Properties

Label 1280.2.n.r.767.1
Level $1280$
Weight $2$
Character 1280.767
Analytic conductor $10.221$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1280,2,Mod(767,1280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1280.767"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1280, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1280.n (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,-4,0,0,0,0,0,0,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2208514587\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.125772815663104.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 27x^{8} + 107x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 640)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 767.1
Root \(0.219986 + 0.219986i\) of defining polynomial
Character \(\chi\) \(=\) 1280.767
Dual form 1280.2.n.r.1023.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.05288 - 2.05288i) q^{3} +(-0.311108 + 2.21432i) q^{5} +(-1.07864 + 1.07864i) q^{7} +5.42864i q^{9} -4.98571i q^{11} +(3.90321 - 3.90321i) q^{13} +(5.18440 - 3.90707i) q^{15} +(-0.377784 - 0.377784i) q^{17} -3.43461 q^{19} +4.42864 q^{21} +(-0.198694 - 0.198694i) q^{23} +(-4.80642 - 1.37778i) q^{25} +(4.98571 - 4.98571i) q^{27} +7.80642i q^{29} +6.05424i q^{31} +(-10.2351 + 10.2351i) q^{33} +(-2.05288 - 2.72403i) q^{35} +(-6.33185 - 6.33185i) q^{37} -16.0257 q^{39} -3.18421 q^{41} +(2.05288 + 2.05288i) q^{43} +(-12.0207 - 1.68889i) q^{45} +(2.35597 - 2.35597i) q^{47} +4.67307i q^{49} +1.55109i q^{51} +(0.719004 - 0.719004i) q^{53} +(11.0400 + 1.55109i) q^{55} +(7.05086 + 7.05086i) q^{57} -6.53680 q^{59} -3.37778 q^{61} +(-5.85555 - 5.85555i) q^{63} +(7.42864 + 9.85728i) q^{65} +(-7.70974 + 7.70974i) q^{67} +0.815792i q^{69} +12.9235i q^{71} +(-2.05086 + 2.05086i) q^{73} +(7.03859 + 12.6954i) q^{75} +(5.37778 + 5.37778i) q^{77} +3.10219 q^{79} -4.18421 q^{81} +(5.48750 + 5.48750i) q^{83} +(0.954067 - 0.719004i) q^{85} +(16.0257 - 16.0257i) q^{87} +8.85728i q^{89} +8.42032i q^{91} +(12.4286 - 12.4286i) q^{93} +(1.06854 - 7.60534i) q^{95} +(-2.80642 - 2.80642i) q^{97} +27.0656 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{5} + 20 q^{13} - 4 q^{17} - 4 q^{25} - 16 q^{33} + 4 q^{37} + 16 q^{41} - 64 q^{45} + 36 q^{53} + 32 q^{57} - 40 q^{61} + 36 q^{65} + 28 q^{73} + 64 q^{77} + 4 q^{81} - 68 q^{85} + 96 q^{93}+ \cdots + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.05288 2.05288i −1.18523 1.18523i −0.978370 0.206861i \(-0.933675\pi\)
−0.206861 0.978370i \(-0.566325\pi\)
\(4\) 0 0
\(5\) −0.311108 + 2.21432i −0.139132 + 0.990274i
\(6\) 0 0
\(7\) −1.07864 + 1.07864i −0.407688 + 0.407688i −0.880931 0.473244i \(-0.843083\pi\)
0.473244 + 0.880931i \(0.343083\pi\)
\(8\) 0 0
\(9\) 5.42864i 1.80955i
\(10\) 0 0
\(11\) 4.98571i 1.50325i −0.659592 0.751624i \(-0.729271\pi\)
0.659592 0.751624i \(-0.270729\pi\)
\(12\) 0 0
\(13\) 3.90321 3.90321i 1.08256 1.08256i 0.0862858 0.996270i \(-0.472500\pi\)
0.996270 0.0862858i \(-0.0274998\pi\)
\(14\) 0 0
\(15\) 5.18440 3.90707i 1.33861 1.00880i
\(16\) 0 0
\(17\) −0.377784 0.377784i −0.0916262 0.0916262i 0.659808 0.751434i \(-0.270638\pi\)
−0.751434 + 0.659808i \(0.770638\pi\)
\(18\) 0 0
\(19\) −3.43461 −0.787955 −0.393977 0.919120i \(-0.628901\pi\)
−0.393977 + 0.919120i \(0.628901\pi\)
\(20\) 0 0
\(21\) 4.42864 0.966408
\(22\) 0 0
\(23\) −0.198694 0.198694i −0.0414306 0.0414306i 0.686088 0.727519i \(-0.259327\pi\)
−0.727519 + 0.686088i \(0.759327\pi\)
\(24\) 0 0
\(25\) −4.80642 1.37778i −0.961285 0.275557i
\(26\) 0 0
\(27\) 4.98571 4.98571i 0.959500 0.959500i
\(28\) 0 0
\(29\) 7.80642i 1.44962i 0.688951 + 0.724808i \(0.258072\pi\)
−0.688951 + 0.724808i \(0.741928\pi\)
\(30\) 0 0
\(31\) 6.05424i 1.08737i 0.839288 + 0.543687i \(0.182972\pi\)
−0.839288 + 0.543687i \(0.817028\pi\)
\(32\) 0 0
\(33\) −10.2351 + 10.2351i −1.78170 + 1.78170i
\(34\) 0 0
\(35\) −2.05288 2.72403i −0.347000 0.460445i
\(36\) 0 0
\(37\) −6.33185 6.33185i −1.04095 1.04095i −0.999125 0.0418250i \(-0.986683\pi\)
−0.0418250 0.999125i \(-0.513317\pi\)
\(38\) 0 0
\(39\) −16.0257 −2.56616
\(40\) 0 0
\(41\) −3.18421 −0.497290 −0.248645 0.968595i \(-0.579985\pi\)
−0.248645 + 0.968595i \(0.579985\pi\)
\(42\) 0 0
\(43\) 2.05288 + 2.05288i 0.313061 + 0.313061i 0.846094 0.533033i \(-0.178948\pi\)
−0.533033 + 0.846094i \(0.678948\pi\)
\(44\) 0 0
\(45\) −12.0207 1.68889i −1.79195 0.251765i
\(46\) 0 0
\(47\) 2.35597 2.35597i 0.343654 0.343654i −0.514085 0.857739i \(-0.671868\pi\)
0.857739 + 0.514085i \(0.171868\pi\)
\(48\) 0 0
\(49\) 4.67307i 0.667582i
\(50\) 0 0
\(51\) 1.55109i 0.217196i
\(52\) 0 0
\(53\) 0.719004 0.719004i 0.0987628 0.0987628i −0.655999 0.754762i \(-0.727752\pi\)
0.754762 + 0.655999i \(0.227752\pi\)
\(54\) 0 0
\(55\) 11.0400 + 1.55109i 1.48863 + 0.209149i
\(56\) 0 0
\(57\) 7.05086 + 7.05086i 0.933909 + 0.933909i
\(58\) 0 0
\(59\) −6.53680 −0.851019 −0.425509 0.904954i \(-0.639905\pi\)
−0.425509 + 0.904954i \(0.639905\pi\)
\(60\) 0 0
\(61\) −3.37778 −0.432481 −0.216240 0.976340i \(-0.569380\pi\)
−0.216240 + 0.976340i \(0.569380\pi\)
\(62\) 0 0
\(63\) −5.85555 5.85555i −0.737730 0.737730i
\(64\) 0 0
\(65\) 7.42864 + 9.85728i 0.921409 + 1.22264i
