Properties

Label 640.2.o.k.63.1
Level $640$
Weight $2$
Character 640.63
Analytic conductor $5.110$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [640,2,Mod(63,640)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("640.63"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(640, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 640 = 2^{7} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 640.o (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.11042572936\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.125772815663104.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 27x^{8} + 107x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 63.1
Root \(0.219986 + 0.219986i\) of defining polynomial
Character \(\chi\) \(=\) 640.63
Dual form 640.2.o.k.447.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.05288 - 2.05288i) q^{3} +(2.21432 - 0.311108i) q^{5} +(-1.07864 - 1.07864i) q^{7} +5.42864i q^{9} +4.98571 q^{11} +(3.90321 - 3.90321i) q^{13} +(-5.18440 - 3.90707i) q^{15} +(-0.377784 + 0.377784i) q^{17} -3.43461i q^{19} +4.42864i q^{21} +(-0.198694 + 0.198694i) q^{23} +(4.80642 - 1.37778i) q^{25} +(4.98571 - 4.98571i) q^{27} -7.80642 q^{29} +6.05424i q^{31} +(-10.2351 - 10.2351i) q^{33} +(-2.72403 - 2.05288i) q^{35} +(-6.33185 - 6.33185i) q^{37} -16.0257 q^{39} +3.18421 q^{41} +(-2.05288 - 2.05288i) q^{43} +(1.68889 + 12.0207i) q^{45} +(-2.35597 - 2.35597i) q^{47} -4.67307i q^{49} +1.55109 q^{51} +(-0.719004 + 0.719004i) q^{53} +(11.0400 - 1.55109i) q^{55} +(-7.05086 + 7.05086i) q^{57} +6.53680i q^{59} +3.37778i q^{61} +(5.85555 - 5.85555i) q^{63} +(7.42864 - 9.85728i) q^{65} +(7.70974 - 7.70974i) q^{67} +0.815792 q^{69} -12.9235i q^{71} +(2.05086 + 2.05086i) q^{73} +(-12.6954 - 7.03859i) q^{75} +(-5.37778 - 5.37778i) q^{77} -3.10219 q^{79} -4.18421 q^{81} +(5.48750 + 5.48750i) q^{83} +(-0.719004 + 0.954067i) q^{85} +(16.0257 + 16.0257i) q^{87} +8.85728i q^{89} -8.42032 q^{91} +(12.4286 - 12.4286i) q^{93} +(-1.06854 - 7.60534i) q^{95} +(-2.80642 + 2.80642i) q^{97} +27.0656i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 20 q^{13} - 4 q^{17} + 4 q^{25} - 40 q^{29} - 16 q^{33} + 4 q^{37} - 16 q^{41} + 20 q^{45} - 36 q^{53} - 32 q^{57} + 36 q^{65} + 64 q^{69} - 28 q^{73} - 64 q^{77} + 4 q^{81} - 36 q^{85} + 96 q^{93}+ \cdots + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/640\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.05288 2.05288i −1.18523 1.18523i −0.978370 0.206861i \(-0.933675\pi\)
−0.206861 0.978370i \(-0.566325\pi\)
\(4\) 0 0
\(5\) 2.21432 0.311108i 0.990274 0.139132i
\(6\) 0 0
\(7\) −1.07864 1.07864i −0.407688 0.407688i 0.473244 0.880931i \(-0.343083\pi\)
−0.880931 + 0.473244i \(0.843083\pi\)
\(8\) 0 0
\(9\) 5.42864i 1.80955i
\(10\) 0 0
\(11\) 4.98571 1.50325 0.751624 0.659592i \(-0.229271\pi\)
0.751624 + 0.659592i \(0.229271\pi\)
\(12\) 0 0
\(13\) 3.90321 3.90321i 1.08256 1.08256i 0.0862858 0.996270i \(-0.472500\pi\)
0.996270 0.0862858i \(-0.0274998\pi\)
\(14\) 0 0
\(15\) −5.18440 3.90707i −1.33861 1.00880i
\(16\) 0 0
\(17\) −0.377784 + 0.377784i −0.0916262 + 0.0916262i −0.751434 0.659808i \(-0.770638\pi\)
0.659808 + 0.751434i \(0.270638\pi\)
\(18\) 0 0
\(19\) 3.43461i 0.787955i −0.919120 0.393977i \(-0.871099\pi\)
0.919120 0.393977i \(-0.128901\pi\)
\(20\) 0 0
\(21\) 4.42864i 0.966408i
\(22\) 0 0
\(23\) −0.198694 + 0.198694i −0.0414306 + 0.0414306i −0.727519 0.686088i \(-0.759327\pi\)
0.686088 + 0.727519i \(0.259327\pi\)
\(24\) 0 0
\(25\) 4.80642 1.37778i 0.961285 0.275557i
\(26\) 0 0
\(27\) 4.98571 4.98571i 0.959500 0.959500i
\(28\) 0 0
\(29\) −7.80642 −1.44962 −0.724808 0.688951i \(-0.758072\pi\)
−0.724808 + 0.688951i \(0.758072\pi\)
\(30\) 0 0
\(31\) 6.05424i 1.08737i 0.839288 + 0.543687i \(0.182972\pi\)
−0.839288 + 0.543687i \(0.817028\pi\)
\(32\) 0 0
\(33\) −10.2351 10.2351i −1.78170 1.78170i
\(34\) 0 0
\(35\) −2.72403 2.05288i −0.460445 0.347000i
\(36\) 0 0
\(37\) −6.33185 6.33185i −1.04095 1.04095i −0.999125 0.0418250i \(-0.986683\pi\)
−0.0418250 0.999125i \(-0.513317\pi\)
\(38\) 0 0
\(39\) −16.0257 −2.56616
\(40\) 0 0
\(41\) 3.18421 0.497290 0.248645 0.968595i \(-0.420015\pi\)
0.248645 + 0.968595i \(0.420015\pi\)
\(42\) 0 0
\(43\) −2.05288 2.05288i −0.313061 0.313061i 0.533033 0.846094i \(-0.321052\pi\)
−0.846094 + 0.533033i \(0.821052\pi\)
\(44\) 0 0
\(45\) 1.68889 + 12.0207i 0.251765 + 1.79195i
\(46\) 0 0
\(47\) −2.35597 2.35597i −0.343654 0.343654i 0.514085 0.857739i \(-0.328132\pi\)
−0.857739 + 0.514085i \(0.828132\pi\)
\(48\) 0 0
\(49\) 4.67307i 0.667582i
\(50\) 0 0
\(51\) 1.55109 0.217196
\(52\) 0 0
\(53\) −0.719004 + 0.719004i −0.0987628 + 0.0987628i −0.754762 0.655999i \(-0.772248\pi\)
0.655999 + 0.754762i \(0.272248\pi\)
\(54\) 0 0
\(55\) 11.0400 1.55109i 1.48863 0.209149i
\(56\) 0 0
\(57\) −7.05086 + 7.05086i −0.933909 + 0.933909i
\(58\) 0 0
\(59\) 6.53680i 0.851019i 0.904954 + 0.425509i \(0.139905\pi\)
−0.904954 + 0.425509i \(0.860095\pi\)
\(60\) 0 0
\(61\) 3.37778i 0.432481i 0.976340 + 0.216240i \(0.0693795\pi\)
−0.976340 + 0.216240i \(0.930620\pi\)
\(62\) 0 0
\(63\) 5.85555 5.85555i 0.737730 0.737730i
\(64\) 0 0
\(65\) 7.42864 9.85728i 0.921409 1.22264i
\(66\) 0 0
