7} - 2 \beta_{6} - 2 \beta_{5} + \beta_{4} - 5 \beta_{3} - 2) q^{89} + (\beta_{7} + \beta_{5} + \beta_{4} - 4 \beta_{3} - 2 \beta_1 - 1) q^{90} + ( - 3 \beta_{6} - 4 \beta_{4} + 3 \beta_{3} - 3 \beta_{2} + 4 \beta_1 + 4) q^{91} + ( - \beta_{5} + \beta_{4} - 1) q^{92} + (\beta_{7} + 3 \beta_{6} - 3 \beta_{5} + 2 \beta_{4} - 8 \beta_{3} + 3) q^{93} + (3 \beta_{7} + 2 \beta_{6} - 2 \beta_{5} - \beta_{4} - \beta_{3}) q^{94} + (3 \beta_{6} - \beta_{5} + 2 \beta_{4} + \beta_{3} + \beta_{2} + \beta_1 - 2) q^{95} + \beta_1 q^{96} + ( - \beta_{7} - \beta_{6} - \beta_{4} + \beta_{2} + \beta_1) q^{97} + ( - \beta_{7} + 2 \beta_{6} + 3 \beta_{5} - \beta_{4} - 2 \beta_{3}) q^{98} + (\beta_{7} + \beta_{6} - 2 \beta_{5} + 2 \beta_{4} - 10 \beta_{3} + \beta_1 + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} - 4 q^{4} + 3 q^{5} + 5 q^{7} + 8 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 4 q^{2} - 4 q^{4} + 3 q^{5} + 5 q^{7} + 8 q^{8} + 8 q^{9} - 3 q^{11} + 4 q^{13} - 10 q^{14} - 2 q^{15} - 4 q^{16} - 15 q^{17} - 16 q^{18} + 9 q^{19} - 3 q^{20} + 3 q^{22} - 6 q^{23} + 5 q^{25} + q^{26} + 5 q^{28} - 3 q^{29} + 10 q^{30} - 4 q^{32} - 10 q^{33} - 33 q^{35} + 8 q^{36} + 20 q^{37} - 30 q^{39} + 3 q^{40} + 21 q^{41} + 6 q^{42} + 18 q^{43} - 9 q^{45} + 6 q^{46} + 6 q^{47} - 15 q^{49} - q^{50} - 20 q^{51} - 5 q^{52} + 18 q^{54} - 23 q^{55} + 5 q^{56} + 24 q^{57} - 3 q^{58} + 30 q^{59} - 8 q^{60} - 5 q^{61} - 6 q^{62} - 25 q^{63} + 8 q^{64} - 6 q^{65} + 20 q^{66} - 16 q^{67} + 15 q^{68} - 2 q^{69} + 18 q^{70} + 8 q^{72} + 26 q^{73} + 20 q^{74} + 72 q^{75} - 9 q^{76} + 30 q^{78} + 4 q^{79} + 8 q^{81} - 21 q^{82} - 48 q^{83} - 6 q^{84} - 34 q^{85} + 12 q^{87} - 3 q^{88} - 39 q^{89} - 27 q^{90} + 19 q^{91} + 18 q^{93} - 3 q^{94} + 9 q^{95} - 4 q^{97} - 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 20x^{6} + 132x^{4} + 332x^{2} + 256 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{4} + 10\nu^{2} + 2\nu + 16 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{7} + 20\nu^{5} + 116\nu^{3} + 172\nu + 32 ) / 64 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{7} + 16\nu^{5} + 68\nu^{3} + 8\nu^{2} + 60\nu + 48 ) / 16 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{7} - 16\nu^{5} - 68\nu^{3} + 8\nu^{2} - 60\nu + 32 ) / 16 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{7} + 8\nu^{6} + 20\nu^{5} + 128\nu^{4} + 132\nu^{3} + 544\nu^{2} + 268\nu + 544 ) / 64 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{7} - 8\nu^{6} + 20\nu^{5} - 128\nu^{4} + 132\nu^{3} - 544\nu^{2} + 268\nu - 544 ) / 64 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} + \beta_{4} - 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{7} + 2\beta_{6} - 4\beta_{3} - 6\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -10\beta_{5} - 10\beta_{4} + 4\beta_{2} - 2\beta _1 + 34 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -24\beta_{7} - 24\beta_{6} + 