Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1280))\).
|
Total |
New |
Old |
Modular forms
| 50560 |
25656 |
24904 |
Cusp forms
| 47745 |
25032 |
22713 |
Eisenstein series
| 2815 |
624 |
2191 |
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1280))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Label |
\(\chi\) |
Newforms |
Dimension |
\(\chi\) degree |
1280.2.a |
\(\chi_{1280}(1, \cdot)\) |
1280.2.a.a |
2 |
1 |
1280.2.a.b |
2 |
1280.2.a.c |
2 |
1280.2.a.d |
2 |
1280.2.a.e |
2 |
1280.2.a.f |
2 |
1280.2.a.g |
2 |
1280.2.a.h |
2 |
1280.2.a.i |
2 |
1280.2.a.j |
2 |
1280.2.a.k |
2 |
1280.2.a.l |
2 |
1280.2.a.m |
2 |
1280.2.a.n |
2 |
1280.2.a.o |
2 |
1280.2.a.p |
2 |
1280.2.c |
\(\chi_{1280}(769, \cdot)\) |
1280.2.c.a |
2 |
1 |
1280.2.c.b |
2 |
1280.2.c.c |
2 |
1280.2.c.d |
2 |
1280.2.c.e |
4 |
1280.2.c.f |
4 |
1280.2.c.g |
4 |
1280.2.c.h |
4 |
1280.2.c.i |
4 |
1280.2.c.j |
4 |
1280.2.c.k |
4 |
1280.2.c.l |
4 |
1280.2.c.m |
4 |
1280.2.d |
\(\chi_{1280}(641, \cdot)\) |
1280.2.d.a |
2 |
1 |
1280.2.d.b |
2 |
1280.2.d.c |
2 |
1280.2.d.d |
2 |
1280.2.d.e |
2 |
1280.2.d.f |
2 |
1280.2.d.g |
2 |
1280.2.d.h |
2 |
1280.2.d.i |
2 |
1280.2.d.j |
2 |
1280.2.d.k |
4 |
1280.2.d.l |
4 |
1280.2.d.m |
4 |
1280.2.f |
\(\chi_{1280}(129, \cdot)\) |
1280.2.f.a |
2 |
1 |
1280.2.f.b |
2 |
1280.2.f.c |
2 |
1280.2.f.d |
2 |
1280.2.f.e |
2 |
1280.2.f.f |
2 |
1280.2.f.g |
4 |
1280.2.f.h |
4 |
1280.2.f.i |
6 |
1280.2.f.j |
6 |
1280.2.f.k |
6 |
1280.2.f.l |
6 |
1280.2.j |
\(\chi_{1280}(63, \cdot)\) |
1280.2.j.a |
16 |
2 |
1280.2.j.b |
16 |
1280.2.j.c |
32 |
1280.2.j.d |
32 |
1280.2.l |
\(\chi_{1280}(321, \cdot)\) |
1280.2.l.a |
8 |
2 |
1280.2.l.b |
8 |
1280.2.l.c |
8 |
1280.2.l.d |
8 |
1280.2.l.e |
8 |
1280.2.l.f |
8 |
1280.2.l.g |
8 |
1280.2.l.h |
8 |
1280.2.n |
\(\chi_{1280}(767, \cdot)\) |
1280.2.n.a |
2 |
2 |
1280.2.n.b |
2 |
1280.2.n.c |
2 |
1280.2.n.d |
2 |
1280.2.n.e |
2 |
1280.2.n.f |
2 |
1280.2.n.g |
2 |
1280.2.n.h |
2 |
1280.2.n.i |
2 |
1280.2.n.j |
2 |
1280.2.n.k |
2 |
1280.2.n.l |
2 |
1280.2.n.m |
8 |
1280.2.n.n |
8 |
1280.2.n.o |
8 |
1280.2.n.p |
8 |
1280.2.n.q |
8 |
1280.2.n.r |
12 |
1280.2.n.s |
12 |
1280.2.o |
\(\chi_{1280}(127, \cdot)\) |
1280.2.o.a |
2 |
2 |
1280.2.o.b |
2 |
1280.2.o.c |
2 |
1280.2.o.d |
2 |
1280.2.o.e |
2 |
1280.2.o.f |
2 |
1280.2.o.g |
2 |
1280.2.o.h |
2 |
1280.2.o.i |
2 |
1280.2.o.j |
2 |
1280.2.o.k |
2 |
1280.2.o.l |
2 |
1280.2.o.m |
2 |
1280.2.o.n |
2 |
1280.2.o.o |
2 |
1280.2.o.p |
2 |
1280.2.o.q |
4 |
1280.2.o.r |
4 |
1280.2.o.s |
12 |
1280.2.o.t |
12 |
1280.2.o.u |
12 |
1280.2.o.v |
12 |
1280.2.q |
\(\chi_{1280}(449, \cdot)\) |
1280.2.q.a |
16 |
2 |
1280.2.q.b |
16 |
1280.2.q.c |
32 |
1280.2.q.d |
32 |
1280.2.s |
\(\chi_{1280}(703, \cdot)\) |
1280.2.s.a |
16 |
2 |
1280.2.s.b |
16 |
1280.2.s.c |
32 |
1280.2.s.d |
32 |
1280.2.u |
\(\chi_{1280}(543, \cdot)\) |
n/a |
176 |
4 |
1280.2.x |
\(\chi_{1280}(161, \cdot)\) |
n/a |
128 |
4 |
1280.2.z |
\(\chi_{1280}(289, \cdot)\) |
n/a |
176 |
4 |
1280.2.ba |
\(\chi_{1280}(223, \cdot)\) |
n/a |
176 |
4 |
1280.2.bd |
\(\chi_{1280}(47, \cdot)\) |
n/a |
368 |
8 |
1280.2.be |
\(\chi_{1280}(81, \cdot)\) |
n/a |
256 |
8 |
1280.2.bf |
\(\chi_{1280}(49, \cdot)\) |
n/a |
368 |
8 |
1280.2.bj |
\(\chi_{1280}(207, \cdot)\) |
n/a |
368 |
8 |
1280.2.bl |
\(\chi_{1280}(7, \cdot)\) |
None |
0 |
16 |
1280.2.bm |
\(\chi_{1280}(41, \cdot)\) |
None |
0 |
16 |
1280.2.bo |
\(\chi_{1280}(9, \cdot)\) |
None |
0 |
16 |
1280.2.br |
\(\chi_{1280}(87, \cdot)\) |
None |
0 |
16 |
1280.2.bt |
\(\chi_{1280}(3, \cdot)\) |
n/a |
6080 |
32 |
1280.2.bv |
\(\chi_{1280}(21, \cdot)\) |
n/a |
4096 |
32 |
1280.2.bw |
\(\chi_{1280}(29, \cdot)\) |
n/a |
6080 |
32 |
1280.2.by |
\(\chi_{1280}(43, \cdot)\) |
n/a |
6080 |
32 |
"n/a" means that newforms for that character have not been added to the database yet