\(67\) 7.70974 7.70974i 0.941894 0.941894i −0.0565081 0.998402i \(-0.517997\pi\)
0.998402 + 0.0565081i \(0.0179967\pi\)
\(68\) 0 0
\(69\) 0.815792 0.0982098
\(70\) 0 0
\(71\) 12.9235i 1.53373i −0.641806 0.766867i \(-0.721815\pi\)
0.641806 0.766867i \(-0.278185\pi\)
\(72\) 0 0
\(73\) 2.05086 + 2.05086i 0.240034 + 0.240034i 0.816864 0.576830i \(-0.195710\pi\)
−0.576830 + 0.816864i \(0.695710\pi\)
\(74\) 0 0
\(75\) −12.6954 7.03859i −1.46594 0.812746i
\(76\) 0 0
\(77\) −5.37778 5.37778i −0.612855 0.612855i
\(78\) 0 0
\(79\) −3.10219 −0.349023 −0.174512 0.984655i \(-0.555835\pi\)
−0.174512 + 0.984655i \(0.555835\pi\)
\(80\) 0 0
\(81\) −4.18421 −0.464912
\(82\) 0 0
\(83\) 5.48750 + 5.48750i 0.602331 + 0.602331i 0.940931 0.338600i \(-0.109953\pi\)
−0.338600 + 0.940931i \(0.609953\pi\)
\(84\) 0 0
\(85\) −0.719004 + 0.954067i −0.0779869 + 0.103483i
\(86\) 0 0
\(87\) 16.0257 + 16.0257i 1.71813 + 1.71813i
\(88\) 0 0
\(89\) 8.85728i 0.938870i 0.882967 + 0.469435i \(0.155542\pi\)
−0.882967 + 0.469435i \(0.844458\pi\)
\(90\) 0 0
\(91\) −8.42032 −0.882690
\(92\) 0 0
\(93\) 12.4286 12.4286i 1.28879 1.28879i
\(94\) 0 0
\(95\) −1.06854 7.60534i −0.109629 0.780291i
\(96\) 0 0
\(97\) −2.80642 + 2.80642i −0.284949 + 0.284949i −0.835079 0.550130i \(-0.814578\pi\)
0.550130 + 0.835079i \(0.314578\pi\)
\(98\) 0 0
\(99\) 27.0656i 2.72020i
\(100\) 0 0
\(101\) 14.1017i 1.40317i −0.712584 0.701586i \(-0.752475\pi\)
0.712584 0.701586i \(-0.247525\pi\)
\(102\) 0 0
\(103\) −10.1701 + 10.1701i −1.00209 + 1.00209i −0.00209284 + 0.999998i \(0.500666\pi\)
−0.999998 + 0.00209284i \(0.999334\pi\)
\(104\) 0 0
\(105\) 1.37778 + 9.80642i 0.134458 + 0.957009i
\(106\) 0 0
\(107\) −2.26168 + 2.26168i −0.218645 + 0.218645i −0.807927 0.589282i \(-0.799411\pi\)
0.589282 + 0.807927i \(0.299411\pi\)
\(108\) 0 0
\(109\) −0.815792 −0.0781387 −0.0390693 0.999237i \(-0.512439\pi\)
−0.0390693 + 0.999237i \(0.512439\pi\)
\(110\) 0 0
\(111\) 25.9971i 2.46753i
\(112\) 0 0
\(113\) 7.42864 + 7.42864i 0.698828 + 0.698828i 0.964158 0.265330i \(-0.0854809\pi\)
−0.265330 + 0.964158i \(0.585481\pi\)
\(114\) 0 0
\(115\) −0.378158 + 0.501788i −0.0352634 + 0.0467920i
\(116\) 0 0
\(117\) 21.1891 + 21.1891i 1.95894 + 1.95894i
\(118\) 0 0
\(119\) 0.814987 0.0747097
\(120\) 0 0
\(121\) 13.8573 1.25975
\(122\) 0 0
\(123\) −6.53680 6.53680i −0.589403 0.589403i
\(124\) 0 0
\(125\) 10.2143 4.54617i 0.913597 0.406622i
\(126\) 0 0
\(127\) 8.89277 + 8.89277i 0.789106 + 0.789106i 0.981348 0.192241i \(-0.0615757\pi\)
−0.192241 + 0.981348i \(0.561576\pi\)
\(128\) 0 0
\(129\) 8.42864i 0.742100i
\(130\) 0 0
\(131\) 17.0942 1.49353 0.746763 0.665090i \(-0.231607\pi\)
0.746763 + 0.665090i \(0.231607\pi\)
\(132\) 0 0
\(133\) −3.70471 + 3.70471i −0.321239 + 0.321239i
\(134\) 0 0
\(135\) 9.48886 12.5910i 0.816671 1.08366i
\(136\) 0 0
\(137\) 5.00000 5.00000i 0.427179 0.427179i −0.460487 0.887666i \(-0.652325\pi\)
0.887666 + 0.460487i \(0.152325\pi\)
\(138\) 0 0
\(139\) 18.6453i 1.58147i 0.612157 + 0.790736i \(0.290302\pi\)
−0.612157 + 0.790736i \(0.709698\pi\)
\(140\) 0 0
\(141\) 9.67307i 0.814620i
\(142\) 0 0
\(143\) 19.4603 19.4603i 1.62735 1.62735i
\(144\) 0 0
\(145\) −17.2859 + 2.42864i −1.43552 + 0.201688i
\(146\) 0 0
\(147\) −9.59326 + 9.59326i −0.791239 + 0.791239i
\(148\) 0 0
\(149\) 9.93978 0.814298 0.407149 0.913362i \(-0.366523\pi\)
0.407149 + 0.913362i \(0.366523\pi\)
\(150\) 0 0
\(151\) 3.91717i 0.318775i 0.987216 + 0.159387i \(0.0509519\pi\)
−0.987216 + 0.159387i \(0.949048\pi\)
\(152\) 0 0
\(153\) −2.05086 2.05086i −0.165802 0.165802i
\(154\) 0 0
\(155\) 1.88352 + 13.4060i 0.151288 + 1.07680i
\(156\) 0 0
\(157\) −10.9541 10.9541i −0.874230 0.874230i 0.118700 0.992930i \(-0.462127\pi\)
−0.992930 + 0.118700i \(0.962127\pi\)
\(158\) 0 0
\(159\) 2.95206 0.234113
\(160\) 0 0
\(161\) 0.428639 0.0337815
\(162\) 0 0
\(163\) −12.0243 12.0243i −0.941816 0.941816i 0.0565824 0.998398i \(-0.481980\pi\)
−0.998398 + 0.0565824i \(0.981980\pi\)
\(164\) 0 0
\(165\) −25.8479 19.4795i −2.01226 1.51648i
\(166\) 0 0
\(167\) 7.61544 + 7.61544i 0.589300 + 0.589300i 0.937442 0.348142i \(-0.113187\pi\)
−0.348142 + 0.937442i \(0.613187\pi\)
\(168\) 0 0
\(169\) 17.4701i 1.34386i
\(170\) 0 0
\(171\) 18.6453 1.42584
\(172\) 0 0
\(173\) −11.1891 + 11.1891i −0.850694 + 0.850694i −0.990219 0.139525i \(-0.955443\pi\)
0.139525 + 0.990219i \(0.455443\pi\)
\(174\) 0 0
\(175\) −6.67054 3.69827i −0.504245 0.279563i
\(176\) 0 0
\(177\) 13.4193 13.4193i 1.00865 1.00865i
\(178\) 0 0
\(179\) 5.57169i 0.416447i −0.978081 0.208224i \(-0.933232\pi\)
0.978081 0.208224i \(-0.0667682\pi\)
\(180\) 0 0
\(181\) 3.34614i 0.248717i 0.992237 + 0.124358i \(0.0396872\pi\)
−0.992237 + 0.124358i \(0.960313\pi\)
\(182\) 0 0
\(183\) 6.93419 6.93419i 0.512590 0.512590i
\(184\) 0 0
\(185\) −15.9906 12.0509i −1.17565 0.885996i
\(186\) 0 0
\(187\) −1.88352 + 1.88352i −0.137737 + 0.137737i
\(188\) 0 0
\(189\) −10.7556 −0.782353
\(190\) 0 0
\(191\) 9.15643i 0.662536i 0.943537 + 0.331268i \(0.107476\pi\)
−0.943537 + 0.331268i \(0.892524\pi\)
\(192\) 0 0
\(193\) 5.99063 + 5.99063i 0.431215 + 0.431215i 0.889042 0.457826i \(-0.151372\pi\)
−0.457826 + 0.889042i \(0.651372\pi\)