\(66\) 0 0
\(67\) −7.70974 + 7.70974i −0.941894 + 0.941894i −0.998402 0.0565081i \(-0.982003\pi\)
0.0565081 + 0.998402i \(0.482003\pi\)
\(68\) 0 0
\(69\) 0.815792i 0.0982098i
\(70\) 0 0
\(71\) 12.9235i 1.53373i 0.641806 + 0.766867i \(0.278185\pi\)
−0.641806 + 0.766867i \(0.721815\pi\)
\(72\) 0 0
\(73\) −2.05086 + 2.05086i −0.240034 + 0.240034i −0.816864 0.576830i \(-0.804290\pi\)
0.576830 + 0.816864i \(0.304290\pi\)
\(74\) 0 0
\(75\) 7.03859 + 12.6954i 0.812746 + 1.46594i
\(76\) 0 0
\(77\) 5.37778 + 5.37778i 0.612855 + 0.612855i
\(78\) 0 0
\(79\) 3.10219 0.349023 0.174512 0.984655i \(-0.444165\pi\)
0.174512 + 0.984655i \(0.444165\pi\)
\(80\) 0 0
\(81\) −4.18421 −0.464912
\(82\) 0 0
\(83\) 5.48750 + 5.48750i 0.602331 + 0.602331i 0.940931 0.338600i \(-0.109953\pi\)
−0.338600 + 0.940931i \(0.609953\pi\)
\(84\) 0 0
\(85\) 0.954067 0.719004i 0.103483 0.0779869i
\(86\) 0 0
\(87\) 16.0257 16.0257i 1.71813 1.71813i
\(88\) 0 0
\(89\) 8.85728i 0.938870i 0.882967 + 0.469435i \(0.155542\pi\)
−0.882967 + 0.469435i \(0.844458\pi\)
\(90\) 0 0
\(91\) 8.42032i 0.882690i
\(92\) 0 0
\(93\) 12.4286 12.4286i 1.28879 1.28879i
\(94\) 0 0
\(95\) 1.06854 7.60534i 0.109629 0.780291i
\(96\) 0 0
\(97\) −2.80642 2.80642i −0.284949 0.284949i 0.550130 0.835079i \(-0.314578\pi\)
−0.835079 + 0.550130i \(0.814578\pi\)
\(98\) 0 0
\(99\) 27.0656 2.72020
\(100\) 0 0
\(101\) −14.1017 −1.40317 −0.701586 0.712584i \(-0.747525\pi\)
−0.701586 + 0.712584i \(0.747525\pi\)
\(102\) 0 0
\(103\) −10.1701 10.1701i −1.00209 1.00209i −0.999998 0.00209284i \(-0.999334\pi\)
−0.00209284 0.999998i \(-0.500666\pi\)
\(104\) 0 0
\(105\) −1.37778 + 9.80642i −0.134458 + 0.957009i
\(106\) 0 0
\(107\) −2.26168 + 2.26168i −0.218645 + 0.218645i −0.807927 0.589282i \(-0.799411\pi\)
0.589282 + 0.807927i \(0.299411\pi\)
\(108\) 0 0
\(109\) 0.815792i 0.0781387i 0.999237 + 0.0390693i \(0.0124393\pi\)
−0.999237 + 0.0390693i \(0.987561\pi\)
\(110\) 0 0
\(111\) 25.9971i 2.46753i
\(112\) 0 0
\(113\) 7.42864 7.42864i 0.698828 0.698828i −0.265330 0.964158i \(-0.585481\pi\)
0.964158 + 0.265330i \(0.0854809\pi\)
\(114\) 0 0
\(115\) 0.501788 0.378158i 0.0467920 0.0352634i
\(116\) 0 0
\(117\) 21.1891 + 21.1891i 1.95894 + 1.95894i
\(118\) 0 0
\(119\) 0.814987 0.0747097
\(120\) 0 0
\(121\) −13.8573 −1.25975
\(122\) 0 0
\(123\) 6.53680 + 6.53680i 0.589403 + 0.589403i
\(124\) 0 0
\(125\) 4.54617 10.2143i 0.406622 0.913597i
\(126\) 0 0
\(127\) −8.89277 + 8.89277i −0.789106 + 0.789106i −0.981348 0.192241i \(-0.938424\pi\)
0.192241 + 0.981348i \(0.438424\pi\)
\(128\) 0 0
\(129\) 8.42864i 0.742100i
\(130\) 0 0
\(131\) 17.0942i 1.49353i 0.665090 + 0.746763i \(0.268393\pi\)
−0.665090 + 0.746763i \(0.731607\pi\)
\(132\) 0 0
\(133\) 3.70471 3.70471i 0.321239 0.321239i
\(134\) 0 0
\(135\) 9.48886 + 12.5910i 0.816671 + 1.08366i
\(136\) 0 0
\(137\) −5.00000 5.00000i −0.427179 0.427179i 0.460487 0.887666i \(-0.347675\pi\)
−0.887666 + 0.460487i \(0.847675\pi\)
\(138\) 0 0
\(139\) −18.6453 −1.58147 −0.790736 0.612157i \(-0.790302\pi\)
−0.790736 + 0.612157i \(0.790302\pi\)
\(140\) 0 0
\(141\) −9.67307 −0.814620
\(142\) 0 0
\(143\) −19.4603 19.4603i −1.62735 1.62735i
\(144\) 0 0
\(145\) −17.2859 2.42864i −1.43552 0.201688i
\(146\) 0 0
\(147\) 9.59326 9.59326i 0.791239 0.791239i
\(148\) 0 0
\(149\) 9.93978i 0.814298i 0.913362 + 0.407149i \(0.133477\pi\)
−0.913362 + 0.407149i \(0.866523\pi\)
\(150\) 0 0
\(151\) 3.91717i 0.318775i −0.987216 0.159387i \(-0.949048\pi\)
0.987216 0.159387i \(-0.0509519\pi\)
\(152\) 0 0
\(153\) 2.05086 2.05086i 0.165802 0.165802i
\(154\) 0 0
\(155\) −13.4060 1.88352i −1.07680 0.151288i
\(156\) 0 0
\(157\) 10.9541 + 10.9541i 0.874230 + 0.874230i 0.992930 0.118700i \(-0.0378728\pi\)
−0.118700 + 0.992930i \(0.537873\pi\)
\(158\) 0 0
\(159\) −2.95206 −0.234113
\(160\) 0 0
\(161\) 0.428639 0.0337815
\(162\) 0 0
\(163\) −12.0243 12.0243i −0.941816 0.941816i 0.0565824 0.998398i \(-0.481980\pi\)
−0.998398 + 0.0565824i \(0.981980\pi\)
\(164\) 0 0
\(165\) −19.4795 25.8479i −1.51648 2.01226i
\(166\) 0 0
\(167\) 7.61544 7.61544i 0.589300 0.589300i −0.348142 0.937442i \(-0.613187\pi\)
0.937442 + 0.348142i \(0.113187\pi\)
\(168\) 0 0
\(169\) 17.4701i 1.34386i
\(170\) 0 0
\(171\) 18.6453i 1.42584i
\(172\) 0 0
\(173\) −11.1891 + 11.1891i −0.850694 + 0.850694i −0.990219 0.139525i \(-0.955443\pi\)
0.139525 + 0.990219i \(0.455443\pi\)
\(174\) 0 0
\(175\) 6.67054 3.69827i 0.504245 0.279563i
\(176\) 0 0
\(177\) 13.4193 + 13.4193i 1.00865 + 1.00865i
\(178\) 0 0
\(179\) −5.57169 −0.416447 −0.208224 0.978081i \(-0.566768\pi\)
−0.208224 + 0.978081i \(0.566768\pi\)
\(180\) 0 0
\(181\) 3.34614 0.248717 0.124358 0.992237i \(-0.460313\pi\)
0.124358 + 0.992237i \(0.460313\pi\)
\(182\) 0 0
\(183\) 6.93419 + 6.93419i 0.512590 + 0.512590i
\(184\) 0 0
\(185\) 15.9906 12.0509i 1.17565 0.885996i
\(186\) 0 0
\(187\) −1.88352 + 1.88352i −0.137737 + 0.137737i
\(188\) 0 0
\(189\) 10.7556i 0.782353i
\(190\) 0 0
\(191\) 9.15643i 0.662536i 0.943537 + 0.331268i \(0.107476\pi\)
−0.943537 + 0.331268i \(0.892524\pi\)
\(192\) 0 0
\(193\) 5.99063 5.99063i 0.431215 0.431215i −0.457826 0.889042i \(-0.651372\pi\)
0.889042 + 0.457826i \(0.151372\pi\)
