Properties

Label 1280.2.n
Level $1280$
Weight $2$
Character orbit 1280.n
Rep. character $\chi_{1280}(767,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $88$
Newform subspaces $19$
Sturm bound $384$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1280.n (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 19 \)
Sturm bound: \(384\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(3\), \(7\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1280, [\chi])\).

Total New Old
Modular forms 432 104 328
Cusp forms 336 88 248
Eisenstein series 96 16 80

Trace form

\( 88 q + O(q^{10}) \) \( 88 q - 8 q^{17} + 8 q^{25} - 32 q^{33} + 16 q^{41} - 16 q^{57} - 8 q^{65} + 40 q^{73} - 40 q^{81} - 8 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1280, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1280.2.n.a 1280.n 20.e $2$ $10.221$ \(\Q(\sqrt{-1}) \) None 640.2.o.a \(0\) \(-4\) \(-2\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-2-2i)q^{3}+(-1-2i)q^{5}+(-2+\cdots)q^{7}+\cdots\)
1280.2.n.b 1280.n 20.e $2$ $10.221$ \(\Q(\sqrt{-1}) \) None 640.2.o.a \(0\) \(-4\) \(2\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-2-2i)q^{3}+(1+2i)q^{5}+(2-2i)q^{7}+\cdots\)
1280.2.n.c 1280.n 20.e $2$ $10.221$ \(\Q(\sqrt{-1}) \) None 320.2.o.a \(0\) \(-2\) \(-4\) \(2\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-1-i)q^{3}+(-2+i)q^{5}+(1-i)q^{7}+\cdots\)
1280.2.n.d 1280.n 20.e $2$ $10.221$ \(\Q(\sqrt{-1}) \) None 320.2.o.a \(0\) \(-2\) \(4\) \(-2\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-1-i)q^{3}+(2-i)q^{5}+(-1+i)q^{7}+\cdots\)
1280.2.n.e 1280.n 20.e $2$ $10.221$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) 640.2.o.c \(0\) \(0\) \(-2\) \(0\) $\mathrm{U}(1)[D_{4}]$ \(q+(-1-2i)q^{5}-3iq^{9}+(-5+5i)q^{13}+\cdots\)
1280.2.n.f 1280.n 20.e $2$ $10.221$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) 640.2.o.d \(0\) \(0\) \(-2\) \(0\) $\mathrm{U}(1)[D_{4}]$ \(q+(-1+2i)q^{5}-3iq^{9}+(-1+i)q^{13}+\cdots\)
1280.2.n.g 1280.n 20.e $2$ $10.221$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) 640.2.o.d \(0\) \(0\) \(2\) \(0\) $\mathrm{U}(1)[D_{4}]$ \(q+(1-2i)q^{5}-3iq^{9}+(1-i)q^{13}+\cdots\)
1280.2.n.h 1280.n 20.e $2$ $10.221$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) 640.2.o.c \(0\) \(0\) \(2\) \(0\) $\mathrm{U}(1)[D_{4}]$ \(q+(1+2i)q^{5}-3iq^{9}+(5-5i)q^{13}+\cdots\)
1280.2.n.i 1280.n 20.e $2$ $10.221$ \(\Q(\sqrt{-1}) \) None 320.2.o.a \(0\) \(2\) \(-4\) \(-2\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1+i)q^{3}+(-2+i)q^{5}+(-1+i)q^{7}+\cdots\)
1280.2.n.j 1280.n 20.e $2$ $10.221$ \(\Q(\sqrt{-1}) \) None 320.2.o.a \(0\) \(2\) \(4\) \(2\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1+i)q^{3}+(2-i)q^{5}+(1-i)q^{7}+\cdots\)
1280.2.n.k 1280.n 20.e $2$ $10.221$ \(\Q(\sqrt{-1}) \) None 640.2.o.a \(0\) \(4\) \(-2\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(2+2i)q^{3}+(-1-2i)q^{5}+(2-2i)q^{7}+\cdots\)
1280.2.n.l 1280.n 20.e $2$ $10.221$ \(\Q(\sqrt{-1}) \) None 640.2.o.a \(0\) \(4\) \(2\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(2+2i)q^{3}+(1+2i)q^{5}+(-2+2i)q^{7}+\cdots\)
1280.2.n.m 1280.n 20.e $8$ $10.221$ \(\Q(\zeta_{20})\) None 40.2.k.a \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-1+\zeta_{20}^{2})q^{3}+(-\zeta_{20}^{4}+\zeta_{20}^{6}+\cdots)q^{5}+\cdots\)
1280.2.n.n 1280.n 20.e $8$ $10.221$ 8.0.49787136.1 None 320.2.o.e \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-\beta _{2}-\beta _{7})q^{3}+(\beta _{2}+\beta _{4}+\beta _{7})q^{5}+\cdots\)
1280.2.n.o 1280.n 20.e $8$ $10.221$ 8.0.40960000.1 None 640.2.o.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{6}q^{3}-\beta _{4}q^{5}-\beta _{2}q^{7}-\beta _{3}q^{9}+\cdots\)
1280.2.n.p 1280.n 20.e $8$ $10.221$ 8.0.49787136.1 None 320.2.o.e \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-\beta _{2}-\beta _{7})q^{3}+(-\beta _{2}-\beta _{4}-\beta _{7})q^{5}+\cdots\)
1280.2.n.q 1280.n 20.e $8$ $10.221$ \(\Q(\zeta_{20})\) None 40.2.k.a \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1-\zeta_{20}^{2})q^{3}+(\zeta_{20}^{4}-\zeta_{20}^{6})q^{5}+\cdots\)
1280.2.n.r 1280.n 20.e $12$ $10.221$ 12.0.\(\cdots\).1 None 640.2.o.j \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{2}q^{3}+\beta _{7}q^{5}+\beta _{6}q^{7}+(\beta _{5}+\beta _{7}+\cdots)q^{9}+\cdots\)
1280.2.n.s 1280.n 20.e $12$ $10.221$ 12.0.\(\cdots\).1 None 640.2.o.j \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{2}q^{3}-\beta _{7}q^{5}-\beta _{6}q^{7}+(\beta _{5}+\beta _{7}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1280, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1280, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(320, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(640, [\chi])\)\(^{\oplus 2}\)