Properties

Label 640.2.o.k.63.6
Level $640$
Weight $2$
Character 640.63
Analytic conductor $5.110$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [640,2,Mod(63,640)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("640.63"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(640, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 640 = 2^{7} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 640.o (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.11042572936\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.125772815663104.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 27x^{8} + 107x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 63.6
Root \(-0.219986 - 0.219986i\) of defining polynomial
Character \(\chi\) \(=\) 640.63
Dual form 640.2.o.k.447.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.05288 + 2.05288i) q^{3} +(2.21432 - 0.311108i) q^{5} +(1.07864 + 1.07864i) q^{7} +5.42864i q^{9} -4.98571 q^{11} +(3.90321 - 3.90321i) q^{13} +(5.18440 + 3.90707i) q^{15} +(-0.377784 + 0.377784i) q^{17} +3.43461i q^{19} +4.42864i q^{21} +(0.198694 - 0.198694i) q^{23} +(4.80642 - 1.37778i) q^{25} +(-4.98571 + 4.98571i) q^{27} -7.80642 q^{29} -6.05424i q^{31} +(-10.2351 - 10.2351i) q^{33} +(2.72403 + 2.05288i) q^{35} +(-6.33185 - 6.33185i) q^{37} +16.0257 q^{39} +3.18421 q^{41} +(2.05288 + 2.05288i) q^{43} +(1.68889 + 12.0207i) q^{45} +(2.35597 + 2.35597i) q^{47} -4.67307i q^{49} -1.55109 q^{51} +(-0.719004 + 0.719004i) q^{53} +(-11.0400 + 1.55109i) q^{55} +(-7.05086 + 7.05086i) q^{57} -6.53680i q^{59} +3.37778i q^{61} +(-5.85555 + 5.85555i) q^{63} +(7.42864 - 9.85728i) q^{65} +(-7.70974 + 7.70974i) q^{67} +0.815792 q^{69} +12.9235i q^{71} +(2.05086 + 2.05086i) q^{73} +(12.6954 + 7.03859i) q^{75} +(-5.37778 - 5.37778i) q^{77} +3.10219 q^{79} -4.18421 q^{81} +(-5.48750 - 5.48750i) q^{83} +(-0.719004 + 0.954067i) q^{85} +(-16.0257 - 16.0257i) q^{87} +8.85728i q^{89} +8.42032 q^{91} +(12.4286 - 12.4286i) q^{93} +(1.06854 + 7.60534i) q^{95} +(-2.80642 + 2.80642i) q^{97} -27.0656i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 20 q^{13} - 4 q^{17} + 4 q^{25} - 40 q^{29} - 16 q^{33} + 4 q^{37} - 16 q^{41} + 20 q^{45} - 36 q^{53} - 32 q^{57} + 36 q^{65} + 64 q^{69} - 28 q^{73} - 64 q^{77} + 4 q^{81} - 36 q^{85} + 96 q^{93}+ \cdots + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/640\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.05288 + 2.05288i 1.18523 + 1.18523i 0.978370 + 0.206861i \(0.0663248\pi\)
0.206861 + 0.978370i \(0.433675\pi\)
\(4\) 0 0
\(5\) 2.21432 0.311108i 0.990274 0.139132i
\(6\) 0 0
\(7\) 1.07864 + 1.07864i 0.407688 + 0.407688i 0.880931 0.473244i \(-0.156917\pi\)
−0.473244 + 0.880931i \(0.656917\pi\)
\(8\) 0 0
\(9\) 5.42864i 1.80955i
\(10\) 0 0
\(11\) −4.98571 −1.50325 −0.751624 0.659592i \(-0.770729\pi\)
−0.751624 + 0.659592i \(0.770729\pi\)
\(12\) 0 0
\(13\) 3.90321 3.90321i 1.08256 1.08256i 0.0862858 0.996270i \(-0.472500\pi\)
0.996270 0.0862858i \(-0.0274998\pi\)
\(14\) 0 0
\(15\) 5.18440 + 3.90707i 1.33861 + 1.00880i
\(16\) 0 0
\(17\) −0.377784 + 0.377784i −0.0916262 + 0.0916262i −0.751434 0.659808i \(-0.770638\pi\)
0.659808 + 0.751434i \(0.270638\pi\)
\(18\) 0 0
\(19\) 3.43461i 0.787955i 0.919120 + 0.393977i \(0.128901\pi\)
−0.919120 + 0.393977i \(0.871099\pi\)
\(20\) 0 0
\(21\) 4.42864i 0.966408i
\(22\) 0 0
\(23\) 0.198694 0.198694i 0.0414306 0.0414306i −0.686088 0.727519i \(-0.740673\pi\)
0.727519 + 0.686088i \(0.240673\pi\)
\(24\) 0 0
\(25\) 4.80642 1.37778i 0.961285 0.275557i
\(26\) 0 0
\(27\) −4.98571 + 4.98571i −0.959500 + 0.959500i
\(28\) 0 0
\(29\) −7.80642 −1.44962 −0.724808 0.688951i \(-0.758072\pi\)
−0.724808 + 0.688951i \(0.758072\pi\)
\(30\) 0 0
\(31\) 6.05424i 1.08737i −0.839288 0.543687i \(-0.817028\pi\)
0.839288 0.543687i \(-0.182972\pi\)
\(32\) 0 0
\(33\) −10.2351 10.2351i −1.78170 1.78170i
\(34\) 0 0
\(35\) 2.72403 + 2.05288i 0.460445 + 0.347000i
\(36\) 0 0
\(37\) −6.33185 6.33185i −1.04095 1.04095i −0.999125 0.0418250i \(-0.986683\pi\)
−0.0418250 0.999125i \(-0.513317\pi\)
\(38\) 0 0
\(39\) 16.0257 2.56616
\(40\) 0 0
\(41\) 3.18421 0.497290 0.248645 0.968595i \(-0.420015\pi\)
0.248645 + 0.968595i \(0.420015\pi\)
\(42\) 0 0
\(43\) 2.05288 + 2.05288i 0.313061 + 0.313061i 0.846094 0.533033i \(-0.178948\pi\)
−0.533033 + 0.846094i \(0.678948\pi\)
\(44\) 0 0
\(45\) 1.68889 + 12.0207i 0.251765 + 1.79195i
\(46\) 0 0
\(47\) 2.35597 + 2.35597i 0.343654 + 0.343654i 0.857739 0.514085i \(-0.171868\pi\)
−0.514085 + 0.857739i \(0.671868\pi\)
\(48\) 0 0
\(49\) 4.67307i 0.667582i
\(50\) 0 0
\(51\) −1.55109 −0.217196
\(52\) 0 0
\(53\) −0.719004 + 0.719004i −0.0987628 + 0.0987628i −0.754762 0.655999i \(-0.772248\pi\)
0.655999 + 0.754762i \(0.272248\pi\)
\(54\) 0 0
\(55\) −11.0400 + 1.55109i −1.48863 + 0.209149i
\(56\) 0 0
\(57\) −7.05086 + 7.05086i −0.933909 + 0.933909i
\(58\) 0 0
\(59\) 6.53680i 0.851019i −0.904954 0.425509i \(-0.860095\pi\)
0.904954 0.425509i \(-0.139905\pi\)
\(60\) 0 0
\(61\) 3.37778i 0.432481i 0.976340 + 0.216240i \(0.0693795\pi\)
−0.976340 + 0.216240i \(0.930620\pi\)
\(62\) 0 0
\(63\) −5.85555 + 5.85555i −0.737730 + 0.737730i
\(64\) 0 0
\(65\) 7.42864 9.85728i 0.921409 1.22264i
