Newspace parameters
Level: | \( N \) | \(=\) | \( 130 = 2 \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 130.m (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.03805522628\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{6})\) |
Coefficient field: | 8.0.50027374224.1 |
Defining polynomial: |
\( x^{8} + 20x^{6} + 132x^{4} + 332x^{2} + 256 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} + 20x^{6} + 132x^{4} + 332x^{2} + 256 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{4} + 10\nu^{2} + 2\nu + 16 ) / 4 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{7} + 20\nu^{5} + 116\nu^{3} + 172\nu + 32 ) / 64 \)
|
\(\beta_{4}\) | \(=\) |
\( ( \nu^{7} + 16\nu^{5} + 68\nu^{3} + 8\nu^{2} + 60\nu + 48 ) / 16 \)
|
\(\beta_{5}\) | \(=\) |
\( ( -\nu^{7} - 16\nu^{5} - 68\nu^{3} + 8\nu^{2} - 60\nu + 32 ) / 16 \)
|
\(\beta_{6}\) | \(=\) |
\( ( \nu^{7} + 8\nu^{6} + 20\nu^{5} + 128\nu^{4} + 132\nu^{3} + 544\nu^{2} + 268\nu + 544 ) / 64 \)
|
\(\beta_{7}\) | \(=\) |
\( ( \nu^{7} - 8\nu^{6} + 20\nu^{5} - 128\nu^{4} + 132\nu^{3} - 544\nu^{2} + 268\nu - 544 ) / 64 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{5} + \beta_{4} - 5 \)
|
\(\nu^{3}\) | \(=\) |
\( 2\beta_{7} + 2\beta_{6} - 4\beta_{3} - 6\beta _1 + 2 \)
|
\(\nu^{4}\) | \(=\) |
\( -10\beta_{5} - 10\beta_{4} + 4\beta_{2} - 2\beta _1 + 34 \)
|
\(\nu^{5}\) | \(=\) |
\( -24\beta_{7} - 24\beta_{6} + 2\beta_{5} - 2\beta_{4} + 64\beta_{3} + 44\beta _1 - 30 \)
|
\(\nu^{6}\) | \(=\) |
\( -4\beta_{7} + 4\beta_{6} + 92\beta_{5} + 92\beta_{4} - 64\beta_{2} + 32\beta _1 - 272 \)
|
\(\nu^{7}\) | \(=\) |
\( 248\beta_{7} + 248\beta_{6} - 40\beta_{5} + 40\beta_{4} - 752\beta_{3} - 356\beta _1 + 336 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/130\mathbb{Z}\right)^\times\).
\(n\) | \(27\) | \(41\) |
\(\chi(n)\) | \(-1\) | \(\beta_{3}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 |
|
−0.500000 | − | 0.866025i | −2.65963 | + | 1.53554i | −0.500000 | + | 0.866025i | 1.36822 | − | 1.76861i | 2.65963 | + | 1.53554i | 1.84755 | − | 3.20005i | 1.00000 | 3.21577 | − | 5.56988i | −2.21577 | − | 0.300609i | ||||||||||||||||||||||||||
49.2 | −0.500000 | − | 0.866025i | −1.01883 | + | 0.588222i | −0.500000 | + | 0.866025i | 0.235468 | + | 2.22364i | 1.01883 | + | 0.588222i | −1.04346 | + | 1.80732i | 1.00000 | −0.807991 | + | 1.39948i | 1.80799 | − | 1.31574i | |||||||||||||||||||||||||||
49.3 | −0.500000 | − | 0.866025i | 1.59146 | − | 0.918829i | −0.500000 | + | 0.866025i | −2.21022 | − | 0.339024i | −1.59146 | − | 0.918829i | 2.39871 | − | 4.15469i | 1.00000 | 0.188495 | − | 0.326482i | 0.811505 | + | 2.08362i | |||||||||||||||||||||||||||
