Properties

Label 1690.2.e.s.191.3
Level $1690$
Weight $2$
Character 1690.191
Analytic conductor $13.495$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(191,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.191"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-4,-2,-4,8,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.22581504.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 5x^{6} + 2x^{5} - 11x^{4} + 4x^{3} + 20x^{2} - 32x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 191.3
Root \(1.40994 + 0.109843i\) of defining polynomial
Character \(\chi\) \(=\) 1690.191
Dual form 1690.2.e.s.991.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(0.300098 - 0.519785i) q^{3} +(-0.500000 - 0.866025i) q^{4} +1.00000 q^{5} +(0.300098 + 0.519785i) q^{6} +(-0.719687 - 1.24653i) q^{7} +1.00000 q^{8} +(1.31988 + 2.28610i) q^{9} +(-0.500000 + 0.866025i) q^{10} +(-1.38581 + 2.40029i) q^{11} -0.600196 q^{12} +1.43937 q^{14} +(0.300098 - 0.519785i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(2.25184 + 3.90029i) q^{17} -2.63977 q^{18} +(-2.16612 - 3.75184i) q^{19} +(-0.500000 - 0.866025i) q^{20} -0.863906 q^{21} +(-1.38581 - 2.40029i) q^{22} +(-2.21969 + 3.84461i) q^{23} +(0.300098 - 0.519785i) q^{24} +1.00000 q^{25} +3.38496 q^{27} +(-0.719687 + 1.24653i) q^{28} +(-3.93244 + 6.81119i) q^{29} +(0.300098 + 0.519785i) q^{30} +4.16082 q^{31} +(-0.500000 - 0.866025i) q^{32} +(0.831757 + 1.44065i) q^{33} -4.50367 q^{34} +(-0.719687 - 1.24653i) q^{35} +(1.31988 - 2.28610i) q^{36} +(0.287734 - 0.498370i) q^{37} +4.33225 q^{38} +1.00000 q^{40} +(-2.11256 + 3.65906i) q^{41} +(0.431953 - 0.748164i) q^{42} +(-1.30752 - 2.26469i) q^{43} +2.77162 q^{44} +(1.31988 + 2.28610i) q^{45} +(-2.21969 - 3.84461i) q^{46} -12.7684 q^{47} +(0.300098 + 0.519785i) q^{48} +(2.46410 - 4.26795i) q^{49} +(-0.500000 + 0.866025i) q^{50} +2.70308 q^{51} +9.57123 q^{53} +(-1.69248 + 2.93146i) q^{54} +(-1.38581 + 2.40029i) q^{55} +(-0.719687 - 1.24653i) q^{56} -2.60020 q^{57} +(-3.93244 - 6.81119i) q^{58} +(1.73205 + 3.00000i) q^{59} -0.600196 q^{60} +(6.25184 + 10.8285i) q^{61} +(-2.08041 + 3.60338i) q^{62} +(1.89980 - 3.29056i) q^{63} +1.00000 q^{64} -1.66351 q^{66} +(-2.66449 + 4.61504i) q^{67} +(2.25184 - 3.90029i) q^{68} +(1.33225 + 2.30752i) q^{69} +1.43937 q^{70} +(3.00000 + 5.19615i) q^{71} +(1.31988 + 2.28610i) q^{72} -1.66351 q^{73} +(0.287734 + 0.498370i) q^{74} +(0.300098 - 0.519785i) q^{75} +(-2.16612 + 3.75184i) q^{76} +3.98940 q^{77} +12.7288 q^{79} +(-0.500000 + 0.866025i) q^{80} +(-2.94383 + 5.09886i) q^{81} +(-2.11256 - 3.65906i) q^{82} +10.0469 q^{83} +(0.431953 + 0.748164i) q^{84} +(2.25184 + 3.90029i) q^{85} +2.61504 q^{86} +(2.36023 + 4.08805i) q^{87} +(-1.38581 + 2.40029i) q^{88} +(-2.97859 + 5.15906i) q^{89} -2.63977 q^{90} +4.43937 q^{92} +(1.24865 - 2.16273i) q^{93} +(6.38418 - 11.0577i) q^{94} +(-2.16612 - 3.75184i) q^{95} -0.600196 q^{96} +(0.793166 + 1.37380i) q^{97} +(2.46410 + 4.26795i) q^{98} -7.31643 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} - 2 q^{3} - 4 q^{4} + 8 q^{5} - 2 q^{6} + 8 q^{8} - 4 q^{9} - 4 q^{10} + 6 q^{11} + 4 q^{12} - 2 q^{15} - 4 q^{16} - 6 q^{17} + 8 q^{18} - 6 q^{19} - 4 q^{20} + 12 q^{21} + 6 q^{22} - 12 q^{23}+ \cdots - 84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0.300098 0.519785i 0.173262 0.300098i −0.766297 0.642487i \(-0.777903\pi\)
0.939558 + 0.342389i \(0.111236\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 1.00000 0.447214
\(6\) 0.300098 + 0.519785i 0.122514 + 0.212201i
\(7\) −0.719687 1.24653i −0.272016 0.471146i 0.697362 0.716719i \(-0.254357\pi\)
−0.969378 + 0.245574i \(0.921024\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.31988 + 2.28610i 0.439961 + 0.762035i
\(10\) −0.500000 + 0.866025i −0.158114 + 0.273861i
\(11\) −1.38581 + 2.40029i −0.417837 + 0.723716i −0.995722 0.0924030i \(-0.970545\pi\)
0.577884 + 0.816119i \(0.303879\pi\)
\(12\) −0.600196 −0.173262
\(13\) 0 0
\(14\) 1.43937 0.384689
\(15\) 0.300098 0.519785i 0.0774849 0.134208i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 2.25184 + 3.90029i 0.546150 + 0.945960i 0.998534 + 0.0541365i \(0.0172406\pi\)
−0.452383 + 0.891824i \(0.649426\pi\)
\(18\) −2.63977 −0.622199
\(19\) −2.16612 3.75184i −0.496943 0.860730i 0.503051 0.864257i \(-0.332211\pi\)
−0.999994 + 0.00352661i \(0.998877\pi\)
\(20\) −0.500000 0.866025i −0.111803 0.193649i
\(21\) −0.863906 −0.188520
\(22\) −1.38581 2.40029i −0.295456 0.511744i
\(23\) −2.21969 + 3.84461i −0.462837 + 0.801657i −0.999101 0.0423934i \(-0.986502\pi\)
0.536264 + 0.844050i \(0.319835\pi\)
\(24\) 0.300098 0.519785i 0.0612572 0.106101i
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 3.38496 0.651436
\(28\) −0.719687 + 1.24653i −0.136008 + 0.235573i
\(29\) −3.93244 + 6.81119i −0.730236 + 1.26481i 0.226546 + 0.974000i \(0.427257\pi\)
−0.956782 + 0.290806i \(0.906077\pi\)
\(30\) 0.300098 + 0.519785i 0.0547901 + 0.0948993i
\(31\) 4.16082 0.747306 0.373653 0.927569i \(-0.378105\pi\)
0.373653 + 0.927569i \(0.378105\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0.831757 + 1.44065i 0.144790 + 0.250784i
\(34\) −4.50367 −0.772373
\(35\) −0.719687 1.24653i −0.121649 0.210703i
\(36\) 1.31988 2.28610i 0.219980 0.381017i
\(37\) 0.287734 0.498370i 0.0473032 0.0819315i −0.841404 0.540406i \(-0.818271\pi\)
0.888708 + 0.458475i \(0.151604\pi\)
\(38\) 4.33225 0.702783
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) −2.11256 + 3.65906i −0.329926 + 0.571449i −0.982497 0.186279i \(-0.940357\pi\)
0.652571 + 0.757728i \(0.273691\pi\)
\(42\) 0.431953 0.748164i 0.0666518 0.115444i
\(43\) −1.30752 2.26469i −0.199395 0.345362i 0.748938 0.662641i \(-0.230564\pi\)
−0.948332 + 0.317279i \(0.897231\pi\)
\(44\) 2.77162 0.417837
\(45\) 1.31988 + 2.28610i 0.196756 + 0.340792i
\(46\) −2.21969 3.84461i −0.327275 0.566857i
\(47\) −12.7684 −1.86246 −0.931228 0.364436i \(-0.881262\pi\)
−0.931228 + 0.364436i \(0.881262\pi\)
\(48\) 0.300098 + 0.519785i 0.0433154 + 0.0750245i
\(49\) 2.46410 4.26795i 0.352015 0.609707i
\(50\) −0.500000 + 0.866025i −0.0707107 + 0.122474i
\(51\) 2.70308 0.378507
\(52\) 0 0
\(53\) 9.57123 1.31471 0.657355 0.753581i \(-0.271675\pi\)
0.657355 + 0.753581i \(0.271675\pi\)
\(54\) −1.69248 + 2.93146i −0.230318 + 0.398922i
\(55\) −1.38581 + 2.40029i −0.186863 + 0.323656i
\(56\) −0.719687 1.24653i −0.0961722 0.166575i
\(57\) −2.60020 −0.344404
\(58\) −3.93244 6.81119i −0.516355 0.894353i
\(59\) 1.73205 + 3.00000i 0.225494 + 0.390567i 0.956467 0.291839i \(-0.0942671\pi\)
−0.730974 + 0.682406i \(0.760934\pi\)
\(60\) −0.600196 −0.0774849
\(61\) 6.25184 + 10.8285i 0.800466 + 1.38645i 0.919310 + 0.393534i \(0.128748\pi\)
−0.118845 + 0.992913i \(0.537919\pi\)
\(62\) −2.08041 + 3.60338i −0.264212 + 0.457629i
\(63\) 1.89980 3.29056i 0.239353 0.414571i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −1.66351 −0.204764
\(67\) −2.66449 + 4.61504i −0.325520 + 0.563817i −0.981617 0.190859i \(-0.938873\pi\)
