Properties

Label 62.3.b.a.61.1
Level $62$
Weight $3$
Character 62.61
Analytic conductor $1.689$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [62,3,Mod(61,62)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(62, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("62.61"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 62 = 2 \cdot 31 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 62.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.68937763903\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.48128.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 14x^{2} + 47 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 61.1
Root \(2.90073i\) of defining polynomial
Character \(\chi\) \(=\) 62.61
Dual form 62.3.b.a.61.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421 q^{2} -4.10225i q^{3} +2.00000 q^{4} -5.82843 q^{5} +5.80145i q^{6} -4.41421 q^{7} -2.82843 q^{8} -7.82843 q^{9} +8.24264 q^{10} -19.8074i q^{11} -8.20449i q^{12} +6.50529i q^{13} +6.24264 q^{14} +23.9096i q^{15} +4.00000 q^{16} -13.3021i q^{17} +11.0711 q^{18} +30.2132 q^{19} -11.6569 q^{20} +18.1082i q^{21} +28.0119i q^{22} +19.1036i q^{23} +11.6029i q^{24} +8.97056 q^{25} -9.19987i q^{26} -4.80608i q^{27} -8.82843 q^{28} -6.50529i q^{29} -33.8133i q^{30} +(24.4142 - 19.1036i) q^{31} -5.65685 q^{32} -81.2548 q^{33} +18.8120i q^{34} +25.7279 q^{35} -15.6569 q^{36} -59.4222i q^{37} -42.7279 q^{38} +26.6863 q^{39} +16.4853 q^{40} +16.6569 q^{41} -25.6089i q^{42} +65.5152i q^{43} -39.6148i q^{44} +45.6274 q^{45} -27.0165i q^{46} -67.7401 q^{47} -16.4090i q^{48} -29.5147 q^{49} -12.6863 q^{50} -54.5685 q^{51} +13.0106i q^{52} +48.4024i q^{53} +6.79682i q^{54} +115.446i q^{55} +12.4853 q^{56} -123.942i q^{57} +9.19987i q^{58} +56.2132 q^{59} +47.8193i q^{60} +4.51454i q^{61} +(-34.5269 + 27.0165i) q^{62} +34.5563 q^{63} +8.00000 q^{64} -37.9156i q^{65} +114.912 q^{66} +21.0538 q^{67} -26.6042i q^{68} +78.3675 q^{69} -36.3848 q^{70} +11.2426 q^{71} +22.1421 q^{72} -25.1966i q^{73} +84.0357i q^{74} -36.7995i q^{75} +60.4264 q^{76} +87.4341i q^{77} -37.7401 q^{78} -36.0956i q^{79} -23.3137 q^{80} -90.1716 q^{81} -23.5563 q^{82} -159.284i q^{83} +36.2164i q^{84} +77.5304i q^{85} -92.6525i q^{86} -26.6863 q^{87} +56.0238i q^{88} +143.166i q^{89} -64.5269 q^{90} -28.7157i q^{91} +38.2071i q^{92} +(-78.3675 - 100.153i) q^{93} +95.7990 q^{94} -176.095 q^{95} +23.2058i q^{96} +27.7107 q^{97} +41.7401 q^{98} +155.061i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{4} - 12 q^{5} - 12 q^{7} - 20 q^{9} + 16 q^{10} + 8 q^{14} + 16 q^{16} + 16 q^{18} + 36 q^{19} - 24 q^{20} - 32 q^{25} - 24 q^{28} + 92 q^{31} - 144 q^{33} + 52 q^{35} - 40 q^{36} - 120 q^{38}+ \cdots - 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/62\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41421 −0.707107
\(3\) 4.10225i 1.36742i −0.729756 0.683708i \(-0.760366\pi\)
0.729756 0.683708i \(-0.239634\pi\)
\(4\) 2.00000 0.500000
\(5\) −5.82843 −1.16569 −0.582843 0.812585i \(-0.698060\pi\)
−0.582843 + 0.812585i \(0.698060\pi\)
\(6\) 5.80145i 0.966909i
\(7\) −4.41421 −0.630602 −0.315301 0.948992i \(-0.602105\pi\)
−0.315301 + 0.948992i \(0.602105\pi\)
\(8\) −2.82843 −0.353553
\(9\) −7.82843 −0.869825
\(10\) 8.24264 0.824264
\(11\) 19.8074i 1.80067i −0.435195 0.900336i \(-0.643321\pi\)
0.435195 0.900336i \(-0.356679\pi\)
\(12\) 8.20449i 0.683708i
\(13\) 6.50529i 0.500407i 0.968193 + 0.250203i \(0.0804975\pi\)
−0.968193 + 0.250203i \(0.919503\pi\)
\(14\) 6.24264 0.445903
\(15\) 23.9096i 1.59398i
\(16\) 4.00000 0.250000
\(17\) 13.3021i 0.782477i −0.920289 0.391239i \(-0.872047\pi\)
0.920289 0.391239i \(-0.127953\pi\)
\(18\) 11.0711 0.615059
\(19\) 30.2132 1.59017 0.795084 0.606499i \(-0.207427\pi\)
0.795084 + 0.606499i \(0.207427\pi\)
\(20\) −11.6569 −0.582843
\(21\) 18.1082i 0.862295i
\(22\) 28.0119i 1.27327i
\(23\) 19.1036i 0.830590i 0.909687 + 0.415295i \(0.136322\pi\)
−0.909687 + 0.415295i \(0.863678\pi\)
\(24\) 11.6029i 0.483454i
\(25\) 8.97056 0.358823
\(26\) 9.19987i 0.353841i
\(27\) 4.80608i 0.178003i
\(28\) −8.82843 −0.315301
\(29\) 6.50529i 0.224320i −0.993690 0.112160i \(-0.964223\pi\)
0.993690 0.112160i \(-0.0357770\pi\)
\(30\) 33.8133i 1.12711i
\(31\) 24.4142 19.1036i 0.787555 0.616244i
\(32\) −5.65685 −0.176777
\(33\) −81.2548 −2.46227
\(34\) 18.8120i 0.553295i
\(35\) 25.7279 0.735083
\(36\) −15.6569 −0.434913
\(37\) 59.4222i 1.60601i −0.595975 0.803003i \(-0.703234\pi\)
0.595975 0.803003i \(-0.296766\pi\)
\(38\) −42.7279 −1.12442
\(39\) 26.6863 0.684264
\(40\) 16.4853 0.412132
\(41\) 16.6569 0.406265 0.203132 0.979151i \(-0.434888\pi\)
0.203132 + 0.979151i \(0.434888\pi\)
\(42\) 25.6089i 0.609735i
\(43\) 65.5152i 1.52361i 0.647807 + 0.761804i \(0.275686\pi\)
−0.647807 + 0.761804i \(0.724314\pi\)
\(44\) 39.6148i 0.900336i
\(45\) 45.6274 1.01394
\(46\) 27.0165i 0.587316i
\(47\) −67.7401 −1.44128 −0.720640 0.693310i \(-0.756152\pi\)
−0.720640 + 0.693310i \(0.756152\pi\)
\(48\) 16.4090i 0.341854i
\(49\) −29.5147 −0.602341
\(50\) −12.6863 −0.253726
\(51\) −54.5685 −1.06997
\(52\) 13.0106i 0.250203i
\(53\) 48.4024i 0.913252i 0.889659 + 0.456626i \(0.150942\pi\)
−0.889659 + 0.456626i \(0.849058\pi\)
\(54\) 6.79682i 0.125867i
\(55\) 115.446i 2.09902i
\(56\) 12.4853 0.222951
\(57\) 123.942i 2.17442i
\(58\) 9.19987i 0.158618i
\(59\) 56.2132 0.952766 0.476383 0.879238i \(-0.341948\pi\)