\(194\) 0 0
\(195\) 4.98571 35.4859i 0.357034 2.54120i
\(196\) 0 0
\(197\) 3.66815 + 3.66815i 0.261345 + 0.261345i 0.825600 0.564255i \(-0.190837\pi\)
−0.564255 + 0.825600i \(0.690837\pi\)
\(198\) 0 0
\(199\) −3.10219 −0.219908 −0.109954 0.993937i \(-0.535070\pi\)
−0.109954 + 0.993937i \(0.535070\pi\)
\(200\) 0 0
\(201\) 31.6543 2.23272
\(202\) 0 0
\(203\) −8.42032 8.42032i −0.590991 0.590991i
\(204\) 0 0
\(205\) 0.990632 7.05086i 0.0691887 0.492453i
\(206\) 0 0
\(207\) 1.07864 1.07864i 0.0749707 0.0749707i
\(208\) 0 0
\(209\) 17.1240i 1.18449i
\(210\) 0 0
\(211\) 17.0942i 1.17681i −0.808565 0.588406i \(-0.799756\pi\)
0.808565 0.588406i \(-0.200244\pi\)
\(212\) 0 0
\(213\) 26.5303 26.5303i 1.81783 1.81783i
\(214\) 0 0
\(215\) −5.18440 + 3.90707i −0.353573 + 0.266460i
\(216\) 0 0
\(217\) −6.53035 6.53035i −0.443309 0.443309i
\(218\) 0 0
\(219\) 8.42032 0.568993
\(220\) 0 0
\(221\) −2.94914 −0.198381
\(222\) 0 0
\(223\) 3.23592 + 3.23592i 0.216693 + 0.216693i 0.807103 0.590410i \(-0.201034\pi\)
−0.590410 + 0.807103i \(0.701034\pi\)
\(224\) 0 0
\(225\) 7.47949 26.0923i 0.498633 1.73949i
\(226\) 0 0
\(227\) −17.8048 + 17.8048i −1.18174 + 1.18174i −0.202453 + 0.979292i \(0.564891\pi\)
−0.979292 + 0.202453i \(0.935109\pi\)
\(228\) 0 0
\(229\) 12.1936i 0.805774i 0.915250 + 0.402887i \(0.131993\pi\)
−0.915250 + 0.402887i \(0.868007\pi\)
\(230\) 0 0
\(231\) 22.0799i 1.45275i
\(232\) 0 0
\(233\) −1.13335 + 1.13335i −0.0742484 + 0.0742484i −0.743256 0.669007i \(-0.766719\pi\)
0.669007 + 0.743256i \(0.266719\pi\)
\(234\) 0 0
\(235\) 4.48392 + 5.94984i 0.292499 + 0.388125i
\(236\) 0 0
\(237\) −6.36842 6.36842i −0.413673 0.413673i
\(238\) 0 0
\(239\) 2.13707 0.138236 0.0691178 0.997609i \(-0.477982\pi\)
0.0691178 + 0.997609i \(0.477982\pi\)
\(240\) 0 0
\(241\) −0.161933 −0.0104310 −0.00521552 0.999986i \(-0.501660\pi\)
−0.00521552 + 0.999986i \(0.501660\pi\)
\(242\) 0 0
\(243\) −6.36744 6.36744i −0.408472 0.408472i
\(244\) 0 0
\(245\) −10.3477 1.45383i −0.661089 0.0928817i
\(246\) 0 0
\(247\) −13.4060 + 13.4060i −0.853005 + 0.853005i
\(248\) 0 0
\(249\) 22.5303i 1.42780i
\(250\) 0 0
\(251\) 14.9571i 0.944085i −0.881576 0.472043i \(-0.843517\pi\)
0.881576 0.472043i \(-0.156483\pi\)
\(252\) 0 0
\(253\) −0.990632 + 0.990632i −0.0622805 + 0.0622805i
\(254\) 0 0
\(255\) −3.43461 0.482557i −0.215084 0.0302189i
\(256\) 0 0
\(257\) −6.67307 6.67307i −0.416255 0.416255i 0.467656 0.883911i \(-0.345099\pi\)
−0.883911 + 0.467656i \(0.845099\pi\)
\(258\) 0 0
\(259\) 13.6596 0.848765
\(260\) 0 0
\(261\) −42.3783 −2.62315
\(262\) 0 0
\(263\) 16.7069 + 16.7069i 1.03019 + 1.03019i 0.999530 + 0.0306624i \(0.00976166\pi\)
0.0306624 + 0.999530i \(0.490238\pi\)
\(264\) 0 0
\(265\) 1.36842 + 1.81579i 0.0840612 + 0.111543i
\(266\) 0 0
\(267\) 18.1829 18.1829i 1.11278 1.11278i
\(268\) 0 0
\(269\) 16.8988i 1.03034i −0.857089 0.515168i \(-0.827730\pi\)
0.857089 0.515168i \(-0.172270\pi\)
\(270\) 0 0
\(271\) 19.1278i 1.16193i −0.813927 0.580967i \(-0.802675\pi\)
0.813927 0.580967i \(-0.197325\pi\)
\(272\) 0 0
\(273\) 17.2859 17.2859i 1.04619 1.04619i
\(274\) 0 0
\(275\) −6.86923 + 23.9634i −0.414230 + 1.44505i
\(276\) 0 0
\(277\) 4.65878 + 4.65878i 0.279919 + 0.279919i 0.833077 0.553158i \(-0.186577\pi\)
−0.553158 + 0.833077i \(0.686577\pi\)
\(278\) 0 0
\(279\) −32.8663 −1.96765
\(280\) 0 0
\(281\) 12.8988 0.769476 0.384738 0.923026i \(-0.374292\pi\)
0.384738 + 0.923026i \(0.374292\pi\)
\(282\) 0 0
\(283\) −8.58968 8.58968i −0.510604 0.510604i 0.404108 0.914711i \(-0.367582\pi\)
−0.914711 + 0.404108i \(0.867582\pi\)
\(284\) 0 0
\(285\) −17.8064 + 13.4193i −1.05476 + 0.794889i
\(286\) 0 0
\(287\) 3.43461 3.43461i 0.202739 0.202739i
\(288\) 0 0
\(289\) 16.7146i 0.983209i
\(290\) 0 0
\(291\) 11.5225i 0.675461i
\(292\) 0 0
\(293\) 12.4652 12.4652i 0.728225 0.728225i −0.242041 0.970266i \(-0.577817\pi\)
0.970266 + 0.242041i \(0.0778169\pi\)
\(294\) 0 0
\(295\) 2.03365 14.4746i 0.118404 0.842742i
\(296\) 0 0
\(297\) −24.8573 24.8573i −1.44237 1.44237i
\(298\) 0 0
\(299\) −1.55109 −0.0897020
\(300\) 0 0
\(301\) −4.42864 −0.255263
\(302\) 0 0
\(303\) 28.9491 + 28.9491i 1.66308 + 1.66308i
\(304\) 0 0
\(305\) 1.05086 7.47949i 0.0601718 0.428275i
\(306\) 0 0
\(307\) 4.39875 4.39875i 0.251050 0.251050i −0.570351 0.821401i \(-0.693193\pi\)
0.821401 + 0.570351i \(0.193193\pi\)
\(308\) 0 0
\(309\) 41.7560i 2.37542i
\(310\) 0 0
\(311\) 10.7864i 0.611641i 0.952089 + 0.305820i \(0.0989307\pi\)
−0.952089 + 0.305820i \(0.901069\pi\)
\(312\) 0 0
\(313\) −16.6731 + 16.6731i −0.942418 + 0.942418i −0.998430 0.0560124i \(-0.982161\pi\)
0.0560124 + 0.998430i \(0.482161\pi\)
\(314\) 0 0
\(315\) 14.7878 11.1443i 0.833196 0.627913i
\(316\) 0 0
\(317\) 6.85236 + 6.85236i 0.384867 + 0.384867i 0.872852 0.487985i \(-0.162268\pi\)
−0.487985 + 0.872852i \(0.662268\pi\)
\(318\) 0 0
\(319\) 38.9205 2.17913
\(320\) 0 0
\(321\) 9.28592 0.518289
\(322\) 0 0
\(323\) 1.29754 + 1.29754i 0.0721973 + 0.0721973i
\(324\) 0 0
\(325\) −24.1383 + 13.3827i −1.33895 + 0.742339i
\(326\) 0 0
\(327\) 1.67472 1.67472i 0.0926124 0.0926124i
\(328\) 0 0
\(329\) 5.08250i 0.280207i
\(330\) 0 0
\(331\) 27.0656i 1.48766i 0.668369 + 0.743830i \(0.266993\pi\)