0.656098 + 0.754676i \(0.272206\pi\)
\(68\) 2.25184 3.90029i 0.273075 0.472980i
\(69\) 1.33225 + 2.30752i 0.160384 + 0.277793i
\(70\) 1.43937 0.172038
\(71\) 3.00000 + 5.19615i 0.356034 + 0.616670i 0.987294 0.158901i \(-0.0507952\pi\)
−0.631260 + 0.775571i \(0.717462\pi\)
\(72\) 1.31988 + 2.28610i 0.155550 + 0.269420i
\(73\) −1.66351 −0.194700 −0.0973498 0.995250i \(-0.531037\pi\)
−0.0973498 + 0.995250i \(0.531037\pi\)
\(74\) 0.287734 + 0.498370i 0.0334484 + 0.0579343i
\(75\) 0.300098 0.519785i 0.0346523 0.0600196i
\(76\) −2.16612 + 3.75184i −0.248471 + 0.430365i
\(77\) 3.98940 0.454634
\(78\) 0 0
\(79\) 12.7288 1.43210 0.716050 0.698049i \(-0.245948\pi\)
0.716050 + 0.698049i \(0.245948\pi\)
\(80\) −0.500000 + 0.866025i −0.0559017 + 0.0968246i
\(81\) −2.94383 + 5.09886i −0.327092 + 0.566540i
\(82\) −2.11256 3.65906i −0.233293 0.404076i
\(83\) 10.0469 1.10279 0.551396 0.834244i \(-0.314095\pi\)
0.551396 + 0.834244i \(0.314095\pi\)
\(84\) 0.431953 + 0.748164i 0.0471299 + 0.0816314i
\(85\) 2.25184 + 3.90029i 0.244246 + 0.423046i
\(86\) 2.61504 0.281987
\(87\) 2.36023 + 4.08805i 0.253044 + 0.438285i
\(88\) −1.38581 + 2.40029i −0.147728 + 0.255872i
\(89\) −2.97859 + 5.15906i −0.315729 + 0.546859i −0.979592 0.200995i \(-0.935583\pi\)
0.663863 + 0.747854i \(0.268916\pi\)
\(90\) −2.63977 −0.278256
\(91\) 0 0
\(92\) 4.43937 0.462837
\(93\) 1.24865 2.16273i 0.129479 0.224265i
\(94\) 6.38418 11.0577i 0.658478 1.14052i
\(95\) −2.16612 3.75184i −0.222240 0.384930i
\(96\) −0.600196 −0.0612572
\(97\) 0.793166 + 1.37380i 0.0805338 + 0.139489i 0.903479 0.428632i \(-0.141004\pi\)
−0.822946 + 0.568120i \(0.807671\pi\)
\(98\) 2.46410 + 4.26795i 0.248912 + 0.431128i
\(99\) −7.31643 −0.735329
\(100\) −0.500000 0.866025i −0.0500000 0.0866025i
\(101\) −6.87676 + 11.9109i −0.684263 + 1.18518i 0.289405 + 0.957207i \(0.406543\pi\)
−0.973668 + 0.227972i \(0.926791\pi\)
\(102\) −1.35154 + 2.34094i −0.133823 + 0.231788i
\(103\) 5.73205 0.564796 0.282398 0.959297i \(-0.408870\pi\)
0.282398 + 0.959297i \(0.408870\pi\)
\(104\) 0 0
\(105\) −0.863906 −0.0843086
\(106\) −4.78561 + 8.28893i −0.464820 + 0.805092i
\(107\) −2.33967 + 4.05242i −0.226184 + 0.391762i −0.956674 0.291161i \(-0.905958\pi\)
0.730490 + 0.682924i \(0.239292\pi\)
\(108\) −1.69248 2.93146i −0.162859 0.282080i
\(109\) 2.32164 0.222373 0.111187 0.993800i \(-0.464535\pi\)
0.111187 + 0.993800i \(0.464535\pi\)
\(110\) −1.38581 2.40029i −0.132132 0.228859i
\(111\) −0.172697 0.299119i −0.0163916 0.0283912i
\(112\) 1.43937 0.136008
\(113\) −3.86814 6.69982i −0.363884 0.630266i 0.624712 0.780855i \(-0.285216\pi\)
−0.988596 + 0.150589i \(0.951883\pi\)
\(114\) 1.30010 2.25184i 0.121765 0.210904i
\(115\) −2.21969 + 3.84461i −0.206987 + 0.358512i
\(116\) 7.86488 0.730236
\(117\) 0 0
\(118\) −3.46410 −0.318896
\(119\) 3.24123 5.61398i 0.297123 0.514633i
\(120\) 0.300098 0.519785i 0.0273951 0.0474496i
\(121\) 1.65906 + 2.87358i 0.150824 + 0.261234i
\(122\) −12.5037 −1.13203
\(123\) 1.26795 + 2.19615i 0.114327 + 0.198020i
\(124\) −2.08041 3.60338i −0.186826 0.323593i
\(125\) 1.00000 0.0894427
\(126\) 1.89980 + 3.29056i 0.169248 + 0.293146i
\(127\) 8.06218 13.9641i 0.715403 1.23911i −0.247401 0.968913i \(-0.579577\pi\)
0.962804 0.270201i \(-0.0870900\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) −1.56953 −0.138190
\(130\) 0 0
\(131\) −19.7609 −1.72651 −0.863257 0.504764i \(-0.831579\pi\)
−0.863257 + 0.504764i \(0.831579\pi\)
\(132\) 0.831757 1.44065i 0.0723952 0.125392i
\(133\) −3.11786 + 5.40029i −0.270353 + 0.468265i
\(134\) −2.66449 4.61504i −0.230177 0.398678i
\(135\) 3.38496 0.291331
\(136\) 2.25184 + 3.90029i 0.193093 + 0.334447i
\(137\) 8.63234 + 14.9517i 0.737511 + 1.27741i 0.953613 + 0.301036i \(0.0973323\pi\)
−0.216102 + 0.976371i \(0.569334\pi\)
\(138\) −2.66449 −0.226817
\(139\) −1.47328 2.55180i −0.124962 0.216441i 0.796756 0.604301i \(-0.206548\pi\)
−0.921718 + 0.387860i \(0.873214\pi\)
\(140\) −0.719687 + 1.24653i −0.0608246 + 0.105351i
\(141\) −3.83176 + 6.63680i −0.322692 + 0.558919i
\(142\) −6.00000 −0.503509
\(143\) 0 0
\(144\) −2.63977 −0.219980
\(145\) −3.93244 + 6.81119i −0.326572 + 0.565639i
\(146\) 0.831757 1.44065i 0.0688367 0.119229i
\(147\) −1.47894 2.56160i −0.121981 0.211278i
\(148\) −0.575468 −0.0473032
\(149\) −3.53264 6.11871i −0.289405 0.501264i 0.684263 0.729235i \(-0.260124\pi\)
−0.973668 + 0.227971i \(0.926791\pi\)
\(150\) 0.300098 + 0.519785i 0.0245029 + 0.0424402i
\(151\) −15.8327 −1.28844 −0.644222 0.764839i \(-0.722819\pi\)
−0.644222 + 0.764839i \(0.722819\pi\)
\(152\) −2.16612 3.75184i −0.175696 0.304314i
\(153\) −5.94432 + 10.2959i −0.480570 + 0.832371i
\(154\) −1.99470 + 3.45492i −0.160737 + 0.278405i
\(155\) 4.16082 0.334205
\(156\) 0 0
\(157\) 12.6280 1.00783 0.503913 0.863754i \(-0.331893\pi\)
0.503913 + 0.863754i \(0.331893\pi\)
\(158\) −6.36440 + 11.0235i −0.506324 + 0.876979i
\(159\) 2.87231 4.97498i 0.227789 0.394541i
\(160\) −0.500000 0.866025i −0.0395285 0.0684653i
\(161\) 6.38992 0.503596
\(162\) −2.94383 5.09886i −0.231289 0.400604i
\(163\) 9.18428 + 15.9076i 0.719368 + 1.24598i 0.961250 + 0.275677i \(0.0889019\pi\)
−0.241882 + 0.970306i \(0.577765\pi\)
\(164\) 4.22512 0.329926
\(165\) 0.831757 + 1.44065i 0.0647522 + 0.112154i
\(166\) −5.02346 + 8.70088i −0.389896 + 0.675319i
\(167\) 10.8043 18.7135i 0.836059 1.44810i −0.0571070 0.998368i \(-0.518188\pi\)
0.893166 0.449728i \(-0.148479\pi\)
\(168\) −0.863906 −0.0666518
\(169\) 0 0
\(170\) −4.50367 −0.345416
\(171\) 5.71806 9.90396i 0.437271 0.757375i
\(172\) −1.30752 + 2.26469i −0.0996974 + 0.172681i
\(173\) −1.99470 3.45492i −0.151654 0.262673i 0.780182 0.625553i \(-0.215127\pi\)
−0.931836 + 0.362880i \(0.881793\pi\)
\(174\) −4.72047 −0.357858
\(175\) −0.719687 1.24653i −0.0544032 0.0942291i
\(176\) −1.38581 2.40029i −0.104459 0.180929i
\(177\) 2.07914 0.156278
\(178\) −2.97859 5.15906i −0.223254 0.386688i
\(179\) −6.23996 + 10.8079i −0.466397 + 0.807823i −0.999263 0.0383766i \(-0.987781\pi\)
0.532867 + 0.846199i \(0.321115\pi\)
\(180\) 1.31988 2.28610i 0.0983782 0.170396i
\(181\) −19.4319 −1.44436 −0.722180 0.691705i \(-0.756860\pi\)
−0.722180 + 0.691705i \(0.756860\pi\)
\(182\) 0 0
\(183\) 7.50465 0.554760
\(184\) −2.21969 + 3.84461i −0.163637 + 0.283428i
\(185\) 0.287734 0.498370i 0.0211546 0.0366409i
\(186\) 1.24865 + 2.16273i 0.0915557 + 0.158579i
\(187\) −12.4825 −0.912808
\(188\) 6.38418 + 11.0577i 0.465614 + 0.806467i
\(189\) −2.43611 4.21947i −0.177201 0.306921i
\(190\) 4.33225 0.314294
\(191\) 9.16074 + 15.8669i 0.662848 + 1.14809i 0.979864 + 0.199666i \(0.0639858\pi\)
−0.317016 + 0.948420i \(0.602681\pi\)
\(192\) 0.300098 0.519785i 0.0216577 0.0375122i
\(193\) 2.37182 4.10811i 0.170727 0.295708i −0.767947 0.640513i \(-0.778722\pi\)
0.938674 + 0.344805i \(0.112055\pi\)
\(194\) −1.58633 −0.113892
\(195\) 0 0
\(196\) −4.92820 −0.352015
\(197\) 5.40029 9.35358i 0.384755 0.666415i −0.606980 0.794717i \(-0.707619\pi\)
0.991735 + 0.128302i \(0.0409526\pi\)
\(198\) 3.65821 6.33621i 0.259978 0.450295i