0.476383 + 0.879238i \(0.341948\pi\)
\(60\) 47.8193i 0.796988i
\(61\) 4.51454i 0.0740089i 0.999315 + 0.0370045i \(0.0117816\pi\)
−0.999315 + 0.0370045i \(0.988218\pi\)
\(62\) −34.5269 + 27.0165i −0.556886 + 0.435750i
\(63\) 34.5563 0.548513
\(64\) 8.00000 0.125000
\(65\) 37.9156i 0.583317i
\(66\) 114.912 1.74109
\(67\) 21.0538 0.314236 0.157118 0.987580i \(-0.449780\pi\)
0.157118 + 0.987580i \(0.449780\pi\)
\(68\) 26.6042i 0.391239i
\(69\) 78.3675 1.13576
\(70\) −36.3848 −0.519783
\(71\) 11.2426 0.158347 0.0791735 0.996861i \(-0.474772\pi\)
0.0791735 + 0.996861i \(0.474772\pi\)
\(72\) 22.1421 0.307530
\(73\) 25.1966i 0.345158i −0.984996 0.172579i \(-0.944790\pi\)
0.984996 0.172579i \(-0.0552101\pi\)
\(74\) 84.0357i 1.13562i
\(75\) 36.7995i 0.490659i
\(76\) 60.4264 0.795084
\(77\) 87.4341i 1.13551i
\(78\) −37.7401 −0.483848
\(79\) 36.0956i 0.456907i −0.973555 0.228453i \(-0.926633\pi\)
0.973555 0.228453i \(-0.0733668\pi\)
\(80\) −23.3137 −0.291421
\(81\) −90.1716 −1.11323
\(82\) −23.5563 −0.287273
\(83\) 159.284i 1.91908i −0.281569 0.959541i \(-0.590855\pi\)
0.281569 0.959541i \(-0.409145\pi\)
\(84\) 36.2164i 0.431147i
\(85\) 77.5304i 0.912122i
\(86\) 92.6525i 1.07735i
\(87\) −26.6863 −0.306739
\(88\) 56.0238i 0.636634i
\(89\) 143.166i 1.60861i 0.594216 + 0.804305i \(0.297462\pi\)
−0.594216 + 0.804305i \(0.702538\pi\)
\(90\) −64.5269 −0.716966
\(91\) 28.7157i 0.315557i
\(92\) 38.2071i 0.415295i
\(93\) −78.3675 100.153i −0.842662 1.07692i
\(94\) 95.7990 1.01914
\(95\) −176.095 −1.85364
\(96\) 23.2058i 0.241727i
\(97\) 27.7107 0.285677 0.142839 0.989746i \(-0.454377\pi\)
0.142839 + 0.989746i \(0.454377\pi\)
\(98\) 41.7401 0.425920
\(99\) 155.061i 1.56627i
\(100\) 17.9411 0.179411
\(101\) 81.7452 0.809358 0.404679 0.914459i \(-0.367383\pi\)
0.404679 + 0.914459i \(0.367383\pi\)
\(102\) 77.1716 0.756584
\(103\) 185.752 1.80342 0.901710 0.432341i \(-0.142312\pi\)
0.901710 + 0.432341i \(0.142312\pi\)
\(104\) 18.3997i 0.176920i
\(105\) 105.542i 1.00516i
\(106\) 68.4513i 0.645767i
\(107\) 81.1838 0.758727 0.379363 0.925248i \(-0.376143\pi\)
0.379363 + 0.925248i \(0.376143\pi\)
\(108\) 9.61216i 0.0890015i
\(109\) −94.6812 −0.868635 −0.434318 0.900760i \(-0.643010\pi\)
−0.434318 + 0.900760i \(0.643010\pi\)
\(110\) 163.265i 1.48423i
\(111\) −243.765 −2.19608
\(112\) −17.6569 −0.157650
\(113\) 6.14719 0.0543999 0.0271999 0.999630i \(-0.491341\pi\)
0.0271999 + 0.999630i \(0.491341\pi\)
\(114\) 175.280i 1.53755i
\(115\) 111.344i 0.968206i
\(116\) 13.0106i 0.112160i
\(117\) 50.9262i 0.435266i
\(118\) −79.4975 −0.673707
\(119\) 58.7184i 0.493432i
\(120\) 67.6267i 0.563556i
\(121\) −271.333 −2.24242
\(122\) 6.38453i 0.0523322i
\(123\) 68.3305i 0.555533i
\(124\) 48.8284 38.2071i 0.393778 0.308122i
\(125\) 93.4264 0.747411
\(126\) −48.8701 −0.387858
\(127\) 83.4526i 0.657107i −0.944485 0.328554i \(-0.893439\pi\)
0.944485 0.328554i \(-0.106561\pi\)
\(128\) −11.3137 −0.0883883
\(129\) 268.759 2.08341
\(130\) 53.6207i 0.412467i
\(131\) 197.848 1.51029 0.755144 0.655559i \(-0.227567\pi\)
0.755144 + 0.655559i \(0.227567\pi\)
\(132\) −162.510 −1.23113
\(133\) −133.368 −1.00276
\(134\) −29.7746 −0.222199
\(135\) 28.0119i 0.207495i
\(136\) 37.6241i 0.276647i
\(137\) 125.350i 0.914961i 0.889220 + 0.457481i \(0.151248\pi\)
−0.889220 + 0.457481i \(0.848752\pi\)
\(138\) −110.828 −0.803105
\(139\) 62.8206i 0.451947i −0.974133 0.225973i \(-0.927444\pi\)
0.974133 0.225973i \(-0.0725562\pi\)
\(140\) 51.4558 0.367542
\(141\) 277.887i 1.97083i
\(142\) −15.8995 −0.111968
\(143\) 128.853 0.901069
\(144\) −31.3137 −0.217456
\(145\) 37.9156i 0.261487i
\(146\) 35.6333i 0.244064i
\(147\) 121.077i 0.823651i
\(148\) 118.844i 0.803003i
\(149\) 102.024 0.684727 0.342364 0.939568i \(-0.388773\pi\)
0.342364 + 0.939568i \(0.388773\pi\)
\(150\) 52.0423i 0.346949i
\(151\) 174.164i 1.15341i −0.816954 0.576703i \(-0.804339\pi\)
0.816954 0.576703i \(-0.195661\pi\)
\(152\) −85.4558 −0.562210
\(153\) 104.135i 0.680618i
\(154\) 123.650i 0.802925i
\(155\) −142.296 + 111.344i −0.918042 + 0.718347i
\(156\) 53.3726 0.342132
\(157\) 66.4315 0.423130 0.211565 0.977364i \(-0.432144\pi\)
0.211565 + 0.977364i \(0.432144\pi\)
\(158\) 51.0469i 0.323082i
\(159\) 198.558 1.24880
\(160\) 32.9706 0.206066
\(161\) 84.3272i 0.523772i
\(162\) 127.522 0.787172
\(163\) −157.718 −0.967594 −0.483797 0.875180i \(-0.660743\pi\)
−0.483797 + 0.875180i \(0.660743\pi\)
\(164\) 33.3137 0.203132
\(165\) 473.588 2.87023
\(166\) 225.261i 1.35700i
\(167\) 55.1992i 0.330534i −0.986249 0.165267i \(-0.947151\pi\)
0.986249 0.165267i \(-0.0528486\pi\)
\(168\) 51.2177i 0.304867i
\(169\) 126.681 0.749593
\(170\) 109.645i 0.644968i
\(171\) −236.522 −1.38317
\(172\) 131.030i 0.761804i
\(173\) −6.71068 −0.0387900 −0.0193950 0.999812i \(-0.506174\pi\)
−0.0193950 + 0.999812i \(0.506174\pi\)
\(174\) 37.7401 0.216897
\(175\) −39.5980 −0.226274
\(176\) 79.2296i 0.450168i
\(177\) 230.600i 1.30283i
\(178\) 202.468i 1.13746i
\(179\) 63.1829i 0.352977i 0.984303 + 0.176489i \(0.0564738\pi\)
−0.984303 + 0.176489i \(0.943526\pi\)
\(180\) 91.2548 0.506971
\(181\) 2.04076i 0.0112749i 0.999984 + 0.00563747i \(0.00179447\pi\)
−0.999984 + 0.00563747i \(0.998206\pi\)
\(182\) 40.6102i 0.223133i
\(183\) 18.5198 0.101201
\(184\) 54.0330i 0.293658i
\(185\) 346.338i 1.87210i
\(186\) 110.828 + 141.638i 0.595852 + 0.761494i
\(187\) −263.480 −1.40899
\(188\) −135.480 −0.720640
\(189\) 21.2151i 0.112249i