2\beta_{5} - 2\beta_{4} + 64\beta_{3} + 44\beta _1 - 30 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -4\beta_{7} + 4\beta_{6} + 92\beta_{5} + 92\beta_{4} - 64\beta_{2} + 32\beta _1 - 272 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 248\beta_{7} + 248\beta_{6} - 40\beta_{5} + 40\beta_{4} - 752\beta_{3} - 356\beta _1 + 336 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/130\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(-1\) \(\beta_{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
3.07108i
1.17644i
1.83766i
2.40987i
3.07108i
1.17644i
1.83766i
2.40987i
−0.500000 0.866025i −2.65963 + 1.53554i −0.500000 + 0.866025i 1.36822 1.76861i 2.65963 + 1.53554i 1.84755 3.20005i 1.00000 3.21577 5.56988i −2.21577 0.300609i
49.2 −0.500000 0.866025i −1.01883 + 0.588222i −0.500000 + 0.866025i 0.235468 + 2.22364i 1.01883 + 0.588222i −1.04346 + 1.80732i 1.00000 −0.807991 + 1.39948i 1.80799 1.31574i
49.3 −0.500000 0.866025i 1.59146 0.918829i −0.500000 + 0.866025i −2.21022 0.339024i −1.59146 0.918829i 2.39871 4.15469i 1.00000 0.188495 0.326482i 0.811505 + 2.08362i
49.4 −0.500000 0.866025i 2.08700 1.20493i −0.500000 + 0.866025i 2.10653 + 0.750022i −2.08700 1.20493i −0.702803 + 1.21729i 1.00000 1.40373 2.43133i −0.403726 2.19932i
69.1 −0.500000 + 0.866025i −2.65963 1.53554i −0.500000 0.866025i 1.36822 + 1.76861i 2.65963 1.53554i 1.84755 + 3.20005i 1.00000 3.21577 + 5.56988i −2.21577 + 0.300609i
69.2 −0.500000 + 0.866025i −1.01883 0.588222i −0.500000 0.866025i 0.235468 2.22364i 1.01883 0.588222i −1.04346 1.80732i 1.00000 −0.807991 1.39948i 1.80799 + 1.31574i
69.3 −0.500000 + 0.866025i 1.59146 + 0.918829i −0.500000 0.866025i −2.21022 + 0.339024i −1.59146 + 0.918829i 2.39871 + 4.15469i 1.00000 0.188495 + 0.326482i 0.811505 2.08362i
69.4 −0.500000 + 0.866025i 2.08700 + 1.20493i −0.500000 0.866025i 2.10653 0.750022i −2.08700 + 1.20493i −0.702803 1.21729i 1.00000 1.40373 + 2.43133i −0.403726 + 2.19932i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 69.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.l even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 130.2.m.a 8
3.b odd 2 1 1170.2.bj.b 8
4.b odd 2 1 1040.2.df.c 8
5.b even 2 1 130.2.m.b yes 8
5.c odd 4 2 650.2.m.e 16
13.c even 3 1 1690.2.c.f 8
13.e even 6 1 130.2.m.b yes 8
13.e even 6 1 1690.2.c.e 8
13.f odd 12 2 1690.2.b.e 16
15.d odd 2 1 1170.2.bj.a 8
20.d odd 2 1 1040.2.df.a 8
39.h odd 6 1 1170.2.bj.a 8
52.i odd 6 1 1040.2.df.a 8
65.l even 6 1 inner 130.2.m.a 8
65.l even 6 1 1690.2.c.f 8
65.n even 6 1 1690.2.c.e 8
65.o even 12 2 8450.2.a.cs 8
65.r odd 12 2 650.2.m.e 16
65.s odd 12 2 1690.2.b.e 16
65.t even 12 2 8450.2.a.cr 8
195.y odd 6 1 1170.2.bj.b 8
260.w odd 6 1 1040.2.df.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.2.m.a 8 1.a even 1 1 trivial
130.2.m.a 8 65.l even 6 1 inner
130.2.m.b yes 8 5.b even 2 1
130.2.m.b yes 8 13.e even 6 1
650.2.m.e 16 5.c odd 4 2