\(199\) −5.50367 9.53264i −0.390145 0.675751i 0.602323 0.798252i \(-0.294242\pi\)
−0.992468 + 0.122501i \(0.960908\pi\)
\(200\) 1.00000 0.0707107
\(201\) 1.59922 + 2.76993i 0.112800 + 0.195375i
\(202\) −6.87676 11.9109i −0.483847 0.838048i
\(203\) 11.3205 0.794544
\(204\) −1.35154 2.34094i −0.0946269 0.163899i
\(205\) −2.11256 + 3.65906i −0.147548 + 0.255560i
\(206\) −2.86603 + 4.96410i −0.199685 + 0.345865i
\(207\) −11.7189 −0.814520
\(208\) 0 0
\(209\) 12.0073 0.830565
\(210\) 0.431953 0.748164i 0.0298076 0.0516283i
\(211\) −13.1291 + 22.7402i −0.903843 + 1.56550i −0.0813811 + 0.996683i \(0.525933\pi\)
−0.822462 + 0.568820i \(0.807400\pi\)
\(212\) −4.78561 8.28893i −0.328677 0.569286i
\(213\) 3.60117 0.246748
\(214\) −2.33967 4.05242i −0.159936 0.277018i
\(215\) −1.30752 2.26469i −0.0891720 0.154450i
\(216\) 3.38496 0.230318
\(217\) −2.99449 5.18661i −0.203279 0.352090i
\(218\) −1.16082 + 2.01060i −0.0786208 + 0.136175i
\(219\) −0.499217 + 0.864669i −0.0337340 + 0.0584289i
\(220\) 2.77162 0.186863
\(221\) 0 0
\(222\) 0.345393 0.0231813
\(223\) 11.1021 19.2294i 0.743452 1.28770i −0.207463 0.978243i \(-0.566521\pi\)
0.950915 0.309454i \(-0.100146\pi\)
\(224\) −0.719687 + 1.24653i −0.0480861 + 0.0832876i
\(225\) 1.31988 + 2.28610i 0.0879922 + 0.152407i
\(226\) 7.73629 0.514610
\(227\) 1.03957 + 1.80059i 0.0689986 + 0.119509i 0.898461 0.439054i \(-0.144686\pi\)
−0.829462 + 0.558563i \(0.811353\pi\)
\(228\) 1.30010 + 2.25184i 0.0861011 + 0.149131i
\(229\) −4.67933 −0.309219 −0.154610 0.987976i \(-0.549412\pi\)
−0.154610 + 0.987976i \(0.549412\pi\)
\(230\) −2.21969 3.84461i −0.146362 0.253506i
\(231\) 1.19721 2.07363i 0.0787706 0.136435i
\(232\) −3.93244 + 6.81119i −0.258177 + 0.447177i
\(233\) −0.611060 −0.0400319 −0.0200160 0.999800i \(-0.506372\pi\)
−0.0200160 + 0.999800i \(0.506372\pi\)
\(234\) 0 0
\(235\) −12.7684 −0.832916
\(236\) 1.73205 3.00000i 0.112747 0.195283i
\(237\) 3.81988 6.61623i 0.248128 0.429770i
\(238\) 3.24123 + 5.61398i 0.210098 + 0.363900i
\(239\) −25.6481 −1.65904 −0.829518 0.558479i \(-0.811385\pi\)
−0.829518 + 0.558479i \(0.811385\pi\)
\(240\) 0.300098 + 0.519785i 0.0193712 + 0.0335520i
\(241\) −13.5466 23.4633i −0.872610 1.51141i −0.859287 0.511494i \(-0.829092\pi\)
−0.0133234 0.999911i \(-0.504241\pi\)
\(242\) −3.31812 −0.213297
\(243\) 6.84432 + 11.8547i 0.439063 + 0.760480i
\(244\) 6.25184 10.8285i 0.400233 0.693223i
\(245\) 2.46410 4.26795i 0.157426 0.272669i
\(246\) −2.53590 −0.161683
\(247\) 0 0
\(248\) 4.16082 0.264212
\(249\) 3.01506 5.22223i 0.191071 0.330945i
\(250\) −0.500000 + 0.866025i −0.0316228 + 0.0547723i
\(251\) −0.751836 1.30222i −0.0474554 0.0821952i 0.841322 0.540534i \(-0.181778\pi\)
−0.888777 + 0.458339i \(0.848445\pi\)
\(252\) −3.79961 −0.239353
\(253\) −6.15213 10.6558i −0.386781 0.669924i
\(254\) 8.06218 + 13.9641i 0.505866 + 0.876186i
\(255\) 2.70308 0.169274
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 10.1724 17.6191i 0.634537 1.09905i −0.352076 0.935971i \(-0.614524\pi\)
0.986613 0.163079i \(-0.0521425\pi\)
\(258\) 0.784767 1.35926i 0.0488575 0.0846236i
\(259\) −0.828313 −0.0514689
\(260\) 0 0
\(261\) −20.7614 −1.28510
\(262\) 9.88043 17.1134i 0.610415 1.05727i
\(263\) 8.56466 14.8344i 0.528119 0.914729i −0.471343 0.881950i \(-0.656231\pi\)
0.999463 0.0327796i \(-0.0104359\pi\)
\(264\) 0.831757 + 1.44065i 0.0511911 + 0.0886656i
\(265\) 9.57123 0.587956
\(266\) −3.11786 5.40029i −0.191168 0.331113i
\(267\) 1.78773 + 3.09645i 0.109408 + 0.189499i
\(268\) 5.32899 0.325520
\(269\) −9.69121 16.7857i −0.590883 1.02344i −0.994114 0.108342i \(-0.965446\pi\)
0.403230 0.915099i \(-0.367887\pi\)
\(270\) −1.69248 + 2.93146i −0.103001 + 0.178403i
\(271\) −9.18555 + 15.9098i −0.557982 + 0.966454i 0.439682 + 0.898153i \(0.355091\pi\)
−0.997665 + 0.0683006i \(0.978242\pi\)
\(272\) −4.50367 −0.273075
\(273\) 0 0
\(274\) −17.2647 −1.04300
\(275\) −1.38581 + 2.40029i −0.0835675 + 0.144743i
\(276\) 1.33225 2.30752i 0.0801918 0.138896i
\(277\) 13.6171 + 23.5855i 0.818171 + 1.41711i 0.907028 + 0.421069i \(0.138345\pi\)
−0.0888576 + 0.996044i \(0.528322\pi\)
\(278\) 2.94657 0.176723
\(279\) 5.49180 + 9.51207i 0.328785 + 0.569473i
\(280\) −0.719687 1.24653i −0.0430095 0.0744947i
\(281\) 30.0815 1.79451 0.897257 0.441509i \(-0.145557\pi\)
0.897257 + 0.441509i \(0.145557\pi\)
\(282\) −3.83176 6.63680i −0.228178 0.395216i
\(283\) 12.7394 22.0653i 0.757278 1.31164i −0.186955 0.982368i \(-0.559862\pi\)
0.944234 0.329276i \(-0.106805\pi\)
\(284\) 3.00000 5.19615i 0.178017 0.308335i
\(285\) −2.60020 −0.154022
\(286\) 0 0
\(287\) 6.08153 0.358981
\(288\) 1.31988 2.28610i 0.0777748 0.134710i
\(289\) −1.64153 + 2.84321i −0.0965604 + 0.167247i
\(290\) −3.93244 6.81119i −0.230921 0.399967i
\(291\) 0.952110 0.0558137
\(292\) 0.831757 + 1.44065i 0.0486749 + 0.0843074i
\(293\) 8.28893 + 14.3568i 0.484244 + 0.838736i 0.999836 0.0180985i \(-0.00576126\pi\)
−0.515592 + 0.856834i \(0.672428\pi\)
\(294\) 2.95789 0.172507
\(295\) 1.73205 + 3.00000i 0.100844 + 0.174667i
\(296\) 0.287734 0.498370i 0.0167242 0.0289672i
\(297\) −4.69092 + 8.12490i −0.272195 + 0.471455i
\(298\) 7.06528 0.409280
\(299\) 0 0
\(300\) −0.600196 −0.0346523
\(301\) −1.88201 + 3.25973i −0.108477 + 0.187888i
\(302\) 7.91633 13.7115i 0.455534 0.789007i
\(303\) 4.12740 + 7.14887i 0.237113 + 0.410692i
\(304\) 4.33225 0.248471
\(305\) 6.25184 + 10.8285i 0.357979 + 0.620038i
\(306\) −5.94432 10.2959i −0.339814 0.588575i
\(307\) −16.2722 −0.928703 −0.464351 0.885651i \(-0.653713\pi\)
−0.464351 + 0.885651i \(0.653713\pi\)
\(308\) −1.99470 3.45492i −0.113659 0.196862i
\(309\) 1.72018 2.97943i 0.0978574 0.169494i
\(310\) −2.08041 + 3.60338i −0.118159 + 0.204658i
\(311\) 16.1053 0.913246 0.456623 0.889660i \(-0.349059\pi\)
0.456623 + 0.889660i \(0.349059\pi\)
\(312\) 0 0
\(313\) −10.2162 −0.577454 −0.288727 0.957411i \(-0.593232\pi\)
−0.288727 + 0.957411i \(0.593232\pi\)
\(314\) −6.31401 + 10.9362i −0.356320 + 0.617165i
\(315\) 1.89980 3.29056i 0.107042 0.185402i
\(316\) −6.36440 11.0235i −0.358025 0.620118i
\(317\) −0.204368 −0.0114785 −0.00573923 0.999984i \(-0.501827\pi\)
−0.00573923 + 0.999984i \(0.501827\pi\)
\(318\) 2.87231 + 4.97498i 0.161071 + 0.278983i
\(319\) −10.8992 18.8780i −0.610240 1.05697i
\(320\) 1.00000 0.0559017
\(321\) 1.40426 + 2.43225i 0.0783781 + 0.135755i
\(322\) −3.19496 + 5.53383i −0.178048 + 0.308388i
\(323\) 9.75551 16.8970i 0.542811 0.940176i
\(324\) 5.88766 0.327092
\(325\) 0 0
\(326\) −18.3686 −1.01734
\(327\) 0.696720 1.20676i 0.0385287 0.0667337i
\(328\) −2.11256 + 3.65906i −0.116647 + 0.202038i
\(329\) 9.18922 + 15.9162i 0.506618 + 0.877488i
\(330\) −1.66351 −0.0915735
\(331\) 9.53264 + 16.5110i 0.523961 + 0.907527i 0.999611 + 0.0278926i \(0.00887964\pi\)
−0.475650 + 0.879635i \(0.657787\pi\)
\(332\) −5.02346 8.70088i −0.275698 0.477523i
\(333\) 1.51910 0.0832462
\(334\) 10.8043 + 18.7135i 0.591183 + 1.02396i
\(335\) −2.66449 + 4.61504i −0.145577 + 0.252146i