\(190\) 249.037 1.31072
\(191\) −207.787 −1.08789 −0.543944 0.839121i \(-0.683070\pi\)
−0.543944 + 0.839121i \(0.683070\pi\)
\(192\) 32.8180i 0.170927i
\(193\) 48.3970 0.250762 0.125381 0.992109i \(-0.459985\pi\)
0.125381 + 0.992109i \(0.459985\pi\)
\(194\) −39.1888 −0.202004
\(195\) −155.539 −0.797636
\(196\) −59.0294 −0.301171
\(197\) 115.788i 0.587754i 0.955843 + 0.293877i \(0.0949456\pi\)
−0.955843 + 0.293877i \(0.905054\pi\)
\(198\) 219.289i 1.10752i
\(199\) 262.885i 1.32103i 0.750812 + 0.660516i \(0.229662\pi\)
−0.750812 + 0.660516i \(0.770338\pi\)
\(200\) −25.3726 −0.126863
\(201\) 86.3680i 0.429691i
\(202\) −115.605 −0.572303
\(203\) 28.7157i 0.141457i
\(204\) −109.137 −0.534986
\(205\) −97.0833 −0.473577
\(206\) −262.693 −1.27521
\(207\) 149.551i 0.722468i
\(208\) 26.0211i 0.125102i
\(209\) 598.445i 2.86337i
\(210\) 149.259i 0.710759i
\(211\) −170.983 −0.810345 −0.405172 0.914240i \(-0.632789\pi\)
−0.405172 + 0.914240i \(0.632789\pi\)
\(212\) 96.8047i 0.456626i
\(213\) 46.1201i 0.216526i
\(214\) −114.811 −0.536501
\(215\) 381.850i 1.77605i
\(216\) 13.5936i 0.0629336i
\(217\) −107.770 + 84.3272i −0.496634 + 0.388605i
\(218\) 133.899 0.614218
\(219\) −103.362 −0.471975
\(220\) 230.892i 1.04951i
\(221\) 86.5341 0.391557
\(222\) 344.735 1.55286
\(223\) 349.978i 1.56941i −0.619871 0.784704i \(-0.712815\pi\)
0.619871 0.784704i \(-0.287185\pi\)
\(224\) 24.9706 0.111476
\(225\) −70.2254 −0.312113
\(226\) −8.69343 −0.0384665
\(227\) −190.485 −0.839142 −0.419571 0.907722i \(-0.637820\pi\)
−0.419571 + 0.907722i \(0.637820\pi\)
\(228\) 247.884i 1.08721i
\(229\) 116.854i 0.510278i −0.966904 0.255139i \(-0.917879\pi\)
0.966904 0.255139i \(-0.0821212\pi\)
\(230\) 157.464i 0.684625i
\(231\) 358.676 1.55271
\(232\) 18.3997i 0.0793092i
\(233\) −226.019 −0.970040 −0.485020 0.874503i \(-0.661188\pi\)
−0.485020 + 0.874503i \(0.661188\pi\)
\(234\) 72.0205i 0.307780i
\(235\) 394.818 1.68008
\(236\) 112.426 0.476383
\(237\) −148.073 −0.624781
\(238\) 83.0403i 0.348909i
\(239\) 46.1908i 0.193267i 0.995320 + 0.0966335i \(0.0308075\pi\)
−0.995320 + 0.0966335i \(0.969193\pi\)
\(240\) 95.6386i 0.398494i
\(241\) 137.827i 0.571897i −0.958245 0.285949i \(-0.907691\pi\)
0.958245 0.285949i \(-0.0923086\pi\)
\(242\) 383.723 1.58563
\(243\) 326.651i 1.34424i
\(244\) 9.02909i 0.0370045i
\(245\) 172.024 0.702140
\(246\) 96.6340i 0.392821i
\(247\) 196.546i 0.795731i
\(248\) −69.0538 + 54.0330i −0.278443 + 0.217875i
\(249\) −653.421 −2.62418
\(250\) −132.125 −0.528500
\(251\) 26.4835i 0.105512i 0.998607 + 0.0527559i \(0.0168005\pi\)
−0.998607 + 0.0527559i \(0.983199\pi\)
\(252\) 69.1127 0.274257
\(253\) 378.392 1.49562
\(254\) 118.020i 0.464645i
\(255\) 318.049 1.24725
\(256\) 16.0000 0.0625000
\(257\) 17.8183 0.0693320 0.0346660 0.999399i \(-0.488963\pi\)
0.0346660 + 0.999399i \(0.488963\pi\)
\(258\) −380.083 −1.47319
\(259\) 262.302i 1.01275i
\(260\) 75.8312i 0.291658i
\(261\) 50.9262i 0.195119i
\(262\) −279.799 −1.06794
\(263\) 132.317i 0.503108i 0.967843 + 0.251554i \(0.0809415\pi\)
−0.967843 + 0.251554i \(0.919058\pi\)
\(264\) 229.823 0.870543
\(265\) 282.110i 1.06456i
\(266\) 188.610 0.709061
\(267\) 587.304 2.19964
\(268\) 42.1076 0.157118
\(269\) 500.233i 1.85960i 0.368064 + 0.929800i \(0.380021\pi\)
−0.368064 + 0.929800i \(0.619979\pi\)
\(270\) 39.6148i 0.146721i
\(271\) 13.7144i 0.0506067i 0.999680 + 0.0253033i \(0.00805516\pi\)
−0.999680 + 0.0253033i \(0.991945\pi\)
\(272\) 53.2084i 0.195619i
\(273\) −117.799 −0.431498
\(274\) 177.271i 0.646975i
\(275\) 177.684i 0.646122i
\(276\) 156.735 0.567881
\(277\) 174.235i 0.629008i 0.949256 + 0.314504i \(0.101838\pi\)
−0.949256 + 0.314504i \(0.898162\pi\)
\(278\) 88.8418i 0.319575i
\(279\) −191.125 + 149.551i −0.685035 + 0.536025i
\(280\) −72.7696 −0.259891
\(281\) −181.333 −0.645313 −0.322657 0.946516i \(-0.604576\pi\)
−0.322657 + 0.946516i \(0.604576\pi\)
\(282\) 392.991i 1.39359i
\(283\) 87.7889 0.310208 0.155104 0.987898i \(-0.450429\pi\)
0.155104 + 0.987898i \(0.450429\pi\)
\(284\) 22.4853 0.0791735
\(285\) 722.387i 2.53469i
\(286\) −182.225 −0.637152
\(287\) −73.5269 −0.256191
\(288\) 44.2843 0.153765
\(289\) 112.054 0.387729
\(290\) 53.6207i 0.184899i
\(291\) 113.676i 0.390639i
\(292\) 50.3931i 0.172579i
\(293\) 350.593 1.19656 0.598281 0.801286i \(-0.295850\pi\)
0.598281 + 0.801286i \(0.295850\pi\)
\(294\) 171.228i 0.582409i
\(295\) −327.635 −1.11063
\(296\) 168.071i 0.567809i
\(297\) −95.1960 −0.320525
\(298\) −144.284 −0.484175
\(299\) −124.274 −0.415633
\(300\) 73.5989i 0.245330i
\(301\) 289.198i 0.960791i
\(302\) 246.306i 0.815581i
\(303\) 335.339i 1.10673i
\(304\) 120.853 0.397542
\(305\) 26.3127i 0.0862711i
\(306\) 147.269i 0.481270i
\(307\) 473.468 1.54224 0.771121 0.636689i \(-0.219697\pi\)
0.771121 + 0.636689i \(0.219697\pi\)
\(308\) 174.868i 0.567754i
\(309\) 762.002i 2.46603i
\(310\) 201.238 157.464i 0.649154 0.507948i
\(311\) 448.252 1.44132 0.720662 0.693286i \(-0.243838\pi\)
0.720662 + 0.693286i \(0.243838\pi\)
\(312\) −75.4802 −0.241924
\(313\) 362.114i 1.15691i 0.815713 + 0.578457i \(0.196345\pi\)
−0.815713 + 0.578457i \(0.803655\pi\)
\(314\) −93.9483 −0.299198
\(315\) −201.409 −0.639394
\(316\) 72.1913i 0.228453i
\(317\) −226.470 −0.714417 −0.357208 0.934025i \(-0.616271\pi\)
−0.357208 + 0.934025i \(0.616271\pi\)
\(318\) −280.804 −0.883032
\(319\) −128.853 −0.403927
\(320\) −46.6274 −0.145711
