Defining parameters
Level: | \( N \) | \(=\) | \( 640 = 2^{7} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 640.o (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 40 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 11 \) | ||
Sturm bound: | \(192\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(3\), \(7\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(640, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 224 | 48 | 176 |
Cusp forms | 160 | 48 | 112 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(640, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(640, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(640, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(320, [\chi])\)\(^{\oplus 2}\)