\(194\) 0 0
\(195\) −35.4859 + 4.98571i −2.54120 + 0.357034i
\(196\) 0 0
\(197\) 3.66815 + 3.66815i 0.261345 + 0.261345i 0.825600 0.564255i \(-0.190837\pi\)
−0.564255 + 0.825600i \(0.690837\pi\)
\(198\) 0 0
\(199\) −3.10219 −0.219908 −0.109954 0.993937i \(-0.535070\pi\)
−0.109954 + 0.993937i \(0.535070\pi\)
\(200\) 0 0
\(201\) −31.6543 −2.23272
\(202\) 0 0
\(203\) 8.42032 + 8.42032i 0.590991 + 0.590991i
\(204\) 0 0
\(205\) 7.05086 0.990632i 0.492453 0.0691887i
\(206\) 0 0
\(207\) −1.07864 1.07864i −0.0749707 0.0749707i
\(208\) 0 0
\(209\) 17.1240i 1.18449i
\(210\) 0 0
\(211\) −17.0942 −1.17681 −0.588406 0.808565i \(-0.700244\pi\)
−0.588406 + 0.808565i \(0.700244\pi\)
\(212\) 0 0
\(213\) −26.5303 + 26.5303i −1.81783 + 1.81783i
\(214\) 0 0
\(215\) −5.18440 3.90707i −0.353573 0.266460i
\(216\) 0 0
\(217\) 6.53035 6.53035i 0.443309 0.443309i
\(218\) 0 0
\(219\) 8.42032i 0.568993i
\(220\) 0 0
\(221\) 2.94914i 0.198381i
\(222\) 0 0
\(223\) −3.23592 + 3.23592i −0.216693 + 0.216693i −0.807103 0.590410i \(-0.798966\pi\)
0.590410 + 0.807103i \(0.298966\pi\)
\(224\) 0 0
\(225\) 7.47949 + 26.0923i 0.498633 + 1.73949i
\(226\) 0 0
\(227\) 17.8048 17.8048i 1.18174 1.18174i 0.202453 0.979292i \(-0.435109\pi\)
0.979292 0.202453i \(-0.0648913\pi\)
\(228\) 0 0
\(229\) 12.1936 0.805774 0.402887 0.915250i \(-0.368007\pi\)
0.402887 + 0.915250i \(0.368007\pi\)
\(230\) 0 0
\(231\) 22.0799i 1.45275i
\(232\) 0 0
\(233\) 1.13335 + 1.13335i 0.0742484 + 0.0742484i 0.743256 0.669007i \(-0.233281\pi\)
−0.669007 + 0.743256i \(0.733281\pi\)
\(234\) 0 0
\(235\) −5.94984 4.48392i −0.388125 0.292499i
\(236\) 0 0
\(237\) 6.36842 + 6.36842i 0.413673 + 0.413673i
\(238\) 0 0
\(239\) −2.13707 −0.138236 −0.0691178 0.997609i \(-0.522018\pi\)
−0.0691178 + 0.997609i \(0.522018\pi\)
\(240\) 0 0
\(241\) −0.161933 −0.0104310 −0.00521552 0.999986i \(-0.501660\pi\)
−0.00521552 + 0.999986i \(0.501660\pi\)
\(242\) 0 0
\(243\) −6.36744 6.36744i −0.408472 0.408472i
\(244\) 0 0
\(245\) −1.45383 10.3477i −0.0928817 0.661089i
\(246\) 0 0
\(247\) −13.4060 13.4060i −0.853005 0.853005i
\(248\) 0 0
\(249\) 22.5303i 1.42780i
\(250\) 0 0
\(251\) 14.9571 0.944085 0.472043 0.881576i \(-0.343517\pi\)
0.472043 + 0.881576i \(0.343517\pi\)
\(252\) 0 0
\(253\) −0.990632 + 0.990632i −0.0622805 + 0.0622805i
\(254\) 0 0
\(255\) 3.43461 0.482557i 0.215084 0.0302189i
\(256\) 0 0
\(257\) −6.67307 + 6.67307i −0.416255 + 0.416255i −0.883911 0.467656i \(-0.845099\pi\)
0.467656 + 0.883911i \(0.345099\pi\)
\(258\) 0 0
\(259\) 13.6596i 0.848765i
\(260\) 0 0
\(261\) 42.3783i 2.62315i
\(262\) 0 0
\(263\) 16.7069 16.7069i 1.03019 1.03019i 0.0306624 0.999530i \(-0.490238\pi\)
0.999530 0.0306624i \(-0.00976166\pi\)
\(264\) 0 0
\(265\) −1.36842 + 1.81579i −0.0840612 + 0.111543i
\(266\) 0 0
\(267\) 18.1829 18.1829i 1.11278 1.11278i
\(268\) 0 0
\(269\) 16.8988 1.03034 0.515168 0.857089i \(-0.327730\pi\)
0.515168 + 0.857089i \(0.327730\pi\)
\(270\) 0 0
\(271\) 19.1278i 1.16193i −0.813927 0.580967i \(-0.802675\pi\)
0.813927 0.580967i \(-0.197325\pi\)
\(272\) 0 0
\(273\) 17.2859 + 17.2859i 1.04619 + 1.04619i
\(274\) 0 0
\(275\) 23.9634 6.86923i 1.44505 0.414230i
\(276\) 0 0
\(277\) 4.65878 + 4.65878i 0.279919 + 0.279919i 0.833077 0.553158i \(-0.186577\pi\)
−0.553158 + 0.833077i \(0.686577\pi\)
\(278\) 0 0
\(279\) −32.8663 −1.96765
\(280\) 0 0
\(281\) −12.8988 −0.769476 −0.384738 0.923026i \(-0.625708\pi\)
−0.384738 + 0.923026i \(0.625708\pi\)
\(282\) 0 0
\(283\) 8.58968 + 8.58968i 0.510604 + 0.510604i 0.914711 0.404108i \(-0.132418\pi\)
−0.404108 + 0.914711i \(0.632418\pi\)
\(284\) 0 0
\(285\) −13.4193 + 17.8064i −0.794889 + 1.05476i
\(286\) 0 0
\(287\) −3.43461 3.43461i −0.202739 0.202739i
\(288\) 0 0
\(289\) 16.7146i 0.983209i
\(290\) 0 0
\(291\) 11.5225 0.675461
\(292\) 0 0
\(293\) −12.4652 + 12.4652i −0.728225 + 0.728225i −0.970266 0.242041i \(-0.922183\pi\)
0.242041 + 0.970266i \(0.422183\pi\)
\(294\) 0 0
\(295\) 2.03365 + 14.4746i 0.118404 + 0.842742i
\(296\) 0 0
\(297\) 24.8573 24.8573i 1.44237 1.44237i
\(298\) 0 0
\(299\) 1.55109i 0.0897020i
\(300\) 0 0
\(301\) 4.42864i 0.255263i
\(302\) 0 0
\(303\) −28.9491 + 28.9491i −1.66308 + 1.66308i
\(304\) 0 0
\(305\) 1.05086 + 7.47949i 0.0601718 + 0.428275i
\(306\) 0 0
\(307\) −4.39875 + 4.39875i −0.251050 + 0.251050i −0.821401 0.570351i \(-0.806807\pi\)
0.570351 + 0.821401i \(0.306807\pi\)
\(308\) 0 0
\(309\) 41.7560 2.37542
\(310\) 0 0
\(311\) 10.7864i 0.611641i −0.952089 0.305820i \(-0.901069\pi\)
0.952089 0.305820i \(-0.0989307\pi\)
\(312\) 0 0
\(313\) 16.6731 + 16.6731i 0.942418 + 0.942418i 0.998430 0.0560124i \(-0.0178386\pi\)
−0.0560124 + 0.998430i \(0.517839\pi\)
\(314\) 0 0
\(315\) 11.1443 14.7878i 0.627913 0.833196i
\(316\) 0 0
\(317\) −6.85236 6.85236i −0.384867 0.384867i 0.487985 0.872852i \(-0.337732\pi\)
−0.872852 + 0.487985i \(0.837732\pi\)
\(318\) 0 0
\(319\) −38.9205 −2.17913
\(320\) 0 0
\(321\) 9.28592 0.518289
\(322\) 0 0
\(323\) 1.29754 + 1.29754i 0.0721973 + 0.0721973i
\(324\) 0 0
\(325\) 13.3827 24.1383i 0.742339 1.33895i
\(326\) 0 0
\(327\) 1.67472 + 1.67472i 0.0926124 + 0.0926124i
\(328\) 0 0
\(329\) 5.08250i 0.280207i
\(330\) 0 0