\(66\) 0 0
\(67\) −7.70974 + 7.70974i −0.941894 + 0.941894i −0.998402 0.0565081i \(-0.982003\pi\)
0.0565081 + 0.998402i \(0.482003\pi\)
\(68\) 0 0
\(69\) 0.815792 0.0982098
\(70\) 0 0
\(71\) 12.9235i 1.53373i 0.641806 + 0.766867i \(0.278185\pi\)
−0.641806 + 0.766867i \(0.721815\pi\)
\(72\) 0 0
\(73\) 2.05086 + 2.05086i 0.240034 + 0.240034i 0.816864 0.576830i \(-0.195710\pi\)
−0.576830 + 0.816864i \(0.695710\pi\)
\(74\) 0 0
\(75\) 12.6954 + 7.03859i 1.46594 + 0.812746i
\(76\) 0 0
\(77\) −5.37778 5.37778i −0.612855 0.612855i
\(78\) 0 0
\(79\) 3.10219 0.349023 0.174512 0.984655i \(-0.444165\pi\)
0.174512 + 0.984655i \(0.444165\pi\)
\(80\) 0 0
\(81\) −4.18421 −0.464912
\(82\) 0 0
\(83\) −5.48750 5.48750i −0.602331 0.602331i 0.338600 0.940931i \(-0.390047\pi\)
−0.940931 + 0.338600i \(0.890047\pi\)
\(84\) 0 0
\(85\) −0.719004 + 0.954067i −0.0779869 + 0.103483i
\(86\) 0 0
\(87\) −16.0257 16.0257i −1.71813 1.71813i
\(88\) 0 0
\(89\) 8.85728i 0.938870i 0.882967 + 0.469435i \(0.155542\pi\)
−0.882967 + 0.469435i \(0.844458\pi\)
\(90\) 0 0
\(91\) 8.42032 0.882690
\(92\) 0 0
\(93\) 12.4286 12.4286i 1.28879 1.28879i
\(94\) 0 0
\(95\) 1.06854 + 7.60534i 0.109629 + 0.780291i
\(96\) 0 0
\(97\) −2.80642 + 2.80642i −0.284949 + 0.284949i −0.835079 0.550130i \(-0.814578\pi\)
0.550130 + 0.835079i \(0.314578\pi\)
\(98\) 0 0
\(99\) 27.0656i 2.72020i
\(100\) 0 0
\(101\) 14.1017i 1.40317i −0.712584 0.701586i \(-0.752475\pi\)
0.712584 0.701586i \(-0.247525\pi\)
\(102\) 0 0
\(103\) 10.1701 10.1701i 1.00209 1.00209i 0.00209284 0.999998i \(-0.499334\pi\)
0.999998 0.00209284i \(-0.000666171\pi\)
\(104\) 0 0
\(105\) 1.37778 + 9.80642i 0.134458 + 0.957009i
\(106\) 0 0
\(107\) 2.26168 2.26168i 0.218645 0.218645i −0.589282 0.807927i \(-0.700589\pi\)
0.807927 + 0.589282i \(0.200589\pi\)
\(108\) 0 0
\(109\) −0.815792 −0.0781387 −0.0390693 0.999237i \(-0.512439\pi\)
−0.0390693 + 0.999237i \(0.512439\pi\)
\(110\) 0 0
\(111\) 25.9971i 2.46753i
\(112\) 0 0
\(113\) 7.42864 + 7.42864i 0.698828 + 0.698828i 0.964158 0.265330i \(-0.0854809\pi\)
−0.265330 + 0.964158i \(0.585481\pi\)
\(114\) 0 0
\(115\) 0.378158 0.501788i 0.0352634 0.0467920i
\(116\) 0 0
\(117\) 21.1891 + 21.1891i 1.95894 + 1.95894i
\(118\) 0 0
\(119\) −0.814987 −0.0747097
\(120\) 0 0
\(121\) 13.8573 1.25975
\(122\) 0 0
\(123\) 6.53680 + 6.53680i 0.589403 + 0.589403i
\(124\) 0 0
\(125\) 10.2143 4.54617i 0.913597 0.406622i
\(126\) 0 0
\(127\) −8.89277 8.89277i −0.789106 0.789106i 0.192241 0.981348i \(-0.438424\pi\)
−0.981348 + 0.192241i \(0.938424\pi\)
\(128\) 0 0
\(129\) 8.42864i 0.742100i
\(130\) 0 0
\(131\) −17.0942 −1.49353 −0.746763 0.665090i \(-0.768393\pi\)
−0.746763 + 0.665090i \(0.768393\pi\)
\(132\) 0 0
\(133\) −3.70471 + 3.70471i −0.321239 + 0.321239i
\(134\) 0 0
\(135\) −9.48886 + 12.5910i −0.816671 + 1.08366i
\(136\) 0 0
\(137\) 5.00000 5.00000i 0.427179 0.427179i −0.460487 0.887666i \(-0.652325\pi\)
0.887666 + 0.460487i \(0.152325\pi\)
\(138\) 0 0
\(139\) 18.6453i 1.58147i −0.612157 0.790736i \(-0.709698\pi\)
0.612157 0.790736i \(-0.290302\pi\)
\(140\) 0 0
\(141\) 9.67307i 0.814620i
\(142\) 0 0
\(143\) −19.4603 + 19.4603i −1.62735 + 1.62735i
\(144\) 0 0
\(145\) −17.2859 + 2.42864i −1.43552 + 0.201688i
\(146\) 0 0
\(147\) 9.59326 9.59326i 0.791239 0.791239i
\(148\) 0 0
\(149\) 9.93978 0.814298 0.407149 0.913362i \(-0.366523\pi\)
0.407149 + 0.913362i \(0.366523\pi\)
\(150\) 0 0
\(151\) 3.91717i 0.318775i −0.987216 0.159387i \(-0.949048\pi\)
0.987216 0.159387i \(-0.0509519\pi\)
\(152\) 0 0
\(153\) −2.05086 2.05086i −0.165802 0.165802i
\(154\) 0 0
\(155\) −1.88352 13.4060i −0.151288 1.07680i
\(156\) 0 0
\(157\) −10.9541 10.9541i −0.874230 0.874230i 0.118700 0.992930i \(-0.462127\pi\)
−0.992930 + 0.118700i \(0.962127\pi\)
\(158\) 0 0
\(159\) −2.95206 −0.234113
\(160\) 0 0
\(161\) 0.428639 0.0337815
\(162\) 0 0
\(163\) 12.0243 + 12.0243i 0.941816 + 0.941816i 0.998398 0.0565824i \(-0.0180204\pi\)
−0.0565824 + 0.998398i \(0.518020\pi\)
\(164\) 0 0
\(165\) −25.8479 19.4795i −2.01226 1.51648i
\(166\) 0 0
\(167\) −7.61544 7.61544i −0.589300 0.589300i 0.348142 0.937442i \(-0.386813\pi\)
−0.937442 + 0.348142i \(0.886813\pi\)
\(168\) 0 0
\(169\) 17.4701i 1.34386i
\(170\) 0 0
\(171\) −18.6453 −1.42584
\(172\) 0 0
\(173\) −11.1891 + 11.1891i −0.850694 + 0.850694i −0.990219 0.139525i \(-0.955443\pi\)
0.139525 + 0.990219i \(0.455443\pi\)
\(174\) 0 0
\(175\) 6.67054 + 3.69827i 0.504245 + 0.279563i
\(176\) 0 0
\(177\) 13.4193 13.4193i 1.00865 1.00865i
\(178\) 0 0
\(179\) 5.57169i 0.416447i 0.978081 + 0.208224i \(0.0667682\pi\)
−0.978081 + 0.208224i \(0.933232\pi\)
\(180\) 0 0
\(181\) 3.34614i 0.248717i 0.992237 + 0.124358i \(0.0396872\pi\)
−0.992237 + 0.124358i \(0.960313\pi\)
\(182\) 0 0
\(183\) −6.93419 + 6.93419i −0.512590 + 0.512590i
\(184\) 0 0
\(185\) −15.9906 12.0509i −1.17565 0.885996i
\(186\) 0 0
\(187\) 1.88352 1.88352i 0.137737 0.137737i
\(188\) 0 0
\(189\) −10.7556 −0.782353
\(190\) 0 0
\(191\) 9.15643i 0.662536i −0.943537 0.331268i \(-0.892524\pi\)
0.943537 0.331268i \(-0.107476\pi\)
\(192\) 0 0
\(193\) 5.99063 + 5.99063i 0.431215 + 0.431215i 0.889042 0.457826i \(-0.151372\pi\)
−0.457826 + 0.889042i \(0.651372\pi\)
