Properties

Label 650.2.n.e.199.3
Level $650$
Weight $2$
Character 650.199
Analytic conductor $5.190$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(49,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.22581504.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 5x^{6} + 2x^{5} - 11x^{4} + 4x^{3} + 20x^{2} - 32x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.3
Root \(-1.27597 - 0.609843i\) of defining polynomial
Character \(\chi\) \(=\) 650.199
Dual form 650.2.n.e.49.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(0.519785 + 0.300098i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.519785 - 0.300098i) q^{6} +(-0.719687 - 1.24653i) q^{7} -1.00000 q^{8} +(-1.31988 - 2.28610i) q^{9} +(-2.40029 - 1.38581i) q^{11} -0.600196i q^{12} +(-2.31246 - 2.76632i) q^{13} -1.43937 q^{14} +(-0.500000 + 0.866025i) q^{16} +(-3.90029 + 2.25184i) q^{17} -2.63977 q^{18} +(3.75184 - 2.16612i) q^{19} -0.863906i q^{21} +(-2.40029 + 1.38581i) q^{22} +(3.84461 + 2.21969i) q^{23} +(-0.519785 - 0.300098i) q^{24} +(-3.55193 + 0.619491i) q^{26} -3.38496i q^{27} +(-0.719687 + 1.24653i) q^{28} +(3.93244 - 6.81119i) q^{29} -4.16082i q^{31} +(0.500000 + 0.866025i) q^{32} +(-0.831757 - 1.44065i) q^{33} +4.50367i q^{34} +(-1.31988 + 2.28610i) q^{36} +(0.287734 - 0.498370i) q^{37} -4.33225i q^{38} +(-0.371816 - 2.13186i) q^{39} +(3.65906 + 2.11256i) q^{41} +(-0.748164 - 0.431953i) q^{42} +(-2.26469 + 1.30752i) q^{43} +2.77162i q^{44} +(3.84461 - 2.21969i) q^{46} -12.7684 q^{47} +(-0.519785 + 0.300098i) q^{48} +(2.46410 - 4.26795i) q^{49} -2.70308 q^{51} +(-1.23947 + 3.38581i) q^{52} +9.57123i q^{53} +(-2.93146 - 1.69248i) q^{54} +(0.719687 + 1.24653i) q^{56} +2.60020 q^{57} +(-3.93244 - 6.81119i) q^{58} +(3.00000 - 1.73205i) q^{59} +(6.25184 + 10.8285i) q^{61} +(-3.60338 - 2.08041i) q^{62} +(-1.89980 + 3.29056i) q^{63} +1.00000 q^{64} -1.66351 q^{66} +(2.66449 - 4.61504i) q^{67} +(3.90029 + 2.25184i) q^{68} +(1.33225 + 2.30752i) q^{69} +(5.19615 - 3.00000i) q^{71} +(1.31988 + 2.28610i) q^{72} +1.66351 q^{73} +(-0.287734 - 0.498370i) q^{74} +(-3.75184 - 2.16612i) q^{76} +3.98940i q^{77} +(-2.03215 - 0.743926i) q^{78} -12.7288 q^{79} +(-2.94383 + 5.09886i) q^{81} +(3.65906 - 2.11256i) q^{82} +10.0469 q^{83} +(-0.748164 + 0.431953i) q^{84} +2.61504i q^{86} +(4.08805 - 2.36023i) q^{87} +(2.40029 + 1.38581i) q^{88} +(5.15906 + 2.97859i) q^{89} +(-1.78406 + 4.87345i) q^{91} -4.43937i q^{92} +(1.24865 - 2.16273i) q^{93} +(-6.38418 + 11.0577i) q^{94} +0.600196i q^{96} +(-0.793166 - 1.37380i) q^{97} +(-2.46410 - 4.26795i) q^{98} +7.31643i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 6 q^{3} - 4 q^{4} - 6 q^{6} - 8 q^{8} + 4 q^{9} - 6 q^{11} - 6 q^{13} - 4 q^{16} - 18 q^{17} + 8 q^{18} + 6 q^{19} - 6 q^{22} + 6 q^{24} + 4 q^{32} - 6 q^{33} + 4 q^{36} + 6 q^{37} + 40 q^{39}+ \cdots + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0.519785 + 0.300098i 0.300098 + 0.173262i 0.642487 0.766297i \(-0.277903\pi\)
−0.342389 + 0.939558i \(0.611236\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0 0
\(6\) 0.519785 0.300098i 0.212201 0.122514i
\(7\) −0.719687 1.24653i −0.272016 0.471146i 0.697362 0.716719i \(-0.254357\pi\)
−0.969378 + 0.245574i \(0.921024\pi\)
\(8\) −1.00000 −0.353553
\(9\) −1.31988 2.28610i −0.439961 0.762035i
\(10\) 0 0
\(11\) −2.40029 1.38581i −0.723716 0.417837i 0.0924030 0.995722i \(-0.470545\pi\)
−0.816119 + 0.577884i \(0.803879\pi\)
\(12\) 0.600196i 0.173262i
\(13\) −2.31246 2.76632i −0.641362 0.767239i
\(14\) −1.43937 −0.384689
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −3.90029 + 2.25184i −0.945960 + 0.546150i −0.891824 0.452383i \(-0.850574\pi\)
−0.0541365 + 0.998534i \(0.517241\pi\)
\(18\) −2.63977 −0.622199
\(19\) 3.75184 2.16612i 0.860730 0.496943i −0.00352661 0.999994i \(-0.501123\pi\)
0.864257 + 0.503051i \(0.167789\pi\)
\(20\) 0 0
\(21\) 0.863906i 0.188520i
\(22\) −2.40029 + 1.38581i −0.511744 + 0.295456i
\(23\) 3.84461 + 2.21969i 0.801657 + 0.462837i 0.844050 0.536264i \(-0.180165\pi\)
−0.0423934 + 0.999101i \(0.513498\pi\)
\(24\) −0.519785 0.300098i −0.106101 0.0612572i
\(25\) 0 0
\(26\) −3.55193 + 0.619491i −0.696591 + 0.121492i
\(27\) 3.38496i 0.651436i
\(28\) −0.719687 + 1.24653i −0.136008 + 0.235573i
\(29\) 3.93244 6.81119i 0.730236 1.26481i −0.226546 0.974000i \(-0.572743\pi\)
0.956782 0.290806i \(-0.0939233\pi\)
\(30\) 0 0
\(31\) 4.16082i 0.747306i −0.927569 0.373653i \(-0.878105\pi\)
0.927569 0.373653i \(-0.121895\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) −0.831757 1.44065i −0.144790 0.250784i
\(34\) 4.50367i 0.772373i
\(35\) 0 0
\(36\) −1.31988 + 2.28610i −0.219980 + 0.381017i
\(37\) 0.287734 0.498370i 0.0473032 0.0819315i −0.841404 0.540406i \(-0.818271\pi\)
0.888708 + 0.458475i \(0.151604\pi\)
\(38\) 4.33225i 0.702783i
\(39\) −0.371816 2.13186i −0.0595382 0.341370i
\(40\) 0 0
\(41\) 3.65906 + 2.11256i 0.571449 + 0.329926i 0.757728 0.652571i \(-0.226309\pi\)
−0.186279 + 0.982497i \(0.559643\pi\)
\(42\) −0.748164 0.431953i −0.115444 0.0666518i
\(43\) −2.26469 + 1.30752i −0.345362 + 0.199395i −0.662641 0.748938i \(-0.730564\pi\)
0.317279 + 0.948332i \(0.397231\pi\)
\(44\) 2.77162i 0.417837i
\(45\) 0 0
\(46\) 3.84461 2.21969i 0.566857 0.327275i
\(47\) −12.7684 −1.86246 −0.931228 0.364436i \(-0.881262\pi\)
−0.931228 + 0.364436i \(0.881262\pi\)
\(48\) −0.519785 + 0.300098i −0.0750245 + 0.0433154i
\(49\) 2.46410 4.26795i 0.352015 0.609707i
\(50\) 0 0
\(51\) −2.70308 −0.378507
\(52\) −1.23947 + 3.38581i −0.171884 + 0.469527i
\(53\) 9.57123i 1.31471i 0.753581 + 0.657355i \(0.228325\pi\)
−0.753581 + 0.657355i \(0.771675\pi\)
\(54\) −2.93146 1.69248i −0.398922 0.230318i
\(55\) 0 0
\(56\) 0.719687 + 1.24653i 0.0961722 + 0.166575i
\(57\) 2.60020 0.344404
\(58\) −3.93244 6.81119i −0.516355 0.894353i
\(59\) 3.00000 1.73205i 0.390567 0.225494i −0.291839 0.956467i \(-0.594267\pi\)
0.682406 + 0.730974i \(0.260934\pi\)
\(60\) 0 0
\(61\) 6.25184 + 10.8285i 0.800466 + 1.38645i 0.919310 + 0.393534i \(0.128748\pi\)
−0.118845 + 0.992913i \(0.537919\pi\)
\(62\) −3.60338 2.08041i −0.457629 0.264212i
\(63\) −1.89980 + 3.29056i −0.239353 + 0.414571i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −1.66351 −0.204764
\(67\) 2.66449 4.61504i 0.325520 0.563817i −0.656098 0.754676i \(-0.727794\pi\)
0.981617 + 0.190859i \(0.0611274\pi\)
\(68\) 3.90029 + 2.25184i 0.472980 + 0.273075i
\(69\) 1.33225 + 2.30752i 0.160384 + 0.277793i
\(70\) 0 0
\(71\) 5.19615 3.00000i 0.616670 0.356034i −0.158901 0.987294i \(-0.550795\pi\)