\(331\) −27.0656 −1.48766 −0.743830 0.668369i \(-0.766993\pi\)
−0.743830 + 0.668369i \(0.766993\pi\)
\(332\) 0 0
\(333\) 34.3733 34.3733i 1.88365 1.88365i
\(334\) 0 0
\(335\) 14.6733 19.4704i 0.801686 1.06378i
\(336\) 0 0
\(337\) −24.7146 + 24.7146i −1.34629 + 1.34629i −0.456632 + 0.889656i \(0.650944\pi\)
−0.889656 + 0.456632i \(0.849056\pi\)
\(338\) 0 0
\(339\) 30.5002i 1.65654i
\(340\) 0 0
\(341\) 30.1847i 1.63459i
\(342\) 0 0
\(343\) −12.5910 + 12.5910i −0.679852 + 0.679852i
\(344\) 0 0
\(345\) 1.80642 0.253799i 0.0972546 0.0136641i
\(346\) 0 0
\(347\) −4.27512 + 4.27512i −0.229500 + 0.229500i −0.812484 0.582984i \(-0.801885\pi\)
0.582984 + 0.812484i \(0.301885\pi\)
\(348\) 0 0
\(349\) −6.29529 −0.336979 −0.168489 0.985703i \(-0.553889\pi\)
−0.168489 + 0.985703i \(0.553889\pi\)
\(350\) 0 0
\(351\) 38.9205i 2.07743i
\(352\) 0 0
\(353\) 9.85728 + 9.85728i 0.524650 + 0.524650i 0.918972 0.394322i \(-0.129021\pi\)
−0.394322 + 0.918972i \(0.629021\pi\)
\(354\) 0 0
\(355\) −4.02059 28.6167i −0.213391 1.51882i
\(356\) 0 0
\(357\) −1.67307 1.67307i −0.0885483 0.0885483i
\(358\) 0 0
\(359\) 25.1821 1.32906 0.664530 0.747262i \(-0.268632\pi\)
0.664530 + 0.747262i \(0.268632\pi\)
\(360\) 0 0
\(361\) 7.20342 0.379127
\(362\) 0 0
\(363\) −28.4473 28.4473i −1.49310 1.49310i
\(364\) 0 0
\(365\) 5.17929 + 3.90321i 0.271096 + 0.204303i
\(366\) 0 0
\(367\) 21.0013 + 21.0013i 1.09626 + 1.09626i 0.994844 + 0.101412i \(0.0323362\pi\)
0.101412 + 0.994844i \(0.467664\pi\)
\(368\) 0 0
\(369\) 17.2859i 0.899869i
\(370\) 0 0
\(371\) 1.55109 0.0805287
\(372\) 0 0
\(373\) −10.7190 + 10.7190i −0.555009 + 0.555009i −0.927882 0.372873i \(-0.878373\pi\)
0.372873 + 0.927882i \(0.378373\pi\)
\(374\) 0 0
\(375\) −30.3015 11.6360i −1.56476 0.600882i
\(376\) 0 0
\(377\) −30.4701 + 30.4701i −1.56929 + 1.56929i
\(378\) 0 0
\(379\) 15.5431i 0.798395i −0.916865 0.399198i \(-0.869289\pi\)
0.916865 0.399198i \(-0.130711\pi\)
\(380\) 0 0
\(381\) 36.5116i 1.87055i
\(382\) 0 0
\(383\) −15.3444 + 15.3444i −0.784063 + 0.784063i −0.980514 0.196451i \(-0.937058\pi\)
0.196451 + 0.980514i \(0.437058\pi\)
\(384\) 0 0
\(385\) −13.5812 10.2351i −0.692162 0.521627i
\(386\) 0 0
\(387\) 11.1443 11.1443i 0.566499 0.566499i
\(388\) 0 0
\(389\) −13.5526 −0.687145 −0.343573 0.939126i \(-0.611637\pi\)
−0.343573 + 0.939126i \(0.611637\pi\)
\(390\) 0 0
\(391\) 0.150127i 0.00759226i
\(392\) 0 0
\(393\) −35.0923 35.0923i −1.77017 1.77017i
\(394\) 0 0
\(395\) −6.86923 + 0.965114i −0.345628 + 0.0485602i
\(396\) 0 0
\(397\) 11.8716 + 11.8716i 0.595817 + 0.595817i 0.939197 0.343380i \(-0.111572\pi\)
−0.343380 + 0.939197i \(0.611572\pi\)
\(398\) 0 0
\(399\) 15.2107 0.761486
\(400\) 0 0
\(401\) 20.9590 1.04664 0.523321 0.852136i \(-0.324693\pi\)
0.523321 + 0.852136i \(0.324693\pi\)
\(402\) 0 0
\(403\) 23.6310 + 23.6310i 1.17714 + 1.17714i
\(404\) 0 0
\(405\) −9.26517 + 1.30174i −0.460390 + 0.0646840i
\(406\) 0 0
\(407\) −31.5688 31.5688i −1.56481 1.56481i
\(408\) 0 0
\(409\) 19.5526i 0.966815i −0.875395 0.483408i \(-0.839399\pi\)
0.875395 0.483408i \(-0.160601\pi\)
\(410\) 0 0
\(411\) −20.5288 −1.01261
\(412\) 0 0
\(413\) 7.05086 7.05086i 0.346950 0.346950i
\(414\) 0 0
\(415\) 13.8583 + 10.4439i 0.680276 + 0.512669i
\(416\) 0 0
\(417\) 38.2766 38.2766i 1.87441 1.87441i
\(418\) 0 0
\(419\) 22.4123i 1.09491i 0.836834 + 0.547457i \(0.184404\pi\)
−0.836834 + 0.547457i \(0.815596\pi\)
\(420\) 0 0
\(421\) 29.3590i 1.43087i 0.698678 + 0.715436i \(0.253772\pi\)
−0.698678 + 0.715436i \(0.746228\pi\)
\(422\) 0 0
\(423\) 12.7897 12.7897i 0.621858 0.621858i
\(424\) 0 0
\(425\) −1.29529 + 2.33630i −0.0628306 + 0.113327i
\(426\) 0 0
\(427\) 3.64341 3.64341i 0.176317 0.176317i
\(428\) 0 0
\(429\) −79.8992 −3.85757
\(430\) 0 0
\(431\) 12.9235i 0.622502i −0.950328 0.311251i \(-0.899252\pi\)
0.950328 0.311251i \(-0.100748\pi\)
\(432\) 0 0
\(433\) −16.9081 16.9081i −0.812553 0.812553i 0.172463 0.985016i \(-0.444827\pi\)
−0.985016 + 0.172463i \(0.944827\pi\)
\(434\) 0 0
\(435\) 40.4716 + 30.5002i 1.94047 + 1.46237i
\(436\) 0 0
\(437\) 0.682439 + 0.682439i 0.0326455 + 0.0326455i
\(438\) 0 0
\(439\) 18.9777 0.905757 0.452878 0.891572i \(-0.350397\pi\)
0.452878 + 0.891572i \(0.350397\pi\)
\(440\) 0 0
\(441\) 25.3684 1.20802
\(442\) 0 0
\(443\) −1.38173 1.38173i −0.0656482 0.0656482i 0.673520 0.739169i \(-0.264781\pi\)
−0.739169 + 0.673520i \(0.764781\pi\)
\(444\) 0 0
\(445\) 2.75557 + 19.6128i 0.130626 + 0.929738i
\(446\) 0 0
\(447\) −20.4052 20.4052i −0.965132 0.965132i
\(448\) 0 0
\(449\) 12.1432i 0.573073i −0.958069 0.286536i \(-0.907496\pi\)
0.958069 0.286536i \(-0.0925040\pi\)
\(450\) 0 0
\(451\) 15.8755 0.747550
\(452\) 0 0
\(453\) 8.04149 8.04149i 0.377822 0.377822i
\(454\) 0 0
\(455\) −18.6453 + 2.61963i −0.874104 + 0.122810i
\(456\) 0 0
\(457\) 2.57136 2.57136i 0.120283 0.120283i −0.644403 0.764686i \(-0.722894\pi\)
0.764686 + 0.644403i \(0.222894\pi\)
\(458\) 0 0
\(459\) 3.76704i 0.175831i
\(460\) 0 0
\(461\) 35.6128i 1.65866i 0.558762 + 0.829328i \(0.311276\pi\)
−0.558762 + 0.829328i \(0.688724\pi\)
\(462\) 0 0
\(463\) 6.67054 6.67054i 0.310006 0.310006i −0.534906 0.844912i \(-0.679653\pi\)
0.844912 + 0.534906i \(0.179653\pi\)
\(464\) 0 0