\(336\) 0.431953 0.748164i 0.0235650 0.0408157i
\(337\) −19.8609 −1.08189 −0.540946 0.841057i \(-0.681934\pi\)
−0.540946 + 0.841057i \(0.681934\pi\)
\(338\) 0 0
\(339\) −4.64329 −0.252189
\(340\) 2.25184 3.90029i 0.122123 0.211523i
\(341\) −5.76611 + 9.98719i −0.312252 + 0.540837i
\(342\) 5.71806 + 9.90396i 0.309197 + 0.535545i
\(343\) −17.1691 −0.927047
\(344\) −1.30752 2.26469i −0.0704967 0.122104i
\(345\) 1.33225 + 2.30752i 0.0717257 + 0.124233i
\(346\) 3.98940 0.214471
\(347\) −8.52522 14.7661i −0.457658 0.792686i 0.541179 0.840907i \(-0.317978\pi\)
−0.998837 + 0.0482211i \(0.984645\pi\)
\(348\) 2.36023 4.08805i 0.126522 0.219142i
\(349\) 10.6185 18.3917i 0.568394 0.984488i −0.428331 0.903622i \(-0.640898\pi\)
0.996725 0.0808657i \(-0.0257685\pi\)
\(350\) 1.43937 0.0769378
\(351\) 0 0
\(352\) 2.77162 0.147728
\(353\) −8.00840 + 13.8710i −0.426244 + 0.738276i −0.996536 0.0831659i \(-0.973497\pi\)
0.570292 + 0.821442i \(0.306830\pi\)
\(354\) −1.03957 + 1.80059i −0.0552525 + 0.0957001i
\(355\) 3.00000 + 5.19615i 0.159223 + 0.275783i
\(356\) 5.95717 0.315729
\(357\) −1.94537 3.36949i −0.102960 0.178332i
\(358\) −6.23996 10.8079i −0.329792 0.571217i
\(359\) 24.2487 1.27980 0.639899 0.768459i \(-0.278976\pi\)
0.639899 + 0.768459i \(0.278976\pi\)
\(360\) 1.31988 + 2.28610i 0.0695639 + 0.120488i
\(361\) 0.115820 0.200606i 0.00609580 0.0105582i
\(362\) 9.71594 16.8285i 0.510658 0.884486i
\(363\) 1.99152 0.104528
\(364\) 0 0
\(365\) −1.66351 −0.0870723
\(366\) −3.75232 + 6.49922i −0.196137 + 0.339720i
\(367\) 14.8854 25.7822i 0.777010 1.34582i −0.156648 0.987655i \(-0.550069\pi\)
0.933658 0.358167i \(-0.116598\pi\)
\(368\) −2.21969 3.84461i −0.115709 0.200414i
\(369\) −11.1533 −0.580619
\(370\) 0.287734 + 0.498370i 0.0149586 + 0.0259090i
\(371\) −6.88829 11.9309i −0.357622 0.619420i
\(372\) −2.49731 −0.129479
\(373\) −14.1929 24.5828i −0.734880 1.27285i −0.954776 0.297326i \(-0.903905\pi\)
0.219896 0.975523i \(-0.429428\pi\)
\(374\) 6.24123 10.8101i 0.322726 0.558979i
\(375\) 0.300098 0.519785i 0.0154970 0.0268416i
\(376\) −12.7684 −0.658478
\(377\) 0 0
\(378\) 4.87223 0.250600
\(379\) 14.2069 24.6070i 0.729759 1.26398i −0.227226 0.973842i \(-0.572966\pi\)
0.956985 0.290137i \(-0.0937009\pi\)
\(380\) −2.16612 + 3.75184i −0.111120 + 0.192465i
\(381\) −4.83888 8.38119i −0.247904 0.429382i
\(382\) −18.3215 −0.937409
\(383\) −4.69863 8.13827i −0.240089 0.415846i 0.720651 0.693298i \(-0.243843\pi\)
−0.960739 + 0.277452i \(0.910510\pi\)
\(384\) 0.300098 + 0.519785i 0.0153143 + 0.0265252i
\(385\) 3.98940 0.203319
\(386\) 2.37182 + 4.10811i 0.120722 + 0.209097i
\(387\) 3.45154 5.97825i 0.175452 0.303891i
\(388\) 0.793166 1.37380i 0.0402669 0.0697443i
\(389\) −11.6461 −0.590482 −0.295241 0.955423i \(-0.595400\pi\)
−0.295241 + 0.955423i \(0.595400\pi\)
\(390\) 0 0
\(391\) −19.9935 −1.01111
\(392\) 2.46410 4.26795i 0.124456 0.215564i
\(393\) −5.93019 + 10.2714i −0.299139 + 0.518123i
\(394\) 5.40029 + 9.35358i 0.272063 + 0.471227i
\(395\) 12.7288 0.640455
\(396\) 3.65821 + 6.33621i 0.183832 + 0.318407i
\(397\) 0.199902 + 0.346241i 0.0100328 + 0.0173773i 0.870998 0.491286i \(-0.163473\pi\)
−0.860965 + 0.508663i \(0.830140\pi\)
\(398\) 11.0073 0.551748
\(399\) 1.87133 + 3.24123i 0.0936835 + 0.162265i
\(400\) −0.500000 + 0.866025i −0.0250000 + 0.0433013i
\(401\) 4.25388 7.36793i 0.212428 0.367937i −0.740046 0.672557i \(-0.765196\pi\)
0.952474 + 0.304620i \(0.0985294\pi\)
\(402\) −3.19843 −0.159523
\(403\) 0 0
\(404\) 13.7535 0.684263
\(405\) −2.94383 + 5.09886i −0.146280 + 0.253364i
\(406\) −5.66025 + 9.80385i −0.280914 + 0.486557i
\(407\) 0.797489 + 1.38129i 0.0395301 + 0.0684681i
\(408\) 2.70308 0.133823
\(409\) −7.00657 12.1357i −0.346453 0.600074i 0.639164 0.769071i \(-0.279281\pi\)
−0.985617 + 0.168997i \(0.945947\pi\)
\(410\) −2.11256 3.65906i −0.104332 0.180708i
\(411\) 10.3622 0.511129
\(412\) −2.86603 4.96410i −0.141199 0.244564i
\(413\) 2.49307 4.31812i 0.122676 0.212481i
\(414\) 5.85945 10.1489i 0.287976 0.498790i
\(415\) 10.0469 0.493183
\(416\) 0 0
\(417\) −1.76852 −0.0866047
\(418\) −6.00367 + 10.3987i −0.293649 + 0.508615i
\(419\) 12.0977 20.9539i 0.591012 1.02366i −0.403084 0.915163i \(-0.632062\pi\)
0.994096 0.108500i \(-0.0346048\pi\)
\(420\) 0.431953 + 0.748164i 0.0210771 + 0.0365067i
\(421\) 35.6392 1.73695 0.868474 0.495735i \(-0.165101\pi\)
0.868474 + 0.495735i \(0.165101\pi\)
\(422\) −13.1291 22.7402i −0.639114 1.10698i
\(423\) −16.8527 29.1898i −0.819408 1.41926i
\(424\) 9.57123 0.464820
\(425\) 2.25184 + 3.90029i 0.109230 + 0.189192i
\(426\) −1.80059 + 3.11871i −0.0872387 + 0.151102i
\(427\) 8.99873 15.5863i 0.435479 0.754272i
\(428\) 4.67933 0.226184
\(429\) 0 0
\(430\) 2.61504 0.126108
\(431\) −2.48022 + 4.29586i −0.119468 + 0.206924i −0.919557 0.392957i \(-0.871452\pi\)
0.800089 + 0.599881i \(0.204785\pi\)
\(432\) −1.69248 + 2.93146i −0.0814295 + 0.141040i
\(433\) −2.10811 3.65135i −0.101309 0.175472i 0.810915 0.585164i \(-0.198970\pi\)
−0.912224 + 0.409691i \(0.865636\pi\)
\(434\) 5.98898 0.287480
\(435\) 2.36023 + 4.08805i 0.113165 + 0.196007i
\(436\) −1.16082 2.01060i −0.0555933 0.0962904i
\(437\) 19.2325 0.920013
\(438\) −0.499217 0.864669i −0.0238535 0.0413155i
\(439\) 7.37500 12.7739i 0.351989 0.609664i −0.634608 0.772834i \(-0.718839\pi\)
0.986598 + 0.163170i \(0.0521720\pi\)
\(440\) −1.38581 + 2.40029i −0.0660659 + 0.114430i
\(441\) 13.0093 0.619490
\(442\) 0 0
\(443\) −12.2374 −0.581417 −0.290709 0.956812i \(-0.593891\pi\)
−0.290709 + 0.956812i \(0.593891\pi\)
\(444\) −0.172697 + 0.299119i −0.00819582 + 0.0141956i
\(445\) −2.97859 + 5.15906i −0.141198 + 0.244563i
\(446\) 11.1021 + 19.2294i 0.525700 + 0.910539i
\(447\) −4.24055 −0.200571
\(448\) −0.719687 1.24653i −0.0340020 0.0588932i
\(449\) 9.53569 + 16.5163i 0.450017 + 0.779452i 0.998386 0.0567839i \(-0.0180846\pi\)
−0.548370 + 0.836236i \(0.684751\pi\)
\(450\) −2.63977 −0.124440
\(451\) −5.85521 10.1415i −0.275711 0.477546i
\(452\) −3.86814 + 6.69982i −0.181942 + 0.315133i
\(453\) −4.75135 + 8.22957i −0.223238 + 0.386659i
\(454\) −2.07914 −0.0975788
\(455\) 0 0
\(456\) −2.60020 −0.121765
\(457\) −8.05688 + 13.9549i −0.376885 + 0.652784i −0.990607 0.136738i \(-0.956338\pi\)
0.613722 + 0.789522i \(0.289671\pi\)
\(458\) 2.33967 4.05242i 0.109325 0.189357i
\(459\) 7.62238 + 13.2023i 0.355782 + 0.616233i
\(460\) 4.43937 0.206987
\(461\) 2.42233 + 4.19560i 0.112819 + 0.195408i 0.916906 0.399104i \(-0.130679\pi\)
−0.804087 + 0.594512i \(0.797345\pi\)
\(462\) 1.19721 + 2.07363i 0.0556992 + 0.0964739i
\(463\) −8.23164 −0.382557 −0.191278 0.981536i \(-0.561263\pi\)
−0.191278 + 0.981536i \(0.561263\pi\)
\(464\) −3.93244 6.81119i −0.182559 0.316202i
\(465\) 1.24865 2.16273i 0.0579049 0.100294i
\(466\) 0.305530 0.529194i 0.0141534 0.0245144i
\(467\) 33.4873 1.54961 0.774803 0.632203i \(-0.217849\pi\)
0.774803 + 0.632203i \(0.217849\pi\)
\(468\) 0 0
\(469\) 7.67040 0.354186
\(470\) 6.38418 11.0577i 0.294480 0.510055i
\(471\) 3.78964 6.56386i 0.174618 0.302446i