\(321\) 333.036i 1.03749i
\(322\) 119.257i 0.370362i
\(323\) 401.899i 1.24427i
\(324\) −180.343 −0.556615
\(325\) 58.3561i 0.179557i
\(326\) 223.047 0.684192
\(327\) 388.406i 1.18779i
\(328\) −47.1127 −0.143636
\(329\) 299.019 0.908873
\(330\) −669.754 −2.02956
\(331\) 124.575i 0.376360i 0.982135 + 0.188180i \(0.0602588\pi\)
−0.982135 + 0.188180i \(0.939741\pi\)
\(332\) 318.568i 0.959541i
\(333\) 465.182i 1.39694i
\(334\) 78.0634i 0.233723i
\(335\) −122.711 −0.366301
\(336\) 72.4328i 0.215574i
\(337\) 197.199i 0.585161i 0.956241 + 0.292581i \(0.0945140\pi\)
−0.956241 + 0.292581i \(0.905486\pi\)
\(338\) −179.154 −0.530042
\(339\) 25.2173i 0.0743872i
\(340\) 155.061i 0.456061i
\(341\) −378.392 483.582i −1.10965 1.41813i
\(342\) 334.492 0.978048
\(343\) 346.581 1.01044
\(344\) 185.305i 0.538677i
\(345\) −456.759 −1.32394
\(346\) 9.49033 0.0274287
\(347\) 381.026i 1.09806i −0.835804 0.549029i \(-0.814998\pi\)
0.835804 0.549029i \(-0.185002\pi\)
\(348\) −53.3726 −0.153369
\(349\) −212.936 −0.610132 −0.305066 0.952331i \(-0.598679\pi\)
−0.305066 + 0.952331i \(0.598679\pi\)
\(350\) 56.0000 0.160000
\(351\) 31.2649 0.0890739
\(352\) 112.048i 0.318317i
\(353\) 193.368i 0.547785i 0.961760 + 0.273892i \(0.0883112\pi\)
−0.961760 + 0.273892i \(0.911689\pi\)
\(354\) 326.118i 0.921238i
\(355\) −65.5269 −0.184583
\(356\) 286.333i 0.804305i
\(357\) 240.877 0.674726
\(358\) 89.3541i 0.249592i
\(359\) 51.1939 0.142601 0.0713007 0.997455i \(-0.477285\pi\)
0.0713007 + 0.997455i \(0.477285\pi\)
\(360\) −129.054 −0.358483
\(361\) 551.838 1.52864
\(362\) 2.88608i 0.00797259i
\(363\) 1113.08i 3.06632i
\(364\) 57.4315i 0.157779i
\(365\) 146.856i 0.402346i
\(366\) −26.1909 −0.0715599
\(367\) 26.1212i 0.0711749i −0.999367 0.0355874i \(-0.988670\pi\)
0.999367 0.0355874i \(-0.0113302\pi\)
\(368\) 76.4143i 0.207647i
\(369\) −130.397 −0.353379
\(370\) 489.796i 1.32377i
\(371\) 213.658i 0.575899i
\(372\) −156.735 200.306i −0.421331 0.538458i
\(373\) −570.539 −1.52960 −0.764798 0.644270i \(-0.777161\pi\)
−0.764798 + 0.644270i \(0.777161\pi\)
\(374\) 372.617 0.996303
\(375\) 383.258i 1.02202i
\(376\) 191.598 0.509569
\(377\) 42.3188 0.112251
\(378\) 30.0026i 0.0793721i
\(379\) 67.2893 0.177544 0.0887722 0.996052i \(-0.471706\pi\)
0.0887722 + 0.996052i \(0.471706\pi\)
\(380\) −352.191 −0.926818
\(381\) −342.343 −0.898538
\(382\) 293.855 0.769254
\(383\) 252.832i 0.660135i 0.943957 + 0.330067i \(0.107071\pi\)
−0.943957 + 0.330067i \(0.892929\pi\)
\(384\) 46.4116i 0.120864i
\(385\) 509.603i 1.32364i
\(386\) −68.4437 −0.177315
\(387\) 512.881i 1.32527i
\(388\) 55.4214 0.142839
\(389\) 726.077i 1.86652i −0.359199 0.933261i \(-0.616950\pi\)
0.359199 0.933261i \(-0.383050\pi\)
\(390\) 219.966 0.564014
\(391\) 254.118 0.649918
\(392\) 83.4802 0.212960
\(393\) 811.620i 2.06519i
\(394\) 163.748i 0.415605i
\(395\) 210.381i 0.532609i
\(396\) 310.122i 0.783135i
\(397\) 250.696 0.631475 0.315737 0.948847i \(-0.397748\pi\)
0.315737 + 0.948847i \(0.397748\pi\)
\(398\) 371.776i 0.934111i
\(399\) 547.107i 1.37119i
\(400\) 35.8823 0.0897056
\(401\) 602.618i 1.50279i 0.659854 + 0.751394i \(0.270618\pi\)
−0.659854 + 0.751394i \(0.729382\pi\)
\(402\) 122.143i 0.303838i
\(403\) 124.274 + 158.821i 0.308373 + 0.394098i
\(404\) 163.490 0.404679
\(405\) 525.558 1.29768
\(406\) 40.6102i 0.100025i
\(407\) −1177.00 −2.89189
\(408\) 154.343 0.378292
\(409\) 152.678i 0.373297i 0.982427 + 0.186648i \(0.0597625\pi\)
−0.982427 + 0.186648i \(0.940237\pi\)
\(410\) 137.296 0.334869
\(411\) 514.215 1.25113
\(412\) 371.505 0.901710
\(413\) −248.137 −0.600816
\(414\) 211.497i 0.510862i
\(415\) 928.374i 2.23705i
\(416\) 36.7995i 0.0884602i
\(417\) −257.706 −0.617999
\(418\) 846.329i 2.02471i
\(419\) −275.963 −0.658624 −0.329312 0.944221i \(-0.606817\pi\)
−0.329312 + 0.944221i \(0.606817\pi\)
\(420\) 211.085i 0.502582i
\(421\) 38.1270 0.0905629 0.0452815 0.998974i \(-0.485582\pi\)
0.0452815 + 0.998974i \(0.485582\pi\)
\(422\) 241.806 0.573000
\(423\) 530.299 1.25366
\(424\) 136.903i 0.322883i
\(425\) 119.327i 0.280770i
\(426\) 65.2236i 0.153107i
\(427\) 19.9282i 0.0466702i
\(428\) 162.368 0.379363
\(429\) 528.586i 1.23214i
\(430\) 540.018i 1.25586i
\(431\) −406.828 −0.943917 −0.471959 0.881621i \(-0.656453\pi\)
−0.471959 + 0.881621i \(0.656453\pi\)
\(432\) 19.2243i 0.0445007i
\(433\) 788.606i 1.82126i 0.413222 + 0.910630i \(0.364403\pi\)
−0.413222 + 0.910630i \(0.635597\pi\)
\(434\) 152.409 119.257i 0.351173 0.274785i
\(435\) 155.539 0.357561
\(436\) −189.362 −0.434318
\(437\) 577.180i 1.32078i
\(438\) 146.177 0.333737
\(439\) −175.434 −0.399621 −0.199810 0.979835i \(-0.564033\pi\)
−0.199810 + 0.979835i \(0.564033\pi\)
\(440\) 326.531i 0.742115i
\(441\) 231.054 0.523932
\(442\) −122.378 −0.276872
\(443\) 395.115 0.891907 0.445953 0.895056i \(-0.352865\pi\)
0.445953 + 0.895056i \(0.352865\pi\)
\(444\) −487.529 −1.09804
\(445\) 834.435i 1.87513i
\(446\) 494.943i 1.10974i
\(447\) 418.529i 0.936307i
\(448\) −35.3137 −0.0788252
\(449\) 293.854i 0.654463i −0.944944 0.327232i \(-0.893884\pi\)
0.944944 0.327232i \(-0.106116\pi\)
\(450\) 99.3137 0.220697
\(451\) 329.929i 0.731550i
\(452\) 12.2944 0.0271999
\(453\) −714.465 −1.57719
\(454\) 269.387 0.593363
\(455\) 167.368i 0.367841i
\(456\) 350.561i 0.768774i
\(457\) 220.014i 0.481430i −0.970596 0.240715i \(-0.922618\pi\)
0.970596 0.240715i \(-0.0773819\pi\)
\(458\) 165.256i 0.360821i