−0.668369 + 0.743830i \(0.733007\pi\)
\(332\) 0 0
\(333\) 34.3733 34.3733i 1.88365 1.88365i
\(334\) 0 0
\(335\) −14.6733 19.4704i −0.801686 1.06378i
\(336\) 0 0
\(337\) −24.7146 24.7146i −1.34629 1.34629i −0.889656 0.456632i \(-0.849056\pi\)
−0.456632 0.889656i \(-0.650944\pi\)
\(338\) 0 0
\(339\) −30.5002 −1.65654
\(340\) 0 0
\(341\) 30.1847 1.63459
\(342\) 0 0
\(343\) −12.5910 12.5910i −0.679852 0.679852i
\(344\) 0 0
\(345\) −1.80642 0.253799i −0.0972546 0.0136641i
\(346\) 0 0
\(347\) −4.27512 + 4.27512i −0.229500 + 0.229500i −0.812484 0.582984i \(-0.801885\pi\)
0.582984 + 0.812484i \(0.301885\pi\)
\(348\) 0 0
\(349\) 6.29529i 0.336979i 0.985703 + 0.168489i \(0.0538889\pi\)
−0.985703 + 0.168489i \(0.946111\pi\)
\(350\) 0 0
\(351\) 38.9205i 2.07743i
\(352\) 0 0
\(353\) 9.85728 9.85728i 0.524650 0.524650i −0.394322 0.918972i \(-0.629021\pi\)
0.918972 + 0.394322i \(0.129021\pi\)
\(354\) 0 0
\(355\) −28.6167 4.02059i −1.51882 0.213391i
\(356\) 0 0
\(357\) −1.67307 1.67307i −0.0885483 0.0885483i
\(358\) 0 0
\(359\) 25.1821 1.32906 0.664530 0.747262i \(-0.268632\pi\)
0.664530 + 0.747262i \(0.268632\pi\)
\(360\) 0 0
\(361\) −7.20342 −0.379127
\(362\) 0 0
\(363\) 28.4473 + 28.4473i 1.49310 + 1.49310i
\(364\) 0 0
\(365\) −3.90321 5.17929i −0.204303 0.271096i
\(366\) 0 0
\(367\) −21.0013 + 21.0013i −1.09626 + 1.09626i −0.101412 + 0.994844i \(0.532336\pi\)
−0.994844 + 0.101412i \(0.967664\pi\)
\(368\) 0 0
\(369\) 17.2859i 0.899869i
\(370\) 0 0
\(371\) 1.55109i 0.0805287i
\(372\) 0 0
\(373\) 10.7190 10.7190i 0.555009 0.555009i −0.372873 0.927882i \(-0.621627\pi\)
0.927882 + 0.372873i \(0.121627\pi\)
\(374\) 0 0
\(375\) −30.3015 + 11.6360i −1.56476 + 0.600882i
\(376\) 0 0
\(377\) 30.4701 + 30.4701i 1.56929 + 1.56929i
\(378\) 0 0
\(379\) 15.5431 0.798395 0.399198 0.916865i \(-0.369289\pi\)
0.399198 + 0.916865i \(0.369289\pi\)
\(380\) 0 0
\(381\) 36.5116 1.87055
\(382\) 0 0
\(383\) 15.3444 + 15.3444i 0.784063 + 0.784063i 0.980514 0.196451i \(-0.0629417\pi\)
−0.196451 + 0.980514i \(0.562942\pi\)
\(384\) 0 0
\(385\) −13.5812 + 10.2351i −0.692162 + 0.521627i
\(386\) 0 0
\(387\) −11.1443 + 11.1443i −0.566499 + 0.566499i
\(388\) 0 0
\(389\) 13.5526i 0.687145i −0.939126 0.343573i \(-0.888363\pi\)
0.939126 0.343573i \(-0.111637\pi\)
\(390\) 0 0
\(391\) 0.150127i 0.00759226i
\(392\) 0 0
\(393\) 35.0923 35.0923i 1.77017 1.77017i
\(394\) 0 0
\(395\) −0.965114 + 6.86923i −0.0485602 + 0.345628i
\(396\) 0 0
\(397\) −11.8716 11.8716i −0.595817 0.595817i 0.343380 0.939197i \(-0.388428\pi\)
−0.939197 + 0.343380i \(0.888428\pi\)
\(398\) 0 0
\(399\) −15.2107 −0.761486
\(400\) 0 0
\(401\) 20.9590 1.04664 0.523321 0.852136i \(-0.324693\pi\)
0.523321 + 0.852136i \(0.324693\pi\)
\(402\) 0 0
\(403\) 23.6310 + 23.6310i 1.17714 + 1.17714i
\(404\) 0 0
\(405\) 1.30174 9.26517i 0.0646840 0.460390i
\(406\) 0 0
\(407\) −31.5688 + 31.5688i −1.56481 + 1.56481i
\(408\) 0 0
\(409\) 19.5526i 0.966815i −0.875395 0.483408i \(-0.839399\pi\)
0.875395 0.483408i \(-0.160601\pi\)
\(410\) 0 0
\(411\) 20.5288i 1.01261i
\(412\) 0 0
\(413\) 7.05086 7.05086i 0.346950 0.346950i
\(414\) 0 0
\(415\) −13.8583 + 10.4439i −0.680276 + 0.512669i
\(416\) 0 0
\(417\) 38.2766 + 38.2766i 1.87441 + 1.87441i
\(418\) 0 0
\(419\) 22.4123 1.09491 0.547457 0.836834i \(-0.315596\pi\)
0.547457 + 0.836834i \(0.315596\pi\)
\(420\) 0 0
\(421\) 29.3590 1.43087 0.715436 0.698678i \(-0.246228\pi\)
0.715436 + 0.698678i \(0.246228\pi\)
\(422\) 0 0
\(423\) 12.7897 + 12.7897i 0.621858 + 0.621858i
\(424\) 0 0
\(425\) 1.29529 + 2.33630i 0.0628306 + 0.113327i
\(426\) 0 0
\(427\) 3.64341 3.64341i 0.176317 0.176317i
\(428\) 0 0
\(429\) 79.8992i 3.85757i
\(430\) 0 0
\(431\) 12.9235i 0.622502i −0.950328 0.311251i \(-0.899252\pi\)
0.950328 0.311251i \(-0.100748\pi\)
\(432\) 0 0
\(433\) −16.9081 + 16.9081i −0.812553 + 0.812553i −0.985016 0.172463i \(-0.944827\pi\)
0.172463 + 0.985016i \(0.444827\pi\)
\(434\) 0 0
\(435\) 30.5002 + 40.4716i 1.46237 + 1.94047i
\(436\) 0 0
\(437\) 0.682439 + 0.682439i 0.0326455 + 0.0326455i
\(438\) 0 0
\(439\) 18.9777 0.905757 0.452878 0.891572i \(-0.350397\pi\)
0.452878 + 0.891572i \(0.350397\pi\)
\(440\) 0 0
\(441\) −25.3684 −1.20802
\(442\) 0 0
\(443\) 1.38173 + 1.38173i 0.0656482 + 0.0656482i 0.739169 0.673520i \(-0.235219\pi\)
−0.673520 + 0.739169i \(0.735219\pi\)
\(444\) 0 0
\(445\) −19.6128 2.75557i −0.929738 0.130626i
\(446\) 0 0
\(447\) 20.4052 20.4052i 0.965132 0.965132i
\(448\) 0 0
\(449\) 12.1432i 0.573073i 0.958069 + 0.286536i \(0.0925040\pi\)
−0.958069 + 0.286536i \(0.907496\pi\)
\(450\) 0 0
\(451\) 15.8755i 0.747550i
\(452\) 0 0
\(453\) −8.04149 + 8.04149i −0.377822 + 0.377822i
\(454\) 0 0
\(455\) −18.6453 2.61963i −0.874104 0.122810i
\(456\) 0 0
\(457\) −2.57136 2.57136i −0.120283 0.120283i 0.644403 0.764686i \(-0.277106\pi\)
−0.764686 + 0.644403i \(0.777106\pi\)
\(458\) 0 0
\(459\) −3.76704 −0.175831
\(460\) 0 0
\(461\) −35.6128 −1.65866 −0.829328 0.558762i \(-0.811276\pi\)
−0.829328 + 0.558762i \(0.811276\pi\)
\(462\) 0 0
\(463\) −6.67054 6.67054i −0.310006 0.310006i 0.534906 0.844912i \(-0.320347\pi\)
−0.844912 + 0.534906i \(0.820347\pi\)
\(464\) 0 0