\(472\) 1.73205 + 3.00000i 0.0797241 + 0.138086i
\(473\) 7.24789 0.333258
\(474\) 3.81988 + 6.61623i 0.175453 + 0.303894i
\(475\) −2.16612 3.75184i −0.0993886 0.172146i
\(476\) −6.48247 −0.297123
\(477\) 12.6329 + 21.8808i 0.578421 + 1.00185i
\(478\) 12.8240 22.2119i 0.586558 1.01595i
\(479\) 4.02672 6.97448i 0.183985 0.318672i −0.759249 0.650800i \(-0.774433\pi\)
0.943234 + 0.332128i \(0.107767\pi\)
\(480\) −0.600196 −0.0273951
\(481\) 0 0
\(482\) 27.0931 1.23406
\(483\) 1.91760 3.32138i 0.0872538 0.151128i
\(484\) 1.65906 2.87358i 0.0754118 0.130617i
\(485\) 0.793166 + 1.37380i 0.0360158 + 0.0623812i
\(486\) −13.6886 −0.620929
\(487\) −0.811758 1.40601i −0.0367842 0.0637122i 0.847047 0.531518i \(-0.178378\pi\)
−0.883831 + 0.467806i \(0.845045\pi\)
\(488\) 6.25184 + 10.8285i 0.283007 + 0.490183i
\(489\) 11.0247 0.498555
\(490\) 2.46410 + 4.26795i 0.111317 + 0.192806i
\(491\) −5.16033 + 8.93796i −0.232883 + 0.403364i −0.958655 0.284570i \(-0.908149\pi\)
0.725773 + 0.687935i \(0.241482\pi\)
\(492\) 1.26795 2.19615i 0.0571636 0.0990102i
\(493\) −35.4209 −1.59527
\(494\) 0 0
\(495\) −7.31643 −0.328849
\(496\) −2.08041 + 3.60338i −0.0934132 + 0.161796i
\(497\) 4.31812 7.47921i 0.193694 0.335488i
\(498\) 3.01506 + 5.22223i 0.135108 + 0.234014i
\(499\) −13.9807 −0.625860 −0.312930 0.949776i \(-0.601311\pi\)
−0.312930 + 0.949776i \(0.601311\pi\)
\(500\) −0.500000 0.866025i −0.0223607 0.0387298i
\(501\) −6.48467 11.2318i −0.289714 0.501799i
\(502\) 1.50367 0.0671121
\(503\) −11.8924 20.5983i −0.530258 0.918434i −0.999377 0.0352988i \(-0.988762\pi\)
0.469119 0.883135i \(-0.344572\pi\)
\(504\) 1.89980 3.29056i 0.0846240 0.146573i
\(505\) −6.87676 + 11.9109i −0.306012 + 0.530028i
\(506\) 12.3043 0.546991
\(507\) 0 0
\(508\) −16.1244 −0.715403
\(509\) 12.8185 22.2023i 0.568171 0.984102i −0.428575 0.903506i \(-0.640984\pi\)
0.996747 0.0805958i \(-0.0256823\pi\)
\(510\) −1.35154 + 2.34094i −0.0598473 + 0.103659i
\(511\) 1.19721 + 2.07363i 0.0529614 + 0.0917319i
\(512\) 1.00000 0.0441942
\(513\) −7.33225 12.6998i −0.323727 0.560711i
\(514\) 10.1724 + 17.6191i 0.448685 + 0.777146i
\(515\) 5.73205 0.252584
\(516\) 0.784767 + 1.35926i 0.0345474 + 0.0598379i
\(517\) 17.6945 30.6478i 0.778204 1.34789i
\(518\) 0.414157 0.717340i 0.0181970 0.0315181i
\(519\) −2.39442 −0.105103
\(520\) 0 0
\(521\) −8.53476 −0.373915 −0.186957 0.982368i \(-0.559863\pi\)
−0.186957 + 0.982368i \(0.559863\pi\)
\(522\) 10.3807 17.9799i 0.454352 0.786961i
\(523\) 6.34383 10.9878i 0.277396 0.480464i −0.693341 0.720610i \(-0.743862\pi\)
0.970737 + 0.240146i \(0.0771952\pi\)
\(524\) 9.88043 + 17.1134i 0.431629 + 0.747603i
\(525\) −0.863906 −0.0377039
\(526\) 8.56466 + 14.8344i 0.373437 + 0.646811i
\(527\) 9.36949 + 16.2284i 0.408141 + 0.706921i
\(528\) −1.66351 −0.0723952
\(529\) 1.64598 + 2.85092i 0.0715644 + 0.123953i
\(530\) −4.78561 + 8.28893i −0.207874 + 0.360048i
\(531\) −4.57221 + 7.91930i −0.198417 + 0.343668i
\(532\) 6.23572 0.270353
\(533\) 0 0
\(534\) −3.57547 −0.154726
\(535\) −2.33967 + 4.05242i −0.101153 + 0.175202i
\(536\) −2.66449 + 4.61504i −0.115089 + 0.199339i
\(537\) 3.74520 + 6.48687i 0.161617 + 0.279929i
\(538\) 19.3824 0.835635
\(539\) 6.82955 + 11.8291i 0.294170 + 0.509517i
\(540\) −1.69248 2.93146i −0.0728328 0.126150i
\(541\) 42.0507 1.80790 0.903951 0.427636i \(-0.140653\pi\)
0.903951 + 0.427636i \(0.140653\pi\)
\(542\) −9.18555 15.9098i −0.394553 0.683386i
\(543\) −5.83146 + 10.1004i −0.250252 + 0.433449i
\(544\) 2.25184 3.90029i 0.0965467 0.167224i
\(545\) 2.32164 0.0994483
\(546\) 0 0
\(547\) 24.6297 1.05309 0.526545 0.850147i \(-0.323487\pi\)
0.526545 + 0.850147i \(0.323487\pi\)
\(548\) 8.63234 14.9517i 0.368755 0.638703i
\(549\) −16.5034 + 28.5847i −0.704347 + 1.21996i
\(550\) −1.38581 2.40029i −0.0590911 0.102349i
\(551\) 34.0726 1.45154
\(552\) 1.33225 + 2.30752i 0.0567042 + 0.0982145i
\(553\) −9.16074 15.8669i −0.389554 0.674728i
\(554\) −27.2342 −1.15707
\(555\) −0.172697 0.299119i −0.00733056 0.0126969i
\(556\) −1.47328 + 2.55180i −0.0624811 + 0.108221i
\(557\) 3.95244 6.84583i 0.167470 0.290067i −0.770059 0.637972i \(-0.779773\pi\)
0.937530 + 0.347905i \(0.113107\pi\)
\(558\) −10.9836 −0.464973
\(559\) 0 0
\(560\) 1.43937 0.0608246
\(561\) −3.74596 + 6.48819i −0.158155 + 0.273932i
\(562\) −15.0408 + 26.0514i −0.634456 + 1.09891i
\(563\) −6.63553 11.4931i −0.279654 0.484375i 0.691645 0.722238i \(-0.256886\pi\)
−0.971299 + 0.237863i \(0.923553\pi\)
\(564\) 7.66351 0.322692
\(565\) −3.86814 6.69982i −0.162734 0.281864i
\(566\) 12.7394 + 22.0653i 0.535477 + 0.927473i
\(567\) 8.47454 0.355897
\(568\) 3.00000 + 5.19615i 0.125877 + 0.218026i
\(569\) −21.1323 + 36.6022i −0.885911 + 1.53444i −0.0412443 + 0.999149i \(0.513132\pi\)
−0.844666 + 0.535293i \(0.820201\pi\)
\(570\) 1.30010 2.25184i 0.0544551 0.0943190i
\(571\) −1.64965 −0.0690358 −0.0345179 0.999404i \(-0.510990\pi\)
−0.0345179 + 0.999404i \(0.510990\pi\)
\(572\) 0 0
\(573\) 10.9965 0.459384
\(574\) −3.04076 + 5.26676i −0.126919 + 0.219830i
\(575\) −2.21969 + 3.84461i −0.0925673 + 0.160331i
\(576\) 1.31988 + 2.28610i 0.0549951 + 0.0952543i
\(577\) −28.4651 −1.18502 −0.592508 0.805564i \(-0.701862\pi\)
−0.592508 + 0.805564i \(0.701862\pi\)
\(578\) −1.64153 2.84321i −0.0682785 0.118262i
\(579\) −1.42355 2.46567i −0.0591609 0.102470i
\(580\) 7.86488 0.326572
\(581\) −7.23063 12.5238i −0.299977 0.519576i
\(582\) −0.476055 + 0.824551i −0.0197331 + 0.0341788i
\(583\) −13.2639 + 22.9738i −0.549335 + 0.951476i
\(584\) −1.66351 −0.0688367
\(585\) 0 0
\(586\) −16.5779 −0.684825
\(587\) −11.0848 + 19.1994i −0.457518 + 0.792445i −0.998829 0.0483779i \(-0.984595\pi\)
0.541311 + 0.840822i \(0.317928\pi\)
\(588\) −1.47894 + 2.56160i −0.0609906 + 0.105639i
\(589\) −9.01285 15.6107i −0.371368 0.643228i
\(590\) −3.46410 −0.142615
\(591\) −3.24123 5.61398i −0.133327 0.230928i
\(592\) 0.287734 + 0.498370i 0.0118258 + 0.0204829i
\(593\) 9.68683 0.397791 0.198895 0.980021i \(-0.436265\pi\)
0.198895 + 0.980021i \(0.436265\pi\)
\(594\) −4.69092 8.12490i −0.192471 0.333369i
\(595\) 3.24123 5.61398i 0.132878 0.230151i
\(596\) −3.53264 + 6.11871i −0.144702 + 0.250632i
\(597\) −6.60656 −0.270388
\(598\) 0 0
\(599\) 8.33012 0.340360 0.170180 0.985413i \(-0.445565\pi\)
0.170180 + 0.985413i \(0.445565\pi\)
\(600\) 0.300098 0.519785i 0.0122514 0.0212201i
\(601\) 6.10117 10.5675i 0.248872 0.431059i −0.714341 0.699798i \(-0.753273\pi\)
0.963213 + 0.268739i \(0.0866068\pi\)
\(602\) −1.88201 3.25973i −0.0767049 0.132857i
\(603\) −14.0673 −0.572864
\(604\) 7.91633 + 13.7115i 0.322111 + 0.557912i
\(605\) 1.65906 + 2.87358i 0.0674504 + 0.116828i
\(606\) −8.25480 −0.335328
\(607\) 4.91946 + 8.52075i 0.199675 + 0.345847i 0.948423 0.317008i \(-0.102678\pi\)
−0.748748 + 0.662854i \(0.769345\pi\)
\(608\) −2.16612 + 3.75184i −0.0878479 + 0.152157i
\(609\) 3.39726 5.88423i 0.137664 0.238441i
\(610\) −12.5037 −0.506259
\(611\) 0 0
\(612\) 11.8886 0.480570