\(459\) −63.9310 −0.139283
\(460\) 222.687i 0.484103i
\(461\) 319.492i 0.693042i −0.938042 0.346521i \(-0.887363\pi\)
0.938042 0.346521i \(-0.112637\pi\)
\(462\) −507.245 −1.09793
\(463\) 261.136i 0.564009i 0.959413 + 0.282004i \(0.0909993\pi\)
−0.959413 + 0.282004i \(0.909001\pi\)
\(464\) 26.0211i 0.0560801i
\(465\) 456.759 + 583.735i 0.982278 + 1.25534i
\(466\) 319.640 0.685922
\(467\) −271.856 −0.582132 −0.291066 0.956703i \(-0.594010\pi\)
−0.291066 + 0.956703i \(0.594010\pi\)
\(468\) 101.852i 0.217633i
\(469\) −92.9361 −0.198158
\(470\) −558.357 −1.18799
\(471\) 272.518i 0.578595i
\(472\) −158.995 −0.336854
\(473\) 1297.69 2.74352
\(474\) 209.407 0.441787
\(475\) 271.029 0.570588
\(476\) 117.437i 0.246716i
\(477\) 378.914i 0.794370i
\(478\) 65.3237i 0.136660i
\(479\) −192.335 −0.401535 −0.200767 0.979639i \(-0.564344\pi\)
−0.200767 + 0.979639i \(0.564344\pi\)
\(480\) 135.253i 0.281778i
\(481\) 386.558 0.803656
\(482\) 194.917i 0.404392i
\(483\) −345.931 −0.716213
\(484\) −542.666 −1.12121
\(485\) −161.510 −0.333010
\(486\) 461.955i 0.950524i
\(487\) 653.665i 1.34223i 0.741354 + 0.671114i \(0.234184\pi\)
−0.741354 + 0.671114i \(0.765816\pi\)
\(488\) 12.7691i 0.0261661i
\(489\) 646.997i 1.32310i
\(490\) −243.279 −0.496488
\(491\) 76.7558i 0.156325i −0.996941 0.0781627i \(-0.975095\pi\)
0.996941 0.0781627i \(-0.0249054\pi\)
\(492\) 136.661i 0.277766i
\(493\) −86.5341 −0.175525
\(494\) 277.957i 0.562667i
\(495\) 903.760i 1.82578i
\(496\) 97.6569 76.4143i 0.196889 0.154061i
\(497\) −49.6274 −0.0998540
\(498\) 924.077 1.85558
\(499\) 668.304i 1.33929i −0.742683 0.669643i \(-0.766447\pi\)
0.742683 0.669643i \(-0.233553\pi\)
\(500\) 186.853 0.373706
\(501\) −226.441 −0.451977
\(502\) 37.4533i 0.0746081i
\(503\) 410.899 0.816898 0.408449 0.912781i \(-0.366070\pi\)
0.408449 + 0.912781i \(0.366070\pi\)
\(504\) −97.7401 −0.193929
\(505\) −476.446 −0.943457
\(506\) −535.127 −1.05756
\(507\) 519.678i 1.02501i
\(508\) 166.905i 0.328554i
\(509\) 232.833i 0.457432i −0.973493 0.228716i \(-0.926547\pi\)
0.973493 0.228716i \(-0.0734527\pi\)
\(510\) −449.789 −0.881939
\(511\) 111.223i 0.217657i
\(512\) −22.6274 −0.0441942
\(513\) 145.207i 0.283055i
\(514\) −25.1989 −0.0490251
\(515\) −1082.64 −2.10222
\(516\) 537.519 1.04170
\(517\) 1341.76i 2.59527i
\(518\) 370.951i 0.716122i
\(519\) 27.5289i 0.0530421i
\(520\) 107.241i 0.206234i
\(521\) −472.701 −0.907295 −0.453647 0.891181i \(-0.649877\pi\)
−0.453647 + 0.891181i \(0.649877\pi\)
\(522\) 72.0205i 0.137970i
\(523\) 352.814i 0.674596i −0.941398 0.337298i \(-0.890487\pi\)
0.941398 0.337298i \(-0.109513\pi\)
\(524\) 395.696 0.755144
\(525\) 162.441i 0.309411i
\(526\) 187.125i 0.355751i
\(527\) −254.118 324.761i −0.482197 0.616244i
\(528\) −325.019 −0.615567
\(529\) 164.054 0.310121
\(530\) 398.963i 0.752761i
\(531\) −440.061 −0.828740
\(532\) −266.735 −0.501382
\(533\) 108.358i 0.203298i
\(534\) −830.573 −1.55538
\(535\) −473.174 −0.884437
\(536\) −59.5492 −0.111099
\(537\) 259.192 0.482666
\(538\) 707.436i 1.31494i
\(539\) 584.610i 1.08462i
\(540\) 56.0238i 0.103748i
\(541\) −685.337 −1.26680 −0.633399 0.773826i \(-0.718341\pi\)
−0.633399 + 0.773826i \(0.718341\pi\)
\(542\) 19.3951i 0.0357843i
\(543\) 8.37172 0.0154175
\(544\) 75.2481i 0.138324i
\(545\) 551.843 1.01256
\(546\) 166.593 0.305115
\(547\) 839.947 1.53555 0.767776 0.640718i \(-0.221363\pi\)
0.767776 + 0.640718i \(0.221363\pi\)
\(548\) 250.699i 0.457481i
\(549\) 35.3418i 0.0643748i
\(550\) 251.282i 0.456877i
\(551\) 196.546i 0.356707i
\(552\) −221.657 −0.401552
\(553\) 159.334i 0.288126i
\(554\) 246.406i 0.444775i
\(555\) 1420.76 2.55993
\(556\) 125.641i 0.225973i
\(557\) 336.143i 0.603488i −0.953389 0.301744i \(-0.902431\pi\)
0.953389 0.301744i \(-0.0975688\pi\)
\(558\) 270.291 211.497i 0.484393 0.379027i
\(559\) −426.195 −0.762424
\(560\) 102.912 0.183771
\(561\) 1080.86i 1.92667i
\(562\) 256.444 0.456305
\(563\) −455.444 −0.808959 −0.404479 0.914547i \(-0.632547\pi\)
−0.404479 + 0.914547i \(0.632547\pi\)
\(564\) 555.773i 0.985414i
\(565\) −35.8284 −0.0634131
\(566\) −124.152 −0.219350
\(567\) 398.037 0.702005
\(568\) −31.7990 −0.0559841
\(569\) 370.468i 0.651087i 0.945527 + 0.325543i \(0.105547\pi\)
−0.945527 + 0.325543i \(0.894453\pi\)
\(570\) 1021.61i 1.79230i
\(571\) 558.126i 0.977454i 0.872437 + 0.488727i \(0.162539\pi\)
−0.872437 + 0.488727i \(0.837461\pi\)
\(572\) 257.706 0.450534
\(573\) 852.393i 1.48760i
\(574\) 103.983 0.181155
\(575\) 171.370i 0.298034i
\(576\) −62.6274 −0.108728
\(577\) −49.6224 −0.0860006 −0.0430003 0.999075i \(-0.513692\pi\)
−0.0430003 + 0.999075i \(0.513692\pi\)
\(578\) −158.468 −0.274166
\(579\) 198.536i 0.342895i
\(580\) 75.8312i 0.130743i
\(581\) 703.113i 1.21018i
\(582\) 160.762i 0.276224i
\(583\) 958.725 1.64447
\(584\) 71.2666i 0.122032i
\(585\) 296.819i 0.507384i
\(586\) −495.813 −0.846098
\(587\) 608.882i 1.03728i −0.854994 0.518639i \(-0.826439\pi\)
0.854994 0.518639i \(-0.173561\pi\)
\(588\) 242.153i 0.411825i
\(589\) 737.632 577.180i 1.25235 0.979932i
\(590\) 463.345 0.785331
\(591\) 474.989 0.803704
\(592\) 237.689i 0.401501i
\(593\) 719.093 1.21264 0.606318 0.795222i \(-0.292646\pi\)
0.606318 + 0.795222i \(0.292646\pi\)
\(594\) 134.627 0.226645
\(595\) 342.236i 0.575186i
\(596\) 204.049 0.342364
\(597\) 1078.42 1.80640
\(598\) 175.750 0.293897
\(599\) −199.090 −0.332371 −0.166186 0.986094i \(-0.553145\pi\)
−0.166186 + 0.986094i \(0.553145\pi\)