\(465\) 23.6543 31.3876i 1.09694 1.45557i
\(466\) 0 0
\(467\) −11.1443 + 11.1443i −0.515699 + 0.515699i −0.916267 0.400568i \(-0.868813\pi\)
0.400568 + 0.916267i \(0.368813\pi\)
\(468\) 0 0
\(469\) −16.6321 −0.767997
\(470\) 0 0
\(471\) 44.9748i 2.07233i
\(472\) 0 0
\(473\) −10.2351 10.2351i −0.470609 0.470609i
\(474\) 0 0
\(475\) −4.73216 16.5082i −0.217126 0.757449i
\(476\) 0 0
\(477\) −3.90321 3.90321i −0.178716 0.178716i
\(478\) 0 0
\(479\) 0.965114 0.0440972 0.0220486 0.999757i \(-0.492981\pi\)
0.0220486 + 0.999757i \(0.492981\pi\)
\(480\) 0 0
\(481\) −49.4291 −2.25377
\(482\) 0 0
\(483\) −0.879946 0.879946i −0.0400389 0.0400389i
\(484\) 0 0
\(485\) −5.34122 + 7.08742i −0.242532 + 0.321823i
\(486\) 0 0
\(487\) 8.89277 + 8.89277i 0.402970 + 0.402970i 0.879278 0.476308i \(-0.158025\pi\)
−0.476308 + 0.879278i \(0.658025\pi\)
\(488\) 0 0
\(489\) 49.3689i 2.23254i
\(490\) 0 0
\(491\) 30.8327 1.39146 0.695729 0.718304i \(-0.255081\pi\)
0.695729 + 0.718304i \(0.255081\pi\)
\(492\) 0 0
\(493\) 2.94914 2.94914i 0.132823 0.132823i
\(494\) 0 0
\(495\) 8.42032 + 59.9319i 0.378465 + 2.69374i
\(496\) 0 0
\(497\) −13.9398 + 13.9398i −0.625284 + 0.625284i
\(498\) 0 0
\(499\) 35.4859i 1.58857i −0.607546 0.794284i \(-0.707846\pi\)
0.607546 0.794284i \(-0.292154\pi\)
\(500\) 0 0
\(501\) 31.2672i 1.39691i
\(502\) 0 0
\(503\) 8.80761 8.80761i 0.392712 0.392712i −0.482941 0.875653i \(-0.660431\pi\)
0.875653 + 0.482941i \(0.160431\pi\)
\(504\) 0 0
\(505\) −4.38715 31.2257i −0.195226 1.38953i
\(506\) 0 0
\(507\) −35.8641 + 35.8641i −1.59278 + 1.59278i
\(508\) 0 0
\(509\) 21.9081 0.971061 0.485530 0.874220i \(-0.338626\pi\)
0.485530 + 0.874220i \(0.338626\pi\)
\(510\) 0 0
\(511\) 4.42427i 0.195718i
\(512\) 0 0
\(513\) −17.1240 17.1240i −0.756042 0.756042i
\(514\) 0 0
\(515\) −19.3559 + 25.6839i −0.852922 + 1.13177i
\(516\) 0 0
\(517\) −11.7462 11.7462i −0.516597 0.516597i
\(518\) 0 0
\(519\) 45.9399 2.01654
\(520\) 0 0
\(521\) 19.5941 0.858434 0.429217 0.903201i \(-0.358790\pi\)
0.429217 + 0.903201i \(0.358790\pi\)
\(522\) 0 0
\(523\) 10.7268 + 10.7268i 0.469048 + 0.469048i 0.901606 0.432558i \(-0.142389\pi\)
−0.432558 + 0.901606i \(0.642389\pi\)
\(524\) 0 0
\(525\) 6.10171 + 21.2859i 0.266300 + 0.928994i
\(526\) 0 0
\(527\) −2.28720 2.28720i −0.0996319 0.0996319i
\(528\) 0 0
\(529\) 22.9210i 0.996567i
\(530\) 0 0
\(531\) −35.4859 −1.53996
\(532\) 0 0
\(533\) 12.4286 12.4286i 0.538344 0.538344i
\(534\) 0 0
\(535\) −4.30446 + 5.71171i −0.186098 + 0.246939i
\(536\) 0 0
\(537\) −11.4380 + 11.4380i −0.493586 + 0.493586i
\(538\) 0 0
\(539\) 23.2986i 1.00354i
\(540\) 0 0
\(541\) 26.8385i 1.15388i 0.816787 + 0.576940i \(0.195753\pi\)
−0.816787 + 0.576940i \(0.804247\pi\)
\(542\) 0 0
\(543\) 6.86923 6.86923i 0.294787 0.294787i
\(544\) 0 0
\(545\) −1.80642 + 0.253799i −0.0773787 + 0.0108716i
\(546\) 0 0
\(547\) −18.9787 + 18.9787i −0.811470 + 0.811470i −0.984854 0.173384i \(-0.944530\pi\)
0.173384 + 0.984854i \(0.444530\pi\)
\(548\) 0 0
\(549\) −18.3368 −0.782594
\(550\) 0 0
\(551\) 26.8121i 1.14223i
\(552\) 0 0
\(553\) 3.34614 + 3.34614i 0.142292 + 0.142292i
\(554\) 0 0
\(555\) 8.08789 + 57.5658i 0.343312 + 2.44353i
\(556\) 0 0
\(557\) −29.6780 29.6780i −1.25750 1.25750i −0.952284 0.305213i \(-0.901272\pi\)
−0.305213 0.952284i \(-0.598728\pi\)
\(558\) 0 0
\(559\) −16.0257 −0.677813
\(560\) 0 0
\(561\) 7.73329 0.326500
\(562\) 0 0
\(563\) −5.15507 5.15507i −0.217260 0.217260i 0.590083 0.807343i \(-0.299095\pi\)
−0.807343 + 0.590083i \(0.799095\pi\)
\(564\) 0 0
\(565\) 18.7605 + 14.1383i 0.789260 + 0.594802i
\(566\) 0 0
\(567\) 4.51326 + 4.51326i 0.189539 + 0.189539i
\(568\) 0 0
\(569\) 1.95851i 0.0821051i −0.999157 0.0410526i \(-0.986929\pi\)
0.999157 0.0410526i \(-0.0130711\pi\)
\(570\) 0 0
\(571\) −1.21866 −0.0509995 −0.0254997 0.999675i \(-0.508118\pi\)
−0.0254997 + 0.999675i \(0.508118\pi\)
\(572\) 0 0
\(573\) 18.7971 18.7971i 0.785258 0.785258i
\(574\) 0 0
\(575\) −0.681251 + 1.22877i −0.0284101 + 0.0512431i
\(576\) 0 0
\(577\) −19.4099 + 19.4099i −0.808045 + 0.808045i −0.984338 0.176293i \(-0.943589\pi\)
0.176293 + 0.984338i \(0.443589\pi\)
\(578\) 0 0
\(579\) 24.5961i 1.02218i
\(580\) 0 0
\(581\) 11.8381i 0.491126i
\(582\) 0 0
\(583\) −3.58474 + 3.58474i −0.148465 + 0.148465i
\(584\) 0 0
\(585\) 53.5116 + 40.3274i 2.21243 + 1.66733i
\(586\) 0 0
\(587\) 10.9356 10.9356i 0.451358 0.451358i −0.444447 0.895805i \(-0.646600\pi\)
0.895805 + 0.444447i \(0.146600\pi\)
\(588\) 0 0
\(589\) 20.7940 0.856802
\(590\) 0 0
\(591\) 15.0605i 0.619508i
\(592\) 0 0
\(593\) −20.3274 20.3274i −0.834747 0.834747i 0.153415 0.988162i \(-0.450973\pi\)
−0.988162 + 0.153415i \(0.950973\pi\)
\(594\) 0 0
\(595\) 1.80464 0.253549i 0.0739831 0.0103945i
\(596\) 0 0
\(597\) 6.36842 + 6.36842i 0.260642 + 0.260642i
\(598\) 0 0
\(599\) 47.2620 1.93107 0.965536 0.260269i \(-0.0838112\pi\)
0.965536 + 0.260269i \(0.0838112\pi\)
\(600\) 0 0
\(601\) 28.0415 1.14384 0.571918 0.820311i \(-0.306200\pi\)
0.571918 + 0.820311i \(0.306200\pi\)
\(602\) 0 0
\(603\) 41.8534 + 41.8534i 1.70440 + 1.70440i
\(604\) 0 0
\(605\) 30.6844 4.31111i 1.24750 0.175271i
\(606\) 0 0
\(607\) 16.6217 + 16.6217i 0.674656 + 0.674656i 0.958786 0.284130i \(-0.0917048\pi\)