\(465\) 23.6543 + 31.3876i 1.09694 + 1.45557i
\(466\) 0 0
\(467\) 11.1443 11.1443i 0.515699 0.515699i −0.400568 0.916267i \(-0.631187\pi\)
0.916267 + 0.400568i \(0.131187\pi\)
\(468\) 0 0
\(469\) 16.6321i 0.767997i
\(470\) 0 0
\(471\) 44.9748i 2.07233i
\(472\) 0 0
\(473\) 10.2351 10.2351i 0.470609 0.470609i
\(474\) 0 0
\(475\) 16.5082 + 4.73216i 0.757449 + 0.217126i
\(476\) 0 0
\(477\) 3.90321 + 3.90321i 0.178716 + 0.178716i
\(478\) 0 0
\(479\) −0.965114 −0.0440972 −0.0220486 0.999757i \(-0.507019\pi\)
−0.0220486 + 0.999757i \(0.507019\pi\)
\(480\) 0 0
\(481\) −49.4291 −2.25377
\(482\) 0 0
\(483\) −0.879946 0.879946i −0.0400389 0.0400389i
\(484\) 0 0
\(485\) 7.08742 5.34122i 0.321823 0.242532i
\(486\) 0 0
\(487\) 8.89277 8.89277i 0.402970 0.402970i −0.476308 0.879278i \(-0.658025\pi\)
0.879278 + 0.476308i \(0.158025\pi\)
\(488\) 0 0
\(489\) 49.3689i 2.23254i
\(490\) 0 0
\(491\) 30.8327i 1.39146i −0.718304 0.695729i \(-0.755081\pi\)
0.718304 0.695729i \(-0.244919\pi\)
\(492\) 0 0
\(493\) 2.94914 2.94914i 0.132823 0.132823i
\(494\) 0 0
\(495\) −8.42032 + 59.9319i −0.378465 + 2.69374i
\(496\) 0 0
\(497\) −13.9398 13.9398i −0.625284 0.625284i
\(498\) 0 0
\(499\) −35.4859 −1.58857 −0.794284 0.607546i \(-0.792154\pi\)
−0.794284 + 0.607546i \(0.792154\pi\)
\(500\) 0 0
\(501\) −31.2672 −1.39691
\(502\) 0 0
\(503\) 8.80761 + 8.80761i 0.392712 + 0.392712i 0.875653 0.482941i \(-0.160431\pi\)
−0.482941 + 0.875653i \(0.660431\pi\)
\(504\) 0 0
\(505\) 4.38715 31.2257i 0.195226 1.38953i
\(506\) 0 0
\(507\) −35.8641 + 35.8641i −1.59278 + 1.59278i
\(508\) 0 0
\(509\) 21.9081i 0.971061i −0.874220 0.485530i \(-0.838626\pi\)
0.874220 0.485530i \(-0.161374\pi\)
\(510\) 0 0
\(511\) 4.42427i 0.195718i
\(512\) 0 0
\(513\) −17.1240 + 17.1240i −0.756042 + 0.756042i
\(514\) 0 0
\(515\) 25.6839 19.3559i 1.13177 0.852922i
\(516\) 0 0
\(517\) −11.7462 11.7462i −0.516597 0.516597i
\(518\) 0 0
\(519\) 45.9399 2.01654
\(520\) 0 0
\(521\) −19.5941 −0.858434 −0.429217 0.903201i \(-0.641210\pi\)
−0.429217 + 0.903201i \(0.641210\pi\)
\(522\) 0 0
\(523\) −10.7268 10.7268i −0.469048 0.469048i 0.432558 0.901606i \(-0.357611\pi\)
−0.901606 + 0.432558i \(0.857611\pi\)
\(524\) 0 0
\(525\) −21.2859 6.10171i −0.928994 0.266300i
\(526\) 0 0
\(527\) 2.28720 2.28720i 0.0996319 0.0996319i
\(528\) 0 0
\(529\) 22.9210i 0.996567i
\(530\) 0 0
\(531\) 35.4859i 1.53996i
\(532\) 0 0
\(533\) −12.4286 + 12.4286i −0.538344 + 0.538344i
\(534\) 0 0
\(535\) −4.30446 5.71171i −0.186098 0.246939i
\(536\) 0 0
\(537\) 11.4380 + 11.4380i 0.493586 + 0.493586i
\(538\) 0 0
\(539\) 23.2986 1.00354
\(540\) 0 0
\(541\) −26.8385 −1.15388 −0.576940 0.816787i \(-0.695753\pi\)
−0.576940 + 0.816787i \(0.695753\pi\)
\(542\) 0 0
\(543\) −6.86923 6.86923i −0.294787 0.294787i
\(544\) 0 0
\(545\) −1.80642 0.253799i −0.0773787 0.0108716i
\(546\) 0 0
\(547\) 18.9787 18.9787i 0.811470 0.811470i −0.173384 0.984854i \(-0.555470\pi\)
0.984854 + 0.173384i \(0.0554702\pi\)
\(548\) 0 0
\(549\) 18.3368i 0.782594i
\(550\) 0 0
\(551\) 26.8121i 1.14223i
\(552\) 0 0
\(553\) −3.34614 + 3.34614i −0.142292 + 0.142292i
\(554\) 0 0
\(555\) −57.5658 8.08789i −2.44353 0.343312i
\(556\) 0 0
\(557\) 29.6780 + 29.6780i 1.25750 + 1.25750i 0.952284 + 0.305213i \(0.0987276\pi\)
0.305213 + 0.952284i \(0.401272\pi\)
\(558\) 0 0
\(559\) 16.0257 0.677813
\(560\) 0 0
\(561\) 7.73329 0.326500
\(562\) 0 0
\(563\) −5.15507 5.15507i −0.217260 0.217260i 0.590083 0.807343i \(-0.299095\pi\)
−0.807343 + 0.590083i \(0.799095\pi\)
\(564\) 0 0
\(565\) 14.1383 + 18.7605i 0.594802 + 0.789260i
\(566\) 0 0
\(567\) 4.51326 4.51326i 0.189539 0.189539i
\(568\) 0 0
\(569\) 1.95851i 0.0821051i −0.999157 0.0410526i \(-0.986929\pi\)
0.999157 0.0410526i \(-0.0130711\pi\)
\(570\) 0 0
\(571\) 1.21866i 0.0509995i 0.999675 + 0.0254997i \(0.00811769\pi\)
−0.999675 + 0.0254997i \(0.991882\pi\)
\(572\) 0 0
\(573\) 18.7971 18.7971i 0.785258 0.785258i
\(574\) 0 0
\(575\) 0.681251 + 1.22877i 0.0284101 + 0.0512431i
\(576\) 0 0
\(577\) −19.4099 19.4099i −0.808045 0.808045i 0.176293 0.984338i \(-0.443589\pi\)
−0.984338 + 0.176293i \(0.943589\pi\)
\(578\) 0 0
\(579\) −24.5961 −1.02218
\(580\) 0 0
\(581\) −11.8381 −0.491126
\(582\) 0 0
\(583\) −3.58474 3.58474i −0.148465 0.148465i
\(584\) 0 0
\(585\) −53.5116 + 40.3274i −2.21243 + 1.66733i
\(586\) 0 0
\(587\) 10.9356 10.9356i 0.451358 0.451358i −0.444447 0.895805i \(-0.646600\pi\)
0.895805 + 0.444447i \(0.146600\pi\)
\(588\) 0 0
\(589\) 20.7940i 0.856802i
\(590\) 0 0
\(591\) 15.0605i 0.619508i
\(592\) 0 0
\(593\) −20.3274 + 20.3274i −0.834747 + 0.834747i −0.988162 0.153415i \(-0.950973\pi\)
0.153415 + 0.988162i \(0.450973\pi\)
\(594\) 0 0
\(595\) −0.253549 + 1.80464i −0.0103945 + 0.0739831i
\(596\) 0 0
\(597\) 6.36842 + 6.36842i 0.260642 + 0.260642i
\(598\) 0 0
\(599\) 47.2620 1.93107 0.965536 0.260269i \(-0.0838112\pi\)
0.965536 + 0.260269i \(0.0838112\pi\)
\(600\) 0 0
\(601\) −28.0415 −1.14384 −0.571918 0.820311i \(-0.693800\pi\)
−0.571918 + 0.820311i \(0.693800\pi\)
\(602\) 0 0
\(603\) −41.8534 41.8534i −1.70440 1.70440i
\(604\) 0 0
\(605\) 4.31111 30.6844i 0.175271 1.24750i
\(606\) 0 0
\(607\) −16.6217 + 16.6217i −0.674656 + 0.674656i −0.958786 0.284130i \(-0.908295\pi\)