\(600\) 104.085i 0.173474i
\(601\) 797.535i 1.32701i −0.748170 0.663507i \(-0.769067\pi\)
0.748170 0.663507i \(-0.230933\pi\)
\(602\) 408.988i 0.679382i
\(603\) −164.818 −0.273331
\(604\) 348.329i 0.576703i
\(605\) 1581.44 2.61396
\(606\) 474.241i 0.782575i
\(607\) −197.417 −0.325234 −0.162617 0.986689i \(-0.551994\pi\)
−0.162617 + 0.986689i \(0.551994\pi\)
\(608\) −170.912 −0.281105
\(609\) 117.799 0.193430
\(610\) 37.2118i 0.0610029i
\(611\) 440.669i 0.721226i
\(612\) 208.269i 0.340309i
\(613\) 766.958i 1.25115i −0.780162 0.625577i \(-0.784863\pi\)
0.780162 0.625577i \(-0.215137\pi\)
\(614\) −669.585 −1.09053
\(615\) 398.259i 0.647576i
\(616\) 247.301i 0.401463i
\(617\) 314.975 0.510494 0.255247 0.966876i \(-0.417843\pi\)
0.255247 + 0.966876i \(0.417843\pi\)
\(618\) 1077.63i 1.74374i
\(619\) 6.67607i 0.0107852i 0.999985 + 0.00539262i \(0.00171653\pi\)
−0.999985 + 0.00539262i \(0.998283\pi\)
\(620\) −284.593 + 222.687i −0.459021 + 0.359173i
\(621\) 91.8133 0.147847
\(622\) −633.924 −1.01917
\(623\) 631.967i 1.01439i
\(624\) 106.745 0.171066
\(625\) −768.793 −1.23007
\(626\) 512.106i 0.818061i
\(627\) −2454.97 −3.91542
\(628\) 132.863 0.211565
\(629\) −790.441 −1.25666
\(630\) 284.836 0.452120
\(631\) 1058.10i 1.67686i 0.545012 + 0.838428i \(0.316525\pi\)
−0.545012 + 0.838428i \(0.683475\pi\)
\(632\) 102.094i 0.161541i
\(633\) 701.413i 1.10808i
\(634\) 320.277 0.505169
\(635\) 486.397i 0.765980i
\(636\) 397.117 0.624398
\(637\) 192.002i 0.301416i
\(638\) 182.225 0.285620
\(639\) −88.0122 −0.137734
\(640\) 65.9411 0.103033
\(641\) 796.861i 1.24315i 0.783354 + 0.621576i \(0.213507\pi\)
−0.783354 + 0.621576i \(0.786493\pi\)
\(642\) 470.984i 0.733620i
\(643\) 875.949i 1.36228i −0.732151 0.681142i \(-0.761484\pi\)
0.732151 0.681142i \(-0.238516\pi\)
\(644\) 168.654i 0.261886i
\(645\) −1566.44 −2.42860
\(646\) 568.372i 0.879832i
\(647\) 702.288i 1.08545i −0.839910 0.542726i \(-0.817392\pi\)
0.839910 0.542726i \(-0.182608\pi\)
\(648\) 255.044 0.393586
\(649\) 1113.44i 1.71562i
\(650\) 82.5280i 0.126966i
\(651\) 345.931 + 442.097i 0.531384 + 0.679105i
\(652\) −315.436 −0.483797
\(653\) −139.653 −0.213863 −0.106932 0.994266i \(-0.534103\pi\)
−0.106932 + 0.994266i \(0.534103\pi\)
\(654\) 549.289i 0.839891i
\(655\) −1153.14 −1.76052
\(656\) 66.6274 0.101566
\(657\) 197.249i 0.300227i
\(658\) −422.877 −0.642671
\(659\) 1241.56 1.88400 0.942000 0.335614i \(-0.108944\pi\)
0.942000 + 0.335614i \(0.108944\pi\)
\(660\) 947.176 1.43511
\(661\) −520.200 −0.786990 −0.393495 0.919327i \(-0.628734\pi\)
−0.393495 + 0.919327i \(0.628734\pi\)
\(662\) 176.176i 0.266127i
\(663\) 354.984i 0.535421i
\(664\) 450.523i 0.678498i
\(665\) 777.323 1.16891
\(666\) 657.867i 0.987789i
\(667\) 124.274 0.186318
\(668\) 110.398i 0.165267i
\(669\) −1435.70 −2.14603
\(670\) 173.539 0.259014
\(671\) 89.4214 0.133266
\(672\) 102.435i 0.152434i
\(673\) 295.895i 0.439665i −0.975538 0.219833i \(-0.929449\pi\)
0.975538 0.219833i \(-0.0705511\pi\)
\(674\) 278.882i 0.413772i
\(675\) 43.1132i 0.0638715i
\(676\) 253.362 0.374797
\(677\) 130.889i 0.193337i 0.995317 + 0.0966683i \(0.0308186\pi\)
−0.995317 + 0.0966683i \(0.969181\pi\)
\(678\) 35.6626i 0.0525997i
\(679\) −122.321 −0.180149
\(680\) 219.289i 0.322484i
\(681\) 781.418i 1.14746i
\(682\) 535.127 + 683.888i 0.784644 + 1.00277i
\(683\) 731.066 1.07037 0.535187 0.844733i \(-0.320241\pi\)
0.535187 + 0.844733i \(0.320241\pi\)
\(684\) −473.044 −0.691584
\(685\) 730.591i 1.06656i
\(686\) −490.139 −0.714489
\(687\) −479.362 −0.697762
\(688\) 262.061i 0.380902i
\(689\) −314.871 −0.456998
\(690\) 645.955 0.936167
\(691\) −287.247 −0.415697 −0.207849 0.978161i \(-0.566646\pi\)
−0.207849 + 0.978161i \(0.566646\pi\)
\(692\) −13.4214 −0.0193950
\(693\) 684.471i 0.987693i
\(694\) 538.852i 0.776444i
\(695\) 366.145i 0.526828i
\(696\) 75.4802 0.108449
\(697\) 221.571i 0.317893i
\(698\) 301.137 0.431428
\(699\) 927.187i 1.32645i
\(700\) −79.1960 −0.113137
\(701\) 379.382 0.541201 0.270600 0.962692i \(-0.412778\pi\)
0.270600 + 0.962692i \(0.412778\pi\)
\(702\) −44.2153 −0.0629848
\(703\) 1795.33i 2.55382i
\(704\) 158.459i 0.225084i
\(705\) 1619.64i 2.29736i
\(706\) 273.464i 0.387342i
\(707\) −360.841 −0.510383
\(708\) 461.201i 0.651414i
\(709\) 427.358i 0.602762i 0.953504 + 0.301381i \(0.0974476\pi\)
−0.953504 + 0.301381i \(0.902552\pi\)
\(710\) 92.6690 0.130520
\(711\) 282.572i 0.397429i
\(712\) 404.936i 0.568730i
\(713\) 364.946 + 466.399i 0.511846 + 0.654135i
\(714\) −340.652 −0.477103
\(715\) −751.009 −1.05036
\(716\) 126.366i 0.176489i
\(717\) 189.486 0.264276
\(718\) −72.3991 −0.100834
\(719\) 165.377i 0.230009i 0.993365 + 0.115005i \(0.0366883\pi\)
−0.993365 + 0.115005i \(0.963312\pi\)
\(720\) 182.510 0.253486
\(721\) −819.950 −1.13724
\(722\) −780.416 −1.08091
\(723\) −565.401 −0.782021
\(724\) 4.08153i 0.00563747i
\(725\) 58.3561i 0.0804912i
\(726\) 1574.13i 2.16822i
\(727\) −376.217 −0.517493 −0.258746 0.965945i \(-0.583309\pi\)
−0.258746 + 0.965945i \(0.583309\pi\)
\(728\) 81.2203i 0.111566i
\(729\) 528.460 0.724911
\(730\) 207.686i 0.284502i
\(731\) 871.490 1.19219
\(732\) 37.0395 0.0506005
\(733\) 389.965 0.532012 0.266006 0.963971i \(-0.414296\pi\)
0.266006 + 0.963971i \(0.414296\pi\)
\(734\) 36.9409i 0.0503283i
\(735\) 705.686i 0.960118i
\(736\) 108.066i 0.146829i
\(737\) 417.021i 0.565836i
\(738\) 184.409 0.249877