−0.284130 + 0.958786i \(0.591705\pi\)
\(608\) 0 0
\(609\) 34.5718i 1.40092i
\(610\) 0 0
\(611\) −18.3917 −0.744050
\(612\) 0 0
\(613\) 5.41435 5.41435i 0.218684 0.218684i −0.589260 0.807943i \(-0.700581\pi\)
0.807943 + 0.589260i \(0.200581\pi\)
\(614\) 0 0
\(615\) −16.5082 12.4409i −0.665675 0.501666i
\(616\) 0 0
\(617\) −14.9496 + 14.9496i −0.601849 + 0.601849i −0.940803 0.338954i \(-0.889927\pi\)
0.338954 + 0.940803i \(0.389927\pi\)
\(618\) 0 0
\(619\) 20.2753i 0.814931i 0.913220 + 0.407466i \(0.133587\pi\)
−0.913220 + 0.407466i \(0.866413\pi\)
\(620\) 0 0
\(621\) 1.98126i 0.0795054i
\(622\) 0 0
\(623\) 9.55382 9.55382i 0.382766 0.382766i
\(624\) 0 0
\(625\) 21.2034 13.2444i 0.848137 0.529777i
\(626\) 0 0
\(627\) −35.1535 + 35.1535i −1.40390 + 1.40390i
\(628\) 0 0
\(629\) 4.78415 0.190757
\(630\) 0 0
\(631\) 41.2077i 1.64045i −0.572038 0.820227i \(-0.693847\pi\)
0.572038 0.820227i \(-0.306153\pi\)
\(632\) 0 0
\(633\) 35.0923 + 35.0923i 1.39480 + 1.39480i
\(634\) 0 0
\(635\) 22.4581 + 16.9248i 0.891221 + 0.671642i
\(636\) 0 0
\(637\) −18.2400 18.2400i −0.722695 0.722695i
\(638\) 0 0
\(639\) 70.1569 2.77536
\(640\) 0 0
\(641\) 28.0415 1.10757 0.553786 0.832659i \(-0.313183\pi\)
0.553786 + 0.832659i \(0.313183\pi\)
\(642\) 0 0
\(643\) −5.14878 5.14878i −0.203048 0.203048i 0.598257 0.801305i \(-0.295860\pi\)
−0.801305 + 0.598257i \(0.795860\pi\)
\(644\) 0 0
\(645\) 2.62222 + 18.6637i 0.103250 + 0.734883i
\(646\) 0 0
\(647\) −16.2893 16.2893i −0.640399 0.640399i 0.310255 0.950654i \(-0.399586\pi\)
−0.950654 + 0.310255i \(0.899586\pi\)
\(648\) 0 0
\(649\) 32.5906i 1.27929i
\(650\) 0 0
\(651\) −26.8121 −1.05085
\(652\) 0 0
\(653\) 4.13828 4.13828i 0.161943 0.161943i −0.621484 0.783427i \(-0.713470\pi\)
0.783427 + 0.621484i \(0.213470\pi\)
\(654\) 0 0
\(655\) 37.8520 5.31814i 1.47900 0.207797i
\(656\) 0 0
\(657\) −11.1334 + 11.1334i −0.434353 + 0.434353i
\(658\) 0 0
\(659\) 1.80464i 0.0702988i −0.999382 0.0351494i \(-0.988809\pi\)
0.999382 0.0351494i \(-0.0111907\pi\)
\(660\) 0 0
\(661\) 23.3145i 0.906829i −0.891300 0.453414i \(-0.850206\pi\)
0.891300 0.453414i \(-0.149794\pi\)
\(662\) 0 0
\(663\) 6.05424 6.05424i 0.235127 0.235127i
\(664\) 0 0
\(665\) −7.05086 + 9.35599i −0.273420 + 0.362810i
\(666\) 0 0
\(667\) 1.55109 1.55109i 0.0600585 0.0600585i
\(668\) 0 0
\(669\) 13.2859 0.513663
\(670\) 0 0
\(671\) 16.8406i 0.650126i
\(672\) 0 0
\(673\) −6.15257 6.15257i −0.237164 0.237164i 0.578511 0.815675i \(-0.303634\pi\)
−0.815675 + 0.578511i \(0.803634\pi\)
\(674\) 0 0
\(675\) 17.0942 30.8327i 0.657956 1.18675i
\(676\) 0 0
\(677\) 10.0366 + 10.0366i 0.385737 + 0.385737i 0.873164 0.487427i \(-0.162065\pi\)
−0.487427 + 0.873164i \(0.662065\pi\)
\(678\) 0 0
\(679\) 6.05424 0.232341
\(680\) 0 0
\(681\) −73.1022 −2.80128
\(682\) 0 0
\(683\) −12.0243 12.0243i −0.460097 0.460097i 0.438590 0.898687i \(-0.355478\pi\)
−0.898687 + 0.438590i \(0.855478\pi\)
\(684\) 0 0
\(685\) 9.51606 12.6271i 0.363590 0.482458i
\(686\) 0 0
\(687\) −25.0320 25.0320i −0.955029 0.955029i
\(688\) 0 0
\(689\) 5.61285i 0.213832i
\(690\) 0 0
\(691\) −43.2414 −1.64498 −0.822490 0.568779i \(-0.807416\pi\)
−0.822490 + 0.568779i \(0.807416\pi\)
\(692\) 0 0
\(693\) 29.1941 29.1941i 1.10899 1.10899i
\(694\) 0 0
\(695\) 5.80069 + 41.2866i 0.220033 + 1.56609i
\(696\) 0 0
\(697\) −1.20294 + 1.20294i −0.0455648 + 0.0455648i
\(698\) 0 0
\(699\) 4.65328i 0.176003i
\(700\) 0 0
\(701\) 24.8256i 0.937651i 0.883291 + 0.468826i \(0.155323\pi\)
−0.883291 + 0.468826i \(0.844677\pi\)
\(702\) 0 0
\(703\) −21.7475 + 21.7475i −0.820221 + 0.820221i
\(704\) 0 0
\(705\) 3.00937 + 21.4193i 0.113339 + 0.806696i
\(706\) 0 0
\(707\) −15.2107 + 15.2107i −0.572056 + 0.572056i
\(708\) 0 0
\(709\) 42.8484 1.60920 0.804602 0.593814i \(-0.202378\pi\)
0.804602 + 0.593814i \(0.202378\pi\)
\(710\) 0 0
\(711\) 16.8406i 0.631574i
\(712\) 0 0
\(713\) −1.20294 1.20294i −0.0450506 0.0450506i
\(714\) 0 0
\(715\) 37.0370 49.1455i 1.38511 1.83794i
\(716\) 0 0
\(717\) 4.38715 + 4.38715i 0.163841 + 0.163841i
\(718\) 0 0
\(719\) −11.6014 −0.432659 −0.216329 0.976320i \(-0.569409\pi\)
−0.216329 + 0.976320i \(0.569409\pi\)
\(720\) 0 0
\(721\) 21.9398 0.817080
\(722\) 0 0
\(723\) 0.332430 + 0.332430i 0.0123632 + 0.0123632i
\(724\) 0 0
\(725\) −37.5210 + 10.7556i −1.39349 + 0.399452i
\(726\) 0 0
\(727\) 22.6312 + 22.6312i 0.839346 + 0.839346i 0.988773 0.149427i \(-0.0477428\pi\)
−0.149427 + 0.988773i \(0.547743\pi\)
\(728\) 0 0
\(729\) 38.6958i 1.43318i
\(730\) 0 0
\(731\) 1.55109 0.0573692
\(732\) 0 0
\(733\) −25.2908 + 25.2908i −0.934139 + 0.934139i −0.997961 0.0638227i \(-0.979671\pi\)
0.0638227 + 0.997961i \(0.479671\pi\)
\(734\) 0 0
\(735\) −18.2580 + 24.2271i −0.673457 + 0.893629i
\(736\) 0 0
\(737\) 38.4385 38.4385i 1.41590 1.41590i
\(738\) 0 0
\(739\) 52.3266i 1.92486i 0.271522 + 0.962432i \(0.412473\pi\)
−0.271522 + 0.962432i \(0.587527\pi\)
\(740\) 0 0
\(741\) 55.0420i 2.02202i
\(742\) 0 0
\(743\) −30.5551 + 30.5551i −1.12096 + 1.12096i −0.129359 + 0.991598i \(0.541292\pi\)
−0.991598 + 0.129359i \(0.958708\pi\)
\(744\) 0 0
\(745\) 22.0098 3.09234i 0.806378 0.113295i
\(746\) 0 0