650.2.m.e 16 65.r odd 12 2
1040.2.df.a 8 20.d odd 2 1
1040.2.df.a 8 52.i odd 6 1
1040.2.df.c 8 4.b odd 2 1
1040.2.df.c 8 260.w odd 6 1
1170.2.bj.a 8 15.d odd 2 1
1170.2.bj.a 8 39.h odd 6 1
1170.2.bj.b 8 3.b odd 2 1
1170.2.bj.b 8 195.y odd 6 1
1690.2.b.e 16 13.f odd 12 2
1690.2.b.e 16 65.s odd 12 2
1690.2.c.e 8 13.e even 6 1
1690.2.c.e 8 65.n even 6 1
1690.2.c.f 8 13.c even 3 1
1690.2.c.f 8 65.l even 6 1
8450.2.a.cr 8 65.t even 12 2
8450.2.a.cs 8 65.o even 12 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} - 10T_{3}^{6} + 84T_{3}^{4} - 60T_{3}^{3} - 148T_{3}^{2} + 96T_{3} + 256 \) acting on \(S_{2}^{\mathrm{new}}(130, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + T + 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{8} - 10 T^{6} + 84 T^{4} + \cdots + 256 \) Copy content Toggle raw display
$5$ \( T^{8} - 3 T^{7} + 2 T^{6} + 15 T^{5} + \cdots + 625 \) Copy content Toggle raw display
$7$ \( T^{8} - 5 T^{7} + 34 T^{6} + \cdots + 2704 \) Copy content Toggle raw display
$11$ \( T^{8} + 3 T^{7} - 16 T^{6} - 57 T^{5} + \cdots + 784 \) Copy content Toggle raw display
$13$ \( T^{8} - 4 T^{7} + 28 T^{6} + \cdots + 28561 \) Copy content Toggle raw display
$17$ \( T^{8} + 15 T^{7} + 83 T^{6} + 120 T^{5} + \cdots + 4 \) Copy content Toggle raw display
$19$ \( T^{8} - 9 T^{7} + 18 T^{6} + \cdots + 9216 \) Copy content Toggle raw display
$23$ \( T^{8} + 6 T^{7} - 4 T^{6} - 96 T^{5} + \cdots + 256 \) Copy content Toggle raw display
$29$ \( T^{8} + 3 T^{7} + 27 T^{6} + 66 T^{5} + \cdots + 576 \) Copy content Toggle raw display
$31$ \( T^{8} + 60 T^{6} + 1176 T^{4} + \cdots + 576 \) Copy content Toggle raw display
$37$ \( T^{8} - 20 T^{7} + 280 T^{6} + \cdots + 11881 \) Copy content Toggle raw display
$41$ \( T^{8} - 21 T^{7} + 119 T^{6} + \cdots + 1106704 \) Copy content Toggle raw display
$43$ \( T^{8} - 18 T^{7} + 72 T^{6} + \cdots + 2359296 \) Copy content Toggle raw display
$47$ \( (T^{4} - 3 T^{3} - 117 T^{2} + 267 T - 96)^{2} \) Copy content Toggle raw display
$53$ \( T^{8} + 356 T^{6} + \cdots + 17783089 \) Copy content Toggle raw display
$59$ \( T^{8} - 30 T^{7} + 344 T^{6} + \cdots + 369664 \) Copy content Toggle raw display
$61$ \( T^{8} + 5 T^{7} + 271 T^{6} + \cdots + 28751044 \) Copy content Toggle raw display
$67$ \( (T^{2} + 4 T + 16)^{4} \) Copy content Toggle raw display
$71$ \( T^{8} - 160 T^{6} + \cdots + 16777216 \) Copy content Toggle raw display
$73$ \( (T^{4} - 13 T^{3} - 114 T^{2} + 1298 T - 1406)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} - 2 T^{3} - 216 T^{2} + 502 T + 1384)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} + 24 T^{3} + 78 T^{2} - 1602 T - 9744)^{2} \) Copy content Toggle raw display
$89$ \( T^{8} + 39 T^{7} + 548 T^{6} + \cdots + 59474944 \) Copy content Toggle raw display
$97$ \( T^{8} + 4 T^{7} + 76 T^{6} + \cdots + 327184 \) Copy content Toggle raw display
show more
show less