\(739\) 1079.09i 1.46020i 0.683338 + 0.730102i \(0.260528\pi\)
−0.683338 + 0.730102i \(0.739472\pi\)
\(740\) 692.676i 0.936048i
\(741\) 806.278 1.08809
\(742\) 302.159i 0.407222i
\(743\) 1176.58i 1.58355i 0.610812 + 0.791776i \(0.290843\pi\)
−0.610812 + 0.791776i \(0.709157\pi\)
\(744\) 221.657 + 283.276i 0.297926 + 0.380747i
\(745\) −594.642 −0.798177
\(746\) 806.864 1.08159
\(747\) 1246.94i 1.66927i
\(748\) −526.960 −0.704493
\(749\) −358.362 −0.478455
\(750\) 542.009i 0.722679i
\(751\) −88.5421 −0.117899 −0.0589494 0.998261i \(-0.518775\pi\)
−0.0589494 + 0.998261i \(0.518775\pi\)
\(752\) −270.960 −0.360320
\(753\) 108.642 0.144278
\(754\) −59.8478 −0.0793737
\(755\) 1015.10i 1.34451i
\(756\) 42.4301i 0.0561245i
\(757\) 457.411i 0.604242i −0.953270 0.302121i \(-0.902305\pi\)
0.953270 0.302121i \(-0.0976946\pi\)
\(758\) −95.1615 −0.125543
\(759\) 1552.26i 2.04513i
\(760\) 498.073 0.655359
\(761\) 878.422i 1.15430i 0.816638 + 0.577150i \(0.195835\pi\)
−0.816638 + 0.577150i \(0.804165\pi\)
\(762\) 484.146 0.635363
\(763\) 417.943 0.547763
\(764\) −415.574 −0.543944
\(765\) 606.941i 0.793387i
\(766\) 357.558i 0.466786i
\(767\) 365.683i 0.476771i
\(768\) 65.6359i 0.0854635i
\(769\) 772.734 1.00486 0.502428 0.864619i \(-0.332440\pi\)
0.502428 + 0.864619i \(0.332440\pi\)
\(770\) 720.688i 0.935958i
\(771\) 73.0952i 0.0948057i
\(772\) 96.7939 0.125381
\(773\) 243.752i 0.315333i 0.987492 + 0.157667i \(0.0503971\pi\)
−0.987492 + 0.157667i \(0.949603\pi\)
\(774\) 725.323i 0.937110i
\(775\) 219.009 171.370i 0.282593 0.221122i
\(776\) −78.3776 −0.101002
\(777\) 1076.03 1.38485
\(778\) 1026.83i 1.31983i
\(779\) 503.257 0.646029
\(780\) −311.078 −0.398818
\(781\) 222.687i 0.285131i
\(782\) −359.377 −0.459561
\(783\) −31.2649 −0.0399297
\(784\) −118.059 −0.150585
\(785\) −387.191 −0.493237
\(786\) 1147.80i 1.46031i
\(787\) 210.039i 0.266886i −0.991056 0.133443i \(-0.957397\pi\)
0.991056 0.133443i \(-0.0426033\pi\)
\(788\) 231.575i 0.293877i
\(789\) 542.798 0.687957
\(790\) 297.523i 0.376612i
\(791\) −27.1350 −0.0343047
\(792\) 438.578i 0.553760i
\(793\) −29.3684 −0.0370346
\(794\) −354.537 −0.446520
\(795\) −1157.28 −1.45570
\(796\) 525.771i 0.660516i
\(797\) 451.447i 0.566433i −0.959056 0.283217i \(-0.908598\pi\)
0.959056 0.283217i \(-0.0914015\pi\)
\(798\) 773.725i 0.969581i
\(799\) 901.087i 1.12777i
\(800\) −50.7452 −0.0634315
\(801\) 1120.77i 1.39921i
\(802\) 852.230i 1.06263i
\(803\) −499.078 −0.621517
\(804\) 172.736i 0.214846i
\(805\) 491.495i 0.610553i
\(806\) −175.750 224.607i −0.218052 0.278669i
\(807\) 2052.08 2.54285
\(808\) −231.210 −0.286151
\(809\) 439.303i 0.543019i −0.962436 0.271510i \(-0.912477\pi\)
0.962436 0.271510i \(-0.0875229\pi\)
\(810\) −743.252 −0.917595
\(811\) −1336.32 −1.64774 −0.823870 0.566779i \(-0.808189\pi\)
−0.823870 + 0.566779i \(0.808189\pi\)
\(812\) 57.4315i 0.0707284i
\(813\) 56.2599 0.0692004
\(814\) 1664.53 2.04487
\(815\) 919.247 1.12791
\(816\) −218.274 −0.267493
\(817\) 1979.42i 2.42280i
\(818\) 215.920i 0.263961i
\(819\) 224.799i 0.274480i
\(820\) −194.167 −0.236788
\(821\) 437.079i 0.532374i −0.963921 0.266187i \(-0.914236\pi\)
0.963921 0.266187i \(-0.0857639\pi\)
\(822\) −727.210 −0.884684
\(823\) 405.739i 0.493001i −0.969143 0.246500i \(-0.920719\pi\)
0.969143 0.246500i \(-0.0792806\pi\)
\(824\) −525.387 −0.637605
\(825\) −728.902 −0.883517
\(826\) 350.919 0.424841
\(827\) 729.979i 0.882683i −0.897339 0.441342i \(-0.854503\pi\)
0.897339 0.441342i \(-0.145497\pi\)
\(828\) 299.102i 0.361234i
\(829\) 847.054i 1.02178i 0.859647 + 0.510889i \(0.170684\pi\)
−0.859647 + 0.510889i \(0.829316\pi\)
\(830\) 1312.92i 1.58183i
\(831\) 714.755 0.860115
\(832\) 52.0423i 0.0625508i
\(833\) 392.608i 0.471318i
\(834\) 364.451 0.436991
\(835\) 321.724i 0.385299i
\(836\) 1196.89i 1.43169i
\(837\) −91.8133 117.337i −0.109693 0.140187i
\(838\) 390.271 0.465717
\(839\) 407.720 0.485959 0.242980 0.970031i \(-0.421875\pi\)
0.242980 + 0.970031i \(0.421875\pi\)
\(840\) 298.519i 0.355379i
\(841\) 798.681 0.949680
\(842\) −53.9197 −0.0640376
\(843\) 743.873i 0.882411i
\(844\) −341.966 −0.405172
\(845\) −738.352 −0.873790
\(846\) −749.955 −0.886472
\(847\) 1197.72 1.41408
\(848\) 193.609i 0.228313i
\(849\) 360.132i 0.424183i
\(850\) 168.754i 0.198535i
\(851\) 1135.18 1.33393
\(852\) 92.2402i 0.108263i
\(853\) −1231.52 −1.44376 −0.721878 0.692021i \(-0.756721\pi\)
−0.721878 + 0.692021i \(0.756721\pi\)
\(854\) 28.1827i 0.0330008i
\(855\) 1378.55 1.61234
\(856\) −229.622 −0.268250
\(857\) 563.750 0.657818 0.328909 0.944362i \(-0.393319\pi\)
0.328909 + 0.944362i \(0.393319\pi\)
\(858\) 747.534i 0.871251i
\(859\) 1092.81i 1.27218i −0.771614 0.636092i \(-0.780550\pi\)
0.771614 0.636092i \(-0.219450\pi\)
\(860\) 763.701i 0.888024i
\(861\) 301.626i 0.350320i
\(862\) 575.342 0.667450
\(863\) 512.739i 0.594136i 0.954856 + 0.297068i \(0.0960088\pi\)
−0.954856 + 0.297068i \(0.903991\pi\)
\(864\) 27.1873i 0.0314668i
\(865\) 39.1127 0.0452170
\(866\) 1115.26i 1.28783i
\(867\) 459.672i 0.530187i
\(868\) −215.539 + 168.654i −0.248317 + 0.194302i
\(869\) −714.960 −0.822739
\(870\) −219.966 −0.252834
\(871\) 136.961i 0.157246i
\(872\) 267.799 0.307109
\(873\) −216.931 −0.248489
\(874\) 816.256i 0.933931i
\(875\) −412.404 −0.471319
\(876\) −206.725 −0.235987
\(877\) 1361.26 1.55218 0.776088 0.630625i \(-0.217201\pi\)
0.776088 + 0.630625i \(0.217201\pi\)
\(878\) 248.101 0.282575
\(879\) 1438.22i 1.63620i