\(747\) −29.7896 + 29.7896i −1.08995 + 1.08995i
\(748\) 0 0
\(749\) 4.87908 0.178278
\(750\) 0 0
\(751\) 36.9336i 1.34773i −0.738856 0.673863i \(-0.764634\pi\)
0.738856 0.673863i \(-0.235366\pi\)
\(752\) 0 0
\(753\) −30.7052 30.7052i −1.11896 1.11896i
\(754\) 0 0
\(755\) 1.21866 + 8.67387i 0.0443517 + 0.315674i
\(756\) 0 0
\(757\) −12.4652 12.4652i −0.453056 0.453056i 0.443312 0.896367i \(-0.353803\pi\)
−0.896367 + 0.443312i \(0.853803\pi\)
\(758\) 0 0
\(759\) 4.06730 0.147634
\(760\) 0 0
\(761\) 7.24443 0.262610 0.131305 0.991342i \(-0.458083\pi\)
0.131305 + 0.991342i \(0.458083\pi\)
\(762\) 0 0
\(763\) 0.879946 + 0.879946i 0.0318562 + 0.0318562i
\(764\) 0 0
\(765\) −5.17929 3.90321i −0.187257 0.141121i
\(766\) 0 0
\(767\) 25.5145 + 25.5145i 0.921276 + 0.921276i
\(768\) 0 0
\(769\) 29.3274i 1.05757i −0.848755 0.528787i \(-0.822647\pi\)
0.848755 0.528787i \(-0.177353\pi\)
\(770\) 0 0
\(771\) 27.3980 0.986716
\(772\) 0 0
\(773\) −0.954067 + 0.954067i −0.0343154 + 0.0343154i −0.724056 0.689741i \(-0.757724\pi\)
0.689741 + 0.724056i \(0.257724\pi\)
\(774\) 0 0
\(775\) 8.34144 + 29.0993i 0.299633 + 1.04528i
\(776\) 0 0
\(777\) 28.0415 28.0415i 1.00598 1.00598i
\(778\) 0 0
\(779\) 10.9365i 0.391842i
\(780\) 0 0
\(781\) 64.4327i 2.30558i
\(782\) 0 0
\(783\) −38.9205 + 38.9205i −1.39091 + 1.39091i
\(784\) 0 0
\(785\) −27.6637 20.8479i −0.987360 0.744094i
\(786\) 0 0
\(787\) 34.5218 34.5218i 1.23057 1.23057i 0.266824 0.963745i \(-0.414026\pi\)
0.963745 0.266824i \(-0.0859742\pi\)
\(788\) 0 0
\(789\) −68.5946 −2.44203
\(790\) 0 0
\(791\) 16.0257i 0.569807i
\(792\) 0 0
\(793\) 13.1842 + 13.1842i 0.468185 + 0.468185i
\(794\) 0 0
\(795\) 6.53680 0.918408i 0.231836 0.0325726i
\(796\) 0 0
\(797\) −6.85236 6.85236i −0.242723 0.242723i 0.575253 0.817976i \(-0.304904\pi\)
−0.817976 + 0.575253i \(0.804904\pi\)
\(798\) 0 0
\(799\) 1.78010 0.0629754
\(800\) 0 0
\(801\) −48.0830 −1.69893
\(802\) 0 0
\(803\) 10.2250 + 10.2250i 0.360831 + 0.360831i
\(804\) 0 0
\(805\) 0.949145 0.133353i 0.0334530 0.00470008i
\(806\) 0 0
\(807\) −34.6912 34.6912i −1.22119 1.22119i
\(808\) 0 0
\(809\) 28.7368i 1.01033i −0.863022 0.505167i \(-0.831431\pi\)
0.863022 0.505167i \(-0.168569\pi\)
\(810\) 0 0
\(811\) −11.1901 −0.392937 −0.196468 0.980510i \(-0.562947\pi\)
−0.196468 + 0.980510i \(0.562947\pi\)
\(812\) 0 0
\(813\) −39.2672 + 39.2672i −1.37716 + 1.37716i
\(814\) 0 0
\(815\) −30.3665 22.8848i −1.06369 0.801619i
\(816\) 0 0
\(817\) −7.05086 + 7.05086i −0.246678 + 0.246678i
\(818\) 0 0
\(819\) 45.7109i 1.59727i
\(820\) 0 0
\(821\) 6.33677i 0.221155i −0.993868 0.110577i \(-0.964730\pi\)
0.993868 0.110577i \(-0.0352700\pi\)
\(822\) 0 0
\(823\) −9.20500 + 9.20500i −0.320866 + 0.320866i −0.849099 0.528233i \(-0.822855\pi\)
0.528233 + 0.849099i \(0.322855\pi\)
\(824\) 0 0
\(825\) −63.2958 35.0923i −2.20368 1.22176i
\(826\) 0 0
\(827\) −7.37731 + 7.37731i −0.256534 + 0.256534i −0.823643 0.567109i \(-0.808062\pi\)
0.567109 + 0.823643i \(0.308062\pi\)
\(828\) 0 0
\(829\) −52.2449 −1.81454 −0.907270 0.420548i \(-0.861838\pi\)
−0.907270 + 0.420548i \(0.861838\pi\)
\(830\) 0 0
\(831\) 19.1278i 0.663538i
\(832\) 0 0
\(833\) 1.76541 + 1.76541i 0.0611679 + 0.0611679i
\(834\) 0 0
\(835\) 19.2322 + 14.4938i 0.665559 + 0.501579i
\(836\) 0 0
\(837\) 30.1847 + 30.1847i 1.04334 + 1.04334i
\(838\) 0 0
\(839\) −53.6241 −1.85131 −0.925655 0.378368i \(-0.876485\pi\)
−0.925655 + 0.378368i \(0.876485\pi\)
\(840\) 0 0
\(841\) 31.9403 1.10139
\(842\) 0 0
\(843\) 26.4796 + 26.4796i 0.912007 + 0.912007i
\(844\) 0 0
\(845\) −5.43509 38.6844i −0.186973 1.33079i
\(846\) 0 0
\(847\) −14.9470 14.9470i −0.513586 0.513586i
\(848\) 0 0
\(849\) 35.2672i 1.21037i
\(850\) 0 0
\(851\) 2.51621 0.0862545
\(852\) 0 0
\(853\) −27.7926 + 27.7926i −0.951601 + 0.951601i −0.998882 0.0472808i \(-0.984944\pi\)
0.0472808 + 0.998882i \(0.484944\pi\)
\(854\) 0 0
\(855\) 41.2866 5.80069i 1.41197 0.198380i
\(856\) 0 0
\(857\) −10.1427 + 10.1427i −0.346469 + 0.346469i −0.858792 0.512324i \(-0.828785\pi\)
0.512324 + 0.858792i \(0.328785\pi\)
\(858\) 0 0
\(859\) 27.1445i 0.926158i −0.886317 0.463079i \(-0.846745\pi\)
0.886317 0.463079i \(-0.153255\pi\)
\(860\) 0 0
\(861\) 14.1017i 0.480585i
\(862\) 0 0
\(863\) 15.0120 15.0120i 0.511014 0.511014i −0.403823 0.914837i \(-0.632319\pi\)
0.914837 + 0.403823i \(0.132319\pi\)
\(864\) 0 0
\(865\) −21.2953 + 28.2573i −0.724061 + 0.960778i
\(866\) 0 0
\(867\) 34.3130 34.3130i 1.16533 1.16533i
\(868\) 0 0
\(869\) −15.4666 −0.524668
\(870\) 0 0
\(871\) 60.1855i 2.03931i
\(872\) 0 0
\(873\) −15.2351 15.2351i −0.515629 0.515629i
\(874\) 0 0
\(875\) −15.9213 6.11389i −0.538237 0.206687i
\(876\) 0 0
\(877\) 13.9032 + 13.9032i 0.469478 + 0.469478i 0.901745 0.432267i \(-0.142286\pi\)
−0.432267 + 0.901745i \(0.642286\pi\)
\(878\) 0 0
\(879\) 51.1792 1.72623
\(880\) 0 0
\(881\) −9.55262 −0.321836 −0.160918 0.986968i \(-0.551445\pi\)
−0.160918 + 0.986968i \(0.551445\pi\)
\(882\) 0 0
\(883\) 30.9635 + 30.9635i 1.04201 + 1.04201i 0.999078 + 0.0429282i \(0.0136687\pi\)
0.0429282 + 0.999078i \(0.486331\pi\)
\(884\) 0 0
\(885\) 25.5397 33.8894i 0.858508 1.13918i
\(886\) 0 0
\(887\) 13.1669 + 13.1669i 0.442102 + 0.442102i 0.892718 0.450616i \(-0.148796\pi\)