0.775571 + 0.631260i \(0.217462\pi\)
\(72\) 1.31988 + 2.28610i 0.155550 + 0.269420i
\(73\) 1.66351 0.194700 0.0973498 0.995250i \(-0.468963\pi\)
0.0973498 + 0.995250i \(0.468963\pi\)
\(74\) −0.287734 0.498370i −0.0334484 0.0579343i
\(75\) 0 0
\(76\) −3.75184 2.16612i −0.430365 0.248471i
\(77\) 3.98940i 0.454634i
\(78\) −2.03215 0.743926i −0.230096 0.0842330i
\(79\) −12.7288 −1.43210 −0.716050 0.698049i \(-0.754052\pi\)
−0.716050 + 0.698049i \(0.754052\pi\)
\(80\) 0 0
\(81\) −2.94383 + 5.09886i −0.327092 + 0.566540i
\(82\) 3.65906 2.11256i 0.404076 0.233293i
\(83\) 10.0469 1.10279 0.551396 0.834244i \(-0.314095\pi\)
0.551396 + 0.834244i \(0.314095\pi\)
\(84\) −0.748164 + 0.431953i −0.0816314 + 0.0471299i
\(85\) 0 0
\(86\) 2.61504i 0.281987i
\(87\) 4.08805 2.36023i 0.438285 0.253044i
\(88\) 2.40029 + 1.38581i 0.255872 + 0.147728i
\(89\) 5.15906 + 2.97859i 0.546859 + 0.315729i 0.747854 0.663863i \(-0.231084\pi\)
−0.200995 + 0.979592i \(0.564417\pi\)
\(90\) 0 0
\(91\) −1.78406 + 4.87345i −0.187021 + 0.510876i
\(92\) 4.43937i 0.462837i
\(93\) 1.24865 2.16273i 0.129479 0.224265i
\(94\) −6.38418 + 11.0577i −0.658478 + 1.14052i
\(95\) 0 0
\(96\) 0.600196i 0.0612572i
\(97\) −0.793166 1.37380i −0.0805338 0.139489i 0.822946 0.568120i \(-0.192329\pi\)
−0.903479 + 0.428632i \(0.858996\pi\)
\(98\) −2.46410 4.26795i −0.248912 0.431128i
\(99\) 7.31643i 0.735329i
\(100\) 0 0
\(101\) 6.87676 11.9109i 0.684263 1.18518i −0.289405 0.957207i \(-0.593457\pi\)
0.973668 0.227972i \(-0.0732093\pi\)
\(102\) −1.35154 + 2.34094i −0.133823 + 0.231788i
\(103\) 5.73205i 0.564796i −0.959297 0.282398i \(-0.908870\pi\)
0.959297 0.282398i \(-0.0911298\pi\)
\(104\) 2.31246 + 2.76632i 0.226756 + 0.271260i
\(105\) 0 0
\(106\) 8.28893 + 4.78561i 0.805092 + 0.464820i
\(107\) 4.05242 + 2.33967i 0.391762 + 0.226184i 0.682924 0.730490i \(-0.260708\pi\)
−0.291161 + 0.956674i \(0.594042\pi\)
\(108\) −2.93146 + 1.69248i −0.282080 + 0.162859i
\(109\) 2.32164i 0.222373i 0.993800 + 0.111187i \(0.0354651\pi\)
−0.993800 + 0.111187i \(0.964535\pi\)
\(110\) 0 0
\(111\) 0.299119 0.172697i 0.0283912 0.0163916i
\(112\) 1.43937 0.136008
\(113\) 6.69982 3.86814i 0.630266 0.363884i −0.150589 0.988596i \(-0.548117\pi\)
0.780855 + 0.624712i \(0.214784\pi\)
\(114\) 1.30010 2.25184i 0.121765 0.210904i
\(115\) 0 0
\(116\) −7.86488 −0.730236
\(117\) −3.27191 + 8.93774i −0.302489 + 0.826295i
\(118\) 3.46410i 0.318896i
\(119\) 5.61398 + 3.24123i 0.514633 + 0.297123i
\(120\) 0 0
\(121\) −1.65906 2.87358i −0.150824 0.261234i
\(122\) 12.5037 1.13203
\(123\) 1.26795 + 2.19615i 0.114327 + 0.198020i
\(124\) −3.60338 + 2.08041i −0.323593 + 0.186826i
\(125\) 0 0
\(126\) 1.89980 + 3.29056i 0.169248 + 0.293146i
\(127\) 13.9641 + 8.06218i 1.23911 + 0.715403i 0.968913 0.247401i \(-0.0795766\pi\)
0.270201 + 0.962804i \(0.412910\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) −1.56953 −0.138190
\(130\) 0 0
\(131\) −19.7609 −1.72651 −0.863257 0.504764i \(-0.831579\pi\)
−0.863257 + 0.504764i \(0.831579\pi\)
\(132\) −0.831757 + 1.44065i −0.0723952 + 0.125392i
\(133\) −5.40029 3.11786i −0.468265 0.270353i
\(134\) −2.66449 4.61504i −0.230177 0.398678i
\(135\) 0 0
\(136\) 3.90029 2.25184i 0.334447 0.193093i
\(137\) 8.63234 + 14.9517i 0.737511 + 1.27741i 0.953613 + 0.301036i \(0.0973323\pi\)
−0.216102 + 0.976371i \(0.569334\pi\)
\(138\) 2.66449 0.226817
\(139\) 1.47328 + 2.55180i 0.124962 + 0.216441i 0.921718 0.387860i \(-0.126786\pi\)
−0.796756 + 0.604301i \(0.793452\pi\)
\(140\) 0 0
\(141\) −6.63680 3.83176i −0.558919 0.322692i
\(142\) 6.00000i 0.503509i
\(143\) 1.71699 + 9.84461i 0.143582 + 0.823248i
\(144\) 2.63977 0.219980
\(145\) 0 0
\(146\) 0.831757 1.44065i 0.0688367 0.119229i
\(147\) 2.56160 1.47894i 0.211278 0.121981i
\(148\) −0.575468 −0.0473032
\(149\) 6.11871 3.53264i 0.501264 0.289405i −0.227971 0.973668i \(-0.573209\pi\)
0.729235 + 0.684263i \(0.239876\pi\)
\(150\) 0 0
\(151\) 15.8327i 1.28844i −0.764839 0.644222i \(-0.777181\pi\)
0.764839 0.644222i \(-0.222819\pi\)
\(152\) −3.75184 + 2.16612i −0.304314 + 0.175696i
\(153\) 10.2959 + 5.94432i 0.832371 + 0.480570i
\(154\) 3.45492 + 1.99470i 0.278405 + 0.160737i
\(155\) 0 0
\(156\) −1.66033 + 1.38793i −0.132933 + 0.111123i
\(157\) 12.6280i 1.00783i −0.863754 0.503913i \(-0.831893\pi\)
0.863754 0.503913i \(-0.168107\pi\)
\(158\) −6.36440 + 11.0235i −0.506324 + 0.876979i
\(159\) −2.87231 + 4.97498i −0.227789 + 0.394541i
\(160\) 0 0
\(161\) 6.38992i 0.503596i
\(162\) 2.94383 + 5.09886i 0.231289 + 0.400604i
\(163\) −9.18428 15.9076i −0.719368 1.24598i −0.961250 0.275677i \(-0.911098\pi\)
0.241882 0.970306i \(-0.422235\pi\)
\(164\) 4.22512i 0.329926i
\(165\) 0 0
\(166\) 5.02346 8.70088i 0.389896 0.675319i
\(167\) 10.8043 18.7135i 0.836059 1.44810i −0.0571070 0.998368i \(-0.518188\pi\)
0.893166 0.449728i \(-0.148479\pi\)
\(168\) 0.863906i 0.0666518i
\(169\) −2.30504 + 12.7940i −0.177311 + 0.984155i
\(170\) 0 0
\(171\) −9.90396 5.71806i −0.757375 0.437271i
\(172\) 2.26469 + 1.30752i 0.172681 + 0.0996974i
\(173\) −3.45492 + 1.99470i −0.262673 + 0.151654i −0.625553 0.780182i \(-0.715127\pi\)
0.362880 + 0.931836i \(0.381793\pi\)
\(174\) 4.72047i 0.357858i
\(175\) 0 0
\(176\) 2.40029 1.38581i 0.180929 0.104459i
\(177\) 2.07914 0.156278
\(178\) 5.15906 2.97859i 0.386688 0.223254i
\(179\) −6.23996 + 10.8079i −0.466397 + 0.807823i −0.999263 0.0383766i \(-0.987781\pi\)
0.532867 + 0.846199i \(0.321115\pi\)
\(180\) 0 0
\(181\) 19.4319 1.44436 0.722180 0.691705i \(-0.243140\pi\)
0.722180 + 0.691705i \(0.243140\pi\)
\(182\) 3.32850 + 3.98177i 0.246725 + 0.295148i
\(183\) 7.50465i 0.554760i
\(184\) −3.84461 2.21969i −0.283428 0.163637i
\(185\) 0 0
\(186\) −1.24865 2.16273i −0.0915557 0.158579i
\(187\) 12.4825 0.912808
\(188\) 6.38418 + 11.0577i 0.465614 + 0.806467i
\(189\) −4.21947 + 2.43611i −0.306921 + 0.177201i
\(190\) 0 0
\(191\) 9.16074 + 15.8669i 0.662848 + 1.14809i 0.979864 + 0.199666i \(0.0639858\pi\)
−0.317016 + 0.948420i \(0.602681\pi\)
\(192\) 0.519785 + 0.300098i 0.0375122 + 0.0216577i
\(193\) −2.37182 + 4.10811i −0.170727 + 0.295708i −0.938674 0.344805i \(-0.887945\pi\)
0.767947 + 0.640513i \(0.221278\pi\)
\(194\) −1.58633 −0.113892
\(195\) 0 0
\(196\) −4.92820 −0.352015
\(197\) −5.40029 + 9.35358i −0.384755 + 0.666415i −0.991735 0.128302i \(-0.959047\pi\)
0.606980 + 0.794717i \(0.292381\pi\)
\(198\) 6.33621 + 3.65821i 0.450295 + 0.259978i
\(199\) −5.50367 9.53264i −0.390145 0.675751i 0.602323 0.798252i \(-0.294242\pi\)
−0.992468 + 0.122501i \(0.960908\pi\)
\(200\) 0 0