\(194\) 0 0
\(195\) 35.4859 4.98571i 2.54120 0.357034i
\(196\) 0 0
\(197\) 3.66815 + 3.66815i 0.261345 + 0.261345i 0.825600 0.564255i \(-0.190837\pi\)
−0.564255 + 0.825600i \(0.690837\pi\)
\(198\) 0 0
\(199\) 3.10219 0.219908 0.109954 0.993937i \(-0.464930\pi\)
0.109954 + 0.993937i \(0.464930\pi\)
\(200\) 0 0
\(201\) −31.6543 −2.23272
\(202\) 0 0
\(203\) −8.42032 8.42032i −0.590991 0.590991i
\(204\) 0 0
\(205\) 7.05086 0.990632i 0.492453 0.0691887i
\(206\) 0 0
\(207\) 1.07864 + 1.07864i 0.0749707 + 0.0749707i
\(208\) 0 0
\(209\) 17.1240i 1.18449i
\(210\) 0 0
\(211\) 17.0942 1.17681 0.588406 0.808565i \(-0.299756\pi\)
0.588406 + 0.808565i \(0.299756\pi\)
\(212\) 0 0
\(213\) −26.5303 + 26.5303i −1.81783 + 1.81783i
\(214\) 0 0
\(215\) 5.18440 + 3.90707i 0.353573 + 0.266460i
\(216\) 0 0
\(217\) 6.53035 6.53035i 0.443309 0.443309i
\(218\) 0 0
\(219\) 8.42032i 0.568993i
\(220\) 0 0
\(221\) 2.94914i 0.198381i
\(222\) 0 0
\(223\) 3.23592 3.23592i 0.216693 0.216693i −0.590410 0.807103i \(-0.701034\pi\)
0.807103 + 0.590410i \(0.201034\pi\)
\(224\) 0 0
\(225\) 7.47949 + 26.0923i 0.498633 + 1.73949i
\(226\) 0 0
\(227\) −17.8048 + 17.8048i −1.18174 + 1.18174i −0.202453 + 0.979292i \(0.564891\pi\)
−0.979292 + 0.202453i \(0.935109\pi\)
\(228\) 0 0
\(229\) 12.1936 0.805774 0.402887 0.915250i \(-0.368007\pi\)
0.402887 + 0.915250i \(0.368007\pi\)
\(230\) 0 0
\(231\) 22.0799i 1.45275i
\(232\) 0 0
\(233\) 1.13335 + 1.13335i 0.0742484 + 0.0742484i 0.743256 0.669007i \(-0.233281\pi\)
−0.669007 + 0.743256i \(0.733281\pi\)
\(234\) 0 0
\(235\) 5.94984 + 4.48392i 0.388125 + 0.292499i
\(236\) 0 0
\(237\) 6.36842 + 6.36842i 0.413673 + 0.413673i
\(238\) 0 0
\(239\) 2.13707 0.138236 0.0691178 0.997609i \(-0.477982\pi\)
0.0691178 + 0.997609i \(0.477982\pi\)
\(240\) 0 0
\(241\) −0.161933 −0.0104310 −0.00521552 0.999986i \(-0.501660\pi\)
−0.00521552 + 0.999986i \(0.501660\pi\)
\(242\) 0 0
\(243\) 6.36744 + 6.36744i 0.408472 + 0.408472i
\(244\) 0 0
\(245\) −1.45383 10.3477i −0.0928817 0.661089i
\(246\) 0 0
\(247\) 13.4060 + 13.4060i 0.853005 + 0.853005i
\(248\) 0 0
\(249\) 22.5303i 1.42780i
\(250\) 0 0
\(251\) −14.9571 −0.944085 −0.472043 0.881576i \(-0.656483\pi\)
−0.472043 + 0.881576i \(0.656483\pi\)
\(252\) 0 0
\(253\) −0.990632 + 0.990632i −0.0622805 + 0.0622805i
\(254\) 0 0
\(255\) −3.43461 + 0.482557i −0.215084 + 0.0302189i
\(256\) 0 0
\(257\) −6.67307 + 6.67307i −0.416255 + 0.416255i −0.883911 0.467656i \(-0.845099\pi\)
0.467656 + 0.883911i \(0.345099\pi\)
\(258\) 0 0
\(259\) 13.6596i 0.848765i
\(260\) 0 0
\(261\) 42.3783i 2.62315i
\(262\) 0 0
\(263\) −16.7069 + 16.7069i −1.03019 + 1.03019i −0.0306624 + 0.999530i \(0.509762\pi\)
−0.999530 + 0.0306624i \(0.990238\pi\)
\(264\) 0 0
\(265\) −1.36842 + 1.81579i −0.0840612 + 0.111543i
\(266\) 0 0
\(267\) −18.1829 + 18.1829i −1.11278 + 1.11278i
\(268\) 0 0
\(269\) 16.8988 1.03034 0.515168 0.857089i \(-0.327730\pi\)
0.515168 + 0.857089i \(0.327730\pi\)
\(270\) 0 0
\(271\) 19.1278i 1.16193i 0.813927 + 0.580967i \(0.197325\pi\)
−0.813927 + 0.580967i \(0.802675\pi\)
\(272\) 0 0
\(273\) 17.2859 + 17.2859i 1.04619 + 1.04619i
\(274\) 0 0
\(275\) −23.9634 + 6.86923i −1.44505 + 0.414230i
\(276\) 0 0
\(277\) 4.65878 + 4.65878i 0.279919 + 0.279919i 0.833077 0.553158i \(-0.186577\pi\)
−0.553158 + 0.833077i \(0.686577\pi\)
\(278\) 0 0
\(279\) 32.8663 1.96765
\(280\) 0 0
\(281\) −12.8988 −0.769476 −0.384738 0.923026i \(-0.625708\pi\)
−0.384738 + 0.923026i \(0.625708\pi\)
\(282\) 0 0
\(283\) −8.58968 8.58968i −0.510604 0.510604i 0.404108 0.914711i \(-0.367582\pi\)
−0.914711 + 0.404108i \(0.867582\pi\)
\(284\) 0 0
\(285\) −13.4193 + 17.8064i −0.794889 + 1.05476i
\(286\) 0 0
\(287\) 3.43461 + 3.43461i 0.202739 + 0.202739i
\(288\) 0 0
\(289\) 16.7146i 0.983209i
\(290\) 0 0
\(291\) −11.5225 −0.675461
\(292\) 0 0
\(293\) −12.4652 + 12.4652i −0.728225 + 0.728225i −0.970266 0.242041i \(-0.922183\pi\)
0.242041 + 0.970266i \(0.422183\pi\)
\(294\) 0 0
\(295\) −2.03365 14.4746i −0.118404 0.842742i
\(296\) 0 0
\(297\) 24.8573 24.8573i 1.44237 1.44237i
\(298\) 0 0
\(299\) 1.55109i 0.0897020i
\(300\) 0 0
\(301\) 4.42864i 0.255263i
\(302\) 0 0
\(303\) 28.9491 28.9491i 1.66308 1.66308i
\(304\) 0 0
\(305\) 1.05086 + 7.47949i 0.0601718 + 0.428275i
\(306\) 0 0
\(307\) 4.39875 4.39875i 0.251050 0.251050i −0.570351 0.821401i \(-0.693193\pi\)
0.821401 + 0.570351i \(0.193193\pi\)
\(308\) 0 0
\(309\) 41.7560 2.37542
\(310\) 0 0
\(311\) 10.7864i 0.611641i 0.952089 + 0.305820i \(0.0989307\pi\)
−0.952089 + 0.305820i \(0.901069\pi\)
\(312\) 0 0
\(313\) 16.6731 + 16.6731i 0.942418 + 0.942418i 0.998430 0.0560124i \(-0.0178386\pi\)
−0.0560124 + 0.998430i \(0.517839\pi\)
\(314\) 0 0
\(315\) −11.1443 + 14.7878i −0.627913 + 0.833196i
\(316\) 0 0
\(317\) −6.85236 6.85236i −0.384867 0.384867i 0.487985 0.872852i \(-0.337732\pi\)
−0.872852 + 0.487985i \(0.837732\pi\)
\(318\) 0 0
\(319\) 38.9205 2.17913
\(320\) 0 0
\(321\) 9.28592 0.518289
\(322\) 0 0
\(323\) −1.29754 1.29754i −0.0721973 0.0721973i
\(324\) 0 0
\(325\) 13.3827 24.1383i 0.742339 1.33895i
\(326\) 0 0
\(327\) −1.67472 1.67472i −0.0926124 0.0926124i
\(328\) 0 0
\(329\) 5.08250i 0.280207i
\(330\) 0 0