−0.450616 + 0.892718i \(0.648796\pi\)
\(888\) 0 0
\(889\) 19.1842i 0.643418i
\(890\) 0 0
\(891\) −20.8612 −0.698878
\(892\) 0 0
\(893\) −8.09187 + 8.09187i −0.270784 + 0.270784i
\(894\) 0 0
\(895\) −1.73340 12.3375i −0.0579410 0.412397i
\(896\) 0 0
\(897\) 3.18421 3.18421i 0.106318 0.106318i
\(898\) 0 0
\(899\) 47.2620i 1.57628i
\(900\) 0 0
\(901\) 0.543257i 0.0180985i
\(902\) 0 0
\(903\) 9.09147 9.09147i 0.302545 0.302545i
\(904\) 0 0
\(905\) 1.04101 + 7.40943i 0.0346044 + 0.246298i
\(906\) 0 0
\(907\) 16.7160 16.7160i 0.555047 0.555047i −0.372846 0.927893i \(-0.621618\pi\)
0.927893 + 0.372846i \(0.121618\pi\)
\(908\) 0 0
\(909\) 76.5531 2.53911
\(910\) 0 0
\(911\) 30.2712i 1.00293i 0.865178 + 0.501465i \(0.167205\pi\)
−0.865178 + 0.501465i \(0.832795\pi\)
\(912\) 0 0
\(913\) 27.3590 + 27.3590i 0.905452 + 0.905452i
\(914\) 0 0
\(915\) 13.1972 17.5118i 0.436287 0.578922i
\(916\) 0 0
\(917\) −18.4385 18.4385i −0.608892 0.608892i
\(918\) 0 0
\(919\) −16.8406 −0.555522 −0.277761 0.960650i \(-0.589592\pi\)
−0.277761 + 0.960650i \(0.589592\pi\)
\(920\) 0 0
\(921\) 18.0602 0.595105
\(922\) 0 0
\(923\) −50.4431 50.4431i −1.66035 1.66035i
\(924\) 0 0
\(925\) −39.1575 21.7096i −1.28749 0.713808i
\(926\) 0 0
\(927\) −55.2099 55.2099i −1.81333 1.81333i
\(928\) 0 0
\(929\) 33.6543i 1.10416i 0.833790 + 0.552081i \(0.186166\pi\)
−0.833790 + 0.552081i \(0.813834\pi\)
\(930\) 0 0
\(931\) −16.0502 −0.526024
\(932\) 0 0
\(933\) −22.1432 + 22.1432i −0.724936 + 0.724936i
\(934\) 0 0
\(935\) −3.58474 + 4.75670i −0.117234 + 0.155561i
\(936\) 0 0
\(937\) 30.3778 30.3778i 0.992399 0.992399i −0.00757237 0.999971i \(-0.502410\pi\)
0.999971 + 0.00757237i \(0.00241038\pi\)
\(938\) 0 0
\(939\) 68.4557i 2.23397i
\(940\) 0 0
\(941\) 9.39069i 0.306128i 0.988216 + 0.153064i \(0.0489140\pi\)
−0.988216 + 0.153064i \(0.951086\pi\)
\(942\) 0 0
\(943\) −0.632684 + 0.632684i −0.0206030 + 0.0206030i
\(944\) 0 0
\(945\) −23.8163 + 3.34614i −0.774743 + 0.108850i
\(946\) 0 0
\(947\) −14.3702 + 14.3702i −0.466968 + 0.466968i −0.900931 0.433963i \(-0.857115\pi\)
0.433963 + 0.900931i \(0.357115\pi\)
\(948\) 0 0
\(949\) 16.0098 0.519702
\(950\) 0 0
\(951\) 28.1341i 0.912312i
\(952\) 0 0
\(953\) 33.7971 + 33.7971i 1.09479 + 1.09479i 0.995009 + 0.0997850i \(0.0318155\pi\)
0.0997850 + 0.995009i \(0.468184\pi\)
\(954\) 0 0
\(955\) 2.84864 + 20.2753i 0.0921797 + 0.656092i
\(956\) 0 0
\(957\) 79.8992 + 79.8992i 2.58278 + 2.58278i
\(958\) 0 0
\(959\) −10.7864 −0.348311
\(960\) 0 0
\(961\) −5.65386 −0.182383
\(962\) 0 0
\(963\) −12.2778 12.2778i −0.395648 0.395648i
\(964\) 0 0
\(965\) 15.1289 + 11.4014i 0.487017 + 0.367025i
\(966\) 0 0
\(967\) −35.0722 35.0722i −1.12784 1.12784i −0.990527 0.137317i \(-0.956152\pi\)
−0.137317 0.990527i \(-0.543848\pi\)
\(968\) 0 0
\(969\) 5.32741i 0.171141i
\(970\) 0 0
\(971\) −55.0496 −1.76663 −0.883313 0.468783i \(-0.844693\pi\)
−0.883313 + 0.468783i \(0.844693\pi\)
\(972\) 0 0
\(973\) 20.1116 20.1116i 0.644747 0.644747i
\(974\) 0 0
\(975\) −77.0261 + 22.0799i −2.46681 + 0.707123i
\(976\) 0 0
\(977\) 20.6860 20.6860i 0.661803 0.661803i −0.294002 0.955805i \(-0.594987\pi\)
0.955805 + 0.294002i \(0.0949872\pi\)
\(978\) 0 0
\(979\) 44.1598i 1.41135i
\(980\) 0 0
\(981\) 4.42864i 0.141396i
\(982\) 0 0
\(983\) 9.83768 9.83768i 0.313773 0.313773i −0.532596 0.846369i \(-0.678784\pi\)
0.846369 + 0.532596i \(0.178784\pi\)
\(984\) 0 0
\(985\) 9.26364 + 6.98126i 0.295164 + 0.222442i
\(986\) 0 0
\(987\) 10.4338 10.4338i 0.332110 0.332110i
\(988\) 0 0
\(989\) 0.815792 0.0259407
\(990\) 0 0
\(991\) 41.8726i 1.33013i 0.746787 + 0.665064i \(0.231596\pi\)
−0.746787 + 0.665064i \(0.768404\pi\)
\(992\) 0 0
\(993\) 55.5625 + 55.5625i 1.76322 + 1.76322i
\(994\) 0 0
\(995\) −6.86923 + 0.965114i −0.217769 + 0.0305962i
\(996\) 0 0
\(997\) −6.38223 6.38223i −0.202127 0.202127i 0.598784 0.800911i \(-0.295651\pi\)
−0.800911 + 0.598784i \(0.795651\pi\)
\(998\) 0 0
\(999\) −63.1375 −1.99758
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 640.2.o.k.63.1 yes 12
4.3 odd 2 inner 640.2.o.k.63.6 yes 12
5.2 odd 4 640.2.o.j.447.1 yes 12
8.3 odd 2 640.2.o.j.63.1 12
8.5 even 2 640.2.o.j.63.6 yes 12
16.3 odd 4 1280.2.n.r.1023.1 12
16.5 even 4 1280.2.n.s.1023.1 12
16.11 odd 4 1280.2.n.s.1023.6 12
16.13 even 4 1280.2.n.r.1023.6 12
20.7 even 4 640.2.o.j.447.6 yes 12
40.27 even 4 inner 640.2.o.k.447.1 yes 12
40.37 odd 4 inner 640.2.o.k.447.6 yes 12
80.27 even 4 1280.2.n.s.767.1 12
80.37 odd 4 1280.2.n.s.767.6 12
80.67 even 4 1280.2.n.r.767.6 12
80.77 odd 4 1280.2.n.r.767.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
640.2.o.j.63.1 12 8.3 odd 2
640.2.o.j.63.6 yes 12 8.5 even 2
640.2.o.j.447.1 yes 12 5.2 odd 4
640.2.o.j.447.6 yes 12 20.7 even 4
640.2.o.k.63.1 yes 12 1.1 even 1 trivial
640.2.o.k.63.6 yes 12 4.3 odd 2 inner
640.2.o.k.447.1 yes 12 40.27 even 4 inner
640.2.o.k.447.6 yes 12 40.37 odd 4 inner
1280.2.n.r.767.1 12 80.77 odd 4
1280.2.n.r.767.6 12 80.67 even 4
1280.2.n.r.1023.1 12 16.3 odd 4
1280.2.n.r.1023.6 12 16.13 even 4
1280.2.n.s.767.1 12 80.27 even 4
1280.2.n.s.767.6 12 80.37 odd 4
1280.2.n.s.1023.1 12 16.5 even 4
1280.2.n.s.1023.6 12 16.11 odd 4