\(201\) 2.76993 1.59922i 0.195375 0.112800i
\(202\) −6.87676 11.9109i −0.483847 0.838048i
\(203\) −11.3205 −0.794544
\(204\) 1.35154 + 2.34094i 0.0946269 + 0.163899i
\(205\) 0 0
\(206\) −4.96410 2.86603i −0.345865 0.199685i
\(207\) 11.7189i 0.814520i
\(208\) 3.55193 0.619491i 0.246282 0.0429540i
\(209\) −12.0073 −0.830565
\(210\) 0 0
\(211\) −13.1291 + 22.7402i −0.903843 + 1.56550i −0.0813811 + 0.996683i \(0.525933\pi\)
−0.822462 + 0.568820i \(0.807400\pi\)
\(212\) 8.28893 4.78561i 0.569286 0.328677i
\(213\) 3.60117 0.246748
\(214\) 4.05242 2.33967i 0.277018 0.159936i
\(215\) 0 0
\(216\) 3.38496i 0.230318i
\(217\) −5.18661 + 2.99449i −0.352090 + 0.203279i
\(218\) 2.01060 + 1.16082i 0.136175 + 0.0786208i
\(219\) 0.864669 + 0.499217i 0.0584289 + 0.0337340i
\(220\) 0 0
\(221\) 15.2486 + 5.58217i 1.02573 + 0.375498i
\(222\) 0.345393i 0.0231813i
\(223\) 11.1021 19.2294i 0.743452 1.28770i −0.207463 0.978243i \(-0.566521\pi\)
0.950915 0.309454i \(-0.100146\pi\)
\(224\) 0.719687 1.24653i 0.0480861 0.0832876i
\(225\) 0 0
\(226\) 7.73629i 0.514610i
\(227\) −1.03957 1.80059i −0.0689986 0.119509i 0.829462 0.558563i \(-0.188647\pi\)
−0.898461 + 0.439054i \(0.855314\pi\)
\(228\) −1.30010 2.25184i −0.0861011 0.149131i
\(229\) 4.67933i 0.309219i 0.987976 + 0.154610i \(0.0494120\pi\)
−0.987976 + 0.154610i \(0.950588\pi\)
\(230\) 0 0
\(231\) −1.19721 + 2.07363i −0.0787706 + 0.136435i
\(232\) −3.93244 + 6.81119i −0.258177 + 0.447177i
\(233\) 0.611060i 0.0400319i 0.999800 + 0.0200160i \(0.00637170\pi\)
−0.999800 + 0.0200160i \(0.993628\pi\)
\(234\) 6.10436 + 7.30243i 0.399054 + 0.477375i
\(235\) 0 0
\(236\) −3.00000 1.73205i −0.195283 0.112747i
\(237\) −6.61623 3.81988i −0.429770 0.248128i
\(238\) 5.61398 3.24123i 0.363900 0.210098i
\(239\) 25.6481i 1.65904i −0.558479 0.829518i \(-0.688615\pi\)
0.558479 0.829518i \(-0.311385\pi\)
\(240\) 0 0
\(241\) 23.4633 13.5466i 1.51141 0.872610i 0.511494 0.859287i \(-0.329092\pi\)
0.999911 0.0133234i \(-0.00424108\pi\)
\(242\) −3.31812 −0.213297
\(243\) −11.8547 + 6.84432i −0.760480 + 0.439063i
\(244\) 6.25184 10.8285i 0.400233 0.693223i
\(245\) 0 0
\(246\) 2.53590 0.161683
\(247\) −14.6682 5.36970i −0.933313 0.341666i
\(248\) 4.16082i 0.264212i
\(249\) 5.22223 + 3.01506i 0.330945 + 0.191071i
\(250\) 0 0
\(251\) 0.751836 + 1.30222i 0.0474554 + 0.0821952i 0.888777 0.458339i \(-0.151555\pi\)
−0.841322 + 0.540534i \(0.818222\pi\)
\(252\) 3.79961 0.239353
\(253\) −6.15213 10.6558i −0.386781 0.669924i
\(254\) 13.9641 8.06218i 0.876186 0.505866i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 17.6191 + 10.1724i 1.09905 + 0.634537i 0.935971 0.352076i \(-0.114524\pi\)
0.163079 + 0.986613i \(0.447857\pi\)
\(258\) −0.784767 + 1.35926i −0.0488575 + 0.0846236i
\(259\) −0.828313 −0.0514689
\(260\) 0 0
\(261\) −20.7614 −1.28510
\(262\) −9.88043 + 17.1134i −0.610415 + 1.05727i
\(263\) 14.8344 + 8.56466i 0.914729 + 0.528119i 0.881950 0.471343i \(-0.156231\pi\)
0.0327796 + 0.999463i \(0.489564\pi\)
\(264\) 0.831757 + 1.44065i 0.0511911 + 0.0886656i
\(265\) 0 0
\(266\) −5.40029 + 3.11786i −0.331113 + 0.191168i
\(267\) 1.78773 + 3.09645i 0.109408 + 0.189499i
\(268\) −5.32899 −0.325520
\(269\) 9.69121 + 16.7857i 0.590883 + 1.02344i 0.994114 + 0.108342i \(0.0345540\pi\)
−0.403230 + 0.915099i \(0.632113\pi\)
\(270\) 0 0
\(271\) −15.9098 9.18555i −0.966454 0.557982i −0.0683006 0.997665i \(-0.521758\pi\)
−0.898153 + 0.439682i \(0.855091\pi\)
\(272\) 4.50367i 0.273075i
\(273\) −2.38984 + 1.99775i −0.144640 + 0.120909i
\(274\) 17.2647 1.04300
\(275\) 0 0
\(276\) 1.33225 2.30752i 0.0801918 0.138896i
\(277\) −23.5855 + 13.6171i −1.41711 + 0.818171i −0.996044 0.0888576i \(-0.971678\pi\)
−0.421069 + 0.907028i \(0.638345\pi\)
\(278\) 2.94657 0.176723
\(279\) −9.51207 + 5.49180i −0.569473 + 0.328785i
\(280\) 0 0
\(281\) 30.0815i 1.79451i 0.441509 + 0.897257i \(0.354443\pi\)
−0.441509 + 0.897257i \(0.645557\pi\)
\(282\) −6.63680 + 3.83176i −0.395216 + 0.228178i
\(283\) −22.0653 12.7394i −1.31164 0.757278i −0.329276 0.944234i \(-0.606805\pi\)
−0.982368 + 0.186955i \(0.940138\pi\)
\(284\) −5.19615 3.00000i −0.308335 0.178017i
\(285\) 0 0
\(286\) 9.38418 + 3.43534i 0.554898 + 0.203136i
\(287\) 6.08153i 0.358981i
\(288\) 1.31988 2.28610i 0.0777748 0.134710i
\(289\) 1.64153 2.84321i 0.0965604 0.167247i
\(290\) 0 0
\(291\) 0.952110i 0.0558137i
\(292\) −0.831757 1.44065i −0.0486749 0.0843074i
\(293\) −8.28893 14.3568i −0.484244 0.838736i 0.515592 0.856834i \(-0.327572\pi\)
−0.999836 + 0.0180985i \(0.994239\pi\)
\(294\) 2.95789i 0.172507i
\(295\) 0 0
\(296\) −0.287734 + 0.498370i −0.0167242 + 0.0289672i
\(297\) −4.69092 + 8.12490i −0.272195 + 0.471455i
\(298\) 7.06528i 0.409280i
\(299\) −2.75015 15.7684i −0.159045 0.911908i
\(300\) 0 0
\(301\) 3.25973 + 1.88201i 0.187888 + 0.108477i
\(302\) −13.7115 7.91633i −0.789007 0.455534i
\(303\) 7.14887 4.12740i 0.410692 0.237113i
\(304\) 4.33225i 0.248471i
\(305\) 0 0
\(306\) 10.2959 5.94432i 0.588575 0.339814i
\(307\) −16.2722 −0.928703 −0.464351 0.885651i \(-0.653713\pi\)
−0.464351 + 0.885651i \(0.653713\pi\)
\(308\) 3.45492 1.99470i 0.196862 0.113659i
\(309\) 1.72018 2.97943i 0.0978574 0.169494i
\(310\) 0 0
\(311\) −16.1053 −0.913246 −0.456623 0.889660i \(-0.650941\pi\)
−0.456623 + 0.889660i \(0.650941\pi\)
\(312\) 0.371816 + 2.13186i 0.0210499 + 0.120693i
\(313\) 10.2162i 0.577454i −0.957411 0.288727i \(-0.906768\pi\)
0.957411 0.288727i \(-0.0932321\pi\)
\(314\) −10.9362 6.31401i −0.617165 0.356320i
\(315\) 0 0
\(316\) 6.36440 + 11.0235i 0.358025 + 0.620118i
\(317\) 0.204368 0.0114785 0.00573923 0.999984i \(-0.498173\pi\)
0.00573923 + 0.999984i \(0.498173\pi\)
\(318\) 2.87231 + 4.97498i 0.161071 + 0.278983i
\(319\) −18.8780 + 10.8992i −1.05697 + 0.610240i
\(320\) 0 0
\(321\) 1.40426 + 2.43225i 0.0783781 + 0.135755i
\(322\) −5.53383 3.19496i −0.308388 0.178048i
\(323\) −9.75551 + 16.8970i −0.542811 + 0.940176i
\(324\) 5.88766 0.327092
\(325\) 0 0
\(326\) −18.3686 −1.01734
\(327\) −0.696720 + 1.20676i −0.0385287 + 0.0667337i
\(328\) −3.65906 2.11256i −0.202038 0.116647i
\(329\) 9.18922 + 15.9162i 0.506618 + 0.877488i
\(330\) 0 0
\(331\) 16.5110 9.53264i 0.907527 0.523961i 0.0278926 0.999611i \(-0.491120\pi\)
0.879635 + 0.475650i \(0.157787\pi\)
\(332\) −5.02346 8.70088i −0.275698 0.477523i
\(333\) −1.51910 −0.0832462
\(334\) −10.8043 18.7135i −0.591183 1.02396i
\(335\) 0 0
\(336\) 0.748164 + 0.431953i 0.0408157 + 0.0235650i
\(337\) 19.8609i 1.08189i −0.841057 0.540946i \(-0.818066\pi\)
0.841057 0.540946i \(-0.181934\pi\)
\(338\) 9.92742 + 8.39323i 0.539980 + 0.456532i