0.284130 + 0.958786i \(0.408295\pi\)
\(608\) 0 0
\(609\) 34.5718i 1.40092i
\(610\) 0 0
\(611\) 18.3917i 0.744050i
\(612\) 0 0
\(613\) −5.41435 + 5.41435i −0.218684 + 0.218684i −0.807943 0.589260i \(-0.799419\pi\)
0.589260 + 0.807943i \(0.299419\pi\)
\(614\) 0 0
\(615\) −16.5082 + 12.4409i −0.665675 + 0.501666i
\(616\) 0 0
\(617\) 14.9496 + 14.9496i 0.601849 + 0.601849i 0.940803 0.338954i \(-0.110073\pi\)
−0.338954 + 0.940803i \(0.610073\pi\)
\(618\) 0 0
\(619\) −20.2753 −0.814931 −0.407466 0.913220i \(-0.633587\pi\)
−0.407466 + 0.913220i \(0.633587\pi\)
\(620\) 0 0
\(621\) −1.98126 −0.0795054
\(622\) 0 0
\(623\) −9.55382 9.55382i −0.382766 0.382766i
\(624\) 0 0
\(625\) 21.2034 + 13.2444i 0.848137 + 0.529777i
\(626\) 0 0
\(627\) 35.1535 35.1535i 1.40390 1.40390i
\(628\) 0 0
\(629\) 4.78415i 0.190757i
\(630\) 0 0
\(631\) 41.2077i 1.64045i 0.572038 + 0.820227i \(0.306153\pi\)
−0.572038 + 0.820227i \(0.693847\pi\)
\(632\) 0 0
\(633\) −35.0923 + 35.0923i −1.39480 + 1.39480i
\(634\) 0 0
\(635\) −16.9248 22.4581i −0.671642 0.891221i
\(636\) 0 0
\(637\) 18.2400 + 18.2400i 0.722695 + 0.722695i
\(638\) 0 0
\(639\) −70.1569 −2.77536
\(640\) 0 0
\(641\) 28.0415 1.10757 0.553786 0.832659i \(-0.313183\pi\)
0.553786 + 0.832659i \(0.313183\pi\)
\(642\) 0 0
\(643\) −5.14878 5.14878i −0.203048 0.203048i 0.598257 0.801305i \(-0.295860\pi\)
−0.801305 + 0.598257i \(0.795860\pi\)
\(644\) 0 0
\(645\) 18.6637 + 2.62222i 0.734883 + 0.103250i
\(646\) 0 0
\(647\) −16.2893 + 16.2893i −0.640399 + 0.640399i −0.950654 0.310255i \(-0.899586\pi\)
0.310255 + 0.950654i \(0.399586\pi\)
\(648\) 0 0
\(649\) 32.5906i 1.27929i
\(650\) 0 0
\(651\) 26.8121i 1.05085i
\(652\) 0 0
\(653\) 4.13828 4.13828i 0.161943 0.161943i −0.621484 0.783427i \(-0.713470\pi\)
0.783427 + 0.621484i \(0.213470\pi\)
\(654\) 0 0
\(655\) −37.8520 5.31814i −1.47900 0.207797i
\(656\) 0 0
\(657\) −11.1334 11.1334i −0.434353 0.434353i
\(658\) 0 0
\(659\) −1.80464 −0.0702988 −0.0351494 0.999382i \(-0.511191\pi\)
−0.0351494 + 0.999382i \(0.511191\pi\)
\(660\) 0 0
\(661\) −23.3145 −0.906829 −0.453414 0.891300i \(-0.649794\pi\)
−0.453414 + 0.891300i \(0.649794\pi\)
\(662\) 0 0
\(663\) 6.05424 + 6.05424i 0.235127 + 0.235127i
\(664\) 0 0
\(665\) 7.05086 + 9.35599i 0.273420 + 0.362810i
\(666\) 0 0
\(667\) 1.55109 1.55109i 0.0600585 0.0600585i
\(668\) 0 0
\(669\) 13.2859i 0.513663i
\(670\) 0 0
\(671\) 16.8406i 0.650126i
\(672\) 0 0
\(673\) −6.15257 + 6.15257i −0.237164 + 0.237164i −0.815675 0.578511i \(-0.803634\pi\)
0.578511 + 0.815675i \(0.303634\pi\)
\(674\) 0 0
\(675\) −30.8327 + 17.0942i −1.18675 + 0.657956i
\(676\) 0 0
\(677\) 10.0366 + 10.0366i 0.385737 + 0.385737i 0.873164 0.487427i \(-0.162065\pi\)
−0.487427 + 0.873164i \(0.662065\pi\)
\(678\) 0 0
\(679\) 6.05424 0.232341
\(680\) 0 0
\(681\) 73.1022 2.80128
\(682\) 0 0
\(683\) 12.0243 + 12.0243i 0.460097 + 0.460097i 0.898687 0.438590i \(-0.144522\pi\)
−0.438590 + 0.898687i \(0.644522\pi\)
\(684\) 0 0
\(685\) 12.6271 9.51606i 0.482458 0.363590i
\(686\) 0 0
\(687\) 25.0320 25.0320i 0.955029 0.955029i
\(688\) 0 0
\(689\) 5.61285i 0.213832i
\(690\) 0 0
\(691\) 43.2414i 1.64498i −0.568779 0.822490i \(-0.692584\pi\)
0.568779 0.822490i \(-0.307416\pi\)
\(692\) 0 0
\(693\) −29.1941 + 29.1941i −1.10899 + 1.10899i
\(694\) 0 0
\(695\) 5.80069 41.2866i 0.220033 1.56609i
\(696\) 0 0
\(697\) 1.20294 + 1.20294i 0.0455648 + 0.0455648i
\(698\) 0 0
\(699\) 4.65328 0.176003
\(700\) 0 0
\(701\) −24.8256 −0.937651 −0.468826 0.883291i \(-0.655323\pi\)
−0.468826 + 0.883291i \(0.655323\pi\)
\(702\) 0 0
\(703\) 21.7475 + 21.7475i 0.820221 + 0.820221i
\(704\) 0 0
\(705\) 3.00937 21.4193i 0.113339 0.806696i
\(706\) 0 0
\(707\) 15.2107 15.2107i 0.572056 0.572056i
\(708\) 0 0
\(709\) 42.8484i 1.60920i 0.593814 + 0.804602i \(0.297622\pi\)
−0.593814 + 0.804602i \(0.702378\pi\)
\(710\) 0 0
\(711\) 16.8406i 0.631574i
\(712\) 0 0
\(713\) 1.20294 1.20294i 0.0450506 0.0450506i
\(714\) 0 0
\(715\) 49.1455 37.0370i 1.83794 1.38511i
\(716\) 0 0
\(717\) −4.38715 4.38715i −0.163841 0.163841i
\(718\) 0 0
\(719\) 11.6014 0.432659 0.216329 0.976320i \(-0.430591\pi\)
0.216329 + 0.976320i \(0.430591\pi\)
\(720\) 0 0
\(721\) 21.9398 0.817080
\(722\) 0 0
\(723\) 0.332430 + 0.332430i 0.0123632 + 0.0123632i
\(724\) 0 0
\(725\) 10.7556 37.5210i 0.399452 1.39349i
\(726\) 0 0
\(727\) 22.6312 22.6312i 0.839346 0.839346i −0.149427 0.988773i \(-0.547743\pi\)
0.988773 + 0.149427i \(0.0477428\pi\)
\(728\) 0 0
\(729\) 38.6958i 1.43318i
\(730\) 0 0
\(731\) 1.55109i 0.0573692i
\(732\) 0 0
\(733\) −25.2908 + 25.2908i −0.934139 + 0.934139i −0.997961 0.0638227i \(-0.979671\pi\)
0.0638227 + 0.997961i \(0.479671\pi\)
\(734\) 0 0
\(735\) 18.2580 + 24.2271i 0.673457 + 0.893629i
\(736\) 0 0
\(737\) 38.4385 + 38.4385i 1.41590 + 1.41590i
\(738\) 0 0
\(739\) 52.3266 1.92486 0.962432 0.271522i \(-0.0875271\pi\)
0.962432 + 0.271522i \(0.0875271\pi\)
\(740\) 0 0
\(741\) 55.0420 2.02202
\(742\) 0 0
\(743\) −30.5551 30.5551i −1.12096 1.12096i −0.991598 0.129359i \(-0.958708\pi\)
−0.129359 0.991598i \(-0.541292\pi\)
\(744\) 0 0
\(745\) −22.0098 3.09234i −0.806378 0.113295i
\(746\) 0 0