\(331\) 27.0656 1.48766 0.743830 0.668369i \(-0.233007\pi\)
0.743830 + 0.668369i \(0.233007\pi\)
\(332\) 0 0
\(333\) 34.3733 34.3733i 1.88365 1.88365i
\(334\) 0 0
\(335\) −14.6733 + 19.4704i −0.801686 + 1.06378i
\(336\) 0 0
\(337\) −24.7146 + 24.7146i −1.34629 + 1.34629i −0.456632 + 0.889656i \(0.650944\pi\)
−0.889656 + 0.456632i \(0.849056\pi\)
\(338\) 0 0
\(339\) 30.5002i 1.65654i
\(340\) 0 0
\(341\) 30.1847i 1.63459i
\(342\) 0 0
\(343\) 12.5910 12.5910i 0.679852 0.679852i
\(344\) 0 0
\(345\) 1.80642 0.253799i 0.0972546 0.0136641i
\(346\) 0 0
\(347\) 4.27512 4.27512i 0.229500 0.229500i −0.582984 0.812484i \(-0.698115\pi\)
0.812484 + 0.582984i \(0.198115\pi\)
\(348\) 0 0
\(349\) −6.29529 −0.336979 −0.168489 0.985703i \(-0.553889\pi\)
−0.168489 + 0.985703i \(0.553889\pi\)
\(350\) 0 0
\(351\) 38.9205i 2.07743i
\(352\) 0 0
\(353\) 9.85728 + 9.85728i 0.524650 + 0.524650i 0.918972 0.394322i \(-0.129021\pi\)
−0.394322 + 0.918972i \(0.629021\pi\)
\(354\) 0 0
\(355\) 4.02059 + 28.6167i 0.213391 + 1.51882i
\(356\) 0 0
\(357\) −1.67307 1.67307i −0.0885483 0.0885483i
\(358\) 0 0
\(359\) −25.1821 −1.32906 −0.664530 0.747262i \(-0.731368\pi\)
−0.664530 + 0.747262i \(0.731368\pi\)
\(360\) 0 0
\(361\) 7.20342 0.379127
\(362\) 0 0
\(363\) 28.4473 + 28.4473i 1.49310 + 1.49310i
\(364\) 0 0
\(365\) 5.17929 + 3.90321i 0.271096 + 0.204303i
\(366\) 0 0
\(367\) −21.0013 21.0013i −1.09626 1.09626i −0.994844 0.101412i \(-0.967664\pi\)
−0.101412 0.994844i \(-0.532336\pi\)
\(368\) 0 0
\(369\) 17.2859i 0.899869i
\(370\) 0 0
\(371\) −1.55109 −0.0805287
\(372\) 0 0
\(373\) −10.7190 + 10.7190i −0.555009 + 0.555009i −0.927882 0.372873i \(-0.878373\pi\)
0.372873 + 0.927882i \(0.378373\pi\)
\(374\) 0 0
\(375\) 30.3015 + 11.6360i 1.56476 + 0.600882i
\(376\) 0 0
\(377\) −30.4701 + 30.4701i −1.56929 + 1.56929i
\(378\) 0 0
\(379\) 15.5431i 0.798395i 0.916865 + 0.399198i \(0.130711\pi\)
−0.916865 + 0.399198i \(0.869289\pi\)
\(380\) 0 0
\(381\) 36.5116i 1.87055i
\(382\) 0 0
\(383\) 15.3444 15.3444i 0.784063 0.784063i −0.196451 0.980514i \(-0.562942\pi\)
0.980514 + 0.196451i \(0.0629417\pi\)
\(384\) 0 0
\(385\) −13.5812 10.2351i −0.692162 0.521627i
\(386\) 0 0
\(387\) −11.1443 + 11.1443i −0.566499 + 0.566499i
\(388\) 0 0
\(389\) −13.5526 −0.687145 −0.343573 0.939126i \(-0.611637\pi\)
−0.343573 + 0.939126i \(0.611637\pi\)
\(390\) 0 0
\(391\) 0.150127i 0.00759226i
\(392\) 0 0
\(393\) −35.0923 35.0923i −1.77017 1.77017i
\(394\) 0 0
\(395\) 6.86923 0.965114i 0.345628 0.0485602i
\(396\) 0 0
\(397\) 11.8716 + 11.8716i 0.595817 + 0.595817i 0.939197 0.343380i \(-0.111572\pi\)
−0.343380 + 0.939197i \(0.611572\pi\)
\(398\) 0 0
\(399\) −15.2107 −0.761486
\(400\) 0 0
\(401\) 20.9590 1.04664 0.523321 0.852136i \(-0.324693\pi\)
0.523321 + 0.852136i \(0.324693\pi\)
\(402\) 0 0
\(403\) −23.6310 23.6310i −1.17714 1.17714i
\(404\) 0 0
\(405\) −9.26517 + 1.30174i −0.460390 + 0.0646840i
\(406\) 0 0
\(407\) 31.5688 + 31.5688i 1.56481 + 1.56481i
\(408\) 0 0
\(409\) 19.5526i 0.966815i −0.875395 0.483408i \(-0.839399\pi\)
0.875395 0.483408i \(-0.160601\pi\)
\(410\) 0 0
\(411\) 20.5288 1.01261
\(412\) 0 0
\(413\) 7.05086 7.05086i 0.346950 0.346950i
\(414\) 0 0
\(415\) −13.8583 10.4439i −0.680276 0.512669i
\(416\) 0 0
\(417\) 38.2766 38.2766i 1.87441 1.87441i
\(418\) 0 0
\(419\) 22.4123i 1.09491i −0.836834 0.547457i \(-0.815596\pi\)
0.836834 0.547457i \(-0.184404\pi\)
\(420\) 0 0
\(421\) 29.3590i 1.43087i 0.698678 + 0.715436i \(0.253772\pi\)
−0.698678 + 0.715436i \(0.746228\pi\)
\(422\) 0 0
\(423\) −12.7897 + 12.7897i −0.621858 + 0.621858i
\(424\) 0 0
\(425\) −1.29529 + 2.33630i −0.0628306 + 0.113327i
\(426\) 0 0
\(427\) −3.64341 + 3.64341i −0.176317 + 0.176317i
\(428\) 0 0
\(429\) −79.8992 −3.85757
\(430\) 0 0
\(431\) 12.9235i 0.622502i 0.950328 + 0.311251i \(0.100748\pi\)
−0.950328 + 0.311251i \(0.899252\pi\)
\(432\) 0 0
\(433\) −16.9081 16.9081i −0.812553 0.812553i 0.172463 0.985016i \(-0.444827\pi\)
−0.985016 + 0.172463i \(0.944827\pi\)
\(434\) 0 0
\(435\) −40.4716 30.5002i −1.94047 1.46237i
\(436\) 0 0
\(437\) 0.682439 + 0.682439i 0.0326455 + 0.0326455i
\(438\) 0 0
\(439\) −18.9777 −0.905757 −0.452878 0.891572i \(-0.649603\pi\)
−0.452878 + 0.891572i \(0.649603\pi\)
\(440\) 0 0
\(441\) 25.3684 1.20802
\(442\) 0 0
\(443\) 1.38173 + 1.38173i 0.0656482 + 0.0656482i 0.739169 0.673520i \(-0.235219\pi\)
−0.673520 + 0.739169i \(0.735219\pi\)
\(444\) 0 0
\(445\) 2.75557 + 19.6128i 0.130626 + 0.929738i
\(446\) 0 0
\(447\) 20.4052 + 20.4052i 0.965132 + 0.965132i
\(448\) 0 0
\(449\) 12.1432i 0.573073i −0.958069 0.286536i \(-0.907496\pi\)
0.958069 0.286536i \(-0.0925040\pi\)
\(450\) 0 0
\(451\) −15.8755 −0.747550
\(452\) 0 0
\(453\) 8.04149 8.04149i 0.377822 0.377822i
\(454\) 0 0
\(455\) 18.6453 2.61963i 0.874104 0.122810i
\(456\) 0 0
\(457\) 2.57136 2.57136i 0.120283 0.120283i −0.644403 0.764686i \(-0.722894\pi\)
0.764686 + 0.644403i \(0.222894\pi\)
\(458\) 0 0
\(459\) 3.76704i 0.175831i
\(460\) 0 0
\(461\) 35.6128i 1.65866i 0.558762 + 0.829328i \(0.311276\pi\)
−0.558762 + 0.829328i \(0.688724\pi\)
\(462\) 0 0
\(463\) −6.67054 + 6.67054i −0.310006 + 0.310006i −0.844912 0.534906i \(-0.820347\pi\)
0.534906 + 0.844912i \(0.320347\pi\)