\(339\) 4.64329 0.252189
\(340\) 0 0
\(341\) −5.76611 + 9.98719i −0.312252 + 0.540837i
\(342\) −9.90396 + 5.71806i −0.535545 + 0.309197i
\(343\) −17.1691 −0.927047
\(344\) 2.26469 1.30752i 0.122104 0.0704967i
\(345\) 0 0
\(346\) 3.98940i 0.214471i
\(347\) −14.7661 + 8.52522i −0.792686 + 0.457658i −0.840907 0.541179i \(-0.817978\pi\)
0.0482211 + 0.998837i \(0.484645\pi\)
\(348\) −4.08805 2.36023i −0.219142 0.126522i
\(349\) −18.3917 10.6185i −0.984488 0.568394i −0.0808657 0.996725i \(-0.525768\pi\)
−0.903622 + 0.428331i \(0.859102\pi\)
\(350\) 0 0
\(351\) −9.36389 + 7.82760i −0.499807 + 0.417806i
\(352\) 2.77162i 0.147728i
\(353\) −8.00840 + 13.8710i −0.426244 + 0.738276i −0.996536 0.0831659i \(-0.973497\pi\)
0.570292 + 0.821442i \(0.306830\pi\)
\(354\) 1.03957 1.80059i 0.0552525 0.0957001i
\(355\) 0 0
\(356\) 5.95717i 0.315729i
\(357\) 1.94537 + 3.36949i 0.102960 + 0.178332i
\(358\) 6.23996 + 10.8079i 0.329792 + 0.571217i
\(359\) 24.2487i 1.27980i −0.768459 0.639899i \(-0.778976\pi\)
0.768459 0.639899i \(-0.221024\pi\)
\(360\) 0 0
\(361\) −0.115820 + 0.200606i −0.00609580 + 0.0105582i
\(362\) 9.71594 16.8285i 0.510658 0.884486i
\(363\) 1.99152i 0.104528i
\(364\) 5.11256 0.891679i 0.267971 0.0467367i
\(365\) 0 0
\(366\) 6.49922 + 3.75232i 0.339720 + 0.196137i
\(367\) −25.7822 14.8854i −1.34582 0.777010i −0.358167 0.933658i \(-0.616598\pi\)
−0.987655 + 0.156648i \(0.949931\pi\)
\(368\) −3.84461 + 2.21969i −0.200414 + 0.115709i
\(369\) 11.1533i 0.580619i
\(370\) 0 0
\(371\) 11.9309 6.88829i 0.619420 0.357622i
\(372\) −2.49731 −0.129479
\(373\) 24.5828 14.1929i 1.27285 0.734880i 0.297326 0.954776i \(-0.403905\pi\)
0.975523 + 0.219896i \(0.0705718\pi\)
\(374\) 6.24123 10.8101i 0.322726 0.558979i
\(375\) 0 0
\(376\) 12.7684 0.658478
\(377\) −27.9355 + 4.87223i −1.43875 + 0.250932i
\(378\) 4.87223i 0.250600i
\(379\) 24.6070 + 14.2069i 1.26398 + 0.729759i 0.973842 0.227226i \(-0.0729657\pi\)
0.290137 + 0.956985i \(0.406299\pi\)
\(380\) 0 0
\(381\) 4.83888 + 8.38119i 0.247904 + 0.429382i
\(382\) 18.3215 0.937409
\(383\) −4.69863 8.13827i −0.240089 0.415846i 0.720651 0.693298i \(-0.243843\pi\)
−0.960739 + 0.277452i \(0.910510\pi\)
\(384\) 0.519785 0.300098i 0.0265252 0.0153143i
\(385\) 0 0
\(386\) 2.37182 + 4.10811i 0.120722 + 0.209097i
\(387\) 5.97825 + 3.45154i 0.303891 + 0.175452i
\(388\) −0.793166 + 1.37380i −0.0402669 + 0.0697443i
\(389\) −11.6461 −0.590482 −0.295241 0.955423i \(-0.595400\pi\)
−0.295241 + 0.955423i \(0.595400\pi\)
\(390\) 0 0
\(391\) −19.9935 −1.01111
\(392\) −2.46410 + 4.26795i −0.124456 + 0.215564i
\(393\) −10.2714 5.93019i −0.518123 0.299139i
\(394\) 5.40029 + 9.35358i 0.272063 + 0.471227i
\(395\) 0 0
\(396\) 6.33621 3.65821i 0.318407 0.183832i
\(397\) 0.199902 + 0.346241i 0.0100328 + 0.0173773i 0.870998 0.491286i \(-0.163473\pi\)
−0.860965 + 0.508663i \(0.830140\pi\)
\(398\) −11.0073 −0.551748
\(399\) −1.87133 3.24123i −0.0936835 0.162265i
\(400\) 0 0
\(401\) 7.36793 + 4.25388i 0.367937 + 0.212428i 0.672557 0.740046i \(-0.265196\pi\)
−0.304620 + 0.952474i \(0.598529\pi\)
\(402\) 3.19843i 0.159523i
\(403\) −11.5102 + 9.62174i −0.573362 + 0.479293i
\(404\) −13.7535 −0.684263
\(405\) 0 0
\(406\) −5.66025 + 9.80385i −0.280914 + 0.486557i
\(407\) −1.38129 + 0.797489i −0.0684681 + 0.0395301i
\(408\) 2.70308 0.133823
\(409\) 12.1357 7.00657i 0.600074 0.346453i −0.168997 0.985617i \(-0.554053\pi\)
0.769071 + 0.639164i \(0.220719\pi\)
\(410\) 0 0
\(411\) 10.3622i 0.511129i
\(412\) −4.96410 + 2.86603i −0.244564 + 0.141199i
\(413\) −4.31812 2.49307i −0.212481 0.122676i
\(414\) −10.1489 5.85945i −0.498790 0.287976i
\(415\) 0 0
\(416\) 1.23947 3.38581i 0.0607701 0.166003i
\(417\) 1.76852i 0.0866047i
\(418\) −6.00367 + 10.3987i −0.293649 + 0.508615i
\(419\) −12.0977 + 20.9539i −0.591012 + 1.02366i 0.403084 + 0.915163i \(0.367938\pi\)
−0.994096 + 0.108500i \(0.965395\pi\)
\(420\) 0 0
\(421\) 35.6392i 1.73695i −0.495735 0.868474i \(-0.665101\pi\)
0.495735 0.868474i \(-0.334899\pi\)
\(422\) 13.1291 + 22.7402i 0.639114 + 1.10698i
\(423\) 16.8527 + 29.1898i 0.819408 + 1.41926i
\(424\) 9.57123i 0.464820i
\(425\) 0 0
\(426\) 1.80059 3.11871i 0.0872387 0.151102i
\(427\) 8.99873 15.5863i 0.435479 0.754272i
\(428\) 4.67933i 0.226184i
\(429\) −2.06188 + 5.63234i −0.0995485 + 0.271932i
\(430\) 0 0
\(431\) 4.29586 + 2.48022i 0.206924 + 0.119468i 0.599881 0.800089i \(-0.295215\pi\)
−0.392957 + 0.919557i \(0.628548\pi\)
\(432\) 2.93146 + 1.69248i 0.141040 + 0.0814295i
\(433\) −3.65135 + 2.10811i −0.175472 + 0.101309i −0.585164 0.810915i \(-0.698970\pi\)
0.409691 + 0.912224i \(0.365636\pi\)
\(434\) 5.98898i 0.287480i
\(435\) 0 0
\(436\) 2.01060 1.16082i 0.0962904 0.0555933i
\(437\) 19.2325 0.920013
\(438\) 0.864669 0.499217i 0.0413155 0.0238535i
\(439\) 7.37500 12.7739i 0.351989 0.609664i −0.634608 0.772834i \(-0.718839\pi\)
0.986598 + 0.163170i \(0.0521720\pi\)
\(440\) 0 0
\(441\) −13.0093 −0.619490
\(442\) 12.4586 10.4146i 0.592595 0.495370i
\(443\) 12.2374i 0.581417i −0.956812 0.290709i \(-0.906109\pi\)
0.956812 0.290709i \(-0.0938910\pi\)
\(444\) −0.299119 0.172697i −0.0141956 0.00819582i
\(445\) 0 0
\(446\) −11.1021 19.2294i −0.525700 0.910539i
\(447\) 4.24055 0.200571
\(448\) −0.719687 1.24653i −0.0340020 0.0588932i
\(449\) 16.5163 9.53569i 0.779452 0.450017i −0.0567839 0.998386i \(-0.518085\pi\)
0.836236 + 0.548370i \(0.184751\pi\)
\(450\) 0 0
\(451\) −5.85521 10.1415i −0.275711 0.477546i
\(452\) −6.69982 3.86814i −0.315133 0.181942i
\(453\) 4.75135 8.22957i 0.223238 0.386659i
\(454\) −2.07914 −0.0975788
\(455\) 0 0
\(456\) −2.60020 −0.121765
\(457\) 8.05688 13.9549i 0.376885 0.652784i −0.613722 0.789522i \(-0.710329\pi\)
0.990607 + 0.136738i \(0.0436619\pi\)
\(458\) 4.05242 + 2.33967i 0.189357 + 0.109325i
\(459\) 7.62238 + 13.2023i 0.355782 + 0.616233i
\(460\) 0 0
\(461\) 4.19560 2.42233i 0.195408 0.112819i −0.399104 0.916906i \(-0.630679\pi\)
0.594512 + 0.804087i \(0.297345\pi\)
\(462\) 1.19721 + 2.07363i 0.0556992 + 0.0964739i
\(463\) 8.23164 0.382557 0.191278 0.981536i \(-0.438737\pi\)
0.191278 + 0.981536i \(0.438737\pi\)
\(464\) 3.93244 + 6.81119i 0.182559 + 0.316202i
\(465\) 0 0
\(466\) 0.529194 + 0.305530i 0.0245144 + 0.0141534i
\(467\) 33.4873i 1.54961i 0.632203 + 0.774803i \(0.282151\pi\)
−0.632203 + 0.774803i \(0.717849\pi\)
\(468\) 9.37627 1.63531i 0.433418 0.0755923i
\(469\) −7.67040 −0.354186
\(470\) 0 0
\(471\) 3.78964 6.56386i 0.174618 0.302446i
\(472\) −3.00000 + 1.73205i −0.138086 + 0.0797241i
\(473\) 7.24789 0.333258