\(613\) −7.60586 + 13.1737i −0.307198 + 0.532082i −0.977748 0.209782i \(-0.932725\pi\)
0.670551 + 0.741864i \(0.266058\pi\)
\(614\) 8.13609 14.0921i 0.328346 0.568712i
\(615\) 1.26795 + 2.19615i 0.0511286 + 0.0885574i
\(616\) 3.98940 0.160737
\(617\) −12.2357 21.1929i −0.492592 0.853194i 0.507372 0.861727i \(-0.330617\pi\)
−0.999964 + 0.00853345i \(0.997284\pi\)
\(618\) 1.72018 + 2.97943i 0.0691956 + 0.119850i
\(619\) −42.4157 −1.70483 −0.852416 0.522864i \(-0.824864\pi\)
−0.852416 + 0.522864i \(0.824864\pi\)
\(620\) −2.08041 3.60338i −0.0835513 0.144715i
\(621\) −7.51356 + 13.0139i −0.301509 + 0.522228i
\(622\) −8.05264 + 13.9476i −0.322881 + 0.559247i
\(623\) 8.57459 0.343534
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 5.10811 8.84750i 0.204161 0.353617i
\(627\) 3.60338 6.24123i 0.143905 0.249251i
\(628\) −6.31401 10.9362i −0.251957 0.436402i
\(629\) 2.59172 0.103339
\(630\) 1.89980 + 3.29056i 0.0756900 + 0.131099i
\(631\) 0.0141253 + 0.0244657i 0.000562318 + 0.000973964i 0.866306 0.499513i \(-0.166488\pi\)
−0.865744 + 0.500487i \(0.833154\pi\)
\(632\) 12.7288 0.506324
\(633\) 7.88002 + 13.6486i 0.313203 + 0.542483i
\(634\) 0.102184 0.176988i 0.00405825 0.00702909i
\(635\) 8.06218 13.9641i 0.319938 0.554148i
\(636\) −5.74461 −0.227789
\(637\) 0 0
\(638\) 21.7985 0.863010
\(639\) −7.91930 + 13.7166i −0.313282 + 0.542621i
\(640\) −0.500000 + 0.866025i −0.0197642 + 0.0342327i
\(641\) −8.10465 14.0377i −0.320114 0.554454i 0.660397 0.750917i \(-0.270388\pi\)
−0.980511 + 0.196462i \(0.937055\pi\)
\(642\) −2.80852 −0.110843
\(643\) 9.10586 + 15.7718i 0.359100 + 0.621979i 0.987811 0.155660i \(-0.0497504\pi\)
−0.628711 + 0.777639i \(0.716417\pi\)
\(644\) −3.19496 5.53383i −0.125899 0.218064i
\(645\) −1.56953 −0.0618003
\(646\) 9.75551 + 16.8970i 0.383825 + 0.664805i
\(647\) 3.56139 6.16852i 0.140013 0.242509i −0.787488 0.616330i \(-0.788619\pi\)
0.927501 + 0.373820i \(0.121952\pi\)
\(648\) −2.94383 + 5.09886i −0.115644 + 0.200302i
\(649\) −9.60117 −0.376879
\(650\) 0 0
\(651\) −3.59456 −0.140882
\(652\) 9.18428 15.9076i 0.359684 0.622991i
\(653\) 8.03546 13.9178i 0.314452 0.544647i −0.664869 0.746960i \(-0.731513\pi\)
0.979321 + 0.202313i \(0.0648459\pi\)
\(654\) 0.696720 + 1.20676i 0.0272439 + 0.0471879i
\(655\) −19.7609 −0.772121
\(656\) −2.11256 3.65906i −0.0824816 0.142862i
\(657\) −2.19564 3.80297i −0.0856602 0.148368i
\(658\) −18.3784 −0.716466
\(659\) −22.5988 39.1423i −0.880326 1.52477i −0.850979 0.525200i \(-0.823990\pi\)
−0.0293473 0.999569i \(-0.509343\pi\)
\(660\) 0.831757 1.44065i 0.0323761 0.0560771i
\(661\) −4.40723 + 7.63354i −0.171421 + 0.296910i −0.938917 0.344144i \(-0.888169\pi\)
0.767496 + 0.641054i \(0.221503\pi\)
\(662\) −19.0653 −0.740993
\(663\) 0 0
\(664\) 10.0469 0.389896
\(665\) −3.11786 + 5.40029i −0.120905 + 0.209414i
\(666\) −0.759550 + 1.31558i −0.0294320 + 0.0509777i
\(667\) −17.4576 30.2374i −0.675960 1.17080i
\(668\) −21.6085 −0.836059
\(669\) −6.66344 11.5414i −0.257623 0.446217i
\(670\) −2.66449 4.61504i −0.102938 0.178294i
\(671\) −34.6554 −1.33786
\(672\) 0.431953 + 0.748164i 0.0166629 + 0.0288611i
\(673\) −20.7199 + 35.8879i −0.798693 + 1.38338i 0.121775 + 0.992558i \(0.461141\pi\)
−0.920468 + 0.390819i \(0.872192\pi\)
\(674\) 9.93045 17.2001i 0.382507 0.662521i
\(675\) 3.38496 0.130287
\(676\) 0 0
\(677\) −18.8510 −0.724504 −0.362252 0.932080i \(-0.617992\pi\)
−0.362252 + 0.932080i \(0.617992\pi\)
\(678\) 2.32164 4.02121i 0.0891622 0.154433i
\(679\) 1.14166 1.97742i 0.0438130 0.0758863i
\(680\) 2.25184 + 3.90029i 0.0863540 + 0.149569i
\(681\) 1.24789 0.0478193
\(682\) −5.76611 9.98719i −0.220796 0.382429i
\(683\) −11.3332 19.6297i −0.433654 0.751110i 0.563531 0.826095i \(-0.309443\pi\)
−0.997185 + 0.0749846i \(0.976109\pi\)
\(684\) −11.4361 −0.437271
\(685\) 8.63234 + 14.9517i 0.329825 + 0.571274i
\(686\) 8.58457 14.8689i 0.327760 0.567698i
\(687\) −1.40426 + 2.43225i −0.0535758 + 0.0927960i
\(688\) 2.61504 0.0996974
\(689\) 0 0
\(690\) −2.66449 −0.101436
\(691\) −15.9196 + 27.5736i −0.605612 + 1.04895i 0.386343 + 0.922355i \(0.373738\pi\)
−0.991954 + 0.126595i \(0.959595\pi\)
\(692\) −1.99470 + 3.45492i −0.0758271 + 0.131336i
\(693\) 5.26554 + 9.12018i 0.200021 + 0.346447i
\(694\) 17.0504 0.647226
\(695\) −1.47328 2.55180i −0.0558848 0.0967954i
\(696\) 2.36023 + 4.08805i 0.0894645 + 0.154957i
\(697\) −19.0285 −0.720758
\(698\) 10.6185 + 18.3917i 0.401915 + 0.696138i
\(699\) −0.183378 + 0.317620i −0.00693599 + 0.0120135i
\(700\) −0.719687 + 1.24653i −0.0272016 + 0.0471146i
\(701\) −0.611060 −0.0230794 −0.0115397 0.999933i \(-0.503673\pi\)
−0.0115397 + 0.999933i \(0.503673\pi\)
\(702\) 0 0
\(703\) −2.49307 −0.0940279
\(704\) −1.38581 + 2.40029i −0.0522297 + 0.0904645i
\(705\) −3.83176 + 6.63680i −0.144312 + 0.249956i
\(706\) −8.00840 13.8710i −0.301400 0.522040i
\(707\) 19.7965 0.744522
\(708\) −1.03957 1.80059i −0.0390694 0.0676702i
\(709\) −6.48212 11.2274i −0.243441 0.421653i 0.718251 0.695784i \(-0.244943\pi\)
−0.961692 + 0.274131i \(0.911610\pi\)
\(710\) −6.00000 −0.225176
\(711\) 16.8005 + 29.0993i 0.630068 + 1.09131i
\(712\) −2.97859 + 5.15906i −0.111627 + 0.193344i
\(713\) −9.23572 + 15.9967i −0.345881 + 0.599083i
\(714\) 3.89075 0.145608
\(715\) 0 0
\(716\) 12.4799 0.466397
\(717\) −7.69694 + 13.3315i −0.287447 + 0.497873i
\(718\) −12.1244 + 21.0000i −0.452477 + 0.783713i
\(719\) −17.8616 30.9372i −0.666126 1.15376i −0.978979 0.203963i \(-0.934618\pi\)
0.312853 0.949802i \(-0.398715\pi\)
\(720\) −2.63977 −0.0983782
\(721\) −4.12528 7.14520i −0.153634 0.266101i
\(722\) 0.115820 + 0.200606i 0.00431038 + 0.00746580i
\(723\) −16.2612 −0.604759
\(724\) 9.71594 + 16.8285i 0.361090 + 0.625426i
\(725\) −3.93244 + 6.81119i −0.146047 + 0.252961i
\(726\) −0.995761 + 1.72471i −0.0369562 + 0.0640099i
\(727\) 51.7313 1.91861 0.959304 0.282375i \(-0.0911224\pi\)
0.959304 + 0.282375i \(0.0911224\pi\)
\(728\) 0 0
\(729\) −9.44711 −0.349893
\(730\) 0.831757 1.44065i 0.0307847 0.0533207i
\(731\) 5.88863 10.1994i 0.217799 0.377239i
\(732\) −3.75232 6.49922i −0.138690 0.240218i
\(733\) −26.4319 −0.976284 −0.488142 0.872764i \(-0.662325\pi\)
−0.488142 + 0.872764i \(0.662325\pi\)
\(734\) 14.8854 + 25.7822i 0.549429 + 0.951639i
\(735\) −1.47894 2.56160i −0.0545516 0.0944862i
\(736\) 4.43937 0.163637
\(737\) −7.38496 12.7911i −0.272029 0.471167i
\(738\) 5.57666 9.65906i 0.205280 0.355555i
\(739\) −13.7051 + 23.7380i −0.504151 + 0.873215i 0.495837 + 0.868415i \(0.334861\pi\)
−0.999988 + 0.00480000i \(0.998472\pi\)
\(740\) −0.575468 −0.0211546
\(741\) 0 0
\(742\) 13.7766 0.505754
\(743\) 21.0909 36.5306i 0.773751 1.34018i −0.161742 0.986833i \(-0.551711\pi\)
0.935494 0.353344i \(-0.114955\pi\)
\(744\) 1.24865 2.16273i 0.0457779 0.0792896i
\(745\) −3.53264 6.11871i −0.129426 0.224172i
\(746\) 28.3858 1.03928
\(747\) 13.2607 + 22.9683i 0.485185 + 0.840365i
\(748\) 6.24123 + 10.8101i 0.228202 + 0.395258i
\(749\) 6.73531 0.246103
\(750\) 0.300098 + 0.519785i 0.0109580 + 0.0189799i
