Properties

Label 1280.2
Level 1280
Weight 2
Dimension 25032
Nonzero newspaces 22
Sturm bound 196608
Trace bound 50

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 22 \)
Sturm bound: \(196608\)
Trace bound: \(50\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1280))\).

Total New Old
Modular forms 50560 25656 24904
Cusp forms 47745 25032 22713
Eisenstein series 2815 624 2191

Trace form

\( 25032q - 64q^{2} - 48q^{3} - 64q^{4} - 96q^{5} - 192q^{6} - 48q^{7} - 64q^{8} - 80q^{9} + O(q^{10}) \) \( 25032q - 64q^{2} - 48q^{3} - 64q^{4} - 96q^{5} - 192q^{6} - 48q^{7} - 64q^{8} - 80q^{9} - 96q^{10} - 144q^{11} - 64q^{12} - 64q^{13} - 64q^{14} - 72q^{15} - 192q^{16} - 96q^{17} - 64q^{18} - 48q^{19} - 96q^{20} - 192q^{21} - 64q^{22} - 48q^{23} - 64q^{24} - 120q^{25} - 192q^{26} - 48q^{27} - 64q^{28} - 64q^{29} - 96q^{30} - 128q^{31} - 64q^{32} - 112q^{33} - 64q^{34} - 72q^{35} - 192q^{36} - 64q^{37} - 64q^{38} - 48q^{39} - 96q^{40} - 240q^{41} - 64q^{42} - 48q^{43} - 64q^{44} - 72q^{45} - 192q^{46} - 48q^{47} - 64q^{48} - 40q^{49} - 96q^{50} - 80q^{51} - 64q^{52} - 64q^{54} - 8q^{55} - 192q^{56} + 48q^{57} - 64q^{58} + 80q^{59} - 96q^{60} - 64q^{61} - 64q^{62} + 96q^{63} - 64q^{64} - 152q^{65} - 192q^{66} + 112q^{67} - 64q^{68} + 64q^{69} - 96q^{70} - 16q^{71} - 64q^{72} + 48q^{73} - 64q^{74} - 8q^{75} - 192q^{76} - 64q^{78} + 16q^{79} - 96q^{80} - 216q^{81} - 64q^{82} - 48q^{83} - 64q^{84} - 56q^{85} - 192q^{86} - 48q^{87} - 64q^{88} - 80q^{89} - 96q^{90} - 144q^{91} - 64q^{92} - 160q^{93} - 64q^{94} - 64q^{95} - 192q^{96} - 112q^{97} - 64q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1280))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1280.2.a \(\chi_{1280}(1, \cdot)\) 1280.2.a.a 2 1
1280.2.a.b 2
1280.2.a.c 2
1280.2.a.d 2
1280.2.a.e 2
1280.2.a.f 2
1280.2.a.g 2
1280.2.a.h 2
1280.2.a.i 2
1280.2.a.j 2
1280.2.a.k 2
1280.2.a.l 2
1280.2.a.m 2
1280.2.a.n 2
1280.2.a.o 2
1280.2.a.p 2
1280.2.c \(\chi_{1280}(769, \cdot)\) 1280.2.c.a 2 1
1280.2.c.b 2
1280.2.c.c 2
1280.2.c.d 2
1280.2.c.e 4
1280.2.c.f 4
1280.2.c.g 4
1280.2.c.h 4
1280.2.c.i 4
1280.2.c.j 4
1280.2.c.k 4
1280.2.c.l 4
1280.2.c.m 4
1280.2.d \(\chi_{1280}(641, \cdot)\) 1280.2.d.a 2 1
1280.2.d.b 2
1280.2.d.c 2
1280.2.d.d 2
1280.2.d.e 2
1280.2.d.f 2
1280.2.d.g 2
1280.2.d.h 2
1280.2.d.i 2
1280.2.d.j 2
1280.2.d.k 4
1280.2.d.l 4
1280.2.d.m 4
1280.2.f \(\chi_{1280}(129, \cdot)\) 1280.2.f.a 2 1