\(474\) −6.61623 + 3.81988i −0.303894 + 0.175453i
\(475\) 0 0
\(476\) 6.48247i 0.297123i
\(477\) 21.8808 12.6329i 1.00185 0.578421i
\(478\) −22.2119 12.8240i −1.01595 0.586558i
\(479\) −6.97448 4.02672i −0.318672 0.183985i 0.332128 0.943234i \(-0.392233\pi\)
−0.650800 + 0.759249i \(0.725567\pi\)
\(480\) 0 0
\(481\) −2.04402 + 0.356497i −0.0931994 + 0.0162549i
\(482\) 27.0931i 1.23406i
\(483\) 1.91760 3.32138i 0.0872538 0.151128i
\(484\) −1.65906 + 2.87358i −0.0754118 + 0.130617i
\(485\) 0 0
\(486\) 13.6886i 0.620929i
\(487\) 0.811758 + 1.40601i 0.0367842 + 0.0637122i 0.883831 0.467806i \(-0.154955\pi\)
−0.847047 + 0.531518i \(0.821622\pi\)
\(488\) −6.25184 10.8285i −0.283007 0.490183i
\(489\) 11.0247i 0.498555i
\(490\) 0 0
\(491\) 5.16033 8.93796i 0.232883 0.403364i −0.725773 0.687935i \(-0.758518\pi\)
0.958655 + 0.284570i \(0.0918509\pi\)
\(492\) 1.26795 2.19615i 0.0571636 0.0990102i
\(493\) 35.4209i 1.59527i
\(494\) −11.9844 + 10.0182i −0.539203 + 0.450738i
\(495\) 0 0
\(496\) 3.60338 + 2.08041i 0.161796 + 0.0934132i
\(497\) −7.47921 4.31812i −0.335488 0.193694i
\(498\) 5.22223 3.01506i 0.234014 0.135108i
\(499\) 13.9807i 0.625860i −0.949776 0.312930i \(-0.898689\pi\)
0.949776 0.312930i \(-0.101311\pi\)
\(500\) 0 0
\(501\) 11.2318 6.48467i 0.501799 0.289714i
\(502\) 1.50367 0.0671121
\(503\) 20.5983 11.8924i 0.918434 0.530258i 0.0352988 0.999377i \(-0.488762\pi\)
0.883135 + 0.469119i \(0.155428\pi\)
\(504\) 1.89980 3.29056i 0.0846240 0.146573i
\(505\) 0 0
\(506\) −12.3043 −0.546991
\(507\) −5.03758 + 5.95839i −0.223727 + 0.264622i
\(508\) 16.1244i 0.715403i
\(509\) 22.2023 + 12.8185i 0.984102 + 0.568171i 0.903506 0.428575i \(-0.140984\pi\)
0.0805958 + 0.996747i \(0.474318\pi\)
\(510\) 0 0
\(511\) −1.19721 2.07363i −0.0529614 0.0917319i
\(512\) −1.00000 −0.0441942
\(513\) −7.33225 12.6998i −0.323727 0.560711i
\(514\) 17.6191 10.1724i 0.777146 0.448685i
\(515\) 0 0
\(516\) 0.784767 + 1.35926i 0.0345474 + 0.0598379i
\(517\) 30.6478 + 17.6945i 1.34789 + 0.778204i
\(518\) −0.414157 + 0.717340i −0.0181970 + 0.0315181i
\(519\) −2.39442 −0.105103
\(520\) 0 0
\(521\) −8.53476 −0.373915 −0.186957 0.982368i \(-0.559863\pi\)
−0.186957 + 0.982368i \(0.559863\pi\)
\(522\) −10.3807 + 17.9799i −0.454352 + 0.786961i
\(523\) 10.9878 + 6.34383i 0.480464 + 0.277396i 0.720610 0.693341i \(-0.243862\pi\)
−0.240146 + 0.970737i \(0.577195\pi\)
\(524\) 9.88043 + 17.1134i 0.431629 + 0.747603i
\(525\) 0 0
\(526\) 14.8344 8.56466i 0.646811 0.373437i
\(527\) 9.36949 + 16.2284i 0.408141 + 0.706921i
\(528\) 1.66351 0.0723952
\(529\) −1.64598 2.85092i −0.0715644 0.123953i
\(530\) 0 0
\(531\) −7.91930 4.57221i −0.343668 0.198417i
\(532\) 6.23572i 0.270353i
\(533\) −2.61742 15.0073i −0.113373 0.650040i
\(534\) 3.57547 0.154726
\(535\) 0 0
\(536\) −2.66449 + 4.61504i −0.115089 + 0.199339i
\(537\) −6.48687 + 3.74520i −0.279929 + 0.161617i
\(538\) 19.3824 0.835635
\(539\) −11.8291 + 6.82955i −0.509517 + 0.294170i
\(540\) 0 0
\(541\) 42.0507i 1.80790i 0.427636 + 0.903951i \(0.359347\pi\)
−0.427636 + 0.903951i \(0.640653\pi\)
\(542\) −15.9098 + 9.18555i −0.683386 + 0.394553i
\(543\) 10.1004 + 5.83146i 0.433449 + 0.250252i
\(544\) −3.90029 2.25184i −0.167224 0.0965467i
\(545\) 0 0
\(546\) 0.535182 + 3.06854i 0.0229037 + 0.131321i
\(547\) 24.6297i 1.05309i −0.850147 0.526545i \(-0.823487\pi\)
0.850147 0.526545i \(-0.176513\pi\)
\(548\) 8.63234 14.9517i 0.368755 0.638703i
\(549\) 16.5034 28.5847i 0.704347 1.21996i
\(550\) 0 0
\(551\) 34.0726i 1.45154i
\(552\) −1.33225 2.30752i −0.0567042 0.0982145i
\(553\) 9.16074 + 15.8669i 0.389554 + 0.674728i
\(554\) 27.2342i 1.15707i
\(555\) 0 0
\(556\) 1.47328 2.55180i 0.0624811 0.108221i
\(557\) 3.95244 6.84583i 0.167470 0.290067i −0.770059 0.637972i \(-0.779773\pi\)
0.937530 + 0.347905i \(0.113107\pi\)
\(558\) 10.9836i 0.464973i
\(559\) 8.85402 + 3.24126i 0.374485 + 0.137091i
\(560\) 0 0
\(561\) 6.48819 + 3.74596i 0.273932 + 0.158155i
\(562\) 26.0514 + 15.0408i 1.09891 + 0.634456i
\(563\) −11.4931 + 6.63553i −0.484375 + 0.279654i −0.722238 0.691645i \(-0.756886\pi\)
0.237863 + 0.971299i \(0.423553\pi\)
\(564\) 7.66351i 0.322692i
\(565\) 0 0
\(566\) −22.0653 + 12.7394i −0.927473 + 0.535477i
\(567\) 8.47454 0.355897
\(568\) −5.19615 + 3.00000i −0.218026 + 0.125877i
\(569\) −21.1323 + 36.6022i −0.885911 + 1.53444i −0.0412443 + 0.999149i \(0.513132\pi\)
−0.844666 + 0.535293i \(0.820201\pi\)
\(570\) 0 0
\(571\) 1.64965 0.0690358 0.0345179 0.999404i \(-0.489010\pi\)
0.0345179 + 0.999404i \(0.489010\pi\)
\(572\) 7.66719 6.40927i 0.320581 0.267985i
\(573\) 10.9965i 0.459384i
\(574\) −5.26676 3.04076i −0.219830 0.126919i
\(575\) 0 0
\(576\) −1.31988 2.28610i −0.0549951 0.0952543i
\(577\) 28.4651 1.18502 0.592508 0.805564i \(-0.298138\pi\)
0.592508 + 0.805564i \(0.298138\pi\)
\(578\) −1.64153 2.84321i −0.0682785 0.118262i
\(579\) −2.46567 + 1.42355i −0.102470 + 0.0591609i
\(580\) 0 0
\(581\) −7.23063 12.5238i −0.299977 0.519576i
\(582\) −0.824551 0.476055i −0.0341788 0.0197331i
\(583\) 13.2639 22.9738i 0.549335 0.951476i
\(584\) −1.66351 −0.0688367
\(585\) 0 0
\(586\) −16.5779 −0.684825
\(587\) 11.0848 19.1994i 0.457518 0.792445i −0.541311 0.840822i \(-0.682072\pi\)
0.998829 + 0.0483779i \(0.0154052\pi\)
\(588\) −2.56160 1.47894i −0.105639 0.0609906i
\(589\) −9.01285 15.6107i −0.371368 0.643228i
\(590\) 0 0
\(591\) −5.61398 + 3.24123i −0.230928 + 0.133327i
\(592\) 0.287734 + 0.498370i 0.0118258 + 0.0204829i
\(593\) −9.68683 −0.397791 −0.198895 0.980021i \(-0.563735\pi\)
−0.198895 + 0.980021i \(0.563735\pi\)
\(594\) 4.69092 + 8.12490i 0.192471 + 0.333369i
\(595\) 0 0
\(596\) −6.11871 3.53264i −0.250632 0.144702i
\(597\) 6.60656i 0.270388i
\(598\) −15.0309 5.50248i −0.614658 0.225013i
\(599\) −8.33012 −0.340360 −0.170180 0.985413i \(-0.554435\pi\)
−0.170180 + 0.985413i \(0.554435\pi\)
\(600\) 0 0
\(601\) 6.10117 10.5675i 0.248872 0.431059i −0.714341 0.699798i \(-0.753273\pi\)
0.963213 + 0.268739i \(0.0866068\pi\)
\(602\) 3.25973 1.88201i 0.132857 0.0767049i
\(603\) −14.0673 −0.572864
\(604\) −13.7115 + 7.91633i −0.557912 + 0.322111i
\(605\) 0 0
\(606\) 8.25480i 0.335328i
\(607\) 8.52075 4.91946i 0.345847 0.199675i −0.317008 0.948423i \(-0.602678\pi\)
0.662854 + 0.748748i \(0.269345\pi\)
\(608\) 3.75184 + 2.16612i 0.152157 + 0.0878479i
\(609\) −5.88423 3.39726i −0.238441 0.137664i
\(610\) 0 0
\(611\) 29.5263 + 35.3214i 1.19451 + 1.42895i
\(612\) 11.8886i 0.480570i
\(613\) −7.60586 + 13.1737i −0.307198 + 0.532082i −0.977748 0.209782i \(-0.932725\pi\)