\(751\) −9.66351 + 16.7377i −0.352627 + 0.610767i −0.986709 0.162498i \(-0.948045\pi\)
0.634082 + 0.773266i \(0.281378\pi\)
\(752\) 6.38418 11.0577i 0.232807 0.403234i
\(753\) −0.902497 −0.0328888
\(754\) 0 0
\(755\) −15.8327 −0.576209
\(756\) −2.43611 + 4.21947i −0.0886006 + 0.153461i
\(757\) 10.1513 17.5825i 0.368955 0.639048i −0.620448 0.784248i \(-0.713049\pi\)
0.989402 + 0.145200i \(0.0463824\pi\)
\(758\) 14.2069 + 24.6070i 0.516017 + 0.893768i
\(759\) −7.38496 −0.268057
\(760\) −2.16612 3.75184i −0.0785735 0.136093i
\(761\) 22.1348 + 38.3386i 0.802386 + 1.38977i 0.918042 + 0.396484i \(0.129770\pi\)
−0.115656 + 0.993289i \(0.536897\pi\)
\(762\) 9.67777 0.350589
\(763\) −1.67086 2.89401i −0.0604891 0.104770i
\(764\) 9.16074 15.8669i 0.331424 0.574043i
\(765\) −5.94432 + 10.2959i −0.214917 + 0.372248i
\(766\) 9.39726 0.339537
\(767\) 0 0
\(768\) −0.600196 −0.0216577
\(769\) −1.87005 + 3.23903i −0.0674359 + 0.116802i −0.897772 0.440461i \(-0.854815\pi\)
0.830336 + 0.557263i \(0.188148\pi\)
\(770\) −1.99470 + 3.45492i −0.0718840 + 0.124507i
\(771\) −6.10543 10.5749i −0.219882 0.380846i
\(772\) −4.74363 −0.170727
\(773\) 2.24045 + 3.88057i 0.0805834 + 0.139575i 0.903501 0.428587i \(-0.140988\pi\)
−0.822917 + 0.568161i \(0.807655\pi\)
\(774\) 3.45154 + 5.97825i 0.124063 + 0.214884i
\(775\) 4.16082 0.149461
\(776\) 0.793166 + 1.37380i 0.0284730 + 0.0493167i
\(777\) −0.248575 + 0.430545i −0.00891758 + 0.0154457i
\(778\) 5.82306 10.0858i 0.208767 0.361595i
\(779\) 18.3043 0.655818
\(780\) 0 0
\(781\) −16.6297 −0.595058
\(782\) 9.99674 17.3149i 0.357483 0.619178i
\(783\) −13.3112 + 23.0556i −0.475702 + 0.823941i
\(784\) 2.46410 + 4.26795i 0.0880036 + 0.152427i
\(785\) 12.6280 0.450714
\(786\) −5.93019 10.2714i −0.211523 0.366368i
\(787\) 16.0482 + 27.7963i 0.572056 + 0.990830i 0.996355 + 0.0853077i \(0.0271873\pi\)
−0.424299 + 0.905522i \(0.639479\pi\)
\(788\) −10.8006 −0.384755
\(789\) −5.14047 8.90355i −0.183006 0.316975i
\(790\) −6.36440 + 11.0235i −0.226435 + 0.392197i
\(791\) −5.56771 + 9.64355i −0.197965 + 0.342885i
\(792\) −7.31643 −0.259978
\(793\) 0 0
\(794\) −0.399804 −0.0141885
\(795\) 2.87231 4.97498i 0.101870 0.176444i
\(796\) −5.50367 + 9.53264i −0.195072 + 0.337875i
\(797\) −11.1083 19.2402i −0.393477 0.681522i 0.599429 0.800428i \(-0.295395\pi\)
−0.992905 + 0.118906i \(0.962061\pi\)
\(798\) −3.74265 −0.132488
\(799\) −28.7522 49.8004i −1.01718 1.76181i
\(800\) −0.500000 0.866025i −0.0176777 0.0306186i
\(801\) −15.7255 −0.555634
\(802\) 4.25388 + 7.36793i 0.150210 + 0.260171i
\(803\) 2.30532 3.99292i 0.0813528 0.140907i
\(804\) 1.59922 2.76993i 0.0564000 0.0976877i
\(805\) 6.38992 0.225215
\(806\) 0 0
\(807\) −11.6332 −0.409510
\(808\) −6.87676 + 11.9109i −0.241924 + 0.419024i
\(809\) 5.27410 9.13501i 0.185427 0.321170i −0.758293 0.651914i \(-0.773966\pi\)
0.943720 + 0.330744i \(0.107300\pi\)
\(810\) −2.94383 5.09886i −0.103436 0.179156i
\(811\) −41.6434 −1.46230 −0.731149 0.682218i \(-0.761016\pi\)
−0.731149 + 0.682218i \(0.761016\pi\)
\(812\) −5.66025 9.80385i −0.198636 0.344048i
\(813\) 5.51313 + 9.54902i 0.193354 + 0.334899i
\(814\) −1.59498 −0.0559040
\(815\) 9.18428 + 15.9076i 0.321711 + 0.557220i
\(816\) −1.35154 + 2.34094i −0.0473134 + 0.0819493i
\(817\) −5.66449 + 9.81119i −0.198176 + 0.343250i
\(818\) 14.0131 0.489958
\(819\) 0 0
\(820\) 4.22512 0.147548
\(821\) −11.6140 + 20.1160i −0.405331 + 0.702053i −0.994360 0.106058i \(-0.966177\pi\)
0.589029 + 0.808112i \(0.299510\pi\)
\(822\) −5.18110 + 8.97392i −0.180711 + 0.313001i
\(823\) 0.499427 + 0.865033i 0.0174089 + 0.0301531i 0.874599 0.484848i \(-0.161125\pi\)
−0.857190 + 0.515001i \(0.827792\pi\)
\(824\) 5.73205 0.199685
\(825\) 0.831757 + 1.44065i 0.0289581 + 0.0501569i
\(826\) 2.49307 + 4.31812i 0.0867449 + 0.150247i
\(827\) −29.8030 −1.03635 −0.518175 0.855274i \(-0.673389\pi\)
−0.518175 + 0.855274i \(0.673389\pi\)
\(828\) 5.85945 + 10.1489i 0.203630 + 0.352698i
\(829\) −11.8508 + 20.5261i −0.411594 + 0.712902i −0.995064 0.0992329i \(-0.968361\pi\)
0.583470 + 0.812134i \(0.301694\pi\)
\(830\) −5.02346 + 8.70088i −0.174367 + 0.302012i
\(831\) 16.3458 0.567030
\(832\) 0 0
\(833\) 22.1950 0.769011
\(834\) 0.884259 1.53158i 0.0306194 0.0530343i
\(835\) 10.8043 18.7135i 0.373897 0.647608i
\(836\) −6.00367 10.3987i −0.207641 0.359645i
\(837\) 14.0842 0.486822
\(838\) 12.0977 + 20.9539i 0.417909 + 0.723839i
\(839\) 12.2971 + 21.2991i 0.424541 + 0.735327i 0.996377 0.0850406i \(-0.0271020\pi\)
−0.571836 + 0.820368i \(0.693769\pi\)
\(840\) −0.863906 −0.0298076
\(841\) −16.4282 28.4545i −0.566490 0.981189i
\(842\) −17.8196 + 30.8644i −0.614104 + 1.06366i
\(843\) 9.02740 15.6359i 0.310920 0.538530i
\(844\) 26.2582 0.903843
\(845\) 0 0
\(846\) 33.7055 1.15882
\(847\) 2.38801 4.13615i 0.0820529 0.142120i
\(848\) −4.78561 + 8.28893i −0.164339 + 0.284643i
\(849\) −7.64613 13.2435i −0.262414 0.454515i
\(850\) −4.50367 −0.154475
\(851\) 1.27736 + 2.21245i 0.0437873 + 0.0758418i
\(852\) −1.80059 3.11871i −0.0616871 0.106845i
\(853\) −41.7449 −1.42932 −0.714659 0.699473i \(-0.753418\pi\)
−0.714659 + 0.699473i \(0.753418\pi\)
\(854\) 8.99873 + 15.5863i 0.307930 + 0.533351i
\(855\) 5.71806 9.90396i 0.195553 0.338708i
\(856\) −2.33967 + 4.05242i −0.0799682 + 0.138509i
\(857\) −18.7543 −0.640636 −0.320318 0.947310i \(-0.603790\pi\)
−0.320318 + 0.947310i \(0.603790\pi\)
\(858\) 0 0
\(859\) 13.8357 0.472066 0.236033 0.971745i \(-0.424153\pi\)
0.236033 + 0.971745i \(0.424153\pi\)
\(860\) −1.30752 + 2.26469i −0.0445860 + 0.0772252i
\(861\) 1.82505 3.16108i 0.0621976 0.107729i
\(862\) −2.48022 4.29586i −0.0844765 0.146318i
\(863\) 8.00891 0.272626 0.136313 0.990666i \(-0.456475\pi\)
0.136313 + 0.990666i \(0.456475\pi\)
\(864\) −1.69248 2.93146i −0.0575794 0.0997304i
\(865\) −1.99470 3.45492i −0.0678218 0.117471i
\(866\) 4.21621 0.143273
\(867\) 0.985237 + 1.70648i 0.0334604 + 0.0579551i
\(868\) −2.99449 + 5.18661i −0.101640 + 0.176045i
\(869\) −17.6397 + 30.5528i −0.598385 + 1.03643i
\(870\) −4.72047 −0.160039
\(871\) 0 0
\(872\) 2.32164 0.0786208
\(873\) −2.09377 + 3.62652i −0.0708635 + 0.122739i
\(874\) −9.61623 + 16.6558i −0.325274 + 0.563391i
\(875\) −0.719687 1.24653i −0.0243299 0.0421405i
\(876\) 0.998434 0.0337340
\(877\) 18.7658 + 32.5033i 0.633677 + 1.09756i 0.986794 + 0.161981i \(0.0517883\pi\)
−0.353117 + 0.935579i \(0.614878\pi\)
\(878\) 7.37500 + 12.7739i 0.248894 + 0.431097i
\(879\) 9.94996 0.335604
\(880\) −1.38581 2.40029i −0.0467156 0.0809139i
\(881\) −6.05808 + 10.4929i −0.204102 + 0.353515i −0.949846 0.312717i \(-0.898761\pi\)
0.745744 + 0.666232i \(0.232094\pi\)
\(882\) −6.50465 + 11.2664i −0.219023 + 0.379359i
\(883\) −44.4026 −1.49427 −0.747133 0.664675i \(-0.768570\pi\)
−0.747133 + 0.664675i \(0.768570\pi\)
\(884\) 0 0
\(885\) 2.07914 0.0698895
\(886\) 6.11871 10.5979i 0.205562 0.356044i
\(887\) 3.25714 5.64153i 0.109364 0.189424i −0.806149 0.591713i \(-0.798452\pi\)
0.915513 + 0.402289i \(0.131785\pi\)
\(888\) −0.172697 0.299119i −0.00579532 0.0100378i