49.4 | −0.500000 | − | 0.866025i | 2.08700 | − | 1.20493i | −0.500000 | + | 0.866025i | 2.10653 | + | 0.750022i | −2.08700 | − | 1.20493i | −0.702803 | + | 1.21729i | 1.00000 | 1.40373 | − | 2.43133i | −0.403726 | − | 2.19932i | |||||||||||||||||||||||||||
69.1 | −0.500000 | + | 0.866025i | −2.65963 | − | 1.53554i | −0.500000 | − | 0.866025i | 1.36822 | + | 1.76861i | 2.65963 | − | 1.53554i | 1.84755 | + | 3.20005i | 1.00000 | 3.21577 | + | 5.56988i | −2.21577 | + | 0.300609i | |||||||||||||||||||||||||||
69.2 | −0.500000 | + | 0.866025i | −1.01883 | − | 0.588222i | −0.500000 | − | 0.866025i | 0.235468 | − | 2.22364i | 1.01883 | − | 0.588222i | −1.04346 | − | 1.80732i | 1.00000 | −0.807991 | − | 1.39948i | 1.80799 | + | 1.31574i | |||||||||||||||||||||||||||
69.3 | −0.500000 | + | 0.866025i | 1.59146 | + | 0.918829i | −0.500000 | − | 0.866025i | −2.21022 | + | 0.339024i | −1.59146 | + | 0.918829i | 2.39871 | + | 4.15469i | 1.00000 | 0.188495 | + | 0.326482i | 0.811505 | − | 2.08362i | |||||||||||||||||||||||||||
69.4 | −0.500000 | + | 0.866025i | 2.08700 | + | 1.20493i | −0.500000 | − | 0.866025i | 2.10653 | − | 0.750022i | −2.08700 | + | 1.20493i | −0.702803 | − | 1.21729i | 1.00000 | 1.40373 | + | 2.43133i | −0.403726 | + | 2.19932i | |||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
65.l | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 130.2.m.a | ✓ | 8 |
3.b | odd | 2 | 1 | 1170.2.bj.b | 8 | ||
4.b | odd | 2 | 1 | 1040.2.df.c | 8 | ||
5.b | even | 2 | 1 | 130.2.m.b | yes | 8 | |
5.c | odd | 4 | 2 | 650.2.m.e | 16 | ||
13.c | even | 3 | 1 | 1690.2.c.f | 8 | ||
13.e | even | 6 | 1 | 130.2.m.b | yes | 8 | |
13.e | even | 6 | 1 | 1690.2.c.e | 8 | ||
13.f | odd | 12 | 2 | 1690.2.b.e | 16 | ||
15.d | odd | 2 | 1 | 1170.2.bj.a | 8 | ||
20.d | odd | 2 | 1 | 1040.2.df.a | 8 | ||
39.h | odd | 6 | 1 | 1170.2.bj.a | 8 | ||
52.i | odd | 6 | 1 | 1040.2.df.a | 8 | ||
65.l | even | 6 | 1 | inner | 130.2.m.a | ✓ | 8 |
65.l | even | 6 | 1 | 1690.2.c.f | 8 | ||
65.n | even | 6 | 1 | 1690.2.c.e | 8 | ||
65.o | even | 12 | 2 | 8450.2.a.cs | 8 | ||
65.r | odd | 12 | 2 | 650.2.m.e | 16 | ||
65.s | odd | 12 | 2 | 1690.2.b.e | 16 | ||
65.t | even | 12 | 2 | 8450.2.a.cr | 8 | ||
195.y | odd | 6 | 1 | 1170.2.bj.b | 8 | ||
260.w | odd | 6 | 1 | 1040.2.df.c | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
130.2.m.a | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