0.670551 + 0.741864i \(0.266058\pi\)
\(614\) −8.13609 + 14.0921i −0.328346 + 0.568712i
\(615\) 0 0
\(616\) 3.98940i 0.160737i
\(617\) 12.2357 + 21.1929i 0.492592 + 0.853194i 0.999964 0.00853345i \(-0.00271631\pi\)
−0.507372 + 0.861727i \(0.669383\pi\)
\(618\) −1.72018 2.97943i −0.0691956 0.119850i
\(619\) 42.4157i 1.70483i 0.522864 + 0.852416i \(0.324864\pi\)
−0.522864 + 0.852416i \(0.675136\pi\)
\(620\) 0 0
\(621\) 7.51356 13.0139i 0.301509 0.522228i
\(622\) −8.05264 + 13.9476i −0.322881 + 0.559247i
\(623\) 8.57459i 0.343534i
\(624\) 2.03215 + 0.743926i 0.0813511 + 0.0297809i
\(625\) 0 0
\(626\) −8.84750 5.10811i −0.353617 0.204161i
\(627\) −6.24123 3.60338i −0.249251 0.143905i
\(628\) −10.9362 + 6.31401i −0.436402 + 0.251957i
\(629\) 2.59172i 0.103339i
\(630\) 0 0
\(631\) −0.0244657 + 0.0141253i −0.000973964 + 0.000562318i −0.500487 0.865744i \(-0.666846\pi\)
0.499513 + 0.866306i \(0.333512\pi\)
\(632\) 12.7288 0.506324
\(633\) −13.6486 + 7.88002i −0.542483 + 0.313203i
\(634\) 0.102184 0.176988i 0.00405825 0.00702909i
\(635\) 0 0
\(636\) 5.74461 0.227789
\(637\) −17.5046 + 3.05298i −0.693559 + 0.120963i
\(638\) 21.7985i 0.863010i
\(639\) −13.7166 7.91930i −0.542621 0.313282i
\(640\) 0 0
\(641\) 8.10465 + 14.0377i 0.320114 + 0.554454i 0.980511 0.196462i \(-0.0629453\pi\)
−0.660397 + 0.750917i \(0.729612\pi\)
\(642\) 2.80852 0.110843
\(643\) 9.10586 + 15.7718i 0.359100 + 0.621979i 0.987811 0.155660i \(-0.0497504\pi\)
−0.628711 + 0.777639i \(0.716417\pi\)
\(644\) −5.53383 + 3.19496i −0.218064 + 0.125899i
\(645\) 0 0
\(646\) 9.75551 + 16.8970i 0.383825 + 0.664805i
\(647\) 6.16852 + 3.56139i 0.242509 + 0.140013i 0.616330 0.787488i \(-0.288619\pi\)
−0.373820 + 0.927501i \(0.621952\pi\)
\(648\) 2.94383 5.09886i 0.115644 0.200302i
\(649\) −9.60117 −0.376879
\(650\) 0 0
\(651\) −3.59456 −0.140882
\(652\) −9.18428 + 15.9076i −0.359684 + 0.622991i
\(653\) 13.9178 + 8.03546i 0.544647 + 0.314452i 0.746960 0.664869i \(-0.231513\pi\)
−0.202313 + 0.979321i \(0.564846\pi\)
\(654\) 0.696720 + 1.20676i 0.0272439 + 0.0471879i
\(655\) 0 0
\(656\) −3.65906 + 2.11256i −0.142862 + 0.0824816i
\(657\) −2.19564 3.80297i −0.0856602 0.148368i
\(658\) 18.3784 0.716466
\(659\) 22.5988 + 39.1423i 0.880326 + 1.52477i 0.850979 + 0.525200i \(0.176010\pi\)
0.0293473 + 0.999569i \(0.490657\pi\)
\(660\) 0 0
\(661\) −7.63354 4.40723i −0.296910 0.171421i 0.344144 0.938917i \(-0.388169\pi\)
−0.641054 + 0.767496i \(0.721503\pi\)
\(662\) 19.0653i 0.740993i
\(663\) 6.25078 + 7.47759i 0.242760 + 0.290406i
\(664\) −10.0469 −0.389896
\(665\) 0 0
\(666\) −0.759550 + 1.31558i −0.0294320 + 0.0509777i
\(667\) 30.2374 17.4576i 1.17080 0.675960i
\(668\) −21.6085 −0.836059
\(669\) 11.5414 6.66344i 0.446217 0.257623i
\(670\) 0 0
\(671\) 34.6554i 1.33786i
\(672\) 0.748164 0.431953i 0.0288611 0.0166629i
\(673\) 35.8879 + 20.7199i 1.38338 + 0.798693i 0.992558 0.121775i \(-0.0388586\pi\)
0.390819 + 0.920468i \(0.372192\pi\)
\(674\) −17.2001 9.93045i −0.662521 0.382507i
\(675\) 0 0
\(676\) 12.2325 4.40078i 0.470479 0.169261i
\(677\) 18.8510i 0.724504i 0.932080 + 0.362252i \(0.117992\pi\)
−0.932080 + 0.362252i \(0.882008\pi\)
\(678\) 2.32164 4.02121i 0.0891622 0.154433i
\(679\) −1.14166 + 1.97742i −0.0438130 + 0.0758863i
\(680\) 0 0
\(681\) 1.24789i 0.0478193i
\(682\) 5.76611 + 9.98719i 0.220796 + 0.382429i
\(683\) 11.3332 + 19.6297i 0.433654 + 0.751110i 0.997185 0.0749846i \(-0.0238908\pi\)
−0.563531 + 0.826095i \(0.690557\pi\)
\(684\) 11.4361i 0.437271i
\(685\) 0 0
\(686\) −8.58457 + 14.8689i −0.327760 + 0.567698i
\(687\) −1.40426 + 2.43225i −0.0535758 + 0.0927960i
\(688\) 2.61504i 0.0996974i
\(689\) 26.4771 22.1331i 1.00870 0.843204i
\(690\) 0 0
\(691\) 27.5736 + 15.9196i 1.04895 + 0.605612i 0.922355 0.386343i \(-0.126262\pi\)
0.126595 + 0.991954i \(0.459595\pi\)
\(692\) 3.45492 + 1.99470i 0.131336 + 0.0758271i
\(693\) 9.12018 5.26554i 0.346447 0.200021i
\(694\) 17.0504i 0.647226i
\(695\) 0 0
\(696\) −4.08805 + 2.36023i −0.154957 + 0.0894645i
\(697\) −19.0285 −0.720758
\(698\) −18.3917 + 10.6185i −0.696138 + 0.401915i
\(699\) −0.183378 + 0.317620i −0.00693599 + 0.0120135i
\(700\) 0 0
\(701\) 0.611060 0.0230794 0.0115397 0.999933i \(-0.496327\pi\)
0.0115397 + 0.999933i \(0.496327\pi\)
\(702\) 2.09695 + 12.0232i 0.0791444 + 0.453785i
\(703\) 2.49307i 0.0940279i
\(704\) −2.40029 1.38581i −0.0904645 0.0522297i
\(705\) 0 0
\(706\) 8.00840 + 13.8710i 0.301400 + 0.522040i
\(707\) −19.7965 −0.744522
\(708\) −1.03957 1.80059i −0.0390694 0.0676702i
\(709\) −11.2274 + 6.48212i −0.421653 + 0.243441i −0.695784 0.718251i \(-0.744943\pi\)
0.274131 + 0.961692i \(0.411610\pi\)
\(710\) 0 0
\(711\) 16.8005 + 29.0993i 0.630068 + 1.09131i
\(712\) −5.15906 2.97859i −0.193344 0.111627i
\(713\) 9.23572 15.9967i 0.345881 0.599083i
\(714\) 3.89075 0.145608
\(715\) 0 0
\(716\) 12.4799 0.466397
\(717\) 7.69694 13.3315i 0.287447 0.497873i
\(718\) −21.0000 12.1244i −0.783713 0.452477i
\(719\) −17.8616 30.9372i −0.666126 1.15376i −0.978979 0.203963i \(-0.934618\pi\)
0.312853 0.949802i \(-0.398715\pi\)
\(720\) 0 0
\(721\) −7.14520 + 4.12528i −0.266101 + 0.153634i
\(722\) 0.115820 + 0.200606i 0.00431038 + 0.00746580i
\(723\) 16.2612 0.604759
\(724\) −9.71594 16.8285i −0.361090 0.625426i
\(725\) 0 0
\(726\) −1.72471 0.995761i −0.0640099 0.0369562i
\(727\) 51.7313i 1.91861i 0.282375 + 0.959304i \(0.408878\pi\)
−0.282375 + 0.959304i \(0.591122\pi\)
\(728\) 1.78406 4.87345i 0.0661218 0.180622i
\(729\) 9.44711 0.349893
\(730\) 0 0
\(731\) 5.88863 10.1994i 0.217799 0.377239i
\(732\) 6.49922 3.75232i 0.240218 0.138690i
\(733\) −26.4319 −0.976284 −0.488142 0.872764i \(-0.662325\pi\)
−0.488142 + 0.872764i \(0.662325\pi\)
\(734\) −25.7822 + 14.8854i −0.951639 + 0.549429i
\(735\) 0 0
\(736\) 4.43937i 0.163637i
\(737\) −12.7911 + 7.38496i −0.471167 + 0.272029i
\(738\) −9.65906 5.57666i −0.355555 0.205280i
\(739\) 23.7380 + 13.7051i 0.873215 + 0.504151i 0.868415 0.495837i \(-0.165139\pi\)
0.00480000 + 0.999988i \(0.498472\pi\)
\(740\) 0 0
\(741\) −6.01285 7.19297i −0.220888 0.264240i
\(742\) 13.7766i 0.505754i
\(743\) 21.0909 36.5306i 0.773751 1.34018i −0.161742 0.986833i \(-0.551711\pi\)
0.935494 0.353344i \(-0.114955\pi\)
\(744\) −1.24865 + 2.16273i −0.0457779 + 0.0792896i
\(745\) 0 0
\(746\) 28.3858i 1.03928i
\(747\) −13.2607 22.9683i −0.485185 0.840365i
\(748\) −6.24123 10.8101i −0.228202 0.395258i
\(749\) 6.73531i 0.246103i
\(750\) 0 0
\(751\) 9.66351 16.7377i 0.352627 0.610767i −0.634082 0.773266i \(-0.718622\pi\)
0.986709 + 0.162498i \(0.0519552\pi\)