1280.2.f.b 2
1280.2.f.c 2
1280.2.f.d 2
1280.2.f.e 2
1280.2.f.f 2
1280.2.f.g 4
1280.2.f.h 4
1280.2.f.i 6
1280.2.f.j 6
1280.2.f.k 6
1280.2.f.l 6
1280.2.j \(\chi_{1280}(63, \cdot)\) 1280.2.j.a 16 2
1280.2.j.b 16
1280.2.j.c 32
1280.2.j.d 32
1280.2.l \(\chi_{1280}(321, \cdot)\) 1280.2.l.a 8 2
1280.2.l.b 8
1280.2.l.c 8
1280.2.l.d 8
1280.2.l.e 8
1280.2.l.f 8
1280.2.l.g 8
1280.2.l.h 8
1280.2.n \(\chi_{1280}(767, \cdot)\) 1280.2.n.a 2 2
1280.2.n.b 2
1280.2.n.c 2
1280.2.n.d 2
1280.2.n.e 2
1280.2.n.f 2
1280.2.n.g 2
1280.2.n.h 2
1280.2.n.i 2
1280.2.n.j 2
1280.2.n.k 2
1280.2.n.l 2
1280.2.n.m 8
1280.2.n.n 8
1280.2.n.o 8
1280.2.n.p 8
1280.2.n.q 8
1280.2.n.r 12
1280.2.n.s 12
1280.2.o \(\chi_{1280}(127, \cdot)\) 1280.2.o.a 2 2
1280.2.o.b 2
1280.2.o.c 2
1280.2.o.d 2
1280.2.o.e 2
1280.2.o.f 2
1280.2.o.g 2
1280.2.o.h 2
1280.2.o.i 2
1280.2.o.j 2
1280.2.o.k 2
1280.2.o.l 2
1280.2.o.m 2
1280.2.o.n 2
1280.2.o.o 2
1280.2.o.p 2
1280.2.o.q 4
1280.2.o.r 4
1280.2.o.s 12
1280.2.o.t 12
1280.2.o.u 12
1280.2.o.v 12
1280.2.q \(\chi_{1280}(449, \cdot)\) 1280.2.q.a 16 2
1280.2.q.b 16
1280.2.q.c 32
1280.2.q.d 32
1280.2.s \(\chi_{1280}(703, \cdot)\) 1280.2.s.a 16 2
1280.2.s.b 16
1280.2.s.c 32
1280.2.s.d 32
1280.2.u \(\chi_{1280}(543, \cdot)\) n/a 176 4
1280.2.x \(\chi_{1280}(161, \cdot)\) n/a 128 4
1280.2.z \(\chi_{1280}(289, \cdot)\) n/a 176 4
1280.2.ba \(\chi_{1280}(223, \cdot)\) n/a 176 4
1280.2.bd \(\chi_{1280}(47, \cdot)\) n/a 368 8
1280.2.be \(\chi_{1280}(81, \cdot)\) n/a 256 8
1280.2.bf \(\chi_{1280}(49, \cdot)\) n/a 368 8
1280.2.bj \(\chi_{1280}(207, \cdot)\) n/a 368 8
1280.2.bl \(\chi_{1280}(7, \cdot)\) None 0 16
1280.2.bm \(\chi_{1280}(41, \cdot)\) None 0 16
1280.2.bo \(\chi_{1280}(9, \cdot)\) None 0 16
1280.2.br \(\chi_{1280}(87, \cdot)\) None 0 16
1280.2.bt \(\chi_{1280}(3, \cdot)\) n/a 6080 32
1280.2.bv \(\chi_{1280}(21, \cdot)\) n/a 4096 32
1280.2.bw \(\chi_{1280}(29, \cdot)\) n/a 6080 32
1280.2.by \(\chi_{1280}(43, \cdot)\) n/a 6080 32

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1280))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1280)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(128))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(160))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(256))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(320))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(640))\)\(^{\oplus 2}\)