\(747\) −29.7896 + 29.7896i −1.08995 + 1.08995i
\(748\) 0 0
\(749\) 4.87908i 0.178278i
\(750\) 0 0
\(751\) 36.9336i 1.34773i −0.738856 0.673863i \(-0.764634\pi\)
0.738856 0.673863i \(-0.235366\pi\)
\(752\) 0 0
\(753\) −30.7052 + 30.7052i −1.11896 + 1.11896i
\(754\) 0 0
\(755\) 8.67387 + 1.21866i 0.315674 + 0.0443517i
\(756\) 0 0
\(757\) −12.4652 12.4652i −0.453056 0.453056i 0.443312 0.896367i \(-0.353803\pi\)
−0.896367 + 0.443312i \(0.853803\pi\)
\(758\) 0 0
\(759\) 4.06730 0.147634
\(760\) 0 0
\(761\) −7.24443 −0.262610 −0.131305 0.991342i \(-0.541917\pi\)
−0.131305 + 0.991342i \(0.541917\pi\)
\(762\) 0 0
\(763\) −0.879946 0.879946i −0.0318562 0.0318562i
\(764\) 0 0
\(765\) 3.90321 + 5.17929i 0.141121 + 0.187257i
\(766\) 0 0
\(767\) −25.5145 + 25.5145i −0.921276 + 0.921276i
\(768\) 0 0
\(769\) 29.3274i 1.05757i 0.848755 + 0.528787i \(0.177353\pi\)
−0.848755 + 0.528787i \(0.822647\pi\)
\(770\) 0 0
\(771\) 27.3980i 0.986716i
\(772\) 0 0
\(773\) 0.954067 0.954067i 0.0343154 0.0343154i −0.689741 0.724056i \(-0.742276\pi\)
0.724056 + 0.689741i \(0.242276\pi\)
\(774\) 0 0
\(775\) 8.34144 29.0993i 0.299633 1.04528i
\(776\) 0 0
\(777\) −28.0415 28.0415i −1.00598 1.00598i
\(778\) 0 0
\(779\) 10.9365 0.391842
\(780\) 0 0
\(781\) 64.4327 2.30558
\(782\) 0 0
\(783\) 38.9205 + 38.9205i 1.39091 + 1.39091i
\(784\) 0 0
\(785\) −27.6637 + 20.8479i −0.987360 + 0.744094i
\(786\) 0 0
\(787\) −34.5218 + 34.5218i −1.23057 + 1.23057i −0.266824 + 0.963745i \(0.585974\pi\)
−0.963745 + 0.266824i \(0.914026\pi\)
\(788\) 0 0
\(789\) 68.5946i 2.44203i
\(790\) 0 0
\(791\) 16.0257i 0.569807i
\(792\) 0 0
\(793\) −13.1842 + 13.1842i −0.468185 + 0.468185i
\(794\) 0 0
\(795\) 0.918408 6.53680i 0.0325726 0.231836i
\(796\) 0 0
\(797\) 6.85236 + 6.85236i 0.242723 + 0.242723i 0.817976 0.575253i \(-0.195096\pi\)
−0.575253 + 0.817976i \(0.695096\pi\)
\(798\) 0 0
\(799\) −1.78010 −0.0629754
\(800\) 0 0
\(801\) −48.0830 −1.69893
\(802\) 0 0
\(803\) 10.2250 + 10.2250i 0.360831 + 0.360831i
\(804\) 0 0
\(805\) −0.133353 + 0.949145i −0.00470008 + 0.0334530i
\(806\) 0 0
\(807\) −34.6912 + 34.6912i −1.22119 + 1.22119i
\(808\) 0 0
\(809\) 28.7368i 1.01033i −0.863022 0.505167i \(-0.831431\pi\)
0.863022 0.505167i \(-0.168569\pi\)
\(810\) 0 0
\(811\) 11.1901i 0.392937i 0.980510 + 0.196468i \(0.0629473\pi\)
−0.980510 + 0.196468i \(0.937053\pi\)
\(812\) 0 0
\(813\) −39.2672 + 39.2672i −1.37716 + 1.37716i
\(814\) 0 0
\(815\) 30.3665 22.8848i 1.06369 0.801619i
\(816\) 0 0
\(817\) −7.05086 7.05086i −0.246678 0.246678i
\(818\) 0 0
\(819\) −45.7109 −1.59727
\(820\) 0 0
\(821\) −6.33677 −0.221155 −0.110577 0.993868i \(-0.535270\pi\)
−0.110577 + 0.993868i \(0.535270\pi\)
\(822\) 0 0
\(823\) −9.20500 9.20500i −0.320866 0.320866i 0.528233 0.849099i \(-0.322855\pi\)
−0.849099 + 0.528233i \(0.822855\pi\)
\(824\) 0 0
\(825\) 63.2958 35.0923i 2.20368 1.22176i
\(826\) 0 0
\(827\) −7.37731 + 7.37731i −0.256534 + 0.256534i −0.823643 0.567109i \(-0.808062\pi\)
0.567109 + 0.823643i \(0.308062\pi\)
\(828\) 0 0
\(829\) 52.2449i 1.81454i 0.420548 + 0.907270i \(0.361838\pi\)
−0.420548 + 0.907270i \(0.638162\pi\)
\(830\) 0 0
\(831\) 19.1278i 0.663538i
\(832\) 0 0
\(833\) 1.76541 1.76541i 0.0611679 0.0611679i
\(834\) 0 0
\(835\) 14.4938 + 19.2322i 0.501579 + 0.665559i
\(836\) 0 0
\(837\) 30.1847 + 30.1847i 1.04334 + 1.04334i
\(838\) 0 0
\(839\) −53.6241 −1.85131 −0.925655 0.378368i \(-0.876485\pi\)
−0.925655 + 0.378368i \(0.876485\pi\)
\(840\) 0 0
\(841\) −31.9403 −1.10139
\(842\) 0 0
\(843\) −26.4796 26.4796i −0.912007 0.912007i
\(844\) 0 0
\(845\) 38.6844 + 5.43509i 1.33079 + 0.186973i
\(846\) 0 0
\(847\) 14.9470 14.9470i 0.513586 0.513586i
\(848\) 0 0
\(849\) 35.2672i 1.21037i
\(850\) 0 0
\(851\) 2.51621i 0.0862545i
\(852\) 0 0
\(853\) 27.7926 27.7926i 0.951601 0.951601i −0.0472808 0.998882i \(-0.515056\pi\)
0.998882 + 0.0472808i \(0.0150556\pi\)
\(854\) 0 0
\(855\) 41.2866 + 5.80069i 1.41197 + 0.198380i
\(856\) 0 0
\(857\) 10.1427 + 10.1427i 0.346469 + 0.346469i 0.858792 0.512324i \(-0.171215\pi\)
−0.512324 + 0.858792i \(0.671215\pi\)
\(858\) 0 0
\(859\) 27.1445 0.926158 0.463079 0.886317i \(-0.346745\pi\)
0.463079 + 0.886317i \(0.346745\pi\)
\(860\) 0 0
\(861\) −14.1017 −0.480585
\(862\) 0 0
\(863\) −15.0120 15.0120i −0.511014 0.511014i 0.403823 0.914837i \(-0.367681\pi\)
−0.914837 + 0.403823i \(0.867681\pi\)
\(864\) 0 0
\(865\) −21.2953 28.2573i −0.724061 0.960778i
\(866\) 0 0
\(867\) −34.3130 + 34.3130i −1.16533 + 1.16533i
\(868\) 0 0
\(869\) 15.4666i 0.524668i
\(870\) 0 0
\(871\) 60.1855i 2.03931i
\(872\) 0 0
\(873\) 15.2351 15.2351i 0.515629 0.515629i
\(874\) 0 0
\(875\) 6.11389 + 15.9213i 0.206687 + 0.538237i
\(876\) 0 0
\(877\) −13.9032 13.9032i −0.469478 0.469478i 0.432267 0.901745i \(-0.357714\pi\)
−0.901745 + 0.432267i \(0.857714\pi\)
\(878\) 0 0
\(879\) −51.1792 −1.72623
\(880\) 0 0
\(881\) −9.55262 −0.321836 −0.160918 0.986968i \(-0.551445\pi\)
−0.160918 + 0.986968i \(0.551445\pi\)
\(882\) 0 0
\(883\) 30.9635 + 30.9635i 1.04201 + 1.04201i 0.999078 + 0.0429282i \(0.0136687\pi\)
0.0429282 + 0.999078i \(0.486331\pi\)
\(884\) 0 0
\(885\) −33.8894 + 25.5397i −1.13918 + 0.858508i
\(886\) 0 0