\(752\) 6.38418 11.0577i 0.232807 0.403234i
\(753\) 0.902497i 0.0328888i
\(754\) −9.74830 + 26.6290i −0.355012 + 0.969771i
\(755\) 0 0
\(756\) 4.21947 + 2.43611i 0.153461 + 0.0886006i
\(757\) −17.5825 10.1513i −0.639048 0.368955i 0.145200 0.989402i \(-0.453618\pi\)
−0.784248 + 0.620448i \(0.786951\pi\)
\(758\) 24.6070 14.2069i 0.893768 0.516017i
\(759\) 7.38496i 0.268057i
\(760\) 0 0
\(761\) −38.3386 + 22.1348i −1.38977 + 0.802386i −0.993289 0.115656i \(-0.963103\pi\)
−0.396484 + 0.918042i \(0.629770\pi\)
\(762\) 9.67777 0.350589
\(763\) 2.89401 1.67086i 0.104770 0.0604891i
\(764\) 9.16074 15.8669i 0.331424 0.574043i
\(765\) 0 0
\(766\) −9.39726 −0.339537
\(767\) −11.7288 4.29366i −0.423502 0.155035i
\(768\) 0.600196i 0.0216577i
\(769\) −3.23903 1.87005i −0.116802 0.0674359i 0.440461 0.897772i \(-0.354815\pi\)
−0.557263 + 0.830336i \(0.688148\pi\)
\(770\) 0 0
\(771\) 6.10543 + 10.5749i 0.219882 + 0.380846i
\(772\) 4.74363 0.170727
\(773\) 2.24045 + 3.88057i 0.0805834 + 0.139575i 0.903501 0.428587i \(-0.140988\pi\)
−0.822917 + 0.568161i \(0.807655\pi\)
\(774\) 5.97825 3.45154i 0.214884 0.124063i
\(775\) 0 0
\(776\) 0.793166 + 1.37380i 0.0284730 + 0.0493167i
\(777\) −0.430545 0.248575i −0.0154457 0.00891758i
\(778\) −5.82306 + 10.0858i −0.208767 + 0.361595i
\(779\) 18.3043 0.655818
\(780\) 0 0
\(781\) −16.6297 −0.595058
\(782\) −9.99674 + 17.3149i −0.357483 + 0.619178i
\(783\) −23.0556 13.3112i −0.823941 0.475702i
\(784\) 2.46410 + 4.26795i 0.0880036 + 0.152427i
\(785\) 0 0
\(786\) −10.2714 + 5.93019i −0.366368 + 0.211523i
\(787\) 16.0482 + 27.7963i 0.572056 + 0.990830i 0.996355 + 0.0853077i \(0.0271873\pi\)
−0.424299 + 0.905522i \(0.639479\pi\)
\(788\) 10.8006 0.384755
\(789\) 5.14047 + 8.90355i 0.183006 + 0.316975i
\(790\) 0 0
\(791\) −9.64355 5.56771i −0.342885 0.197965i
\(792\) 7.31643i 0.259978i
\(793\) 15.4979 42.3351i 0.550348 1.50336i
\(794\) 0.399804 0.0141885
\(795\) 0 0
\(796\) −5.50367 + 9.53264i −0.195072 + 0.337875i
\(797\) 19.2402 11.1083i 0.681522 0.393477i −0.118906 0.992905i \(-0.537939\pi\)
0.800428 + 0.599429i \(0.204605\pi\)
\(798\) −3.74265 −0.132488
\(799\) 49.8004 28.7522i 1.76181 1.01718i
\(800\) 0 0
\(801\) 15.7255i 0.555634i
\(802\) 7.36793 4.25388i 0.260171 0.150210i
\(803\) −3.99292 2.30532i −0.140907 0.0813528i
\(804\) −2.76993 1.59922i −0.0976877 0.0564000i
\(805\) 0 0
\(806\) 2.57759 + 14.7790i 0.0907918 + 0.520567i
\(807\) 11.6332i 0.409510i
\(808\) −6.87676 + 11.9109i −0.241924 + 0.419024i
\(809\) −5.27410 + 9.13501i −0.185427 + 0.321170i −0.943720 0.330744i \(-0.892700\pi\)
0.758293 + 0.651914i \(0.226034\pi\)
\(810\) 0 0
\(811\) 41.6434i 1.46230i 0.682218 + 0.731149i \(0.261016\pi\)
−0.682218 + 0.731149i \(0.738984\pi\)
\(812\) 5.66025 + 9.80385i 0.198636 + 0.344048i
\(813\) −5.51313 9.54902i −0.193354 0.334899i
\(814\) 1.59498i 0.0559040i
\(815\) 0 0
\(816\) 1.35154 2.34094i 0.0473134 0.0819493i
\(817\) −5.66449 + 9.81119i −0.198176 + 0.343250i
\(818\) 14.0131i 0.489958i
\(819\) 13.4960 2.35382i 0.471587 0.0822493i
\(820\) 0 0
\(821\) 20.1160 + 11.6140i 0.702053 + 0.405331i 0.808112 0.589029i \(-0.200490\pi\)
−0.106058 + 0.994360i \(0.533823\pi\)
\(822\) 8.97392 + 5.18110i 0.313001 + 0.180711i
\(823\) 0.865033 0.499427i 0.0301531 0.0174089i −0.484848 0.874599i \(-0.661125\pi\)
0.515001 + 0.857190i \(0.327792\pi\)
\(824\) 5.73205i 0.199685i
\(825\) 0 0
\(826\) −4.31812 + 2.49307i −0.150247 + 0.0867449i
\(827\) −29.8030 −1.03635 −0.518175 0.855274i \(-0.673389\pi\)
−0.518175 + 0.855274i \(0.673389\pi\)
\(828\) −10.1489 + 5.85945i −0.352698 + 0.203630i
\(829\) −11.8508 + 20.5261i −0.411594 + 0.712902i −0.995064 0.0992329i \(-0.968361\pi\)
0.583470 + 0.812134i \(0.301694\pi\)
\(830\) 0 0
\(831\) −16.3458 −0.567030
\(832\) −2.31246 2.76632i −0.0801702 0.0959049i
\(833\) 22.1950i 0.769011i
\(834\) 1.53158 + 0.884259i 0.0530343 + 0.0306194i
\(835\) 0 0
\(836\) 6.00367 + 10.3987i 0.207641 + 0.359645i
\(837\) −14.0842 −0.486822
\(838\) 12.0977 + 20.9539i 0.417909 + 0.723839i
\(839\) 21.2991 12.2971i 0.735327 0.424541i −0.0850406 0.996377i \(-0.527102\pi\)
0.820368 + 0.571836i \(0.193769\pi\)
\(840\) 0 0
\(841\) −16.4282 28.4545i −0.566490 0.981189i
\(842\) −30.8644 17.8196i −1.06366 0.614104i
\(843\) −9.02740 + 15.6359i −0.310920 + 0.538530i
\(844\) 26.2582 0.903843
\(845\) 0 0
\(846\) 33.7055 1.15882
\(847\) −2.38801 + 4.13615i −0.0820529 + 0.142120i
\(848\) −8.28893 4.78561i −0.284643 0.164339i
\(849\) −7.64613 13.2435i −0.262414 0.454515i
\(850\) 0 0
\(851\) 2.21245 1.27736i 0.0758418 0.0437873i
\(852\) −1.80059 3.11871i −0.0616871 0.106845i
\(853\) 41.7449 1.42932 0.714659 0.699473i \(-0.246582\pi\)
0.714659 + 0.699473i \(0.246582\pi\)
\(854\) −8.99873 15.5863i −0.307930 0.533351i
\(855\) 0 0
\(856\) −4.05242 2.33967i −0.138509 0.0799682i
\(857\) 18.7543i 0.640636i −0.947310 0.320318i \(-0.896210\pi\)
0.947310 0.320318i \(-0.103790\pi\)
\(858\) 3.84681 + 4.60181i 0.131328 + 0.157103i
\(859\) −13.8357 −0.472066 −0.236033 0.971745i \(-0.575847\pi\)
−0.236033 + 0.971745i \(0.575847\pi\)
\(860\) 0 0
\(861\) 1.82505 3.16108i 0.0621976 0.107729i
\(862\) 4.29586 2.48022i 0.146318 0.0844765i
\(863\) 8.00891 0.272626 0.136313 0.990666i \(-0.456475\pi\)
0.136313 + 0.990666i \(0.456475\pi\)
\(864\) 2.93146 1.69248i 0.0997304 0.0575794i
\(865\) 0 0
\(866\) 4.21621i 0.143273i
\(867\) 1.70648 0.985237i 0.0579551 0.0334604i
\(868\) 5.18661 + 2.99449i 0.176045 + 0.101640i
\(869\) 30.5528 + 17.6397i 1.03643 + 0.598385i
\(870\) 0 0
\(871\) −18.9282 + 3.30126i −0.641358 + 0.111859i
\(872\) 2.32164i 0.0786208i
\(873\) −2.09377 + 3.62652i −0.0708635 + 0.122739i
\(874\) 9.61623 16.6558i 0.325274 0.563391i
\(875\) 0 0
\(876\) 0.998434i 0.0337340i
\(877\) −18.7658 32.5033i −0.633677 1.09756i −0.986794 0.161981i \(-0.948212\pi\)
0.353117 0.935579i \(-0.385122\pi\)
\(878\) −7.37500 12.7739i −0.248894 0.431097i
\(879\) 9.94996i 0.335604i
\(880\) 0 0
\(881\) 6.05808 10.4929i 0.204102 0.353515i −0.745744 0.666232i \(-0.767906\pi\)
0.949846 + 0.312717i \(0.101239\pi\)
\(882\) −6.50465 + 11.2664i −0.219023 + 0.379359i
\(883\) 44.4026i 1.49427i 0.664675 + 0.747133i \(0.268570\pi\)
−0.664675 + 0.747133i \(0.731430\pi\)
\(884\) −2.78998 15.9967i −0.0938373 0.538029i
\(885\) 0 0
\(886\) −10.5979 6.11871i −0.356044 0.205562i
\(887\) −5.64153 3.25714i −0.189424 0.109364i 0.402289 0.915513i \(-0.368215\pi\)
−0.591713 + 0.806149i \(0.701548\pi\)
\(888\) −0.299119 + 0.172697i −0.0100378 + 0.00579532i
\(889\) 23.2090i 0.778404i
\(890\) 0 0
\(891\) 14.1321 8.15917i 0.473443 0.273343i