\(464\) 0 0
\(465\) 23.6543 31.3876i 1.09694 1.45557i
\(466\) 0 0
\(467\) 11.1443 11.1443i 0.515699 0.515699i −0.400568 0.916267i \(-0.631187\pi\)
0.916267 + 0.400568i \(0.131187\pi\)
\(468\) 0 0
\(469\) −16.6321 −0.767997
\(470\) 0 0
\(471\) 44.9748i 2.07233i
\(472\) 0 0
\(473\) −10.2351 10.2351i −0.470609 0.470609i
\(474\) 0 0
\(475\) 4.73216 + 16.5082i 0.217126 + 0.757449i
\(476\) 0 0
\(477\) −3.90321 3.90321i −0.178716 0.178716i
\(478\) 0 0
\(479\) −0.965114 −0.0440972 −0.0220486 0.999757i \(-0.507019\pi\)
−0.0220486 + 0.999757i \(0.507019\pi\)
\(480\) 0 0
\(481\) −49.4291 −2.25377
\(482\) 0 0
\(483\) 0.879946 + 0.879946i 0.0400389 + 0.0400389i
\(484\) 0 0
\(485\) −5.34122 + 7.08742i −0.242532 + 0.321823i
\(486\) 0 0
\(487\) −8.89277 8.89277i −0.402970 0.402970i 0.476308 0.879278i \(-0.341975\pi\)
−0.879278 + 0.476308i \(0.841975\pi\)
\(488\) 0 0
\(489\) 49.3689i 2.23254i
\(490\) 0 0
\(491\) −30.8327 −1.39146 −0.695729 0.718304i \(-0.744919\pi\)
−0.695729 + 0.718304i \(0.744919\pi\)
\(492\) 0 0
\(493\) 2.94914 2.94914i 0.132823 0.132823i
\(494\) 0 0
\(495\) −8.42032 59.9319i −0.378465 2.69374i
\(496\) 0 0
\(497\) −13.9398 + 13.9398i −0.625284 + 0.625284i
\(498\) 0 0
\(499\) 35.4859i 1.58857i 0.607546 + 0.794284i \(0.292154\pi\)
−0.607546 + 0.794284i \(0.707846\pi\)
\(500\) 0 0
\(501\) 31.2672i 1.39691i
\(502\) 0 0
\(503\) −8.80761 + 8.80761i −0.392712 + 0.392712i −0.875653 0.482941i \(-0.839569\pi\)
0.482941 + 0.875653i \(0.339569\pi\)
\(504\) 0 0
\(505\) −4.38715 31.2257i −0.195226 1.38953i
\(506\) 0 0
\(507\) 35.8641 35.8641i 1.59278 1.59278i
\(508\) 0 0
\(509\) 21.9081 0.971061 0.485530 0.874220i \(-0.338626\pi\)
0.485530 + 0.874220i \(0.338626\pi\)
\(510\) 0 0
\(511\) 4.42427i 0.195718i
\(512\) 0 0
\(513\) −17.1240 17.1240i −0.756042 0.756042i
\(514\) 0 0
\(515\) 19.3559 25.6839i 0.852922 1.13177i
\(516\) 0 0
\(517\) −11.7462 11.7462i −0.516597 0.516597i
\(518\) 0 0
\(519\) −45.9399 −2.01654
\(520\) 0 0
\(521\) 19.5941 0.858434 0.429217 0.903201i \(-0.358790\pi\)
0.429217 + 0.903201i \(0.358790\pi\)
\(522\) 0 0
\(523\) −10.7268 10.7268i −0.469048 0.469048i 0.432558 0.901606i \(-0.357611\pi\)
−0.901606 + 0.432558i \(0.857611\pi\)
\(524\) 0 0
\(525\) 6.10171 + 21.2859i 0.266300 + 0.928994i
\(526\) 0 0
\(527\) 2.28720 + 2.28720i 0.0996319 + 0.0996319i
\(528\) 0 0
\(529\) 22.9210i 0.996567i
\(530\) 0 0
\(531\) 35.4859 1.53996
\(532\) 0 0
\(533\) 12.4286 12.4286i 0.538344 0.538344i
\(534\) 0 0
\(535\) 4.30446 5.71171i 0.186098 0.246939i
\(536\) 0 0
\(537\) −11.4380 + 11.4380i −0.493586 + 0.493586i
\(538\) 0 0
\(539\) 23.2986i 1.00354i
\(540\) 0 0
\(541\) 26.8385i 1.15388i 0.816787 + 0.576940i \(0.195753\pi\)
−0.816787 + 0.576940i \(0.804247\pi\)
\(542\) 0 0
\(543\) −6.86923 + 6.86923i −0.294787 + 0.294787i
\(544\) 0 0
\(545\) −1.80642 + 0.253799i −0.0773787 + 0.0108716i
\(546\) 0 0
\(547\) 18.9787 18.9787i 0.811470 0.811470i −0.173384 0.984854i \(-0.555470\pi\)
0.984854 + 0.173384i \(0.0554702\pi\)
\(548\) 0 0
\(549\) −18.3368 −0.782594
\(550\) 0 0
\(551\) 26.8121i 1.14223i
\(552\) 0 0
\(553\) 3.34614 + 3.34614i 0.142292 + 0.142292i
\(554\) 0 0
\(555\) −8.08789 57.5658i −0.343312 2.44353i
\(556\) 0 0
\(557\) −29.6780 29.6780i −1.25750 1.25750i −0.952284 0.305213i \(-0.901272\pi\)
−0.305213 0.952284i \(-0.598728\pi\)
\(558\) 0 0
\(559\) 16.0257 0.677813
\(560\) 0 0
\(561\) 7.73329 0.326500
\(562\) 0 0
\(563\) 5.15507 + 5.15507i 0.217260 + 0.217260i 0.807343 0.590083i \(-0.200905\pi\)
−0.590083 + 0.807343i \(0.700905\pi\)
\(564\) 0 0
\(565\) 18.7605 + 14.1383i 0.789260 + 0.594802i
\(566\) 0 0
\(567\) −4.51326 4.51326i −0.189539 0.189539i
\(568\) 0 0
\(569\) 1.95851i 0.0821051i −0.999157 0.0410526i \(-0.986929\pi\)
0.999157 0.0410526i \(-0.0130711\pi\)
\(570\) 0 0
\(571\) 1.21866 0.0509995 0.0254997 0.999675i \(-0.491882\pi\)
0.0254997 + 0.999675i \(0.491882\pi\)
\(572\) 0 0
\(573\) 18.7971 18.7971i 0.785258 0.785258i
\(574\) 0 0
\(575\) 0.681251 1.22877i 0.0284101 0.0512431i
\(576\) 0 0
\(577\) −19.4099 + 19.4099i −0.808045 + 0.808045i −0.984338 0.176293i \(-0.943589\pi\)
0.176293 + 0.984338i \(0.443589\pi\)
\(578\) 0 0
\(579\) 24.5961i 1.02218i
\(580\) 0 0
\(581\) 11.8381i 0.491126i
\(582\) 0 0
\(583\) 3.58474 3.58474i 0.148465 0.148465i
\(584\) 0 0
\(585\) 53.5116 + 40.3274i 2.21243 + 1.66733i
\(586\) 0 0
\(587\) −10.9356 + 10.9356i −0.451358 + 0.451358i −0.895805 0.444447i \(-0.853400\pi\)
0.444447 + 0.895805i \(0.353400\pi\)
\(588\) 0 0
\(589\) 20.7940 0.856802
\(590\) 0 0
\(591\) 15.0605i 0.619508i
\(592\) 0 0
\(593\) −20.3274 20.3274i −0.834747 0.834747i 0.153415 0.988162i \(-0.450973\pi\)
−0.988162 + 0.153415i \(0.950973\pi\)
\(594\) 0 0
\(595\) −1.80464 + 0.253549i −0.0739831 + 0.0103945i
\(596\) 0 0
\(597\) 6.36842 + 6.36842i 0.260642 + 0.260642i
\(598\) 0 0
\(599\) −47.2620 −1.93107 −0.965536 0.260269i \(-0.916189\pi\)
−0.965536 + 0.260269i \(0.916189\pi\)
\(600\) 0 0
\(601\) 28.0415 1.14384 0.571918 0.820311i \(-0.306200\pi\)
0.571918 + 0.820311i \(0.306200\pi\)
\(602\) 0 0
\(603\) −41.8534 41.8534i −1.70440 1.70440i
\(604\) 0 0
\(605\) 30.6844 4.31111i 1.24750 0.175271i
\(606\) 0 0