\(880\) 461.784i 0.524754i
\(881\) 980.799i 1.11328i 0.830754 + 0.556640i \(0.187910\pi\)
−0.830754 + 0.556640i \(0.812090\pi\)
\(882\) −326.759 −0.370476
\(883\) 879.489i 0.996023i 0.867170 + 0.498012i \(0.165936\pi\)
−0.867170 + 0.498012i \(0.834064\pi\)
\(884\) 173.068 0.195778
\(885\) 1344.04i 1.51869i
\(886\) −558.777 −0.630673
\(887\) −798.079 −0.899751 −0.449876 0.893091i \(-0.648532\pi\)
−0.449876 + 0.893091i \(0.648532\pi\)
\(888\) 689.470 0.776430
\(889\) 368.378i 0.414373i
\(890\) 1180.07i 1.32592i
\(891\) 1786.06i 2.00456i
\(892\) 699.956i 0.784704i
\(893\) −2046.65 −2.29188
\(894\) 591.890i 0.662069i
\(895\) 368.257i 0.411460i
\(896\) 49.9411 0.0557379
\(897\) 509.803i 0.568343i
\(898\) 415.572i 0.462775i
\(899\) −124.274 158.821i −0.138236 0.176665i
\(900\) −140.451 −0.156056
\(901\) 643.854 0.714599
\(902\) 466.590i 0.517284i
\(903\) −1186.36 −1.31380
\(904\) −17.3869 −0.0192333
\(905\) 11.8944i 0.0131430i
\(906\) 1010.41 1.11524
\(907\) 586.301 0.646417 0.323209 0.946328i \(-0.395238\pi\)
0.323209 + 0.946328i \(0.395238\pi\)
\(908\) −380.971 −0.419571
\(909\) −639.936 −0.704000
\(910\) 236.693i 0.260103i
\(911\) 1086.27i 1.19239i −0.802838 0.596197i \(-0.796678\pi\)
0.802838 0.596197i \(-0.203322\pi\)
\(912\) 495.768i 0.543605i
\(913\) −3155.00 −3.45564
\(914\) 311.146i 0.340423i
\(915\) −107.941 −0.117968
\(916\) 233.707i 0.255139i
\(917\) −873.342 −0.952391
\(918\) 90.4121 0.0984881
\(919\) 362.396 0.394337 0.197169 0.980370i \(-0.436825\pi\)
0.197169 + 0.980370i \(0.436825\pi\)
\(920\) 314.928i 0.342313i
\(921\) 1942.28i 2.10888i
\(922\) 451.830i 0.490054i
\(923\) 73.1366i 0.0792379i
\(924\) 717.352 0.776355
\(925\) 533.051i 0.576271i
\(926\) 369.302i 0.398815i
\(927\) −1454.15 −1.56866
\(928\) 36.7995i 0.0396546i
\(929\) 66.6020i 0.0716922i 0.999357 + 0.0358461i \(0.0114126\pi\)
−0.999357 + 0.0358461i \(0.988587\pi\)
\(930\) −645.955 825.526i −0.694576 0.887663i
\(931\) −891.734 −0.957824
\(932\) −452.039 −0.485020
\(933\) 1838.84i 1.97089i
\(934\) 384.462 0.411630
\(935\) 1535.68 1.64243
\(936\) 144.041i 0.153890i
\(937\) 803.024 0.857015 0.428508 0.903538i \(-0.359039\pi\)
0.428508 + 0.903538i \(0.359039\pi\)
\(938\) 131.431 0.140119
\(939\) 1485.48 1.58198
\(940\) 789.637 0.840039
\(941\) 1229.02i 1.30608i −0.757322 0.653042i \(-0.773493\pi\)
0.757322 0.653042i \(-0.226507\pi\)
\(942\) 385.399i 0.409128i
\(943\) 318.205i 0.337439i
\(944\) 224.853 0.238192
\(945\) 123.650i 0.130847i
\(946\) −1835.20 −1.93996
\(947\) 755.838i 0.798139i −0.916921 0.399070i \(-0.869333\pi\)
0.916921 0.399070i \(-0.130667\pi\)
\(948\) −296.146 −0.312391
\(949\) 163.911 0.172720
\(950\) −383.294 −0.403467
\(951\) 929.036i 0.976905i
\(952\) 166.081i 0.174454i
\(953\) 831.719i 0.872738i −0.899768 0.436369i \(-0.856264\pi\)
0.899768 0.436369i \(-0.143736\pi\)
\(954\) 535.866i 0.561704i
\(955\) 1211.07 1.26814
\(956\) 92.3816i 0.0966335i
\(957\) 528.586i 0.552336i
\(958\) 272.003 0.283928
\(959\) 553.320i 0.576976i
\(960\) 191.277i 0.199247i
\(961\) 231.108 932.797i 0.240487 0.970652i
\(962\) −546.676 −0.568270
\(963\) −635.541 −0.659960
\(964\) 275.654i 0.285949i
\(965\) −282.078 −0.292309
\(966\) 489.220 0.506439
\(967\) 1276.50i 1.32006i 0.751237 + 0.660032i \(0.229457\pi\)
−0.751237 + 0.660032i \(0.770543\pi\)
\(968\) 767.446 0.792816
\(969\) −1648.69 −1.70143
\(970\) 228.409 0.235473
\(971\) −1899.15 −1.95587 −0.977936 0.208906i \(-0.933010\pi\)
−0.977936 + 0.208906i \(0.933010\pi\)
\(972\) 653.303i 0.672122i
\(973\) 277.304i 0.284999i
\(974\) 924.422i 0.949098i
\(975\) 239.391 0.245529
\(976\) 18.0582i 0.0185022i
\(977\) 902.996 0.924254 0.462127 0.886814i \(-0.347086\pi\)
0.462127 + 0.886814i \(0.347086\pi\)
\(978\) 914.992i 0.935575i
\(979\) 2835.75 2.89658
\(980\) 344.049 0.351070
\(981\) 741.205 0.755561
\(982\) 108.549i 0.110539i
\(983\) 1559.25i 1.58622i 0.609079 + 0.793110i \(0.291539\pi\)
−0.609079 + 0.793110i \(0.708461\pi\)
\(984\) 193.268i 0.196410i
\(985\) 674.859i 0.685136i
\(986\) 122.378 0.124115
\(987\) 1226.65i 1.24281i
\(988\) 393.091i 0.397866i
\(989\) −1251.57 −1.26549
\(990\) 1278.11i 1.29102i
\(991\) 1385.77i 1.39836i −0.714947 0.699179i \(-0.753549\pi\)
0.714947 0.699179i \(-0.246451\pi\)
\(992\) −138.108 + 108.066i −0.139221 + 0.108938i
\(993\) 511.038 0.514640
\(994\) 70.1838 0.0706074
\(995\) 1532.21i 1.53991i
\(996\) −1306.84 −1.31209
\(997\) 1199.12 1.20273 0.601363 0.798976i \(-0.294625\pi\)
0.601363 + 0.798976i \(0.294625\pi\)
\(998\) 945.124i 0.947019i
\(999\) −285.588 −0.285874
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 62.3.b.a.61.1 4
3.2 odd 2 558.3.d.a.433.4 4
4.3 odd 2 496.3.e.d.433.4 4
5.2 odd 4 1550.3.d.a.1549.1 8
5.3 odd 4 1550.3.d.a.1549.8 8
5.4 even 2 1550.3.c.a.1301.4 4
31.30 odd 2 inner 62.3.b.a.61.2 yes 4
93.92 even 2 558.3.d.a.433.3 4
124.123 even 2 496.3.e.d.433.1 4
155.92 even 4 1550.3.d.a.1549.4 8
155.123 even 4 1550.3.d.a.1549.5 8
155.154 odd 2 1550.3.c.a.1301.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
62.3.b.a.61.1 4 1.1 even 1 trivial
62.3.b.a.61.2 yes 4 31.30 odd 2 inner
496.3.e.d.433.1 4 124.123 even 2
496.3.e.d.433.4 4 4.3 odd 2
558.3.d.a.433.3 4 93.92 even 2
558.3.d.a.433.4 4 3.2 odd 2
1550.3.c.a.1301.3 4 155.154 odd 2
1550.3.c.a.1301.4 4 5.4 even 2
1550.3.d.a.1549.1 8 5.2 odd 4
1550.3.d.a.1549.4 8 155.92 even 4
1550.3.d.a.1549.5 8 155.123 even 4
1550.3.d.a.1549.8 8 5.3 odd 4