\(887\) 13.1669 13.1669i 0.442102 0.442102i −0.450616 0.892718i \(-0.648796\pi\)
0.892718 + 0.450616i \(0.148796\pi\)
\(888\) 0 0
\(889\) 19.1842i 0.643418i
\(890\) 0 0
\(891\) 20.8612i 0.698878i
\(892\) 0 0
\(893\) −8.09187 + 8.09187i −0.270784 + 0.270784i
\(894\) 0 0
\(895\) 1.73340 12.3375i 0.0579410 0.412397i
\(896\) 0 0
\(897\) 3.18421 + 3.18421i 0.106318 + 0.106318i
\(898\) 0 0
\(899\) −47.2620 −1.57628
\(900\) 0 0
\(901\) −0.543257 −0.0180985
\(902\) 0 0
\(903\) 9.09147 + 9.09147i 0.302545 + 0.302545i
\(904\) 0 0
\(905\) −1.04101 + 7.40943i −0.0346044 + 0.246298i
\(906\) 0 0
\(907\) 16.7160 16.7160i 0.555047 0.555047i −0.372846 0.927893i \(-0.621618\pi\)
0.927893 + 0.372846i \(0.121618\pi\)
\(908\) 0 0
\(909\) 76.5531i 2.53911i
\(910\) 0 0
\(911\) 30.2712i 1.00293i 0.865178 + 0.501465i \(0.167205\pi\)
−0.865178 + 0.501465i \(0.832795\pi\)
\(912\) 0 0
\(913\) 27.3590 27.3590i 0.905452 0.905452i
\(914\) 0 0
\(915\) −17.5118 + 13.1972i −0.578922 + 0.436287i
\(916\) 0 0
\(917\) −18.4385 18.4385i −0.608892 0.608892i
\(918\) 0 0
\(919\) −16.8406 −0.555522 −0.277761 0.960650i \(-0.589592\pi\)
−0.277761 + 0.960650i \(0.589592\pi\)
\(920\) 0 0
\(921\) −18.0602 −0.595105
\(922\) 0 0
\(923\) 50.4431 + 50.4431i 1.66035 + 1.66035i
\(924\) 0 0
\(925\) 21.7096 + 39.1575i 0.713808 + 1.28749i
\(926\) 0 0
\(927\) 55.2099 55.2099i 1.81333 1.81333i
\(928\) 0 0
\(929\) 33.6543i 1.10416i −0.833790 0.552081i \(-0.813834\pi\)
0.833790 0.552081i \(-0.186166\pi\)
\(930\) 0 0
\(931\) 16.0502i 0.526024i
\(932\) 0 0
\(933\) 22.1432 22.1432i 0.724936 0.724936i
\(934\) 0 0
\(935\) −3.58474 4.75670i −0.117234 0.155561i
\(936\) 0 0
\(937\) −30.3778 30.3778i −0.992399 0.992399i 0.00757237 0.999971i \(-0.497590\pi\)
−0.999971 + 0.00757237i \(0.997590\pi\)
\(938\) 0 0
\(939\) 68.4557 2.23397
\(940\) 0 0
\(941\) −9.39069 −0.306128 −0.153064 0.988216i \(-0.548914\pi\)
−0.153064 + 0.988216i \(0.548914\pi\)
\(942\) 0 0
\(943\) 0.632684 + 0.632684i 0.0206030 + 0.0206030i
\(944\) 0 0
\(945\) −23.8163 3.34614i −0.774743 0.108850i
\(946\) 0 0
\(947\) 14.3702 14.3702i 0.466968 0.466968i −0.433963 0.900931i \(-0.642885\pi\)
0.900931 + 0.433963i \(0.142885\pi\)
\(948\) 0 0
\(949\) 16.0098i 0.519702i
\(950\) 0 0
\(951\) 28.1341i 0.912312i
\(952\) 0 0
\(953\) −33.7971 + 33.7971i −1.09479 + 1.09479i −0.0997850 + 0.995009i \(0.531816\pi\)
−0.995009 + 0.0997850i \(0.968184\pi\)
\(954\) 0 0
\(955\) −20.2753 2.84864i −0.656092 0.0921797i
\(956\) 0 0
\(957\) −79.8992 79.8992i −2.58278 2.58278i
\(958\) 0 0
\(959\) 10.7864 0.348311
\(960\) 0 0
\(961\) −5.65386 −0.182383
\(962\) 0 0
\(963\) −12.2778 12.2778i −0.395648 0.395648i
\(964\) 0 0
\(965\) 11.4014 + 15.1289i 0.367025 + 0.487017i
\(966\) 0 0
\(967\) −35.0722 + 35.0722i −1.12784 + 1.12784i −0.137317 + 0.990527i \(0.543848\pi\)
−0.990527 + 0.137317i \(0.956152\pi\)
\(968\) 0 0
\(969\) 5.32741i 0.171141i
\(970\) 0 0
\(971\) 55.0496i 1.76663i 0.468783 + 0.883313i \(0.344693\pi\)
−0.468783 + 0.883313i \(0.655307\pi\)
\(972\) 0 0
\(973\) 20.1116 20.1116i 0.644747 0.644747i
\(974\) 0 0
\(975\) 77.0261 + 22.0799i 2.46681 + 0.707123i
\(976\) 0 0
\(977\) 20.6860 + 20.6860i 0.661803 + 0.661803i 0.955805 0.294002i \(-0.0949872\pi\)
−0.294002 + 0.955805i \(0.594987\pi\)
\(978\) 0 0
\(979\) 44.1598 1.41135
\(980\) 0 0
\(981\) −4.42864 −0.141396
\(982\) 0 0
\(983\) 9.83768 + 9.83768i 0.313773 + 0.313773i 0.846369 0.532596i \(-0.178784\pi\)
−0.532596 + 0.846369i \(0.678784\pi\)
\(984\) 0 0
\(985\) −9.26364 + 6.98126i −0.295164 + 0.222442i
\(986\) 0 0
\(987\) 10.4338 10.4338i 0.332110 0.332110i
\(988\) 0 0
\(989\) 0.815792i 0.0259407i
\(990\) 0 0
\(991\) 41.8726i 1.33013i 0.746787 + 0.665064i \(0.231596\pi\)
−0.746787 + 0.665064i \(0.768404\pi\)
\(992\) 0 0
\(993\) 55.5625 55.5625i 1.76322 1.76322i
\(994\) 0 0
\(995\) 0.965114 6.86923i 0.0305962 0.217769i
\(996\) 0 0
\(997\) −6.38223 6.38223i −0.202127 0.202127i 0.598784 0.800911i \(-0.295651\pi\)
−0.800911 + 0.598784i \(0.795651\pi\)
\(998\) 0 0
\(999\) −63.1375 −1.99758
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1280.2.n.r.767.1 12
4.3 odd 2 inner 1280.2.n.r.767.6 12
5.3 odd 4 inner 1280.2.n.r.1023.6 12
8.3 odd 2 1280.2.n.s.767.1 12
8.5 even 2 1280.2.n.s.767.6 12
16.3 odd 4 640.2.o.k.447.1 yes 12
16.5 even 4 640.2.o.j.447.1 yes 12
16.11 odd 4 640.2.o.j.447.6 yes 12
16.13 even 4 640.2.o.k.447.6 yes 12
20.3 even 4 inner 1280.2.n.r.1023.1 12
40.3 even 4 1280.2.n.s.1023.6 12
40.13 odd 4 1280.2.n.s.1023.1 12
80.3 even 4 640.2.o.j.63.1 12
80.13 odd 4 640.2.o.j.63.6 yes 12
80.43 even 4 640.2.o.k.63.6 yes 12
80.53 odd 4 640.2.o.k.63.1 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
640.2.o.j.63.1 12 80.3 even 4
640.2.o.j.63.6 yes 12 80.13 odd 4
640.2.o.j.447.1 yes 12 16.5 even 4
640.2.o.j.447.6 yes 12 16.11 odd 4
640.2.o.k.63.1 yes 12 80.53 odd 4
640.2.o.k.63.6 yes 12 80.43 even 4
640.2.o.k.447.1 yes 12 16.3 odd 4
640.2.o.k.447.6 yes 12 16.13 even 4
1280.2.n.r.767.1 12 1.1 even 1 trivial
1280.2.n.r.767.6 12 4.3 odd 2 inner
1280.2.n.r.1023.1 12 20.3 even 4 inner
1280.2.n.r.1023.6 12 5.3 odd 4 inner
1280.2.n.s.767.1 12 8.3 odd 2
1280.2.n.s.767.6 12 8.5 even 2
1280.2.n.s.1023.1 12 40.13 odd 4
1280.2.n.s.1023.6 12 40.3 even 4