\(607\) −16.6217 16.6217i −0.674656 0.674656i 0.284130 0.958786i \(-0.408295\pi\)
−0.958786 + 0.284130i \(0.908295\pi\)
\(608\) 0 0
\(609\) 34.5718i 1.40092i
\(610\) 0 0
\(611\) 18.3917 0.744050
\(612\) 0 0
\(613\) 5.41435 5.41435i 0.218684 0.218684i −0.589260 0.807943i \(-0.700581\pi\)
0.807943 + 0.589260i \(0.200581\pi\)
\(614\) 0 0
\(615\) 16.5082 + 12.4409i 0.665675 + 0.501666i
\(616\) 0 0
\(617\) −14.9496 + 14.9496i −0.601849 + 0.601849i −0.940803 0.338954i \(-0.889927\pi\)
0.338954 + 0.940803i \(0.389927\pi\)
\(618\) 0 0
\(619\) 20.2753i 0.814931i −0.913220 0.407466i \(-0.866413\pi\)
0.913220 0.407466i \(-0.133587\pi\)
\(620\) 0 0
\(621\) 1.98126i 0.0795054i
\(622\) 0 0
\(623\) −9.55382 + 9.55382i −0.382766 + 0.382766i
\(624\) 0 0
\(625\) 21.2034 13.2444i 0.848137 0.529777i
\(626\) 0 0
\(627\) 35.1535 35.1535i 1.40390 1.40390i
\(628\) 0 0
\(629\) 4.78415 0.190757
\(630\) 0 0
\(631\) 41.2077i 1.64045i 0.572038 + 0.820227i \(0.306153\pi\)
−0.572038 + 0.820227i \(0.693847\pi\)
\(632\) 0 0
\(633\) 35.0923 + 35.0923i 1.39480 + 1.39480i
\(634\) 0 0
\(635\) −22.4581 16.9248i −0.891221 0.671642i
\(636\) 0 0
\(637\) −18.2400 18.2400i −0.722695 0.722695i
\(638\) 0 0
\(639\) −70.1569 −2.77536
\(640\) 0 0
\(641\) 28.0415 1.10757 0.553786 0.832659i \(-0.313183\pi\)
0.553786 + 0.832659i \(0.313183\pi\)
\(642\) 0 0
\(643\) 5.14878 + 5.14878i 0.203048 + 0.203048i 0.801305 0.598257i \(-0.204140\pi\)
−0.598257 + 0.801305i \(0.704140\pi\)
\(644\) 0 0
\(645\) 2.62222 + 18.6637i 0.103250 + 0.734883i
\(646\) 0 0
\(647\) 16.2893 + 16.2893i 0.640399 + 0.640399i 0.950654 0.310255i \(-0.100414\pi\)
−0.310255 + 0.950654i \(0.600414\pi\)
\(648\) 0 0
\(649\) 32.5906i 1.27929i
\(650\) 0 0
\(651\) 26.8121 1.05085
\(652\) 0 0
\(653\) 4.13828 4.13828i 0.161943 0.161943i −0.621484 0.783427i \(-0.713470\pi\)
0.783427 + 0.621484i \(0.213470\pi\)
\(654\) 0 0
\(655\) −37.8520 + 5.31814i −1.47900 + 0.207797i
\(656\) 0 0
\(657\) −11.1334 + 11.1334i −0.434353 + 0.434353i
\(658\) 0 0
\(659\) 1.80464i 0.0702988i 0.999382 + 0.0351494i \(0.0111907\pi\)
−0.999382 + 0.0351494i \(0.988809\pi\)
\(660\) 0 0
\(661\) 23.3145i 0.906829i −0.891300 0.453414i \(-0.850206\pi\)
0.891300 0.453414i \(-0.149794\pi\)
\(662\) 0 0
\(663\) −6.05424 + 6.05424i −0.235127 + 0.235127i
\(664\) 0 0
\(665\) −7.05086 + 9.35599i −0.273420 + 0.362810i
\(666\) 0 0
\(667\) −1.55109 + 1.55109i −0.0600585 + 0.0600585i
\(668\) 0 0
\(669\) 13.2859 0.513663
\(670\) 0 0
\(671\) 16.8406i 0.650126i
\(672\) 0 0
\(673\) −6.15257 6.15257i −0.237164 0.237164i 0.578511 0.815675i \(-0.303634\pi\)
−0.815675 + 0.578511i \(0.803634\pi\)
\(674\) 0 0
\(675\) −17.0942 + 30.8327i −0.657956 + 1.18675i
\(676\) 0 0
\(677\) 10.0366 + 10.0366i 0.385737 + 0.385737i 0.873164 0.487427i \(-0.162065\pi\)
−0.487427 + 0.873164i \(0.662065\pi\)
\(678\) 0 0
\(679\) −6.05424 −0.232341
\(680\) 0 0
\(681\) −73.1022 −2.80128
\(682\) 0 0
\(683\) 12.0243 + 12.0243i 0.460097 + 0.460097i 0.898687 0.438590i \(-0.144522\pi\)
−0.438590 + 0.898687i \(0.644522\pi\)
\(684\) 0 0
\(685\) 9.51606 12.6271i 0.363590 0.482458i
\(686\) 0 0
\(687\) 25.0320 + 25.0320i 0.955029 + 0.955029i
\(688\) 0 0
\(689\) 5.61285i 0.213832i
\(690\) 0 0
\(691\) 43.2414 1.64498 0.822490 0.568779i \(-0.192584\pi\)
0.822490 + 0.568779i \(0.192584\pi\)
\(692\) 0 0
\(693\) 29.1941 29.1941i 1.10899 1.10899i
\(694\) 0 0
\(695\) −5.80069 41.2866i −0.220033 1.56609i
\(696\) 0 0
\(697\) −1.20294 + 1.20294i −0.0455648 + 0.0455648i
\(698\) 0 0
\(699\) 4.65328i 0.176003i
\(700\) 0 0
\(701\) 24.8256i 0.937651i 0.883291 + 0.468826i \(0.155323\pi\)
−0.883291 + 0.468826i \(0.844677\pi\)
\(702\) 0 0
\(703\) 21.7475 21.7475i 0.820221 0.820221i
\(704\) 0 0
\(705\) 3.00937 + 21.4193i 0.113339 + 0.806696i
\(706\) 0 0
\(707\) 15.2107 15.2107i 0.572056 0.572056i
\(708\) 0 0
\(709\) 42.8484 1.60920 0.804602 0.593814i \(-0.202378\pi\)
0.804602 + 0.593814i \(0.202378\pi\)
\(710\) 0 0
\(711\) 16.8406i 0.631574i
\(712\) 0 0
\(713\) −1.20294 1.20294i −0.0450506 0.0450506i
\(714\) 0 0
\(715\) −37.0370 + 49.1455i −1.38511 + 1.83794i
\(716\) 0 0
\(717\) 4.38715 + 4.38715i 0.163841 + 0.163841i
\(718\) 0 0
\(719\) 11.6014 0.432659 0.216329 0.976320i \(-0.430591\pi\)
0.216329 + 0.976320i \(0.430591\pi\)
\(720\) 0 0
\(721\) 21.9398 0.817080
\(722\) 0 0
\(723\) −0.332430 0.332430i −0.0123632 0.0123632i
\(724\) 0 0
\(725\) −37.5210 + 10.7556i −1.39349 + 0.399452i
\(726\) 0 0
\(727\) −22.6312 22.6312i −0.839346 0.839346i 0.149427 0.988773i \(-0.452257\pi\)
−0.988773 + 0.149427i \(0.952257\pi\)
\(728\) 0 0
\(729\) 38.6958i 1.43318i
\(730\) 0 0
\(731\) −1.55109 −0.0573692
\(732\) 0 0
\(733\) −25.2908 + 25.2908i −0.934139 + 0.934139i −0.997961 0.0638227i \(-0.979671\pi\)
0.0638227 + 0.997961i \(0.479671\pi\)
\(734\) 0 0
\(735\) 18.2580 24.2271i 0.673457 0.893629i
\(736\) 0 0
\(737\) 38.4385 38.4385i 1.41590 1.41590i
\(738\) 0 0
\(739\) 52.3266i 1.92486i −0.271522 0.962432i \(-0.587527\pi\)
0.271522 0.962432i \(-0.412473\pi\)
\(740\) 0 0
\(741\) 55.0420i 2.02202i
\(742\) 0 0
\(743\) 30.5551 30.5551i 1.12096 1.12096i 0.129359 0.991598i \(-0.458708\pi\)
0.991598 0.129359i \(-0.0412921\pi\)
\(744\) 0 0
\(745\) 22.0098 3.09234i 0.806378 0.113295i
\(746\) 0 0