\(892\) −22.2042 −0.743452
\(893\) −47.9048 + 27.6578i −1.60307 + 0.925534i
\(894\) 2.12027 3.67242i 0.0709126 0.122824i
\(895\) 0 0
\(896\) −1.43937 −0.0480861
\(897\) 3.30256 9.02147i 0.110269 0.301218i
\(898\) 19.0714i 0.636420i
\(899\) −28.3401 16.3622i −0.945197 0.545710i
\(900\) 0 0
\(901\) −21.5528 37.3306i −0.718029 1.24366i
\(902\) −11.7104 −0.389915
\(903\) 1.12957 + 1.95648i 0.0375898 + 0.0651075i
\(904\) −6.69982 + 3.86814i −0.222833 + 0.128653i
\(905\) 0 0
\(906\) −4.75135 8.22957i −0.157853 0.273409i
\(907\) 5.14216 + 2.96883i 0.170743 + 0.0985784i 0.582936 0.812518i \(-0.301904\pi\)
−0.412193 + 0.911096i \(0.635237\pi\)
\(908\) −1.03957 + 1.80059i −0.0344993 + 0.0597546i
\(909\) −36.3061 −1.20420
\(910\) 0 0
\(911\) 48.7860 1.61635 0.808177 0.588940i \(-0.200455\pi\)
0.808177 + 0.588940i \(0.200455\pi\)
\(912\) −1.30010 + 2.25184i −0.0430505 + 0.0745657i
\(913\) −24.1155 13.9231i −0.798108 0.460788i
\(914\) −8.05688 13.9549i −0.266498 0.461588i
\(915\) 0 0
\(916\) 4.05242 2.33967i 0.133896 0.0773048i
\(917\) 14.2216 + 24.6326i 0.469640 + 0.813440i
\(918\) 15.2448 0.503152
\(919\) −14.8564 25.7321i −0.490068 0.848822i 0.509867 0.860253i \(-0.329695\pi\)
−0.999935 + 0.0114312i \(0.996361\pi\)
\(920\) 0 0
\(921\) −8.45803 4.88325i −0.278702 0.160909i
\(922\) 4.84466i 0.159550i
\(923\) −20.3149 7.43683i −0.668672 0.244786i
\(924\) 2.39442 0.0787706
\(925\) 0 0
\(926\) 4.11582 7.12881i 0.135254 0.234267i
\(927\) −13.1041 + 7.56563i −0.430394 + 0.248488i
\(928\) 7.86488 0.258177
\(929\) −15.6012 + 9.00734i −0.511858 + 0.295521i −0.733597 0.679585i \(-0.762160\pi\)
0.221739 + 0.975106i \(0.428827\pi\)
\(930\) 0 0
\(931\) 21.3502i 0.699724i
\(932\) 0.529194 0.305530i 0.0173343 0.0100080i
\(933\) −8.37128 4.83316i −0.274063 0.158231i
\(934\) 29.0008 + 16.7436i 0.948936 + 0.547868i
\(935\) 0 0
\(936\) 3.27191 8.93774i 0.106946 0.292139i
\(937\) 28.9796i 0.946723i −0.880868 0.473361i \(-0.843040\pi\)
0.880868 0.473361i \(-0.156960\pi\)
\(938\) −3.83520 + 6.64276i −0.125224 + 0.216894i
\(939\) 3.06586 5.31023i 0.100051 0.173293i
\(940\) 0 0
\(941\) 4.61504i 0.150446i 0.997167 + 0.0752230i \(0.0239669\pi\)
−0.997167 + 0.0752230i \(0.976033\pi\)
\(942\) −3.78964 6.56386i −0.123473 0.213862i
\(943\) 9.37844 + 16.2439i 0.305404 + 0.528975i
\(944\) 3.46410i 0.112747i
\(945\) 0 0
\(946\) 3.62395 6.27686i 0.117825 0.204078i
\(947\) 5.30031 9.18041i 0.172237 0.298323i −0.766965 0.641689i \(-0.778234\pi\)
0.939202 + 0.343366i \(0.111567\pi\)
\(948\) 7.63977i 0.248128i
\(949\) −3.84681 4.60181i −0.124873 0.149381i
\(950\) 0 0
\(951\) 0.106227 + 0.0613304i 0.00344466 + 0.00198878i
\(952\) −5.61398 3.24123i −0.181950 0.105049i
\(953\) −24.8905 + 14.3705i −0.806283 + 0.465508i −0.845663 0.533717i \(-0.820795\pi\)
0.0393806 + 0.999224i \(0.487462\pi\)
\(954\) 25.2658i 0.818010i
\(955\) 0 0
\(956\) −22.2119 + 12.8240i −0.718384 + 0.414759i
\(957\) −13.0833 −0.422925
\(958\) −6.97448 + 4.02672i −0.225335 + 0.130097i
\(959\) 12.4252 21.5210i 0.401230 0.694950i
\(960\) 0 0
\(961\) 13.6876 0.441534
\(962\) −0.713276 + 1.94842i −0.0229969 + 0.0628197i
\(963\) 12.3523i 0.398049i
\(964\) −23.4633 13.5466i −0.755703 0.436305i
\(965\) 0 0
\(966\) −1.91760 3.32138i −0.0616978 0.106864i
\(967\) −8.08648 −0.260044 −0.130022 0.991511i \(-0.541505\pi\)
−0.130022 + 0.991511i \(0.541505\pi\)
\(968\) 1.65906 + 2.87358i 0.0533242 + 0.0923603i
\(969\) −10.1415 + 5.85521i −0.325793 + 0.188097i
\(970\) 0 0
\(971\) −0.302790 0.524448i −0.00971701 0.0168304i 0.861126 0.508392i \(-0.169760\pi\)
−0.870843 + 0.491561i \(0.836426\pi\)
\(972\) 11.8547 + 6.84432i 0.380240 + 0.219532i
\(973\) 2.12061 3.67300i 0.0679835 0.117751i
\(974\) 1.62352 0.0520208
\(975\) 0 0
\(976\) −12.5037 −0.400233
\(977\) 24.5216 42.4727i 0.784516 1.35882i −0.144772 0.989465i \(-0.546245\pi\)
0.929288 0.369356i \(-0.120422\pi\)
\(978\) −9.54769 5.51236i −0.305302 0.176266i
\(979\) −8.25551 14.2990i −0.263847 0.456997i
\(980\) 0 0
\(981\) 5.30752 3.06430i 0.169456 0.0978355i
\(982\) −5.16033 8.93796i −0.164673 0.285222i
\(983\) −30.7684 −0.981358 −0.490679 0.871340i \(-0.663251\pi\)
−0.490679 + 0.871340i \(0.663251\pi\)
\(984\) −1.26795 2.19615i −0.0404207 0.0700108i
\(985\) 0 0
\(986\) 30.6754 + 17.7104i 0.976902 + 0.564015i
\(987\) 11.0307i 0.351110i
\(988\) 2.68379 + 15.3879i 0.0853827 + 0.489553i
\(989\) −11.6091 −0.369149
\(990\) 0 0
\(991\) −7.74435 + 13.4136i −0.246007 + 0.426097i −0.962414 0.271585i \(-0.912452\pi\)
0.716407 + 0.697683i \(0.245785\pi\)
\(992\) 3.60338 2.08041i 0.114407 0.0660531i
\(993\) 11.4429 0.363129
\(994\) −7.47921 + 4.31812i −0.237226 + 0.136962i
\(995\) 0 0
\(996\) 6.03011i 0.191071i
\(997\) 6.77423 3.91111i 0.214542 0.123866i −0.388878 0.921289i \(-0.627137\pi\)
0.603421 + 0.797423i \(0.293804\pi\)
\(998\) −12.1076 6.99033i −0.383260 0.221275i
\(999\) −1.68696 0.973969i −0.0533731 0.0308150i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.n.e.199.3 8
5.2 odd 4 130.2.l.b.121.4 yes 8
5.3 odd 4 650.2.m.c.251.1 8
5.4 even 2 650.2.n.d.199.2 8
13.10 even 6 650.2.n.d.49.2 8
15.2 even 4 1170.2.bs.g.901.2 8
20.7 even 4 1040.2.da.d.641.2 8
65.2 even 12 1690.2.e.t.991.3 8
65.7 even 12 1690.2.a.u.1.2 4
65.12 odd 4 1690.2.l.j.1161.2 8
65.17 odd 12 1690.2.d.k.1351.6 8
65.22 odd 12 1690.2.d.k.1351.2 8
65.23 odd 12 650.2.m.c.101.1 8
65.32 even 12 1690.2.a.t.1.2 4
65.33 even 12 8450.2.a.ci.1.3 4
65.37 even 12 1690.2.e.s.991.3 8
65.42 odd 12 1690.2.l.j.361.2 8
65.47 even 4 1690.2.e.s.191.3 8
65.49 even 6 inner 650.2.n.e.49.3 8
65.57 even 4 1690.2.e.t.191.3 8
65.58 even 12 8450.2.a.cm.1.3 4
65.62 odd 12 130.2.l.b.101.4 8
195.62 even 12 1170.2.bs.g.361.2 8
260.127 even 12 1040.2.da.d.881.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.l.b.101.4 8 65.62 odd 12
130.2.l.b.121.4 yes 8 5.2 odd 4
650.2.m.c.101.1 8 65.23 odd 12
650.2.m.c.251.1 8 5.3 odd 4
650.2.n.d.49.2 8 13.10 even 6
650.2.n.d.199.2 8 5.4 even 2
650.2.n.e.49.3 8 65.49 even 6 inner
650.2.n.e.199.3 8 1.1 even 1 trivial
1040.2.da.d.641.2 8 20.7 even 4
1040.2.da.d.881.2 8 260.127 even 12
1170.2.bs.g.361.2 8 195.62 even 12
1170.2.bs.g.901.2 8 15.2 even 4
1690.2.a.t.1.2 4 65.32 even 12
1690.2.a.u.1.2 4 65.7 even 12
1690.2.d.k.1351.2 8 65.22 odd 12
1690.2.d.k.1351.6 8 65.17 odd 12
1690.2.e.s.191.3 8 65.47 even 4
1690.2.e.s.991.3 8 65.37 even 12
1690.2.e.t.191.3 8 65.57 even 4
1690.2.e.t.991.3 8 65.2 even 12
1690.2.l.j.361.2 8 65.42 odd 12
1690.2.l.j.1161.2 8 65.12 odd 4
8450.2.a.ci.1.3 4 65.33 even 12
8450.2.a.cm.1.3 4 65.58 even 12