\(889\) −23.2090 −0.778404
\(890\) −2.97859 5.15906i −0.0998424 0.172932i
\(891\) −8.15917 14.1321i −0.273343 0.473443i
\(892\) −22.2042 −0.743452
\(893\) 27.6578 + 47.9048i 0.925534 + 1.60307i
\(894\) 2.12027 3.67242i 0.0709126 0.122824i
\(895\) −6.23996 + 10.8079i −0.208579 + 0.361269i
\(896\) 1.43937 0.0480861
\(897\) 0 0
\(898\) −19.0714 −0.636420
\(899\) −16.3622 + 28.3401i −0.545710 + 0.945197i
\(900\) 1.31988 2.28610i 0.0439961 0.0762035i
\(901\) 21.5528 + 37.3306i 0.718029 + 1.24366i
\(902\) 11.7104 0.389915
\(903\) 1.12957 + 1.95648i 0.0375898 + 0.0651075i
\(904\) −3.86814 6.69982i −0.128653 0.222833i
\(905\) −19.4319 −0.645937
\(906\) −4.75135 8.22957i −0.157853 0.273409i
\(907\) 2.96883 5.14216i 0.0985784 0.170743i −0.812518 0.582936i \(-0.801904\pi\)
0.911096 + 0.412193i \(0.135237\pi\)
\(908\) 1.03957 1.80059i 0.0344993 0.0597546i
\(909\) −36.3061 −1.20420
\(910\) 0 0
\(911\) 48.7860 1.61635 0.808177 0.588940i \(-0.200455\pi\)
0.808177 + 0.588940i \(0.200455\pi\)
\(912\) 1.30010 2.25184i 0.0430505 0.0745657i
\(913\) −13.9231 + 24.1155i −0.460788 + 0.798108i
\(914\) −8.05688 13.9549i −0.266498 0.461588i
\(915\) 7.50465 0.248096
\(916\) 2.33967 + 4.05242i 0.0773048 + 0.133896i
\(917\) 14.2216 + 24.6326i 0.469640 + 0.813440i
\(918\) −15.2448 −0.503152
\(919\) 14.8564 + 25.7321i 0.490068 + 0.848822i 0.999935 0.0114312i \(-0.00363874\pi\)
−0.509867 + 0.860253i \(0.670305\pi\)
\(920\) −2.21969 + 3.84461i −0.0731809 + 0.126753i
\(921\) −4.88325 + 8.45803i −0.160909 + 0.278702i
\(922\) −4.84466 −0.159550
\(923\) 0 0
\(924\) −2.39442 −0.0787706
\(925\) 0.287734 0.498370i 0.00946063 0.0163863i
\(926\) 4.11582 7.12881i 0.135254 0.234267i
\(927\) 7.56563 + 13.1041i 0.248488 + 0.430394i
\(928\) 7.86488 0.258177
\(929\) 9.00734 + 15.6012i 0.295521 + 0.511858i 0.975106 0.221739i \(-0.0711733\pi\)
−0.679585 + 0.733597i \(0.737840\pi\)
\(930\) 1.24865 + 2.16273i 0.0409450 + 0.0709188i
\(931\) −21.3502 −0.699724
\(932\) 0.305530 + 0.529194i 0.0100080 + 0.0173343i
\(933\) 4.83316 8.37128i 0.158231 0.274063i
\(934\) −16.7436 + 29.0008i −0.547868 + 0.948936i
\(935\) −12.4825 −0.408220
\(936\) 0 0
\(937\) 28.9796 0.946723 0.473361 0.880868i \(-0.343040\pi\)
0.473361 + 0.880868i \(0.343040\pi\)
\(938\) −3.83520 + 6.64276i −0.125224 + 0.216894i
\(939\) −3.06586 + 5.31023i −0.100051 + 0.173293i
\(940\) 6.38418 + 11.0577i 0.208229 + 0.360663i
\(941\) −4.61504 −0.150446 −0.0752230 0.997167i \(-0.523967\pi\)
−0.0752230 + 0.997167i \(0.523967\pi\)
\(942\) 3.78964 + 6.56386i 0.123473 + 0.213862i
\(943\) −9.37844 16.2439i −0.305404 0.528975i
\(944\) −3.46410 −0.112747
\(945\) −2.43611 4.21947i −0.0792468 0.137259i
\(946\) −3.62395 + 6.27686i −0.117825 + 0.204078i
\(947\) 5.30031 9.18041i 0.172237 0.298323i −0.766965 0.641689i \(-0.778234\pi\)
0.939202 + 0.343366i \(0.111567\pi\)
\(948\) −7.63977 −0.248128
\(949\) 0 0
\(950\) 4.33225 0.140557
\(951\) −0.0613304 + 0.106227i −0.00198878 + 0.00344466i
\(952\) 3.24123 5.61398i 0.105049 0.181950i
\(953\) −14.3705 24.8905i −0.465508 0.806283i 0.533717 0.845663i \(-0.320795\pi\)
−0.999224 + 0.0393806i \(0.987462\pi\)
\(954\) −25.2658 −0.818010
\(955\) 9.16074 + 15.8669i 0.296435 + 0.513440i
\(956\) 12.8240 + 22.2119i 0.414759 + 0.718384i
\(957\) −13.0833 −0.422925
\(958\) 4.02672 + 6.97448i 0.130097 + 0.225335i
\(959\) 12.4252 21.5210i 0.401230 0.694950i
\(960\) 0.300098 0.519785i 0.00968562 0.0167760i
\(961\) −13.6876 −0.441534
\(962\) 0 0
\(963\) −12.3523 −0.398049
\(964\) −13.5466 + 23.4633i −0.436305 + 0.755703i
\(965\) 2.37182 4.10811i 0.0763515 0.132245i
\(966\) 1.91760 + 3.32138i 0.0616978 + 0.106864i
\(967\) 8.08648 0.260044 0.130022 0.991511i \(-0.458495\pi\)
0.130022 + 0.991511i \(0.458495\pi\)
\(968\) 1.65906 + 2.87358i 0.0533242 + 0.0923603i
\(969\) −5.85521 10.1415i −0.188097 0.325793i
\(970\) −1.58633 −0.0509341
\(971\) −0.302790 0.524448i −0.00971701 0.0168304i 0.861126 0.508392i \(-0.169760\pi\)
−0.870843 + 0.491561i \(0.836426\pi\)
\(972\) 6.84432 11.8547i 0.219532 0.380240i
\(973\) −2.12061 + 3.67300i −0.0679835 + 0.117751i
\(974\) 1.62352 0.0520208
\(975\) 0 0
\(976\) −12.5037 −0.400233
\(977\) −24.5216 + 42.4727i −0.784516 + 1.35882i 0.144772 + 0.989465i \(0.453755\pi\)
−0.929288 + 0.369356i \(0.879578\pi\)
\(978\) −5.51236 + 9.54769i −0.176266 + 0.305302i
\(979\) −8.25551 14.2990i −0.263847 0.456997i
\(980\) −4.92820 −0.157426
\(981\) 3.06430 + 5.30752i 0.0978355 + 0.169456i
\(982\) −5.16033 8.93796i −0.164673 0.285222i
\(983\) 30.7684 0.981358 0.490679 0.871340i \(-0.336749\pi\)
0.490679 + 0.871340i \(0.336749\pi\)
\(984\) 1.26795 + 2.19615i 0.0404207 + 0.0700108i
\(985\) 5.40029 9.35358i 0.172068 0.298030i
\(986\) 17.7104 30.6754i 0.564015 0.976902i
\(987\) 11.0307 0.351110
\(988\) 0 0
\(989\) 11.6091 0.369149
\(990\) 3.65821 6.33621i 0.116266 0.201378i
\(991\) −7.74435 + 13.4136i −0.246007 + 0.426097i −0.962414 0.271585i \(-0.912452\pi\)
0.716407 + 0.697683i \(0.245785\pi\)
\(992\) −2.08041 3.60338i −0.0660531 0.114407i
\(993\) 11.4429 0.363129
\(994\) 4.31812 + 7.47921i 0.136962 + 0.237226i
\(995\) −5.50367 9.53264i −0.174478 0.302205i
\(996\) −6.03011 −0.191071
\(997\) 3.91111 + 6.77423i 0.123866 + 0.214542i 0.921289 0.388878i \(-0.127137\pi\)
−0.797423 + 0.603421i \(0.793804\pi\)
\(998\) 6.99033 12.1076i 0.221275 0.383260i
\(999\) 0.973969 1.68696i 0.0308150 0.0533731i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.e.s.191.3 8
13.2 odd 12 1690.2.l.j.361.2 8
13.3 even 3 inner 1690.2.e.s.991.3 8
13.4 even 6 1690.2.a.t.1.2 4
13.5 odd 4 130.2.l.b.121.4 yes 8
13.6 odd 12 1690.2.d.k.1351.2 8
13.7 odd 12 1690.2.d.k.1351.6 8
13.8 odd 4 1690.2.l.j.1161.2 8
13.9 even 3 1690.2.a.u.1.2 4
13.10 even 6 1690.2.e.t.991.3 8
13.11 odd 12 130.2.l.b.101.4 8
13.12 even 2 1690.2.e.t.191.3 8
39.5 even 4 1170.2.bs.g.901.2 8
39.11 even 12 1170.2.bs.g.361.2 8
52.11 even 12 1040.2.da.d.881.2 8
52.31 even 4 1040.2.da.d.641.2 8
65.4 even 6 8450.2.a.cm.1.3 4
65.9 even 6 8450.2.a.ci.1.3 4
65.18 even 4 650.2.n.e.199.3 8
65.24 odd 12 650.2.m.c.101.1 8
65.37 even 12 650.2.n.e.49.3 8
65.44 odd 4 650.2.m.c.251.1 8
65.57 even 4 650.2.n.d.199.2 8
65.63 even 12 650.2.n.d.49.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.l.b.101.4 8 13.11 odd 12
130.2.l.b.121.4 yes 8 13.5 odd 4
650.2.m.c.101.1 8 65.24 odd 12
650.2.m.c.251.1 8 65.44 odd 4
650.2.n.d.49.2 8 65.63 even 12
650.2.n.d.199.2 8 65.57 even 4
650.2.n.e.49.3 8 65.37 even 12
650.2.n.e.199.3 8 65.18 even 4
1040.2.da.d.641.2 8 52.31 even 4
1040.2.da.d.881.2 8 52.11 even 12
1170.2.bs.g.361.2 8 39.11 even 12
1170.2.bs.g.901.2 8 39.5 even 4
1690.2.a.t.1.2 4 13.4 even 6
1690.2.a.u.1.2 4 13.9 even 3
1690.2.d.k.1351.2 8 13.6 odd 12
1690.2.d.k.1351.6 8 13.7 odd 12
1690.2.e.s.191.3 8 1.1 even 1 trivial
1690.2.e.s.991.3 8 13.3 even 3 inner
1690.2.e.t.191.3 8 13.12 even 2
1690.2.e.t.991.3 8 13.10 even 6
1690.2.l.j.361.2 8 13.2 odd 12
1690.2.l.j.1161.2 8 13.8 odd 4
8450.2.a.ci.1.3 4 65.9 even 6
8450.2.a.cm.1.3 4 65.4 even 6