\(747\) 29.7896 29.7896i 1.08995 1.08995i
\(748\) 0 0
\(749\) 4.87908 0.178278
\(750\) 0 0
\(751\) 36.9336i 1.34773i 0.738856 + 0.673863i \(0.235366\pi\)
−0.738856 + 0.673863i \(0.764634\pi\)
\(752\) 0 0
\(753\) −30.7052 30.7052i −1.11896 1.11896i
\(754\) 0 0
\(755\) −1.21866 8.67387i −0.0443517 0.315674i
\(756\) 0 0
\(757\) −12.4652 12.4652i −0.453056 0.453056i 0.443312 0.896367i \(-0.353803\pi\)
−0.896367 + 0.443312i \(0.853803\pi\)
\(758\) 0 0
\(759\) −4.06730 −0.147634
\(760\) 0 0
\(761\) 7.24443 0.262610 0.131305 0.991342i \(-0.458083\pi\)
0.131305 + 0.991342i \(0.458083\pi\)
\(762\) 0 0
\(763\) −0.879946 0.879946i −0.0318562 0.0318562i
\(764\) 0 0
\(765\) −5.17929 3.90321i −0.187257 0.141121i
\(766\) 0 0
\(767\) −25.5145 25.5145i −0.921276 0.921276i
\(768\) 0 0
\(769\) 29.3274i 1.05757i −0.848755 0.528787i \(-0.822647\pi\)
0.848755 0.528787i \(-0.177353\pi\)
\(770\) 0 0
\(771\) −27.3980 −0.986716
\(772\) 0 0
\(773\) −0.954067 + 0.954067i −0.0343154 + 0.0343154i −0.724056 0.689741i \(-0.757724\pi\)
0.689741 + 0.724056i \(0.257724\pi\)
\(774\) 0 0
\(775\) −8.34144 29.0993i −0.299633 1.04528i
\(776\) 0 0
\(777\) 28.0415 28.0415i 1.00598 1.00598i
\(778\) 0 0
\(779\) 10.9365i 0.391842i
\(780\) 0 0
\(781\) 64.4327i 2.30558i
\(782\) 0 0
\(783\) 38.9205 38.9205i 1.39091 1.39091i
\(784\) 0 0
\(785\) −27.6637 20.8479i −0.987360 0.744094i
\(786\) 0 0
\(787\) −34.5218 + 34.5218i −1.23057 + 1.23057i −0.266824 + 0.963745i \(0.585974\pi\)
−0.963745 + 0.266824i \(0.914026\pi\)
\(788\) 0 0
\(789\) −68.5946 −2.44203
\(790\) 0 0
\(791\) 16.0257i 0.569807i
\(792\) 0 0
\(793\) 13.1842 + 13.1842i 0.468185 + 0.468185i
\(794\) 0 0
\(795\) −6.53680 + 0.918408i −0.231836 + 0.0325726i
\(796\) 0 0
\(797\) −6.85236 6.85236i −0.242723 0.242723i 0.575253 0.817976i \(-0.304904\pi\)
−0.817976 + 0.575253i \(0.804904\pi\)
\(798\) 0 0
\(799\) −1.78010 −0.0629754
\(800\) 0 0
\(801\) −48.0830 −1.69893
\(802\) 0 0
\(803\) −10.2250 10.2250i −0.360831 0.360831i
\(804\) 0 0
\(805\) 0.949145 0.133353i 0.0334530 0.00470008i
\(806\) 0 0
\(807\) 34.6912 + 34.6912i 1.22119 + 1.22119i
\(808\) 0 0
\(809\) 28.7368i 1.01033i −0.863022 0.505167i \(-0.831431\pi\)
0.863022 0.505167i \(-0.168569\pi\)
\(810\) 0 0
\(811\) 11.1901 0.392937 0.196468 0.980510i \(-0.437053\pi\)
0.196468 + 0.980510i \(0.437053\pi\)
\(812\) 0 0
\(813\) −39.2672 + 39.2672i −1.37716 + 1.37716i
\(814\) 0 0
\(815\) 30.3665 + 22.8848i 1.06369 + 0.801619i
\(816\) 0 0
\(817\) −7.05086 + 7.05086i −0.246678 + 0.246678i
\(818\) 0 0
\(819\) 45.7109i 1.59727i
\(820\) 0 0
\(821\) 6.33677i 0.221155i −0.993868 0.110577i \(-0.964730\pi\)
0.993868 0.110577i \(-0.0352700\pi\)
\(822\) 0 0
\(823\) 9.20500 9.20500i 0.320866 0.320866i −0.528233 0.849099i \(-0.677145\pi\)
0.849099 + 0.528233i \(0.177145\pi\)
\(824\) 0 0
\(825\) −63.2958 35.0923i −2.20368 1.22176i
\(826\) 0 0
\(827\) 7.37731 7.37731i 0.256534 0.256534i −0.567109 0.823643i \(-0.691938\pi\)
0.823643 + 0.567109i \(0.191938\pi\)
\(828\) 0 0
\(829\) −52.2449 −1.81454 −0.907270 0.420548i \(-0.861838\pi\)
−0.907270 + 0.420548i \(0.861838\pi\)
\(830\) 0 0
\(831\) 19.1278i 0.663538i
\(832\) 0 0
\(833\) 1.76541 + 1.76541i 0.0611679 + 0.0611679i
\(834\) 0 0
\(835\) −19.2322 14.4938i −0.665559 0.501579i
\(836\) 0 0
\(837\) 30.1847 + 30.1847i 1.04334 + 1.04334i
\(838\) 0 0
\(839\) 53.6241 1.85131 0.925655 0.378368i \(-0.123515\pi\)
0.925655 + 0.378368i \(0.123515\pi\)
\(840\) 0 0
\(841\) 31.9403 1.10139
\(842\) 0 0
\(843\) −26.4796 26.4796i −0.912007 0.912007i
\(844\) 0 0
\(845\) −5.43509 38.6844i −0.186973 1.33079i
\(846\) 0 0
\(847\) 14.9470 + 14.9470i 0.513586 + 0.513586i
\(848\) 0 0
\(849\) 35.2672i 1.21037i
\(850\) 0 0
\(851\) −2.51621 −0.0862545
\(852\) 0 0
\(853\) −27.7926 + 27.7926i −0.951601 + 0.951601i −0.998882 0.0472808i \(-0.984944\pi\)
0.0472808 + 0.998882i \(0.484944\pi\)
\(854\) 0 0
\(855\) −41.2866 + 5.80069i −1.41197 + 0.198380i
\(856\) 0 0
\(857\) −10.1427 + 10.1427i −0.346469 + 0.346469i −0.858792 0.512324i \(-0.828785\pi\)
0.512324 + 0.858792i \(0.328785\pi\)
\(858\) 0 0
\(859\) 27.1445i 0.926158i 0.886317 + 0.463079i \(0.153255\pi\)
−0.886317 + 0.463079i \(0.846745\pi\)
\(860\) 0 0
\(861\) 14.1017i 0.480585i
\(862\) 0 0
\(863\) −15.0120 + 15.0120i −0.511014 + 0.511014i −0.914837 0.403823i \(-0.867681\pi\)
0.403823 + 0.914837i \(0.367681\pi\)
\(864\) 0 0
\(865\) −21.2953 + 28.2573i −0.724061 + 0.960778i
\(866\) 0 0
\(867\) −34.3130 + 34.3130i −1.16533 + 1.16533i
\(868\) 0 0
\(869\) −15.4666 −0.524668
\(870\) 0 0
\(871\) 60.1855i 2.03931i
\(872\) 0 0
\(873\) −15.2351 15.2351i −0.515629 0.515629i
\(874\) 0 0
\(875\) 15.9213 + 6.11389i 0.538237 + 0.206687i
\(876\) 0 0
\(877\) 13.9032 + 13.9032i 0.469478 + 0.469478i 0.901745 0.432267i \(-0.142286\pi\)
−0.432267 + 0.901745i \(0.642286\pi\)
\(878\) 0 0
\(879\) −51.1792 −1.72623
\(880\) 0 0
\(881\) −9.55262 −0.321836 −0.160918 0.986968i \(-0.551445\pi\)
−0.160918 + 0.986968i \(0.551445\pi\)
\(882\) 0 0
\(883\) −30.9635 30.9635i −1.04201 1.04201i −0.999078 0.0429282i \(-0.986331\pi\)
−0.0429282 0.999078i \(-0.513669\pi\)
\(884\) 0 0
\(885\) 25.5397 33.8894i 0.858508 1.13918i
\(886\) 0 0