130.2.m.a | ✓ | 8 | 65.l | even | 6 | 1 | inner |
130.2.m.b | yes | 8 | 5.b | even | 2 | 1 | |
130.2.m.b | yes | 8 | 13.e | even | 6 | 1 | |
650.2.m.e | 16 | 5.c | odd | 4 | 2 | ||
650.2.m.e | 16 | 65.r | odd | 12 | 2 | ||
1040.2.df.a | 8 | 20.d | odd | 2 | 1 | ||
1040.2.df.a | 8 | 52.i | odd | 6 | 1 | ||
1040.2.df.c | 8 | 4.b | odd | 2 | 1 | ||
1040.2.df.c | 8 | 260.w | odd | 6 | 1 | ||
1170.2.bj.a | 8 | 15.d | odd | 2 | 1 | ||
1170.2.bj.a | 8 | 39.h | odd | 6 | 1 | ||
1170.2.bj.b | 8 | 3.b | odd | 2 | 1 | ||
1170.2.bj.b | 8 | 195.y | odd | 6 | 1 | ||
1690.2.b.e | 16 | 13.f | odd | 12 | 2 | ||
1690.2.b.e | 16 | 65.s | odd | 12 | 2 | ||
1690.2.c.e | 8 | 13.e | even | 6 | 1 | ||
1690.2.c.e | 8 | 65.n | even | 6 | 1 | ||
1690.2.c.f | 8 | 13.c | even | 3 | 1 | ||
1690.2.c.f | 8 | 65.l | even | 6 | 1 | ||
8450.2.a.cr | 8 | 65.t | even | 12 | 2 | ||
8450.2.a.cs | 8 | 65.o | even | 12 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{8} - 10T_{3}^{6} + 84T_{3}^{4} - 60T_{3}^{3} - 148T_{3}^{2} + 96T_{3} + 256 \)
acting on \(S_{2}^{\mathrm{new}}(130, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} + T + 1)^{4} \)
$3$
\( T^{8} - 10 T^{6} + 84 T^{4} + \cdots + 256 \)
$5$
\( T^{8} - 3 T^{7} + 2 T^{6} + 15 T^{5} + \cdots + 625 \)
$7$
\( T^{8} - 5 T^{7} + 34 T^{6} + \cdots + 2704 \)
$11$
\( T^{8} + 3 T^{7} - 16 T^{6} - 57 T^{5} + \cdots + 784 \)
$13$
\( T^{8} - 4 T^{7} + 28 T^{6} + \cdots + 28561 \)
$17$
\( T^{8} + 15 T^{7} + 83 T^{6} + 120 T^{5} + \cdots + 4 \)
$19$
\( T^{8} - 9 T^{7} + 18 T^{6} + \cdots + 9216 \)
$23$
\( T^{8} + 6 T^{7} - 4 T^{6} - 96 T^{5} + \cdots + 256 \)
$29$
\( T^{8} + 3 T^{7} + 27 T^{6} + 66 T^{5} + \cdots + 576 \)
$31$
\( T^{8} + 60 T^{6} + 1176 T^{4} + \cdots + 576 \)
$37$
\( T^{8} - 20 T^{7} + 280 T^{6} + \cdots + 11881 \)
$41$
\( T^{8} - 21 T^{7} + 119 T^{6} + \cdots + 1106704 \)
$43$
\( T^{8} - 18 T^{7} + 72 T^{6} + \cdots + 2359296 \)
$47$
\( (T^{4} - 3 T^{3} - 117 T^{2} + 267 T - 96)^{2} \)
$53$
\( T^{8} + 356 T^{6} + \cdots + 17783089 \)
$59$
\( T^{8} - 30 T^{7} + 344 T^{6} + \cdots + 369664 \)
$61$
\( T^{8} + 5 T^{7} + 271 T^{6} + \cdots + 28751044 \)
$67$
\( (T^{2} + 4 T + 16)^{4} \)
$71$
\( T^{8} - 160 T^{6} + \cdots + 16777216 \)
$73$
\( (T^{4} - 13 T^{3} - 114 T^{2} + 1298 T - 1406)^{2} \)
$79$
\( (T^{4} - 2 T^{3} - 216 T^{2} + 502 T + 1384)^{2} \)
$83$
\( (T^{4} + 24 T^{3} + 78 T^{2} - 1602 T - 9744)^{2} \)
$89$
\( T^{8} + 39 T^{7} + 548 T^{6} + \cdots + 59474944 \)
$97$
\( T^{8} + 4 T^{7} + 76 T^{6} + \cdots + 327184 \)
show more
show less