\(887\) −13.1669 13.1669i −0.442102 0.442102i 0.450616 0.892718i \(-0.351204\pi\)
−0.892718 + 0.450616i \(0.851204\pi\)
\(888\) 0 0
\(889\) 19.1842i 0.643418i
\(890\) 0 0
\(891\) 20.8612 0.698878
\(892\) 0 0
\(893\) −8.09187 + 8.09187i −0.270784 + 0.270784i
\(894\) 0 0
\(895\) 1.73340 + 12.3375i 0.0579410 + 0.412397i
\(896\) 0 0
\(897\) 3.18421 3.18421i 0.106318 0.106318i
\(898\) 0 0
\(899\) 47.2620i 1.57628i
\(900\) 0 0
\(901\) 0.543257i 0.0180985i
\(902\) 0 0
\(903\) −9.09147 + 9.09147i −0.302545 + 0.302545i
\(904\) 0 0
\(905\) 1.04101 + 7.40943i 0.0346044 + 0.246298i
\(906\) 0 0
\(907\) −16.7160 + 16.7160i −0.555047 + 0.555047i −0.927893 0.372846i \(-0.878382\pi\)
0.372846 + 0.927893i \(0.378382\pi\)
\(908\) 0 0
\(909\) 76.5531 2.53911
\(910\) 0 0
\(911\) 30.2712i 1.00293i −0.865178 0.501465i \(-0.832795\pi\)
0.865178 0.501465i \(-0.167205\pi\)
\(912\) 0 0
\(913\) 27.3590 + 27.3590i 0.905452 + 0.905452i
\(914\) 0 0
\(915\) −13.1972 + 17.5118i −0.436287 + 0.578922i
\(916\) 0 0
\(917\) −18.4385 18.4385i −0.608892 0.608892i
\(918\) 0 0
\(919\) 16.8406 0.555522 0.277761 0.960650i \(-0.410408\pi\)
0.277761 + 0.960650i \(0.410408\pi\)
\(920\) 0 0
\(921\) 18.0602 0.595105
\(922\) 0 0
\(923\) 50.4431 + 50.4431i 1.66035 + 1.66035i
\(924\) 0 0
\(925\) −39.1575 21.7096i −1.28749 0.713808i
\(926\) 0 0
\(927\) 55.2099 + 55.2099i 1.81333 + 1.81333i
\(928\) 0 0
\(929\) 33.6543i 1.10416i 0.833790 + 0.552081i \(0.186166\pi\)
−0.833790 + 0.552081i \(0.813834\pi\)
\(930\) 0 0
\(931\) 16.0502 0.526024
\(932\) 0 0
\(933\) −22.1432 + 22.1432i −0.724936 + 0.724936i
\(934\) 0 0
\(935\) 3.58474 4.75670i 0.117234 0.155561i
\(936\) 0 0
\(937\) 30.3778 30.3778i 0.992399 0.992399i −0.00757237 0.999971i \(-0.502410\pi\)
0.999971 + 0.00757237i \(0.00241038\pi\)
\(938\) 0 0
\(939\) 68.4557i 2.23397i
\(940\) 0 0
\(941\) 9.39069i 0.306128i 0.988216 + 0.153064i \(0.0489140\pi\)
−0.988216 + 0.153064i \(0.951086\pi\)
\(942\) 0 0
\(943\) 0.632684 0.632684i 0.0206030 0.0206030i
\(944\) 0 0
\(945\) −23.8163 + 3.34614i −0.774743 + 0.108850i
\(946\) 0 0
\(947\) 14.3702 14.3702i 0.466968 0.466968i −0.433963 0.900931i \(-0.642885\pi\)
0.900931 + 0.433963i \(0.142885\pi\)
\(948\) 0 0
\(949\) 16.0098 0.519702
\(950\) 0 0
\(951\) 28.1341i 0.912312i
\(952\) 0 0
\(953\) 33.7971 + 33.7971i 1.09479 + 1.09479i 0.995009 + 0.0997850i \(0.0318155\pi\)
0.0997850 + 0.995009i \(0.468184\pi\)
\(954\) 0 0
\(955\) −2.84864 20.2753i −0.0921797 0.656092i
\(956\) 0 0
\(957\) 79.8992 + 79.8992i 2.58278 + 2.58278i
\(958\) 0 0
\(959\) 10.7864 0.348311
\(960\) 0 0
\(961\) −5.65386 −0.182383
\(962\) 0 0
\(963\) 12.2778 + 12.2778i 0.395648 + 0.395648i
\(964\) 0 0
\(965\) 15.1289 + 11.4014i 0.487017 + 0.367025i
\(966\) 0 0
\(967\) 35.0722 + 35.0722i 1.12784 + 1.12784i 0.990527 + 0.137317i \(0.0438480\pi\)
0.137317 + 0.990527i \(0.456152\pi\)
\(968\) 0 0
\(969\) 5.32741i 0.171141i
\(970\) 0 0
\(971\) 55.0496 1.76663 0.883313 0.468783i \(-0.155307\pi\)
0.883313 + 0.468783i \(0.155307\pi\)
\(972\) 0 0
\(973\) 20.1116 20.1116i 0.644747 0.644747i
\(974\) 0 0
\(975\) 77.0261 22.0799i 2.46681 0.707123i
\(976\) 0 0
\(977\) 20.6860 20.6860i 0.661803 0.661803i −0.294002 0.955805i \(-0.594987\pi\)
0.955805 + 0.294002i \(0.0949872\pi\)
\(978\) 0 0
\(979\) 44.1598i 1.41135i
\(980\) 0 0
\(981\) 4.42864i 0.141396i
\(982\) 0 0
\(983\) −9.83768 + 9.83768i −0.313773 + 0.313773i −0.846369 0.532596i \(-0.821216\pi\)
0.532596 + 0.846369i \(0.321216\pi\)
\(984\) 0 0
\(985\) 9.26364 + 6.98126i 0.295164 + 0.222442i
\(986\) 0 0
\(987\) −10.4338 + 10.4338i −0.332110 + 0.332110i
\(988\) 0 0
\(989\) 0.815792 0.0259407
\(990\) 0 0
\(991\) 41.8726i 1.33013i −0.746787 0.665064i \(-0.768404\pi\)
0.746787 0.665064i \(-0.231596\pi\)
\(992\) 0 0
\(993\) 55.5625 + 55.5625i 1.76322 + 1.76322i
\(994\) 0 0
\(995\) 6.86923 0.965114i 0.217769 0.0305962i
\(996\) 0 0
\(997\) −6.38223 6.38223i −0.202127 0.202127i 0.598784 0.800911i \(-0.295651\pi\)
−0.800911 + 0.598784i \(0.795651\pi\)
\(998\) 0 0
\(999\) 63.1375 1.99758
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 640.2.o.k.63.6 yes 12
4.3 odd 2 inner 640.2.o.k.63.1 yes 12
5.2 odd 4 640.2.o.j.447.6 yes 12
8.3 odd 2 640.2.o.j.63.6 yes 12
8.5 even 2 640.2.o.j.63.1 12
16.3 odd 4 1280.2.n.r.1023.6 12
16.5 even 4 1280.2.n.s.1023.6 12
16.11 odd 4 1280.2.n.s.1023.1 12
16.13 even 4 1280.2.n.r.1023.1 12
20.7 even 4 640.2.o.j.447.1 yes 12
40.27 even 4 inner 640.2.o.k.447.6 yes 12
40.37 odd 4 inner 640.2.o.k.447.1 yes 12
80.27 even 4 1280.2.n.s.767.6 12
80.37 odd 4 1280.2.n.s.767.1 12
80.67 even 4 1280.2.n.r.767.1 12
80.77 odd 4 1280.2.n.r.767.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
640.2.o.j.63.1 12 8.5 even 2
640.2.o.j.63.6 yes 12 8.3 odd 2
640.2.o.j.447.1 yes 12 20.7 even 4
640.2.o.j.447.6 yes 12 5.2 odd 4
640.2.o.k.63.1 yes 12 4.3 odd 2 inner
640.2.o.k.63.6 yes 12 1.1 even 1 trivial
640.2.o.k.447.1 yes 12 40.37 odd 4 inner
640.2.o.k.447.6 yes 12 40.27 even 4 inner
1280.2.n.r.767.1 12 80.67 even 4
1280.2.n.r.767.6 12 80.77 odd 4
1280.2.n.r.1023.1 12 16.13 even 4
1280.2.n.r.1023.6 12 16.3 odd 4
1280.2.n.s.767.1 12 80.37 odd 4
1280.2.n.s.767.6 12 80.27 even 4
1280.2.n.s.1023.1 12 16.11 odd 4
1280.2.n.s.1023.6 12 16.5 even 4